Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution"

Transcript

1 Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution Jim Dai Joint work with Masakiyo Miyazawa July 8, INFORMS APS conference at Stockholm Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

2 Semimartingale reflecting Brownian motion (SRBM) -matrix if Rv > for some v. It is is an!-matrix. he n-dimensional non-negative orthant. Z(t) = X (t) + RY (t) for all t, X is a (µ, Σ) Brownian motion, Z(t) R n + for all t, n n covariance matrix, and an n- 3) proved the following: there exists a five conditions, and it is unique in Y ( ) is continuous and nondecreasing with Y () =, Y i ( ) only increases when Z i ( ) =, i = 1,..., n. Z 2 R 1 R 2 n) Z 1 Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

3 Semimartingale reflecting Brownian motion (SRBM) -matrix if Rv > for some v. It is is an!-matrix. he n-dimensional non-negative orthant. Z(t) = X (t) + RY (t) for all t, X is a (µ, Σ) Brownian motion, Z(t) R n + for all t, n n covariance matrix, and an n- 3) proved the following: there exists a five conditions, and it is unique in Y ( ) is continuous and nondecreasing with Y () =, Y i ( ) only increases when Z i ( ) =, i = 1,..., n. n) Z 2 R 1 R 2 Z 1 We focus on n = 2. R is assumed to be completely-s ( ) R = (R 1, R 2 r11 r ) = 12. r 21 r 22 Z exists and is unique in distribution; (Taylor-Williams 92) Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

4 A queueing network A Simple Queueing Network mean service time = 1 mean service time = 1 Poisson arrivals at average rate < deterministic service times service time variance a 2 Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

5 Its Approximating SRBM Its Approximating SRBM Z 2 Z 1 Z 1 (t) = X 1 (t) + Y 2 (t) Z 1 (t) = X 1 (t) + Y 1 (t), Z 2 (t) = X 2 (t) + Y 1 (t) Y 2 (t) Z 2 (t) = X 2 (t) Y 1 (t) + Y 2 (t) drift of X is µ = (ρ 1, ), drift of X is = ( -1, ) covariance of X is Σ = covariance of X is = a 2 ( ) ρ a 2 R. J. Williams (95), Semimartingale reflecting Brownian motions in the orthant, in Stochastic Networks, eds. F. P. Kelly and R. J. Williams, the IMA Volumes in Mathematics and its Applications, Vol. 71 (Springer, New York) R. J. Williams (96), On the approximation of queueing networks in heavy traffic, in Stochastic Networks: Theory and Applications, eds. F. P. Kelly, S. Zachary and I. Ziedens, Royal Statistical Society (Oxford Univ. Press, Oxford) Jim Dai (Georgia Tech) 9 Exact asymptotics July 8, / 31

6 Stationary distribution of an SRBM Proposition (Hobson-Rogers 94, Harrison-Hasenbein 9) Assume that r 11 >, r 22 >, r 11 r 22 r 12 r 21 >, (1) r 22 µ 1 r 12 µ 2 <, and r 11 µ 2 r 21 µ 1 <. (2) Then SRBM Z has a unique stationary distribution π. Condition (1): R is a P-matrix. Condition (2): R 1 µ <. Basic adjoint relationship: for each f Cb 2(R2 +) R 2 + ( 1 2, Σ f + µ, f ) π(dx) + [ ] 1 ν i (A) = E π 1 {Z(u) A} dy 1 (u) 2 i=1 R 2 + R i, f ν i (dx) =, defines the ith boundary measure. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

7 Tail asymptotics of the stationary distribution Let Z( ) = (Z 1 ( ), Z 2 ( )) be the random vector that has the stationary distribution π. For any c R 2 +, set c, Z( ) = c 1 Z 1 ( ) + c 2 Z 2 ( ). We are interested in finding a function f c (x) that satisfies for some constant b >. P{ c, Z( ) > x} lim = b x f c (x) The function bf c (x) is said to be the exact asymptotic of P{ c, Z( ) > x}. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

8 An overview Main Result For an SRBM satisfying (1) and (2), the exact asymptotic is given by f c (x) = x κc e αcx. The decay rate α c and the constant κ c can be computed explicitly from the primitive date (µ, Σ, R). The constant κ c must take one of the values 3/2, 1/2, or 1. Let p c (x) be the density of c, Z( ). In most cases, we have p c (x) lim = b for some b >. x f c (x) Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

9 A diversion: Laplace transform Let f : R + R + be a continuous and integrable function. Define f (z) = e zx f (x)dx, Rz < α f, where α f = sup{θ : f (θ) < }. f is analytic in Rz < α f. When f is a Gamma(k, α) density, namely, then α f = α and f (z) = f (x) = c Γ(k) x k 1 e αx, c g(z) for Rz < α. (α z) k Complex function g is an analytic extension of f. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

10 A diversion: complex inversion Proposition (When k is a positive integer) Suppose that the analytic extension g of f satisfies that g(z) c (α z) k is analytic for Rz < α 1 for some α 1 > α. Then, under some mild conditions on g, f (x) c Γ(k) x k 1 e α x as x. (3) When α is the kth order pole of g(z), then (3) holds. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

11 Convergence domain Define [ ϕ(θ 1, θ 2 ) = E e θ,z( ) ]. Then the transform of c, Z( ) has the following expression ψ c (z) = E ( e z c,z( ) ) = ϕ(zc). Define the convergence domain of ϕ D = interior of {θ R 2 : ϕ(θ) < }. When θ D, BAR gives the key relationship γ(θ)ϕ(θ) = γ 1 (θ)ϕ 1 (θ 2 ) + γ 2 (θ)ϕ 2 (θ 1 ). (4) Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

12 Geometric objects: Γ, Γ 1 and Γ 2 γ(θ) = θ, µ 1 θ, Σθ, 2 γ 1 (θ) = r 11 θ 1 + r 21 θ 2 = R 1, θ, γ 2 (θ) = r 12 θ 1 + r 22 θ 2 = R 2, θ, θ 2 γ 1 (θ) = Γ 2 θ (2,r) γ(θ) = (µ 1, µ 2 ) θ (1,r) γ 2 (θ) = θ 1 Γ 1 Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

13 Theorem 1: Convergence domain characterization Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

14 Convergence domain: Category I θ 2 θ (2,Γ) = γ 1 (θ) = θ (1,max) γ 2 (θ) = θ (1,Γ) = θ (1,r) θ 1 θ (2,Γ) the highest point in Γ 2 ; θ (1,Γ) the right-most point in Γ 1 Category I: θ (2,Γ) 1 < θ (1,Γ) 1 and θ (1,Γ) 2 < θ (2,Γ) 2, Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

15 Convergence domain: Category II θ 2 γ 2 (θ) = θ (1,r) γ 1 (θ) = θ (1,Γ) =θ (1,max) θ (2,Γ) = θ (2,r) θ 1 Category II: θ (2,Γ) θ (1,Γ), Category III: θ (1,Γ) θ (2,Γ). Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

16 Key steps in proving Theorem 1 ϕ(θ) < implies ϕ 1 (θ 2 ) < and ϕ 2 (θ 1 ) <. θ Γ 1 and ϕ 1 (θ 2 ) < imply ϕ(θ) <. θ Γ, ϕ 1 (θ 2 ) < and ϕ 2 (θ 1 ) < imply ϕ(θ) <. θ2 γ1(θ) = τ2 θ (2,c) =θ (2,r) 2nd Γ (τ1, τ2) 4th 3rd γ(θ) = θ (1,max) γ2(θ) = θ (1,c) =θ (1,r) Γ2 Γ1 1st point τ1 θ1 Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

17 An illustration for proving Theorems 2 and 3 Key relationship (4) gives γ(zc)ψ c (z) = γ 1 (zc)ϕ 1 (c 2 z) + γ 2 (zc)ϕ 2 (c 1 z) for Rz < α c. Letting γ(zc) = zζ c (z), we have ψ c (z) = γ 1(c)ϕ 1 (c 2 z) + γ 2 (c)ϕ 2 (c 1 z) ζ c (z) for Rz < α c. θ2 γ1(θ) = θ (2,Γ) =θ (2,r) τ2 η (2) c αcc η (1) θ (1,max) γ2(θ) = θ (1,Γ) =θ (1,r) θ1 τ1 ϕ 2 (z) is analytic on Rz < τ 1. ϕ 1 (z) is analytic on Rz < τ 2. α c c Γ. α c < min(τ 1 /c 1, τ 2 /c 2 ). ψ c (z) has a single pole at z = α c. f c (x) = e αcx. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

18 Singularity properties of ϕ 2 (z) at z = τ 1 In Category I when τ 1 < θ (1,max) 1, single pole In Category I when τ 1 = θ (1,max) 1 When θ (1,max) θ (1,r), 1/2 analytic or 1/2 pole When θ (1,max) = θ (1,r), 1/2 pole In Category II when τ 1 < θ (1,max) 1, When θ (1,max) θ (1,r), single pole When θ (1,max) = θ (1,r), double pole In Category II when τ 1 = θ (1,max) 1 When θ (1,max) θ (1,r), 1/2 pole When θ (1,max) = θ (1,r), 1 pole Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

19 Theorem 2: exact asymptotics for Category I Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

20 Category I: β 1 < β < β 2 θ2 γ1(θ) = θ (2,Γ) =θ (2,r) τ2 η (2) c αcc η (1) τ 2 θ 2 γ 1(θ) = η (2) c α cc γ 2(θ) = θ (1,max) γ2(θ) = θ (1,Γ) =θ (1,r) θ (1,max) =θ (1,r) = η (1) τ1 θ1 τ 1 θ 1 ψ c (z) = γ 1(c)ϕ 1 (c 2 z) + γ 2 (c)ϕ 2 (c 1 z) ζ c (z) for Rz < α c. ϕ 2 (z) is analytic for Rz < τ 1 ϕ 1 (z) is analytic for Rz < τ 2 f c (x) = e αcx Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

21 Category I: β < β 1, τ 1 < θ (1,max) 1 τ 2 θ 2 γ 1 (θ) = θ (2,Γ) =θ (2,r) η (2) η (1) θ (1,max) γ 2 (θ) = θ (1,Γ) =θ (1,r) c α c c single pole at τ 1 for ϕ 2 (z) α c c Γ f c (x) = e αcx. τ 1 θ 1 ψ c (z) = γ 1(c)ϕ 1 (c 2 z) + γ 2 (c)ϕ 2 (c 1 z) ζ c (z) for Rz < α c. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

22 Category I: β < β 1, τ 1 = θ (1,max) 1 θ 2 γ 1(θ) = τ 2 θ (2,Γ) = θ (2,r) η (2) γ 2(θ) = θ (1,r) θ (1,Γ) = θ (1,max) = η (1) τ 2 θ 2 γ 1(θ) = η (2) γ 2(θ) = θ (1,max) =θ (1,r) = η (1) α cc c α cc c τ 1 θ 1 τ 1 θ 1 1/2 pole at τ 1 for ϕ 2 (z) 1/2 pole at τ 1 for ϕ 2 (z) f c (x) = { x 3/2 e αcx if η (1) = θ (1,max) θ (1,r), x 1/2 e αcx if η (1) = θ (1,max) = θ (1,r). Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

23 Category I: β = β 1 < β 2, τ 1 < θ (1,max) 1 τ 2 θ 2 γ 1 (θ) = θ (2,Γ) =θ (2,r) η (2) c η (1) = α c c θ (1,max) γ 2 (θ) = θ (1,Γ) =θ (1,r) τ 1 θ 1 ψ c (z) = γ 1(c)ϕ 1 (c 2 z) + γ 2 (c)ϕ 2 (c 1 z) ζ c (z) for Rz < α c. f c (x) = xe αcx Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

24 Category I: β = β 1 < β 2, τ 1 = θ (1,max) 1 θ 2 γ 1(θ) = τ 2 θ (2,Γ) = θ (2,r) η (2) γ 2(θ) = θ (1,r) α cc θ (1,Γ) = θ (1,max) = η (1) τ 2 θ 2 γ 1(θ) = η (2) γ 2(θ) = α cc θ (1,max) =θ (1,r) = η (1) τ 1 θ 1 τ 1 θ 1 1/2 pole at τ 1 for ϕ 2 (z) 1/2 pole at τ 1 for ϕ 2 (z) f c (x) = { x 1/2 e αcx if η (1) = θ (1,max) θ (1,r), e αcx if η (1) = θ (1,max) = θ (1,r). Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

25 Category I: β = β 1 = β 2 f 2 (τ 1 ) θ 2 γ 1 (θ) = c θ (2,r) τ 2 τ θ (1,max) θ (1,r) γ 2 (θ) = τ 1 f 1 (τ 2 ) θ 1 ψ c (z) = γ 1(c)ϕ 1 (c 2 z) + γ 2 (c)ϕ 2 (c 1 z) for Rz < α c. ζ c (z) { xe αcx if η (1) = η (2) = τ Γ, f c (x) = e αcx if η (1) = η (2) = τ interior of Γ. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

26 Theorem 3: exact asymptotics for Category II Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

27 Category II: β < β 1 : τ 1 < θ (1,max) 1 θ2 γ2(θ) = θ2 θ (1,r) γ1(θ) = θ (1,Γ) =θ (1,max) γ1(θ) = θ (1,max) γ2(θ) = τ2 θ (2,Γ) =θ (2,r) τ = η (1) = η (2) c αcc θ (2,Γ) = θ (2,r) τ2 τ = η (1) = η (2) = θ (1,r) c αcc τ1 θ1 τ1 θ1 single pole at τ 1 for ϕ 2 (z) f c (x) = { e αcx xe αcx double pole at τ 1 for ϕ 2 (z) if τ θ (1,r) if τ = θ (1,r) Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

28 Category II: β < β 1 : τ 1 = θ (1,max) 1 γ1(θ) = θ2 γ2(θ) = γ1(θ) = θ2 θ (1,r) γ2(θ) = θ (2,Γ) =θ (2,r) τ2 θ (1,Γ) = θ (1,max) = τ = η (1) = η (2) c αcc θ (2,Γ) =θ (2,r) τ2 θ (1,Γ) = θ (1,max) = θ (1,r) = τ = η (1) = η (2) c αcc τ1 θ1 τ1 θ1 1/2 pole at τ 1 for ϕ 2 (z) 1 pole at τ 1 for ϕ 2 (z) f c (x) = { x 1/2 e αcx, if τ θ (1,r), e αcx, if τ = θ (1,r). Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

29 Category II: β = β 1, τ 1 < θ (1,max) 1 θ2 γ2(θ) = θ2 θ (1,r) γ1(θ) = θ (1,Γ) =θ (1,max) γ1(θ) = θ (1,max) γ2(θ) = τ2 θ (2,Γ) =θ (2,r) τ = η (1) = η (2) αcc θ (2,Γ) = θ (2,r) τ2 αcc τ = η (1) = η (2) = θ (1,r) τ1 θ1 τ1 θ1 single pole at τ 1 for ϕ 2 (z) double pole at τ 1 for ϕ 2 (z) f c (x) = xe αcx. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

30 Category II: β = β 1, τ 1 = θ (1,max) 1 γ1(θ) = θ2 γ2(θ) = γ1(θ) = θ2 θ (1,r) γ2(θ) = θ (2,Γ) =θ (2,r) τ2 αcc θ (1,Γ) = θ (1,max) = τ = η (1) = η (2) θ (2,Γ) =θ (2,r) τ2 αcc θ (1,Γ) = θ (1,max) = θ (1,r) = τ = η (1) = η (2) τ1 θ1 τ1 θ1 1/2 pole at τ 1 for ϕ 2 (z) 1 pole at τ 1 for ϕ 2 (z) f c (x) = xe αcx. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

31 Category II: β 1 < β π/2 θ2 γ1(θ) = θ2 γ2(θ) = γ1(θ) = θ (2,Γ) = θ (2,r) τ2 αcc c θ (1,max) γ2(θ) = τ = η (1) = η (2) = θ (1,r) θ (2,Γ) =θ (2,r) τ2 αcc θ (1,r) c θ (1,Γ) = θ (1,max) = τ = η (1) = η (2) τ1 θ1 τ1 θ1 f c (x) = e αcx. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

32 References J. G. Dai and M. Miyazawa (211), Semimartinagle Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution, Stochastic Systems, to appear. M. Miyazawa and M. Kobayashi, M. (211). Conjectures on tail asymptotics of the stationary distribution for a multidimensional SRBM. Queueing Systems, to appear. Jim Dai (Georgia Tech) Exact asymptotics July 8, / 31

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα