Συνολοκλήρωση και VAR υποδείγματα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συνολοκλήρωση και VAR υποδείγματα"

Transcript

1 ΜΑΘΗΜΑ ο

2 Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων διανυσματικών υποδειγμάτων (υποδείγματα VAR). Αν έχουμε ένα σύστημα εξισώσεων διόρθωσης λαθών με δύο μεταβλητές, τότε μπορούμε το σύστημα αυτό να το θεωρήσουμε ως ένα αυτοπαλίνδρομο υπόδειγμα VAR(2) στις πρώτες του διαφορές με επιπλέον τον όρο της διόρθωσης των λαθών u -.

3 Η σχέση ανάμεσα στα υποδείγματα συνολοκλήρωσης (στατικά) και στα υποδείγματα διόρθωσης λαθών (δυναμικά) μπορεί να μελετηθούν καλύτερα χρησιμοποιώντας τις ιδιότητες των υποδειγμάτων διανυσματικών αυτοπαλινδρομήσεων (υποδείγματα VAR). Αν θεωρήσουμε το παρακάτω σύστημα διόρθωσης λαθών με τις δύο μεταβλητές Y και X μπορούμε να θεωρήσουμε το σύστημα αυτό ως ένα υπόδειγμα VAR στις πρώτες διαφορές με τον όρο u - τηςδιόρθωσηςλάθους, δηλαδή την απόκλιση από τη μακροχρόνια ισορροπία της προηγούμενης περιόδου. ΔΥ = υστερήσεις (ΔΥ, ΔΧ ) + λ u - + V ΔX = υστερήσεις (ΔΥ, ΔΧ ) + λ 2 u - + V 2

4 Αν αντικαταστήσουμε τα λάθη u - από την εξίσωση στις παραπάνω εξισώσεις θα έχουμε: ΔΥ = υστερήσεις (ΔΥ, ΔΧ ) + λ (Υ - 0 Χ - ) + V ΔX = υστερήσεις (ΔΥ, ΔΧ ) + λ 2 (Y Χ - ) + V 2 Παραλείποντας τη σταθερά για λόγους συντομίας θα έχουμε: X Y u ρ ρ ) ) ) = 0 ρ ) ρ ) k k V X Y X Y a Y ) ( + + Δ + Δ = Δ = = ρ λ β ) k k V X Y X Y a X ) ( + + Δ + Δ = Δ = = ρ λ β )

5 όπου οι μεταβλητές Y και X είναι ολοκληρωμένες πρώτης τάξης Ι() και τα λάθη V και V 2 είναι το καθένα λευκός θόρυβος και μπορεί μεταξύ τους να συσχετίζονται. Ο αριθμός των υστερήσεων επιλέγεται ανάλογα με το δείγμα. Η σημασία του δυναμικού συστήματος εξισώσεων είναι ότι μας επιτρέπει να εξετάσουμε αμέσως αν οι μεταβλητές Y και X συνολοκληρώνονται. Αφού οι μεταβλητές Y και X είναι μη στάσιμες πρώτης τάξης Ι() και οι πρώτες διαφορές τους ΔY και ΔX θα είναι στάσιμες μηδενικής τάξης Ι(0). Επομένως για να είναι το σύστημα συνεπές θα πρέπει και οι όροι στο δεξί μέλος να είναι και αυτοί μηδενικής τάξης Ι(0). Αυτό διασφαλίζεται όταν η σχέση συνολοκλήρωσης είναι και αυτή μηδενικής τάξης Ι(0) δηλαδή όταν οι μεταβλητές Y και X συνολοκληρώνονται.

6 Η μεθοδολογία του Johansen Έστω Y ένα διάνυσμα μη στάσιμων πρώτης τάξης ολοκληρωμένων μεταβλητών το οποίο εκφράζεται από ένα αυτοπαλίνδρομο διανυσματικό υπόδειγμα VAR ρτάξης: Υ = Α Υ Α η Υ -n + ΒΧ + u όπου Α, Α η είναι οι μήτρες των παραμέτρων τάξης η καθεμία. u το διάνυσμα των καταλοίπων που πληροί τις υποθέσεις ενός VAR συστήματος, δηλαδή έχει μέσο μηδέν καθώς και το κατάλοιπο κάθε εξίσωσης έχει και σταθερή διακύμανση που οι τιμές του δεν αυτοσυσχετίζονται. Το παραπάνω υπόδειγμα περιλαμβάνει επίσης και ένα διάνυσμα μη στοχαστικών μεταβλητών που μπορεί να είναι οι εποχικές μεταβλητές. Επομένως ένα VAR υπόδειγμα μπορεί να γραφεί και σε μορφή πρώτων διαφορών με διόρθωση λαθών ως εξής: ΔY = ΠY ρ + Γ ΔY + ΒX + = u

7 Όπου Π = ρ = A I και Γ = A j =,.r ρ j= + ΗμήτραΠρΧρ των παραμέτρων που πολλαπλασιάζει το διάνυσμα της υστέρησης Y - των ενδογενών μεταβλητών λέγεται μήτρα ισορροπίας και ο βαθμός αυτής της μήτρας προσδιορίζει και την ύπαρξη συνολοκλήρωσης μεταξύ των μεταβλητών του διανύσματος. Υπάρχουν τρεις περιπτώσεις που μπορούμε να διακρίνουμε σε σχέση με το βαθμό της μήτρας Π.

8 r(π) = μηδενικός βαθμός ΓιαναέχουμεμηδενικόβαθμότηςμήτραςΠ θα πρέπει κάθε στοιχείο της Π να είναι μηδέν. Οπότε το διανυσματικό υπόδειγμα διόρθωσης λαθών (VEC) γίνεται ένα υπόδειγμα διανυσματικών αυτοπαλινδρομήσεων (υπόδειγμα VAR) στις πρώτες διαφορές ΔΥ που οι μεταβλητές του είναι στάσιμες ολοκληρωμένες μηδενικής τάξης Ι(0) αφού οι μεταβλητές Υ είναι ολοκληρωμένες πρώτης τάξης Ι(). Στην περίπτωση αυτή οι μεταβλητές δεν συνολοκληρώνονται.

9 r(π) = πλήρης βαθμός Αυτό μπορεί να συμβεί μόνον όταν το διάνυσμα των μεταβλητών Υ είναι στάσιμο οπότε το διανυσματικό υπόδειγμα διόρθωσης λαθών (VEC) δεν έχει νόημα. r(π) = μειωμένος βαθμός Αυτό σημαίνει ότι οι στήλες της μήτρας Π δεν είναι όλες γραμμικά ανεξάρτητες, πράγμα που επιτρέπει τη δυνατότητα σχέσεων συνολοκλήρωσης μεταξύ των μεταβλητών του διανύσματος Υ. Επομένως στην περίπτωση που η μήτρα Π έχει βαθμό μικρότερο από την τάξη της ρ που ταυτίζεται με τον αριθμό των ενδογενών μεταβλητών, τότε μπορούμε να πούμε ότι οι μεταβλητές συνολοκληρώνονται. Στην περίπτωση αυτή το ορθό προς εκτίμηση υπόδειγμα είναι το υπόδειγμα διόρθωσης λαθών και όχι το υπόδειγμα διανυσματικών αυτοπαλινδρομήσεων στις διαφορές διότι η παράλειψη του όρου διόρθωσης σφάλματος από το υπόδειγμα θα οδηγούσε σε σοβαρά λάθη εξειδίκευσης αφού οι μεταβλητές συνολοκληρώνονται και η βραχυχρόνια συμπεριφορά των ενδογενών μεταβλητών επηρεάζεται από την πορεία προς τη μακροχρόνια ισορροπία.

10 Ο αριθμός των σχέσεων συνολοκλήρωσης προσδιορίζεται απότοίδιοβαθμότηςμήτραςπ. Έτσι αν έχουμε ρ ενδογενείς μεταβλητές και κάθε μία είναι ολοκληρωμένη πρώτης τάξης Ι() τότε μπορούμε να έχουμε το πολύ ρ γραμμικά ανεξάρτητες σχέσεις συνολοκλήρωσης. Στην περίπτωση δηλαδή του διμεταβλητού υποδείγματος θα έχουμε μία ανεξάρτητη σχέση συνολοκλήρωσης. Αν θεωρήσουμε ότι ο βαθμός της μήτρας Π είναι έστω k < ρ, τότε θα έχουμε αντίστοιχα k διανύσματα συνολοκλήρωσης που είναι στάσιμα, δηλαδή k σχέσεις συνολοκλήρωσης.

11 Έλεγχος του βαθμού συνολοκλήρωσης Επειδή πολλές φορές υπάρχουν περισσότερες από μία σχέσεις συνολοκλήρωσης, ο αριθμός των οποίων ονομάζεται βαθμός της συνολοκλήρωσης για τον έλεγχο των σχέσεων συνολοκλήρωσης χρησιμοποιείται η μεθοδολογία του Johansen (988), Johansen and Juselous (990, 992) και των Sock and Wason (988) ηοποία βασίζεται στη μέθοδο της μέγιστης πιθανοφάνειας. Ένας συντελεστής αυτοπαλίνδρομου σχήματος χρησιμοποιείται για τη μοντελοποίηση κάθε μεταβλητής (ηοποία θεωρείται ότι είναι ενδογενής) σαν μία συνάρτηση όλων των ενδογενών με χρονικές υστερήσεις μεταβλητών του συστήματος.

12 Η μεθοδολογία του Johansen (988), οδηγεί σε δύο τύπους ελέγχου του αριθμού των διανυσμάτων συνολοκλήρωσης μεταξύ των ρ μεταβλητών του διανύσματος Υ ήτουβαθμού συνολοκλήρωσης έστω h. Όπως είδαμε στην προηγούμενη παράγραφο αν ο βαθμός της μήτρας Π είναι μικρότερος από τον αριθμό των μεταβλητών h< ρ τότε οι μεταβλητές συνολοκληρώνονται και ο αριθμός h δηλώνει τον αριθμό των διανυσμάτων συνολοκλήρωσης. Επίσης εδώ πρέπει να επισημάνουμε ότι ο βαθμός μιας μήτρας που ορίζεται ως ο βαθμόςτωνγραμμικάανεξάρτητωνστηλώντηςμήτραςπ ισούται με τον αριθμό των ιδιοτιμών (ριζών) της μήτρας Π που είναι μη μηδενικές.

13 Ένα βασικό σημείο που πρέπει να προσέξουμε για τον έλεγχο της συνολοκλήρωσης είναι ότι αν υπάρχουν h διανύσματα συνολοκλήρωσης, τότε μόνο h γραμμικοί συνδυασμοί των μεταβλητών είναι στάσιμοι ολοκληρωμένοι μηδενικής τάξης Ι(0), ενώ οι υπόλοιποι είναι μη στάσιμοι. Η υπόθεση μηδέν ότι έχουμε h το πολύ διανύσματα συνολοκλήρωσης μπορεί να διατυπωθεί με την υπόθεση στατιστικής σημαντικότητας των τελευταίων ιδιοτιμών. Ηο: λ = 0 = h+,..ρ όπου το h δείχνει ότι μόνο οι πρώτες λ..λ η ιδιοτιμές είναι μη μηδενικές (βαθμός συνολοκλήρωσης). Ο έλεγχος αυτός γίνεται συγκρίνοντας τη λογαριθμική συνάρτηση πιθανοφάνειας όταν επιβάλλουμε τον παραπάνω περιορισμό για διάφορες τιμές του h με την αντίστοιχη χωρίς τον περιορισμό. Αυτό είναι το κριτήριο του λόγου πιθανοφανειών και ακολουθεί την Χ 2 κατανομή.

14 Για την εναλλακτική υπόθεση Ηα έχουμε δύο τύπους ελέγχων. Έλεγχος ίχνους (race es) Με τον έλεγχο αυτό ελέγχουμε τις παρακάτω υποθέσεις: Ηο: υπάρχουν h διανύσματα συνολοκλήρωσης (h = 0) και η εναλλακτική Ηα: υπάρχουν h + διανύσματα συνολοκλήρωσης (h ) ή Ηο: υπάρχουν το πολύ h διανύσματα συνολοκλήρωσης (h ) και η εναλλακτική Ηα: υπάρχουν h + διανύσματα συνολοκλήρωσης (h 2) ή Ηο: υπάρχουν το πολύ h διανύσματα συνολοκλήρωσης (h ρ-) και η εναλλακτική Ηα: υπάρχουν h + διανύσματα συνολοκλήρωσης (h = ρ)

15 Για τον έλεγχο του ίχνους χρησιμοποιούμε το παρακάτω στατιστικό: λ race = T ρ = h + log( ) λ ) για h = 0, ρ. Ο έλεγχος εφαρμόζεται διαδοχικά για τις τιμές αυτές. Έτσι αποδοχή της Ηο για h = 0 δηλώνει τη διακοπή της διαδικασίας. Διαφορετικά συνεχίζουμε για h, h 2.μέχρι την τιμή h γιατηνοποίααποδεχόμαστετηνηο. Οι κριτικές τιμές για τον παραπάνω έλεγχο παρέχονται από τους Oserwad Lenum (992)

16 Έλεγχος μέγιστης ιδιοτιμής ( λ -maxes) Με τον έλεγχο αυτό ελέγχουμε τις παρακάτω υποθέσεις: Ηο: υπάρχουν h διανύσματα συνολοκλήρωσης (h = 0) και η εναλλακτική Ηα: υπάρχουν h + διανύσματα συνολοκλήρωσης (h = ) ή Ηο: υπάρχουν το πολύ h διανύσματα συνολοκλήρωσης (h ) και η εναλλακτική Ηα: υπάρχουν h + διανύσματα συνολοκλήρωσης (h = 2) ή Ηο: υπάρχουν το πολύ h διανύσματα συνολοκλήρωσης (h ρ-) και η εναλλακτική Ηα: υπάρχουν h + διανύσματα συνολοκλήρωσης (h = ρ)

17 Για τον έλεγχο της μέγιστης ιδιοτιμής χρησιμοποιούμε το παρακάτω στατιστικό: λ ) T log( λ ) max = h+ για h = 0, ρ. Οι κριτικές τιμές για τον παραπάνω έλεγχο παρέχονται από τους Oserwad Lenum (992) για τον έλεγχο του λ max. Επομένως θα λέγαμε περιληπτικά ότι στην περίπτωση που διερευνούμε τις σχέσεις συνολοκλήρωσης μεταξύ ρ μεταβλητών οι οποίοι είναι ολοκληρωμένοι της ίδιας τάξης τα βήματα των ελέγχων που κάνουμε σύμφωνα με τη μεθοδολογία του Johansen είναι τα εξής:

18 Βρίσκουμε την τάξη του αυτοπαλίνδρομου διανυσματικού υποδείγματος (VAR) χρησιμοποιώντας τα κριτήρια των Akake και Schwarz. Χρησιμοποιώντας τα στατιστικά του ίχνους και της μέγιστης ιδιοτιμής βρίσκουμε το βαθμό συνολοκλήρωσης του υποδείγματος. Σύμφωνα με το βαθμό συνολοκλήρωσης (h < ρ) ρ = αριθμός μεταβλητών του υποδείγματος, εκτιμούμε τα αντίστοιχα διανύσματα συνολοκλήρωσης με τη μέθοδο της μέγιστης πιθανοφάνειας. Εδώ πρέπει να διευκρινίσουμε ότι για να είναι αξιόπιστα τα εκτιμημένα διανύσματα συνολοκλήρωσης θα πρέπει να ισχύουν οι a pror περιορισμοί που τίθενται για τα υποδείγματα που μελετούμε.

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το

Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το ΜΑΘΗΜΑ 9ο ΣΥΝΟΛΟΚΛΗΡΩΣΗ (Έννοιες, Ορισµοί) Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το πρόβληµα της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

Ογενικός(πλήρης) έλεγχος των Dickey Fuller

Ογενικός(πλήρης) έλεγχος των Dickey Fuller ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΚΗ ΕΚΤΙΜΗΣΗ ΤΡΑΠΕΖΙΚΩΝ ΧΟΡΗΓΗΣΕΩΝ

ΟΙΚΟΝΟΜΕΤΡΙΚΗ ΕΚΤΙΜΗΣΗ ΤΡΑΠΕΖΙΚΩΝ ΧΟΡΗΓΗΣΕΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΗ ΕΚΤΙΜΗΣΗ ΤΡΑΠΕΖΙΚΩΝ ΧΟΡΗΓΗΣΕΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΜΑΡΙΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΕΡΩΤΟΚΡΙΤΟΣ ΒΑΡΕΛΑΣ ΘΕΣΣΑΛΟΝΙΚΗ 2005 Διπλωματική εργασία στα πλαίσια του Διατμηματικού Προγράμματος

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΠΟΛΥΜΕΤΑΒΛΗΤΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ ΣΤΗΝ ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ

ΜΕΛΕΤΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΠΟΛΥΜΕΤΑΒΛΗΤΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ ΣΤΗΝ ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Ε Ι Ρ Α Ι Ω Σ ΤΜΗΜΑ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ Ε Π Ι Σ Τ Η Μ Η Σ Μ Ε Τ Α Π Τ Υ Χ Ι Α Κ Ο ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Η Σ Τ Α Τ Ι Σ Τ Ι Κ Η ΜΕΛΕΤΗ ΚΑΙ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

Χρηματιστηριακή και Οικονομική Ανάπτυξη: Μια εμπειρική έρευνα για τις Η.Π.Α. με την ανάλυση της αιτιότητας. Κατιρτζόγλου Σοφία

Χρηματιστηριακή και Οικονομική Ανάπτυξη: Μια εμπειρική έρευνα για τις Η.Π.Α. με την ανάλυση της αιτιότητας. Κατιρτζόγλου Σοφία Χρηματιστηριακή και Οικονομική Ανάπτυξη: Μια εμπειρική έρευνα για τις Η.Π.Α. με την ανάλυση της αιτιότητας Κατιρτζόγλου Σοφία Στόχος της εργασίας Διεξαγωγή συμπερασμάτων για τις οικονομικές και χρηματιστηριακές

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ Θέμα: ΟΙΚΟΝΟΜΕΤΡΙΚΗ

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΕΒΔΟΜΟ ΘΕΩΡΙΑΣ-ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΟΡΦΕΣ ΟΙΚΟΝΟΜΕΤΡΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2008-2009

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 8ο Επιλογή του αριθμού των χρονικών υστερήσεων Στις περισσότερες οικονομικές χρονικές σειρές υπάρχει υψηλή συσχέτιση μεταξύ της τρέχουσας

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή 2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΔΗΜΗΤΡΙΟΣ Μ. ΜΑΡΙΝΟΣ «Εμπειρική Ανάλυση των Αποδόσεων Ομολόγων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Ονοματεπώνυμο: Όνομα Πατρός:... Σ ΑΜ:. Ημερομηνία: Παρακαλώ μη γράφετε στα παρακάτω

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Η ελληνική αγορά εργασίας στα χρόνια της κρίσης: ανεργία, απασχόληση και συμμετοχή στην αγορά εργασίας

Η ελληνική αγορά εργασίας στα χρόνια της κρίσης: ανεργία, απασχόληση και συμμετοχή στην αγορά εργασίας Η ελληνική αγορά εργασίας στα χρόνια της κρίσης: ανεργία, απασχόληση και συμμετοχή στην αγορά εργασίας Δημήτριος Μπάκας** και Ευαγγελία Παπαπέτρου*, ** 27 Νοεμβρίου 2012 Παρουσίαση στην Ημερίδα της Τράπεζας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 2 ο. ΗχρήσητουπακέτουEviews (Using Eviews econometric package)

ΜΑΘΗΜΑ 2 ο. ΗχρήσητουπακέτουEviews (Using Eviews econometric package) ΜΑΘΗΜΑ 2 ο ΗχρήσητουπακέτουEviews (Using Eviews econometric package) Για να καλέσετε το πρόγραμμα πρέπει να εργαστείτε ως εξής: 1. Κάντε δύο κλικ στο εικονίδιο του Eviews 2. Από την εντολή File πάω στο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ 8. ΕΙΣΑΓΩΓΗ Μέχρι τώρα τα προβλήματα που δημιουργούνται από την παραβίαση των υποθέσεων που πρέπει να ισχύουν ώστε οι OLS εκτιμητές να είναι BLUE

Διαβάστε περισσότερα

Περιεχόμενα. 1. Σχέσεις μεταξύ δύο μεταβλητών... 21

Περιεχόμενα. 1. Σχέσεις μεταξύ δύο μεταβλητών... 21 Περιεχόμενα 1. Σχέσεις μεταξύ δύο μεταβλητών... 21 1.1 Παραδείγματα διμεταβλητών σχέσεων... 21 1.1.1 Διμεταβλητές κατανομές συχνοτήτων... 25 1.2 Ο συντελεστής συσχέτισης... 27 1.2.1 Ο συντελεστής συσχέτισης

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ SOS & ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΩΝ 5 ΟΥ ΕΞΑΜΗΝΟΥ www.dap papei.gr 2 ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Τι θα γράψω: Στις εξετάσεις τα θέματα περιλαμβάνουν ερωτήσεις και ασκήσεις (κυρίως ασκήσεις) όπου

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΙΔΙΩΤΙΚΗΣ ΧΡΗΣΗΣ ΑΥΤΟΚΙΝΗΤΑ ΣΤΗΝ ΑΘΗΝΑ: ΜΙΑ ΑΥΤΟΠΑΛΙΝΔΡΟΜΗ ΔΙΑΝΥΣΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ (VAR) ΠΑΝΑΓΙΩΤΑ ΓΚΙΝΟΣΑΤΗ ΕΠΙΒΛΕΠΩΝ: ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΟΝΑΔΙΑΙΕΣ ΡΙΖΕΣ ΚΑΙ ΜΕΘΟΔΟΙ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ

ΜΟΝΑΔΙΑΙΕΣ ΡΙΖΕΣ ΚΑΙ ΜΕΘΟΔΟΙ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ ΜΟΝΑΔΙΑΙΕΣ ΡΙΖΕΣ ΚΑΙ ΜΕΘΟΔΟΙ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ (ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ) ΣΑΜΑΝΗ ΜΑΡΙΑ-ΑΝΝΑ 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ 0 ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΛΗΨΗ..ΣΕΛ

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος.

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. :\Documens and Seings\kpig\Deskop\basikh askhsh aaaa.doc ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΞΕΙΔΙΚΕΥΣΗ-ΕΚΤΙΜΗΣΗ-ΑΝΑΛΥΣΗ- ΠΡΟΒΛΕΨΗ- ΣΕΝΑΡΙΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.4 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Μια ευθύγραμμη κίνηση στην οποία το διάνυσμα της ταχύτητας δεν μένει σταθερό, δηλαδή έχουμε μεταβολή της ταχύτητας, την ονομάζουμε ευθύγραμμη μεταβαλλόμενη κίνηση.

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΑΘΗΜΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΛΕΛΕΔΑΚΗΣ Άσκηση : ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΕΤΟΧΗ Α ΜΕΤΟΧΗ Β Απόδοση Πιθανότητα Απόδοση Πιθανότητα -0,0 0,50-0,0 0,50 0,50

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Τουριστική και Οικονοµική Ανάπτυξη: Μια Εµπειρική Ερευνα για την Ελλάδα µε την Ανάλυση της Αιτιότητας

Τουριστική και Οικονοµική Ανάπτυξη: Μια Εµπειρική Ερευνα για την Ελλάδα µε την Ανάλυση της Αιτιότητας Τουριστική και Οικονοµική Ανάπτυξη: Μια Εµπειρική Ερευνα για την Ελλάδα µε την Ανάλυση της Αιτιότητας Νίκος ριτσάκης Τµήµα Εφαρµοσµένης Πληροφορικής Πανεπιστήµιο Μακεδονίας Περίληψη Η εργασία αυτή εξετάζει

Διαβάστε περισσότερα

Y Y ... y nx1. nx1

Y Y ... y nx1. nx1 6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,

Διαβάστε περισσότερα

Γ Εξάμηνο Εξειδίκευση Χρηματοοικονομικής ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γ Εξάμηνο Εξειδίκευση Χρηματοοικονομικής ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών Πρόγραμμα Μεταπτυχιακών Σπουδών στη Λογιστική & Χρηματοοικονομική Γ Εξάμηνο Εξειδίκευση Χρηματοοικονομικής Έτος Κατάθεσης: 2009 ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα -Σκοπός: Εξήγηση Διακυμάνσεων του Πραγματικού ΑΕΠ - Δυνητικό Προϊόν: Το προϊόν που θα μπορούσε

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

Γραμμικά Μοντέλα Χρονοσειρών και Αυτοσυσχέτισης ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σταυρούλα Γαζή

Γραμμικά Μοντέλα Χρονοσειρών και Αυτοσυσχέτισης ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σταυρούλα Γαζή ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ.Π.Μ.Σ. : «ΜΑΘΗΜΑΤΙΚΑ των ΥΠΟΛΟΓΙΣΤΩΝ και των ΑΠΟΦΑΣΕΩΝ» Κατεύθυνση : ΣΤΑΤΙΣΤΙΚΗ και ΕΠΙΧΕΙΡΙΣΙΑΚΗ ΕΡΕΥΝΑ Γραμμικά Μοντέλα Χρονοσειρών και

Διαβάστε περισσότερα

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές)

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική ΙΙΙ(ΣΤΑΟ 230) Περιγραφή

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:

Διαβάστε περισσότερα

Παραβιάσεις των κλασσικών υποθέσεων. ο εκτιμητής LS είναι: Οι βασικές ιδιότητες του εκτιμητή είναι:

Παραβιάσεις των κλασσικών υποθέσεων. ο εκτιμητής LS είναι: Οι βασικές ιδιότητες του εκτιμητή είναι: Παραιάσεις των κλασσικών υποθέσεων Στο γραμμικό υπόδειγμα y = x+ u, =,,, ο εκτιμητής LS είναι: ˆ x y = = x = Οι ασικές ιδιότητες του εκτιμητή είναι: ˆ ( ) Var =, αμεροληψία, ˆ σ = x = Επιπλέον αν δεν έχουμε

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το Γενικευμένο Γραμμικό Υπόδειγμα (Α) ΔΙΑΛΕΞΗ 05 Μαρί-Νοέλ Ντυκέν,

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής.

ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής. ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL Το πακέτο Excel είναι ένα πρόγραμμα φύλλου εργασίας (spreadsheet) με το οποίο μπορούμε να κάνουμε υπολογισμούς και διαγράμματα που είναι χρήσιμοι στα οικονομικά. Στο Excel το φύλλο εργασίας

Διαβάστε περισσότερα

Εργαστήριο Δημογραφικών & Κοινωνικών Αναλύσεων

Εργαστήριο Δημογραφικών & Κοινωνικών Αναλύσεων Το κείμενο που ακολουθεί είναι απόσπασμα από το βιβλίο του Β. Κοτζαμάνη, Στοιχεία Δημογραφίας, Πανεπιστημιακές Εκδόσεις Θεσσαλίας, Βόλος, 9, σσ. 95-99. IV.5 Υποδείγματα πληθυσμού: στάσιμος και σταθερός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

Παράδειγμα συνόρθωσης οριζόντιου δικτύου

Παράδειγμα συνόρθωσης οριζόντιου δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 216-217 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Ευαισθησία της γραμμής παλινδρόμησης (Sensitivity of linear regression)

Ευαισθησία της γραμμής παλινδρόμησης (Sensitivity of linear regression) ΜΑΘΗΜΑ 6ο Ευαισθησία της γραμμής παλινδρόμησης (Sensitivity of linear regression) Γιατηνευαισθησίατηςγραμμήςπαλινδρόμησης χρησιμοποιούμε την ανάλυση της διακύμανσης ή το στατιστικό F Έλεγχος βελτίωσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Θα εξεταστούν μόνο οι περιπτώσεις των ψευδομεταβλητών που χρησιμοποιούνται σαν ανεξάρτητες μεταβλητές

Θα εξεταστούν μόνο οι περιπτώσεις των ψευδομεταβλητών που χρησιμοποιούνται σαν ανεξάρτητες μεταβλητές Όταν ένα μέγεθος είναι αδύνατο να ποσοτικοποιηθεί αλλά πρέπει οπωσδήποτε να χρησιμοποιηθεί σε ένα υπόδειγμα προσεγγίζεται συνήθως με μια μεταβλητή η οποία ονομάζεται ποιοτική μεταβλητή ή ψευδομεταβλητή.

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών. ΔΠΜΣ Στην Οικονομική Επιστήμη. Διπλωματική Εργασία

Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών. ΔΠΜΣ Στην Οικονομική Επιστήμη. Διπλωματική Εργασία Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών ΔΠΜΣ Στην Οικονομική Επιστήμη Διπλωματική Εργασία Θέμα : «Ζήτηση Προθεσμιακών Καταθέσεων» Όνομα : Ελένη Ζίττη Αριθμός Μητρώου : Μ 08/04 Επιβλέπων

Διαβάστε περισσότερα

Θέσεις - τριμηνιαία επιθεώρηση Οικιακή εργασία και πραγματικό ωρομίσθιο των εργαζομένων Γιώργος Σταμάτης

Θέσεις - τριμηνιαία επιθεώρηση Οικιακή εργασία και πραγματικό ωρομίσθιο των εργαζομένων Γιώργος Σταμάτης του Γιώργου Σταμάτη Θα ασχοληθούμε στα ακόλουθα με τη σχέση μεταξύ οικιακής εργασίας και πραγματικού ωρομισθίου των μισθωτών εργαζομένων και θα δείξουμε ότι, όσο αυξάνεται το ποσοστό της οικιακής εργασίας,

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα