SHOUYU DU AND ZHANLE DU. This paper is dedicated to Prof. Wei WANG.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SHOUYU DU AND ZHANLE DU. This paper is dedicated to Prof. Wei WANG."

Transcript

1 , THERE IS AT LEAST ONE PAIR OF DOUBLE PRIMES FOR ANY EVEN NUMBER arxiv:ath/0502v athgm 6 Oct 2005 SHOUYU DU AND ZHANLE DU This aer is dedicated to Prof Wei WANG Abstract We roved that any even nuber not less than 6 can be exressed as the su of two old ries, 2n Introduction The Goldbach conjecture was one of the oldest unsolved robles in nuber theory, 4 It states that for any even nuber 2n there exists a air of double ries (, ) such that 2n, and usually reresented as The best result is the Chen s Theore, 2 that every large even nuber ay be written as the su of a rie and a seirie (2-alost ries) Our result is as theore Theore There is at least one air of double ries for any even nuber 2n 6 Let P{, 2,, v } {2,,, v } be the ries not exceeding 2n, then the nuber of ries not exceeding 2n 5 is, (π( ( ) 2n 2n 2n 2n) )2n () π(2n) 2 ( v 2n 2n 2n 2 v v ), For silicity, we can write it as, π(2n) (π( 2n) )2n 2 (2) v (π( 2n) )2n v i i, where 2n i 2n 2n, 2n i j 2n 2n 2n The oerator i will leave the ites which are not ultiles of 2n In this aer, x xis the floorfunction, x xthe ceiling function ofx The integral oerator, which is not the floor function in this aer, has eanings only oerating on (real) nuber: Date: Oct, Matheatics Subject Classification A4; P2; N6 Key words and hrases rie, floor function, ceiling function, integral oerator, Goldbach s conjecture All rights reserved This is one of a serial works, and was suorted financially by Prof Wei WANG and on loan in art Corresonding author: Zhanle Du

2 2 SHOUYU DU AND ZHANLE DU 2 The nuber of double rie airs in 2n Let Z {,2,,}( 2n ) be a natural arithetic rogression, Z 2n Z {2n,2n 2,,2n } be its accoanying arithetic rogression, so that 2n Z k Z k,k,2,, There are such airs { Z {, 2,, } (2) Z { 2n, 2n 2,, 2n } After deleted all the airs in which one or both ites Z k and Z k are ultiles of the ries 2n, then the airs left are all rie airs or,2n- For a certain, we first delete the ultiles of in set Z, or the ites of Z k od 0, (22) y( ) Note the oerator If has eaning only oerated on integer () (2) λ i (2n)od is not zero, we should delete the ultiles of in Z, ie the ites of (2n Z k )od 0 or Z k od (2n)od in set Z, (24) y (i ) (2n )od ( ), def where0 (2n )od ( ) is the reainderodulo 0 θ i ( ) (2n )od ( λ i ) ( ) is the nuber of eleents which, when added before Z, will ake a new rogression(z {Z a,z },Z a {, 2,,λ i }) having ites of Z k od 0 in the ositions of kod 0 If λ i 0, then it is the osition of the first ite with Z k od 0, and then θ i λ i Eq (22) will delete all airs with Z k od 0 in set Z, and Eq (24) will delete all airs with Z k od λ i in set Z If (2n)od 0, then for soe Z k od 0, we have Z k od (2n Z k )od 0 These two ites are in the sae air and should be deleted only once, thus, (25) y ( ) 0 if (2n)od 0 When (2n)od 0, θ i, (26) y ( ) δ, where 0 δ with, { 0 : 0 odi θ (27) δ i < : else After deleted all the ultiles of in both Z and Z, the airs will leave, (28) M( ) y( ) y ( )

3 THERE IS AT LEAST ONE PAIR OF DOUBLE PRIMES FOR ANY EVEN NUMBER The oerator, when oerating on, will leaves the ites having no ultiles of After deleted the ultiles of the ries v in both Z and Z, the airs left will be rie airs and have, D 0 () (29) 2 2 v v (2n)od0 (2n)od 0, the eaning is as follows, (20) (2), (i ) (2n )od θi i λ i (i j ) (2n )od θi,j i j λ i,j i i λ ij λ i j def def Let θ ij (2n )od λ ij ( ) λ ij (2n)od istheositionofthefirstiteinz withz k od( ) 0, if it does not exist then λ ij >,θ ij < and this ite will be zero Note that λ ij 0 because (2n) and (2n) def In Eq (2), θ i,j λ i,j ( ), λ i,j is the osition of the first ite with Z λi,j and Z λ i,j (22) { Zλi,jod 0 Z λi,j od (2n)od Let X {λ }, X 2n X {2n λ }, λ,2,,, then (2) { λi j od (2n)od λ i,j λ i j If it exists and (2n)od 0, then λ i j, and θ i,j λ i,j ( ) If there is no such λ i,j in set Z, ie, λ i,j (), then the last ite in Eq (2) will equal zero Let 2n,thenZ {,2,,2n }andz 2n Z {2n,2n 2,,} For each ais, there is another sae air: 2n Z k Z k Z 2n k Z 2n k When k n is rie, it ust be the sae air 2n Z n Z n nn Therefore, fro

4 4 SHOUYU DU AND ZHANLE DU Eq (29), the actual nuber of rie airs in 2n is, D(2n) D0(2n ) 2 D( 2n) D (24) 2 (2n ) 2 v i2 D( 2n) D, where D( 2n) 0 is the nuber of rie airs 2n (2n ) when v < 2n, 2n are both ries, and { 0 2n rie (25) D 2n rie Reeber that when (2n)od 0, 0 Exale 2 Let 2n 46, then 2,,5, n,5 n, 2n 45, (26) Fro Eq (2), (27) { Z { } Z { } { i : 5 5 λ i : Fro Eq (2), { (i, (28) j ) : (2,) (5,) (0,) (2,5) (,5) (6,5) (2,5) λ i,j : ) Fro Eq (29), (2), D 0 (2n ) (2n ) Wecancheckthisresultdirectly AfterdeletedtheitesofZ k od2 0;Z k od 0,;Z k od5 0, fro set Z, it is left Z {7,2,29} D 0 (2n ), it is the sae as before Fro D( 2n) 2( ), D 0(46-45 is not a rie) Fro Eq (24), D(2n) The set left is Z {,5,7,2},Z

5 THERE IS AT LEAST ONE PAIR OF DOUBLE PRIMES FOR ANY EVEN NUMBER 5 44 Z {4,4,29,2} Thus there are four double rie airs of 46 : (,4),(5,4),(7,29),(2,2) Definition 22 The ites of Z k od 0, or the ultiles of, have, (29) S(, 0) : Z k od0 So the ites of Z k od 0,λ j have, (220) S(, 0,λ j ) : Z k od 0,λ j Definition 2 Let X {X,X 2,,X t } be an (any) integer set, then (22) t tφ : t i tφ i 0 X k od 0,λ i is the nuber of ites left after deleted the ites of X k od 0,λ i ( ) Usually, We can exress it as S(, 0,λ i ; 0,λ j ) (222) i ( ), is the nuber of ites left when we first delete those Z k od 0,λ i fro set Z, and then delete those X k od 0,λ j fro set X {Z,X k od 0,λ i,k,2,, }, where set X is no longer an arithetic sequence In general, (22) i ( i ) i i Soe roerty () (2) i j j i 2 2 od 2od () i 0 ( (4) a 2 )b for a b (5) 2 ( 2 ) 2

6 6 SHOUYU DU AND ZHANLE DU Proof Let α od,β 2 od, δ 2 ( 2 ) αβ 2θ i αβθi 2θ i αθi βθi 2 θ i The iniu: in(δ 2 ) 2, when αβ, αθ i <, βθ i < The axiu: ax(δ 2 ) 0, when αβ <, αθ i, β θ i We can reresent Eq (5) as ( 2 ) (6) (2n )od (2n )od 2 od 2 2 (2n )od) 2 will delete the ites of X k od 0 in the sequence of X {, 2,, 2 }, and 2 will delete the ites of X k od 0 in the sequence of X {2n X} or the ites of X k od λ i in set X For any 2, 0 2 (7) 2, so, for Lea 4 For, (4) Proof left 4 Soe lea ) ( i θi 2 right Lea 42 For 2 j, > 2, ) (42) ( j Proof Let s t, t a b, 0 a ( ), 0 b ( ), Suose λ i (2n)od 0 else 0, and λ j (2n)od 0 else 0, so θ i,θ j > 0 and θ i,j,θ j,i > 0,θ ij > 0 Because 2 j, >, so s

7 THERE IS AT LEAST ONE PAIR OF DOUBLE PRIMES FOR ANY EVEN NUMBER 7 Because (v) 2 v Let (j ) (j)( /), then (j ) (j)( / ) 2 j ( /) ( ) ( 2)( ) 2 j 2 2 j So for any i (j ), we have (i) 2 i Fro Eq (2), (4), ) ε ( j ( )( ) ( )( ) s 2 2 s 2 t t tθi t t tθj,i tθj where tθij ( t s( i 2) t tθij s( 2) a ajbθ ij ) tθj a a 2 t ε a s( 2)a ε ε 2 2ε ε 4, ε ε 2 ε bθj t 0 tθ i tθj,i tθi,j ε 2 ε ε 2 ajbθ j,i ajbθ j,i ajbθ i,j ( od i t )od j ( od i tθ i a 2 )od ajbθ i,j tθi,j ajbθ ij ε 4 bθj, ε ε ε 2 2ε ε 4 7 () If, then ε s( 2) ε 9 7 > 0 (2) If 7, then (a) if a 2, then ε s( 2)a ε (b) if a, then ε a 2 7 0, ε, so ε s(i 2) ε 5 > 0 () If 5, (a) if a 4: ε s( 2)a ε (b) if a 0: ε 0, ε, so ε s( 2) ε 0

8 8 SHOUYU DU AND ZHANLE DU (c) if a : if then ε, ε 5, so ε s( 2)a 0 then ε 0, ε, so ε 5 0; else for ε s( 2)a ε > 0 (d) if a 2: ε, ε 5, so ε s( 2)a ε (e) if a : if 7 0; else for then ε s( 2) a a 0 then ε ε s( 2)a ε 5 > 0 (4) If, then 0 a 2, a 2ε a 2 ε ε 2 ε s a ε ε 2 ε 4 (a) if a a 2a a ( ( )od a j jb )od j ( ( )od a j jbθ i )od j 0, then ε ε 2 0 a 0: ε s ε 4 0 if a : ε s ajbθ j,i ajbθ i,j ajbθ i,j ε 4 Proof If s 2 then ε If s ie, s 2 j ε, ε 5, so, ajbθ ij , we have a 2 Fro, so 5 Fro 0, we have b Because θ j, so bθ j If bθ j, ie, b 0 or θ j 2, then ε 4 0 Else for bθ j, ie, b and θ j, ε 4 But θ j (2n )od, so (2n )od 0, or (2n)od Let us consider θ i,j λ i,j Fro Eq (2), λ i,j λ λ, with the condition (2n λ)od 0 (λ)od (2n)od5, so λ 2 and θ i,j ajbθ i,j λ Therefore, ajbθ i,j ε 4 0 if s or ε s ajbθ i,j ε 4 ε ε ajbθ a j,i ajbθ ij

9 THERE IS AT LEAST ONE PAIR OF DOUBLE PRIMES FOR ANY EVEN NUMBER 9 (b) if If a, then ε a 0 Else if a 2(< ), fro Eq (2), θ j,i λ ( ajbθ λ ), j,i 2j j So ε a 0, then ε Proof if ε ε 2 0 if 2, then ε 0, because θ i, ε ε 2 (ajb )od 0 if (a b)od 0 0 if (a b)od 0 if (a b)od 2 So ε ε 2 and ε (ajbθ i )od ε ε 2 0 Besides, ε ajbθ s i,j ε 4 Proof If s 2 then ε If s ie, s 2 j 52 5,we have a 2 Fro, so 5 Fro 5 2,2, we have b 2,,4 Let us consider θ i,j λ i,j Fro Eq (2), λ i,j λ λ, with the condition (λ)od (2n)od5 Because (2n)od5 0, so λ 4 and θ i,j λ (5 λ) ajbθ i,j j ajbθ i,j So, Therefore, or ε s ε 4 0 if s, ajbθ i,j ε 4 ε ε aε a ajbθ j,i ajbθ ij ajbθ j,i If a then ε a 0 Else for a 2(< ), because θ j,i λ ( λ ), ajbθ j,i 2j j So ε a 0 In suary, ε 0 for all < the Lea is roved If (2n)od 0,

10 0 SHOUYU DU AND ZHANLE DU ε i ( ) j i ( )( ) ( )( ) s 2 s t t t ( t t ) s( ) s( )a s( )a where t t tθj tθj a a ε ε ε 4 tθi,j t tθi,j bθj ajbθ i,j ajbθ i,j ε ε ε 4, ( od i t )od j a bθj, 2 ε a ε ε ε ε 4 4 We can follow the sae ethod above (it is a little easier), i (4) j ( ) j i ) ( j ε Eq (4) and (42) ean that, after deleted the ites of Z k od 0,λ j fro Z, the ites of Z k od 0,λ i, will have, (44) S(, 0,λ i ; 0,λ j ) S(( / ), 0,λ i ) ( 0,λ i ), where ( 0,λ i ) 0 is the extra ites of Z k od 0,λ i and Z k od 0,λ j Thus the effect of is that it constructs a new effective nature sequence with at least ( ) ites which satisfy the condition Z k od 0,λ j This lea eans that, fro equation (4) and (6), we can let the ites which have no ultiles of and (45) ( j ) t,t 0, and oerated by S(, 0,λ i ; 0,λ j ) ( ) ) ( j t S(( / ) j ), 0,λ i ) ( i 0,λ i ) ( j t ) ( j to attain

11 THERE IS AT LEAST ONE PAIR OF DOUBLE PRIMES FOR ANY EVEN NUMBER Lea 4 (46) 2 6 Proof For 2,, 6st, fro Eq (4), 2 6s 2 6s ( 2)( 2 ) s 6 6 t 2 For the residual class of odulo 6, X {6s,6s2,,6s6}, X k od6 {,2,,4,5,6}, there are 4 eleents (2,,4,6) of ultiles of 2 or For the other eleents X k od6 {,5}, there is at least one ite with (2n X k ) or X k od (2n)od So will have at least 6 6 double rie airs Lea 44 For i,2,,i,j, (47) i i ( ) i i Proof Fro equation (220), (4), (42), (44), (45), For i k, we have S(, 0,λ i ; 0,λ j ) S(( / ), 0,λ i ) and S(, k 0,λ k ; 0,λ j ) S(( / ), k 0,λ k ), so that S(, 0,λ i ; k 0,λ k ; 0,λ j ) S(( / ), 0,λ i ; k 0,λ k ) ( 0,λ i ; k 0,λ k ) S(( / ), 0,λ i ; k 0,λ k ) Thus S(, 0,λ i ;2 0,λ i2 ; 0,λ j ) S(( / ), 0,λ i ;2 0,λ i2 ) S(, 0,λ i ;2 0,λ i2 ;, 0,λ i ; 0,λ j ) S(( / ), 0,λ i ;2 0,λ i2 ;, 0,λ i ), i i S(, 0,λ ; 2 0,λ 2 ; ; 0,λ i ; 0,λ j ) S(( / ), 0,λ ; 2 0,λ 2 ; ; 0,λ i ) ) i ( j Suose that for < r i, i (48) i ) i ( j t, wheret 0 Iteansthattheeffectofoerator whenoeratingon ) isthat dividingz {,2,,}intotwosetsX {,2,, ( j } and X {X,X 2,,X t,t 0} Fro equation (222), (22), (4),

12 2 SHOUYU DU AND ZHANLE DU (42), and (48), we have i i ( ) i ) ( j t ) i ( j ) i ( j or i i i i ) i ( j t ) i ( j t ) i ( j t ) i ( j t ) i ( j If (2n)od 0, then i (49) ( ) i j In fact, if i i < ( ) i i, then for any,, before deleting the ultiles of other ries, it ust have ) < ( j which contradicts Lea 42 So this lea is true

13 THERE IS AT LEAST ONE PAIR OF DOUBLE PRIMES FOR ANY EVEN NUMBER ) With Lea 42, the oerator can be reresented by ( j, and other oerator can oerate on this inequality unchanged 5 Exlantation Let s a b 2 j, then for all <, the effect of is a nature sequence X {f(z)} whose nuber is not less than ( / ) The reason is as follows When a nature sequence is deleted by the ultiles of θj, the sequence is subtracted by We can arrange the ites in a table of rows (Table ) will delete the th row, and θj delete the (2n)od th row Thus there are ( 2) rows left in which each ite Z k od 0,(2n)od Table Set Z ( ) (s ) s s a 2 2 ( ) 2 (s ) 2 s 2 s a 2 b b ( ) b (s ) b s b s a b 2 s s will But every ites (0 r Z k od ) in any row of the first s coluns consist in a colete syste of residues odulo, because C {,,2,,( ) } and C r {C r} are both colete syste of residues odulo, where r is any (row or colun) constant There are ( 2) such rows or s ( 2) ites left These ites are effective to a nature sequence when deleting ultiles of, s s ( 2) s( 2)( 2) Let t a b, 0 b, 0 a, t will delete at ost a(a) t s ites If we add these ites by reoving those fro the end of sequence, then the sequence is again effective to a nature sequence, which has at least, M(j) s ( 2)t a(a) s ( )ts i 4a 2 t s ( ) t(s a 2) s ( ) t (s a 2) (s t)( ) (s a 2) ( ) (s a 2)

14 4 SHOUYU DU AND ZHANLE DU For s 2 or a 2, we have (s a 2) (s ) ( a ) 0, M(j) ( ) For s and a, the ites of t have rows, coluns and soe b ites In each of the first b rows, there are exact ites which consist in a colete syste of residues odulo, and these ites can be considered as an effective nature sequence when deleting the ultiles of (Z k od 0,λ i ) The other ites have at ost rows and coluns where the ultiles of have at ost 2( ) As before, we can add these ites to ake the t as an effective nature sequence, therefore, M(j) s ( 2)t 2( ) ( ) (s a ) ( ) Thus for any <, the original sequence of 2 j, after deleted all the ultiles of fro 2n Z k Z k, is effective to reconstruct a new nature sequence having at least ( ) ites Exale 5 2n 46, 2n 45, Z {,2,,45}, For 5, after deleted the ite of Z k od 0,(2n)od, it becoes Z Z {2,,4,7,8,9,2,,4,7,8,9,22,2,24,27,28,29,2,,4,7,8,- 9,42,4,44} we can rearrange these ites as Z {(9),2,,4,(2)7,8,9,(22),- (29),2,,4,(27),(28),7,8,,24,2,,4,7,8,9,42,4,44} ) The first ( j 8itescanbetakenasaneffectivenaturesequence({,2,,8}) fro the original one when deleting the ites of Z k od 0,(2n)od The other sequence X {24,2,,4,7,8,9,42,4,44}, having at least zero ite after deleted the ultiles of all ries, will be neglected in further rocess 6 Proof of Theore For a given 2n, consider the ossible airs of 2n, where and are both ries Lea 6 The (double) rie airs in 2n, (6) D(2n) where v v6 i v (62) W(v) v If W(v) > 9 then D(2n) 2 i Proof Fro equation (29), (), (47), (49) and (46), W(v) 9 6,

15 THERE IS AT LEAST ONE PAIR OF DOUBLE PRIMES FOR ANY EVEN NUMBER 5 but D 0 () (2n) od 0 2 v i2 (2n) od 0 ( ) v v 2 i2 ( ) ( ) v v 2 v 2 i2 ( v i ) 2 ) v 6 i ( i, v i( ) v and 2n 2 v, so (6) D 0 (2n ) v v 2 6 v i Fro equation (24), (25), 4 4 v v v v v v 2 v v i, v v i D(2n) D0(2n ) 2 v v 6 i D( 2n) D 2 v v 2 i 2 Proof of Theore Because for v 5, v, W(v) > 9 Suose that for v, W(v) v v i > 9, then for v, (64) W(v ) v v i W(v) 2 v v 2 v Because, v v 2,, v, v v i v v v v 2 v v 2 v ( v 2 ) 2 ( v 2 ) 2 v 2 v 4 v 4 2 v 6 2 v ( ) v ( v 4 6) > 0 Therefore, 2 v v >, W(v ) > W(v) > 9 Fro the rincile of atheatical induction, we can conclude that for any v 5, we have W(v) 9 and 2 v D(2n), or thereis at least one airofdouble ries, such that 2n for any 2n > 2 v 2 22

16 6 SHOUYU DU AND ZHANLE DU Besides, when 6 2n 20, we know that there is at least one air of ries, such that 2n In fact, fro Eq (6), D(2n) aroaches infinity as n grows without bound The roof is coleted Corollary 62 Any odd nuber not less than 9 can be exressed as the su of three odd ries Proof If n is odd nuber,, then n 6 and can be reresent as the su of two ries 2 fro Theore So n 2 Exale 6 (Actual vs Silified Forula) Figure shows the iniu actual rie airs D(2n) (solid line) of 2n in the range of 2 v,2 v and the silified forula (dashed line) fro Eq (6) against v Fro this figure, it is easily seen that (65) D(2n) v v 6 i 2 Figure The iniu nuber of actual rie airs(solid) and its silified forula (dashed) against v References J R Chen, On the Reresentation of a Large Even Integer as the Su of a Prie and the Product of at Most Two Pries, Sci Sinica 6 (97), J R Chen, On the Reresentation of a Large Even Integer as the Su of a Prie and the Product of at Most Two Pries II, Sci Sinica 6 (978), J R Chen & C D Pan, The excetional set of Goldbach nubers, Sci Sinica, 2 (980), H L Montgoery & R C Vaughan, The excetional set in Goldbach s robe, Acta Arith, 27 (975), Kenneth H Rosen, Eleentanry Nuber Theory and Its Alications, Fifth Edition, Pearson Education Asia Liited and China Maxhine Press, 2005 Chinese Acadey of Sciences, 99 Donggang rd ShiJiaZhuang, HeBei, 0500, China E-ail address: shouyudu@yahoococn Chinese Acadey of Sciences, A20 Datun rd Chaoyang Dst Beijing 0002, China E-ail address: zldu@baoaccn

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR

CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR Journal of Quality Measureent and Analysis Jurnal Penguuran Kualiti dan Analisis JQMA 8(2) 202, 37-44 CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR (Sifat Tertentu

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα