Παράδοξα Πιθανοτήτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παράδοξα Πιθανοτήτων"

Transcript

1 Παράδοξα Πιθανοτήτων Πετρίδης νδρέας * Ιουλιανού θανάσιος * Σάββα Μαρία * Πτωχοπούλου Θεογνωσία * Χάρπα Άντρη* ορκά Φλώρα* Ιωάννου Μαρία* Ιωάννου Ιωάννης ** (*) Λύκειο εργίνας, μαθητές τάξης (**) Λύκειο εργίνας, Μαθηματικός Περίληψη Στη μελέτη μας αυτή εξετάζουμε διάφορα προβλήματα πιθανοτήτων των οποίων είτε η λύση δεν είναι μοναδική και πολλές φορές εξαρτάται από τη διατύπωση του προβλήματος, είτε μπερδεύουν τον απλό μελετητή. Μεταξύ άλλων εξετάζονται τα παράδοξα (α) του Joseph Bertrand, (β) του σπασμένου ραβδιού, (γ) το πρόβλημα Monty Hall και (δ) παράδοξα που βασίζονται στη μεταβατική αρχή. ίνεται μια προσπάθεια ερμηνείας του παράδοξου σε κάθε πρόβλημα και παρουσιάζονται οι διάφορες προσεγγίσεις στη λύση τους. Τέλος επιχειρούμε την εξεικόνιση των παραδόξων δημιουργώντας μοντέλα προσομοίωσής τους στον υπολογιστή. Εισαγωγή Τα διάφορα φυσικά φαινόμενα, πειράματα ή και μοντέλα διακρίνονται σε δυο μεγάλες κατηγορίες. πό τη μια είναι τα αιτιοκρατικά (deterministic) μοντέλα των οποίων το αποτέλεσμα μπορεί εκτιμηθεί με ακρίβεια αν είναι γνωστές οι μεταβλητές (παράμετροι) που το διέπουν. πό την άλλη είναι τα στοχαστικά (stochastic) ή πιθανολογικά (probabilistic) μοντέλα στα οποία το αποτέλεσμα δεν μπορεί να προβλεφθεί με ακρίβεια έστω και αν είναι γνωστές οι αρχικές τους συνθήκες μεταβλητές. Ενυπάρχει στα πειράματα αυτά ο παράγοντας τύχη και για τούτο αποκαλούνται «πειράματα τύχης». ια την πρόβλεψη μιας εκτίμησης του αποτελέσματος ενός πειράματος τύχης καταφεύγουμε στη μέτρηση της συχνότητας εμφάνισης ενός συγκεκριμένου αποτελέσματος (Von Mises) και την εκφράζουμε συνήθως ως ποσοστό επί τοις εκατό. ια παράδειγμα, εάν ρίψουμε ένα αμερόληπτο νόμισμα 100 φορές, αναμένουμε πως στις 50 φορές θα εμφανίσει «κορόνα» και τις άλλες 50 θα εμφανίσει «γράμματα». Έτσι 1

2 η πιθανότητα του ενδεχομένου η ρίψη ενός νομίσματος να εμφανίσει «κορόνα» ή «γράμματα» είναι 50%. Ο Laplace έδωσε ένα άλλο ορισμό για την πιθανότητα ενός ενδεχομένου. Συγκεκριμένα, πήρε το λόγο του πλήθους των ευνοϊκών, για ένα ενδεχόμενο, αποτελεσμάτων ενός πειράματος τύχης προς το συνολικό αριθμό όλων των δυνατών αποτελεσμάτων του πειράματος. ν συμβολίσουμε με το πλήθος των ευνοϊκών αποτελεσμάτων και με Ω το σύνολο όλων των δυνατών αποτελεσμάτων τότε: Ο ορισμός κατά Laplace προϋποθέτει ότι τόσο το σύνολο των ευνοϊκών αποτελεσμάτων όσο και το σύνολο των δυνατών αποτελεσμάτων είναι πεπερασμένα και πως το ενδεχόμενο είναι απλό ενδεχόμενο, με την έννοια ότι η πιθανότητα εμφάνισής του δε βασίζεται σε άλλα ενδεχόμενα και προϋποθέσεις. κόμα, στην πιθανότητα κατά Laplace είναι αναγκαίο να υποθέσουμε πως τα ενδεχόμενα ακολουθούν ομοιόμορφη κατανομή. Με άλλα λόγια, ότι όλα τα ενδεχόμενα είναι ισοπίθανα. Σε πραγματικά πειράματα τύχης οι πιο πάνω προϋποθέσεις δεν είναι πάντοτε ευδιάκριτες. δυναμία εντοπισμού μιας έκαστης των υποθέσεων αυτών είναι δυνατό να οδηγήσει στην εμφάνιση φαινομενικά παράδοξων αποτελεσμάτων. Στην εργασία μας μελετούμε μια σειρά από τέτοια παράδοξα και με τη βοήθεια της προσομοίωσης προσπαθούμε να εντοπίσουμε ενδεχόμενους λόγους της εμφάνισης τους. Το Πρόβλημα Monty Hall Σε ένα τηλεπαιχνίδι εμφανίζονται τρία κλειστά χαρτιά. Το ένα από τα τρία χαρτιά κρύβει ένα ακριβό δώρο ενώ τα άλλα δύο κρύβουν μια γλάστρα ή ένα γαϊδούρι. Επιλέγετε στην τύχη ένα χαρτί, ας πούμε το πρώτο και ο παρουσιαστής του παιγνιδιού ο οποίος γνωρίζει πού βρίσκεται το δώρο ανοίγει ένα άλλο χαρτί πίσω από το οποίο βρίσκεται μια γλάστρα. Στη συνέχεια σας προτείνει να ανταλλάξετε το χαρτί της επιλογής σας με το άλλο χαρτί που παραμένει κλειστό. Σας συμφέρει ή όχι η ανταλλαγή της επιλογής σας με το προτεινόμενο από τον τηλεπαρουσιαστή χαρτί; (Monty_Hall4.html) Στο δίλημμα αυτό βρέθηκαν οι διαγωνιζόμενοι στο τηλεπαιχνίδι Let s Make a Deal το οποίο παρουσιαζόταν στην μερική την δεκαετία του 70 με παρουσιαστές τους Monty Hall και Carol Merill. Σε σχετικό ερώτημα στον ημερήσιο τύπο της εποχής η παρουσιάστρια του παιγνιδιού αποκάλυψε ότι συμφέρει στον διαγωνιζόμενο να ανταλλάξει την επιλογή του. Η αποκάλυψη αυτή ξεσήκωσε κύμα διαφωνιών από ένα σύνολο θεατών του παιγνιδιού ακόμα και μαθηματικών. Το πρόβλημα αποτελεί κλασικό παράδειγμα διαισθητικής γκάφας στον προσδιορισμό της πιθανότητας ενός Φάση

3 ενδεχόμενου υπό συνθήκη. Στα επόμενα θα προσπαθήσουμε να αποδείξουμε ότι πράγματι συμφέρει στον διαγωνιζόμενο να ανταλλάξει το χαρτί του. Το πρόβλημα έχει τρεις φάσεις. Στην πρώτη φάση τοποθετείται το δώρο πίσω από ένα χαρτί. Η πιθανότητα τοποθέτησης του χαρτιού σε οποιαδήποτε θέση είναι η ίδια και ίση με. Σε δεύτερη φάση ο διαγωνιζόμενος καλείται να επιλέξει ένα από τα τρία χαρτιά. Η πιθανότητα επιλογής οποιουδήποτε χαρτιού είναι ίση με. Η πιθανότητα για κάθε ένα από τα εννέα δυνατά ενδεχόμενα είναι. Στην τρίτη φάση του παιγνιδιού ο παρουσιαστής φανερώνει ένα από τα χαρτιά στο όποιο δεν είναι το δώρο. Στη φάση αυτή εμφανίζονται δυο ειδών περιορισμοί. Στην περίπτωση που ο διαγωνιζόμενος δεν επιλέξει το τυχερό χαρτί, ο παρουσιαστής δεν έχει άλλη επιλογή από το να αποκαλύψει το μοναδικό χαρτί που παραμένει κλειστό, Φάση Φάση στο οποίο δεν κρύβεται το δώρο. Ενώ, στην περίπτωση που ο διαγωνιζόμενος επιλέξει το τυχερό χαρτί ο παρουσιαστής μπορεί να αποκαλύψει ένα από τα δυο εναπομείναντα χαρτιά, όποιο θέλει, με πιθανότητα. Το επόμενο δενδροδιάγραμμα παρουσιάζει τα δυνατά ενδεχόμενα μαζί με τις πιθανότητες του κάθε ενδεχόμενου. Τα ευνοϊκά για το διαγωνιζόμενο ενδεχόμενα, δεδομένου ότι δεν ανταλλάζει το χαρτί του είναι τα, Η συνολική πιθανότητα ο διαγωνιζόμενος να κερδίσει το δώρο, δεδομένης της απόφασης του να κρατήσει το χαρτί της αρχικής του επιλογής είναι: ντίστροφα, τα ευνοϊκά ενδεχόμενα να κερδίσει το δώρο όταν δεχθεί την ανταλλαγή του χαρτιού είναι: Η πιθανότητα ο διαγωνιζόμενος να κερδίσει το δώρο αν ανταλλάξει το χαρτί είναι: 3

4 Άρα, συμπεραίνουμε ότι η διαίσθηση του διαγωνιζόμενου πως είτε αλλάξει το χαρτὶ του, είτε όχι θα έχει την ίδια πιθανότητα να κερδίσει το δώρο είναι, σύμφωνα με όλα τα πιο πάνω λανθασμένη. Το παράδοξο βασίζεται στη λανθασμένη εκτίμηση πως το ενδεχόμενο ανταλλαγής του χαρτιού είναι απλό και όχι σύνθετο. Φάση Φάση Φάση Το Σπασμένο Ραβδί Ένα άλλο κλασικό παράδειγμα παράδοξου στις πιθανότητες είναι το πρόβλημα με το σπασμένο ραβδί: ν να ραβδ σπάσει τυχα α σε τρ α κομμάτια, ποια η πιθανότητα τα σπασμ να κομμάτια να σχηματ σουν τρ γωνο. (broken_stick.html) 4

5 ια να βρούμε τη σωστή απάντηση πρέπει να βρούμε την σωστή μέθοδο με την οποία θα σπάσουμε το ραβδί. Η πρώτη μέθοδος είναι να σπάσουμε το ραβδάκι ταυτόχρονα σε τρία τυχαία κομμάτια. Στην περίπτωση αυτή θα αποδείξουμε ότι η πιθανότητα του ενδεχομένου είναι ¼. Κατασκευάζουμε ισόπλευρο τρίγωνο του οποίου το ύψος είναι ίσο με το μήκος του ραβδιού του πειράματός μας. Φέρουμε τις ορθές προβολές τυχαίου σημείου Τ του τριγώνου ως προς τις πλευρές του. Θα δείξουμε ότι το άθροισμα των τριών προβολών είναι σταθερό και ισούται με το ύψος του κανονικού τριγώνου. ( ) ( ) ( ) ( ) ( ) ( ) ( ), ό ά ώ ( ) Στη συνέχεια θα δείξουμε ότι αν το σημείο Τ βρίσκεται μέσα στο τρίγωνο ΔΖΕ, τότε τα κομμάτια του ραβδιού σχηματίζουν τρίγωνο, ενώ αν βρίσκεται εκτός του μικρού τριγώνου ΔΕΖ, τότε τα κομμάτια δε σχηματίζουν τρίγωνο. Παρατηρούμε ότι αν το Τ βρίσκεται εκτός του τριγώνου ΔΕΖ τότε δεν ισχύει η τριγωνική ιδιότητα για τα τμήματα των ορθών προβολών και επομένως δε σχηματίζουν τρίγωνο. (ΤΘ) +(ΤΗ) +(ΤΥ) = υ (μικρούτριγώνου) Και ΤΙ = ΤΥ +ΥΙ = ΤΥ + υ Άρα, (ΤΘ)+(ΤΗ)+(ΤΥ)=υ (μικρού τριγ.) (ΤΘ)+(ΤΗ)+(ΤΥ) υ+(τυ) (ΤΘ)+(ΤΗ) υ+(τυ) (ΤΘ)+(ΤΗ) (ΤΙ) φού η πιθανότητα να ενωθούν οι τρεις ορθές προβολές μέσα στο σκιασμένο εγγεγραμμένο τρίγωνο είναι 1 προς 4, τότε η πιθανότητα να σχηματιστεί τρίγωνο είναι 1/4. 5

6 Μια άλλη μέθοδος είναι να σπάσουμε το ραβδί τυχαία σε δύο κομμάτια. Στη συνέχεια επιλέγουμε στην τύχη ένα από τα δύο κομμάτια και το ξανασπάμε. ν επιλέξουμε να σπάσουμε το μικρό κομμάτι, τότε δε θα μπορέσουμε να φτιάξουμε τρίγωνο. ν επιλέξουμε να σπάσουμε το μεγάλο, τότε η πιθανότητα θα είναι 1/3, διότι σε αυτή την περίπτωση οι ευνοϊκές θέσεις του σημείου Τ είναι μέσα στο τρίγωνο ΔΕΖ, ενώ οι δυνατές θέσεις του είναι μέσα σε ένα από τα τρία τρίγωνα, ΔΕ, ΔΕΖ και ΕΖ. ν θεωρήσουμε ότι τα ενδεχόμενα εκλογής του ενός ή του άλλου κομματιού είναι ισοπίθανα η πιθανότητα να επιλέξουμε το μεγάλο κομμάτι είναι 1/. Άρα, η πιθανότητα σχηματισμού τριγώνου περιορίζεται στο Μια διόρθωση που αναφέρεται στη βιβλιογραφία και αφορά στη δεύτερη περίπτωση είναι η ακόλουθη. Έστω και τα μήκη των δυο κομματιών με. Τότε το Τ μπορεί να πάρει οποιαδήποτε θέση μέσα στο τραπέζιο ΔΖ (η ΔΖ χωρίζει το ύψος του τριγώνου μήκος ραβδιού σε δυο ίσα μέρη). ια κάθε τυχαία θέση του σημείου Τ η πιθανότητα τα τρία κομμάτια να σχηματίσουν τρίγωνο, δεδομένου ότι επιλέγεται το μεγαλύτερο κομμάτι, είναι ίση με το λόγο, x 1 x θροίζοντας για όλες τις δυνατές θέσεις του σημείου Τ στο διάστημα έχουμε, x 1x 1 0 1x 1x 0 0 P( A) dx dx x ln(1 x) ln ln1 ln ln 0,193 Ο τύπος του Bays της ολικής πιθανότητας μας επιτρέπει τον υπολογισμό της όπου, / το ενδεχόμενο τα τρία κομμάτια να φτιάξουν τρίγωνο δεδομένου ότι επιλέγεται το μεγαλύτερο από τα δύο κομμάτια που προέκυψαν από το αρχικό σπάσιμο. 6

7 P( A) P( A / B) P( B) P( A / B) P( B) 1 1 0,193 P( A / B) 0 P( A / B) 0,193 0,386 Παρατηρούμε ότι η υπολογισμένη πιθανότητα είναι ελαφρώς μεγαλύτερη από το 1/3 που μας έδωσε το γεωμετρικό μοντέλο. Μια προέκταση της μεθόδου που μόλις έχουμε αναλύσει είναι να θεωρήσουμε ότι η επιλογή των δύο κομματιών που προκύπτουν από το αρχικό σπάσιμο δεν είναι ισοπίθανη αλλά ανάλογη του μήκους των κομματιών. ν και είναι τα μήκη των δύο κομματιών τότε η πιθανότητα επιλογής ενός εκάστου είναι και αντίστοιχα. Άρα για το τυχαίο σημείο Τ είναι, x P( A / B) (1 x) x 1 x Ολοκληρώνοντας στο διάστημα παίρνουμε, 1 x 1 P( A / B) 4 Δηλαδή, αποδείξαμε το ισοδύναμο του γεωμετρικού μοντέλου όπου το ραβδί σπάζει ταυτόχρονα σε τρία κομμάτια. Επομένως, το παράδοξο της ύπαρξης δυο διαφορετικών λύσεων στο πρόβλημα του σπασμένου ραβδιού βασίζεται στη λανθασμένη εκτίμηση του ισοπίθανου της μεταβλητής «λήψη ενός εκ των δυο κομματιών», στην περίπτωση που το ραβδί δε σπάζει ταυτόχρονα σε τρία κομμάτια. 0 Το Παράδοξο του Bertrand Το παράδοξο του Bertrand είναι ένα πρόβλημα που εξετάζει την πιθανότητα μια χορδή ενός κύκλου που επιλέχθηκε τυχαία να είναι μεγαλύτερη από την πλευρά του ισόπλευρου τριγώνου εγγεγραμμένου στον κύκλο. υτό το πρόβλημα τέθηκε αρχικά από τον Joseph Bertrand στην εργασία του Calcul des probabilities το O Bertrand έδωσε τρία επιχειρήματα, όλα προφανώς έγκυρα, που παράγουν όμως τρία ασυμβίβαστα αποτελέσματα. Εμείς, με τη βοήθεια του προγράμματος Geogebra, προσπαθήσαμε να αναπαραστήσουμε εφαρμογές των τριών εκδοχών του προβλήματος, έτσι ώστε να προσεγγίσουμε την έννοιά τους και να την κατανοήσουμε. 7

8 Πρώτη λύση (Bertrand_Paradox_1.html) ρχικά κατασκευάζουμε έναν κύκλο με ακτίνα r και κέντρο C, και εγγράφουμε σ αυτόν ένα ισόπλευρο τρίγωνο με κορυφές,,. Στον κύκλο δημιουργούνται τρία ίσα τόξα (==). Στη συνέχεια φέρουμε τυχαίες χορδές από την κορυφή. παρατηρούμε ότι μόνο οι χορδές που καταλήγουν στο τόξο είναι μεγαλύτερες από την πλευρά του τριγώνου. Άρα μόνο το 1/3 της περιφέρειας του κύκλου έχει χορδές μεγαλύτερες από τις πλευρές του τριγώνου. Στην προσομοίωση στον υπολογιστή παρατηρήσαμε πως όταν εκφράσαμε τις συντεταγμένες των σημείων της περιφέρειας του κύκλου σε πολικές συντεταγμένες η πειραματική πιθανότητα προσέγγιζε περισσότερο προς τη θεωρητική λύση του 1/3. Δεύτερη λύση (Bertrand_Paradox_.html) Φέρουμε τη διάμετρο BD του κύκλου που είναι κάθετη στην πλευρά. ναμένουμε πως όλες οι χορδές του κύκλου, που είναι κάθετες στην διάμετρο αυτή θα κατανέμονται ομοιόμορφα σε όλο το μήκος της διαμέτρου. πό το σύνολο των χορδών αυτών μόνο εκείνες που βρίσκονται σε απόσταση από το κέντρο του κύκλου θα έχουν μήκος μεγαλύτερο της πλευράς του εγγεγραμμένου τριγώνου. Άρα η πιθανότητα, οι χορδές που φέραμε να είναι μεγαλύτερες από τις πλευρές του τριγώνου, είναι. Παρατηρούμε, όμως πως αν ξεφύγουμε από τον περιορισμό, οι χορδές να φέρονται κάθετα στη διάμετρο BD του κύκλου, και δεχθούμε, οι χορδές να φέρονται τυχαία στον κύκλο, τότε η πιθανότητα, οι χορδὲς να έχουν μήκος μεγαλύτερο από την πλευρά του ισόπλευρου τριγώνου είναι και πάλι ( ). Επομένως, το παράδοξο στην περίπτωση αυτή προέκυψε από τη λανθασμένη υπόθεση πως το ενδεχόμενο δημιουργίας χορδών κάθετων σε τυχαία διάμετρο του κύκλου είναι απλό ενδεχόμενο. 8

9 Τρίτη λύση (Bertrand_Paradox_3.html) Στην αρχική κατασκευή μας προσθέτουμε ένα μικρότερο κύκλο εγγεγραμμένο στο ισόπλευρο τρίγωνο. Η ακτίνα του κύκλου αυτού είναι. Άρα το εμβαδόν του μικρού κύκλου είναι το ¼ του μεγάλου κύκλου. Στη συνέχεια φέρουμε τυχαίες χορδές στο κύκλο. Παρατηρούμε ότι μόνο οι χορδές που έχουν το μέσο τους μέσα στον μικρό κύκλο είναι μεγαλύτερες από την πλευρά του τριγώνου. Και επομένως, η ζητούμενη πιθανότητα είναι. Όταν προσομοιώσαμε την περίπτωση αυτή στον υπολογιστή με τη βοήθεια του προγράμματος Geogebra, παρατηρήσαμε πως η πιθανότητα πλησίαζε το και όχι το. ια να διερευνήσουμε τη διαφορά αυτή πήραμε το ίχνος των μέσων των τυχαίων χορδών. Παρατηρήσαμε πως η κατανομή των σημείων αυτών δεν είναι ομοιόμορφη σε όλη την επιφάνεια του κύκλου αλλά παρατηρείται μια μεγαλύτερη συγκέντρωση προς το κέντρο του κύκλου. υτό εξηγεί και τη διαφορά ανάμεσα στο θεωρητικό μοντέλο που αναγράφεται στη βιβλιογραφία με το αποτέλεσμα της προσομοίωσης που κάναμε στον υπολογιστή. Επομένως, το λάθος στην περίπτωση αυτή βρίσκεται στο ότι λανθασμένα υποτέθηκε πως η κατανομή των χορδών του κύκλου είναι ομοιόμορφη. Παράδοξα μεταβατικής ιδιότητας Είναι γνωστό από τη λογική πως αν μια πρόταση ισχύει μεταξύ των αντικειμένων και και η ίδια πρόταση ισχύει επίσης μεταξύ των και, τότε η πρόταση θα είναι επίσης αληθής μεταξύ των και. Η ιδιότητα αυτή λέγεται μεταβατική. Ένα κλασικό παράδειγμα είναι η ανισοτική σχέση. Συγκεκριμένα αν ο ιάννης είναι πιο βαρύς από τον Κώστα και ο Κώστας πιο βαρύς από τον ντώνη, τότε ο ιάννης είναι πιο βαρύς από τον ντώνη. Θα περίμενε κανείς πως η μεταβατική ιδιότητα θα ίσχυε και στις πιθανότητες. Μια σειρά όμως από αντιπαραδείγματα καταδεικνύουν, αντίθετα με την ανθρώπινη διαίσθηση, ότι στο χώρο των πιθανοτήτων δεν ισχύει η μεταβατική ιδιότητα. ια παράδειγμα σε δυαδικές σχέσεις προτίμησης δεν ισχύει η μεταβατική ιδιότητα. Δηλαδή, αν το προϊόν προτιμάται από το προϊόν και το προϊόν προτιμάται έναντι του προϊόντος, τότε δεν είναι σίγουρο αν μεταξύ των προϊόντων και, το είναι περισσότερο προτιμητέο. Το ίδιο ισχύει σε προτιμήσεις υποψηφίων σε εκλογές κ.ο.κ. Ο Bradley Efron, στατιστικολόγος στο Stanford University, κατασκεύασε μια σειρά από ζάρια για να καταδείξει τη μη εφαρμογή της μεταβατικής ιδιότητας στις πιθανότητες. Παρακάτω παραθέτουμε μια τετράδα από τέτοια ζάρια στο ανάπτυγμά τους. Δ

10 νάμεσα στο και στο παρατηρούμε ότι η πιθανότητα να κερδίσει το είναι 4/36 και η πιθανότητα να κερδίσει το είναι 1/36. Συμπεραίνουμε λοιπόν πως μεταξύ του και του, περισσότερες πιθανότητες για να κερδίσει έχει το ζάρι. / / νάμεσα στο και στο παρατηρούμε, ότι η πιθανότητα να κερδίσει το είναι 4/36 και η πιθανότητα να κερδίσει το είναι 1/36. Επομένως, ανάμεσα στο και στο περισσότερες πιθανότητες για να κερδίσει έχει το ζάρι. Τέλος, ανάμεσα στο και στο Δ παρατηρούμε ότι η πιθανότητα να κερδίσει το είναι 7/36 και η πιθανότητα να κερδίσει το Δ είναι 9/36. Άρα, μεταξύ του και του Δ περισσότερες πιθανότητες για να κερδίσει έχει το ζάρι. /Δ Δ Δ Δ 5 Δ Δ Δ 5 Δ Δ Δ Δ/ Δ Δ Δ Δ Δ Δ 0 Δ Δ Δ Δ Δ Δ 4 Δ Δ Δ 4 Δ Δ Δ 4 Δ Δ Δ 4 Δ Δ Δ Μετά τη φθίνουσα αυτή, ακολουθία πιθανοτήτων θα συμπέραινε ο ανυποψίαστος μελετητής πως το ζάρι θα είχε περισσότερες πιθανότητες να νικήσει το Δ ζάρι. Η ανάλυση, όμως, του δειγματικού χώρου των ζαριών και Δ δείχνει πως είναι το ζάρι Δ που νικά το ζάρι με πιθανότητα 1/36. Το παράδοξο αυτό φαινόμενο στις πιθανότητες, θελήσαμε να το εξεικονίσουμε στον υπολογιστή. Συγκεκριμένα, πήραμε τα τρία ζάρια οι όψεις των φαίνονται στον επόμενο πίνακα. 10

11 Το πρώτο ζάρι έχει στις δύο έδρες τον αριθμό 1 ενώ Έδρες Ζαριών στις υπόλοιπες τον αριθμό 4. Το δεύτερο ζάρι έχει σε όλες τις έδρες του τον αριθμό 3. Το τρίτο ζάρι έχει στις Χ δύο έδρες τον αριθμό 5 και στις υπόλοιπες τον αριθμό Υ Ζ 5 5 Ρίχνοντας αρκετές φορές τα ζάρια μπορούμε να διαπιστώσουμε ότι το πρώτο ζάρι νικά το δεύτερο και το δεύτερο νικά το τρίτο. Κατά παράδοξο, όμως τρόπο το τρίτο ζάρι νικά το πρώτο. (Non_Transitive_Dice.html) Συμπεράσματα Μετά τη συζήτηση γνωστών στη βιβλιογραφία παραδόξων στις πιθανότητες, όπως αυτά στα οποία αναφερθήκαμε στην εργασία μας αυτή, γίνεται φανερό πως έχει ιδιαίτερη σημασία η προσεκτική μελέτη των προϋποθέσεων που υπάρχουν όταν στα μαθηματικά χρησιμοποιούμε ορισμούς, σχέσεις, προτάσεις ή θεωρήματα για την εξαγωγή συμπερασμάτων. Συγκεκριμένα έχουμε προσέξει πως όταν στις πιθανότητες χρησιμοποιούμε τον ορισμό κατά Laplace, τότε θα πρέπει να έχουμε κατά νουν πως τα ενδεχόμενα θα πρέπει να είναι απλά, ισοπίθανα (ομοιόμορφη κατανομή) και πως το σύνολο του δειγματικού χώρου και του ενδεχομένου θα πρέπει να είναι πεπερασμένα. δυναμία να ελέγξουμε μια από τις προϋποθέσεις αυτές είναι πολύ πιθανόν να μας οδηγήσει σε αντιφατικές απαντήσεις παράδοξα. Τέλος, μια σειρά από παράδοξα, όπως είναι τα μη μεταβατικά ζάρια, στηρίζονται στη λανθασμένη διαίσθηση για την χρήση απλών ιδιοτήτων που ισχύουν σε άλλες περιοχές των μαθηματικών στις οποίες μπορεί να είμαστε περισσότερο εξοικειωμένοι. ιβλιογραφία 1. Μαθηματικά Επιλογής, Λυκείου, 003, Υπηρεσία νάπτυξης Προγραμμάτων M. Jackson, Paradoxes with dice and elections, Towards Excellence in Mathematics (Melbourne, 004), Mathematical Association of Victoria, 004, pp A. R. Meyer and R. Rubinfeld, Course notes, Mathematics for Computer Science Introduction to Probabilities, (Fall 005), Massachusetts Institute of Technology. 5. M. Gardner, The Colossal Book of Mathematics, W.W. Norton & Co, 001, pp

ΠΡΑΚΤΙΚΑ ΜΑΘΗΤΙΚΟΥ ΣΥΝΕΔΡΙΟΥ

ΠΡΑΚΤΙΚΑ ΜΑΘΗΤΙΚΟΥ ΣΥΝΕΔΡΙΟΥ ΠΡΑΚΤΙΚΑ ΜΑΘΗΤΙΚΟΥ ΣΥΝΕΔΡΙΟΥ 8 ο ΜΑΘΗΤΙΚΟ ΣΥΝΕΔΡΙΟ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ 17 19 Φεβρουαρίου 2012 Πάφος ΟΡΓΑΝΩΣΗ 30 Χρόνια Προσφοράς και Δημιουργίας στη Μαθηματική Επιστήμη και Παιδεία της Κύπρου 1983 2013 Σε

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Tα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί να θεωρηθεί ότι εντάσσονται σε δύο μεγάλες κατηγορίες: τα προσδιοριστικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,... Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

(f(x)+g(x)) =f (x)+g (x), x R

(f(x)+g(x)) =f (x)+g (x), x R ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 3 Μαρτίου 2012 ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 16 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ημερομηνία: Δευτέρα,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών 6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΣΙΡΕΙΟ ΓΥΜΝΑΣΙΟ ΛΕΜΕΣΟΥ Σχολική χρονιά : 01-013 Βαθμός:... Υπογραφή:... ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 013 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία : 10-06-013 Σελίδες : 1 Τάξη : Γ Διάρκεια : ώρες Ώρα: 08:00-10:00

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Ενδιαφερόμαστε για την απλούστερη μορφή πειραματικής διαδικασίας, όπου η έκβαση των αποτελεσμάτων χαρακτηρίζεται μόνο ως "επιτυχής" ή "ανεπιτυχής" (δοκιμές Beroulli). Ορίζουμε λοιπόν

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΤΑΞΗ : Β ΧΡΟΝΟΣ : 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΤΜΗΜΑ

Διαβάστε περισσότερα

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

Εισαγωγικά Παραδείγματα: Παρατηρήσεις: 1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 7 8 (A - Β Γυμνασίου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιά η τιμή: 12 + 23 + 34 + 45 + 56 + 67 + 78 + 89 ; A) 389 B) 396 C) 404 D) 405 E) άλλη απάντηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

Ένα παιχνίδι των πολυγώνων

Ένα παιχνίδι των πολυγώνων Ένα παιχνίδι των πολυγώνων Το παιγνίδι αυτό, αναπτύχθηκε στα πλαίσια του μαθήματος πληροφορικής της Γ τάξης, στην ενότητα που αφορά στο σχεδιασμό πολυγώνων, απ όλα τα παιδιά, της Γ τάξης του σχολείου μας.

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Έρευνα 1: Μέσα παράλληλων χορδών

Έρευνα 1: Μέσα παράλληλων χορδών Μέσα χορδών Έρευνα 1: Μέσα παράλληλων χορδών Σχεδιάστε με το Sketchpad το ίχνος των μέσων των χορδών κατά την παράλληλη μεταφορά μιας ευθείας. Για το σκοπό αυτό, πρέπει πρώτα να κατασκευάσετε τα μέσα.

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

Φροντιστήριο ΜΕΤΑΙΧΜΙΟ έχουμε τα "μέσα" να σας φτάσουμε στα... "άκρα"!

Φροντιστήριο ΜΕΤΑΙΧΜΙΟ έχουμε τα μέσα να σας φτάσουμε στα... άκρα! Θ Ε Μ Α Α A1. Θεωρία Σχολικού βιβλίου σελ. 31 Α2. Θεωρία Σχολικού βιβλίου σελ. 148 Α3. Θεωρία Σχολικού βιβλίου σελ. 96 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ ΘΕΜΑ Β Β1. Β2. Επειδή η διάμεσος είναι η τιμή για την

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή 1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια. Σημαντική μάλιστα

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ). ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ() ΘΕΜΑ

Διαβάστε περισσότερα

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ 1 1) Δίνεται ο διπλανός πίνακας 43 παρατηρήσεων της μεταβλητής Χ και οι αντίστοιχες συχνότητές τους ν i. Αν 116 η μέση τιμή των παρατηρήσεων είναι x =, η διάμε- 43 σος είναι δ=3 και ισχύει κ>10, να υπολογιστούν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα