ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, Χαμόμυλο Αχαρνών τηλ.: , fax:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, 13671 Χαμόμυλο Αχαρνών τηλ.: 210 34 10 436, fax: 210 34 25 967"

Transcript

1 ΒΙΟΛΟΓΙΑ είς δ ι ςπ ή κ ι Γε Υ Ο Ι ΚΕ Υ Λ Γ είς Πιδ τς Γ ής Γεικ ς ί γ ς ιολο θτή. όσ τ β Β µ ς τ τ οµ ριλ ύλς οσιτό στ λήρ κ ίο πε ς λ β ι έ στ πρ π Το β εξετ ε τρόπο ού στ ς τ ί µ κοπ. θεωρ γρµµέ ου ποσ ήσεω Τ κ σ π υ ίο τ τω Λυκε γράµµ θε σ υ λ ί ιο. π ος κά δι ε ε λ λ έ χ ά τ Σ το κεφ ίς. γι τ άθε άλψ σ κ θεωρ δολογί σ. ι. λύ εις γ επ θο ετώ Με ήσεις γι ς ερωτήσ ρωµέ ω ε έ κ γούµ. Ασ λπτικ ι ολοκλ ο ρ π εω µ εω σκήσ σ Επ γίες γι ά τ ξε τω ίω Ε εω κι Οδ λίου. λ κεφ Πελ ερωτήσ ω µτ Θέ τήσεις τ Απ Γ ΛΥΚΕΙΟΥ άει: ΒΙΟ Α Ι Γ ΛΟ

2

3

4 :

5 ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδρβίδς 7, Χμόμυλο Αχρώ τλ.: , fax:

6 Πρόλογος Το βιβλίο υτό γράφτκε με σκοπό προσεγγίσει τ εξετστέ ύλ τς Βιολογίς Γεικής Πιδείς τς Γ Λυκείου με τρόπο εύκολο κι κτοτό. Κθώς Βιολογί Γεικής Πιδείς ήκει στ μθήμτ που εξετάζοτι στις Πελλήιες Εξετάσεις, στόχος τω μθτώ είι ποκτήσου έ πολύ κλό βθμό, κάτι το οποίο είι πργμτικά εφικτό. Γι τ επίτευξ υτού του στόχου είι πρίττ μελέτ κι πλήρς κτόσ τς θεωρίς του σχολικού βιβλίου, κθώς κι εξοικείωσ με σκήσεις κι ερωτήσεις κάθε είδους που μπορεί οι μθτές τιμετωπίσου στις εξετάσεις. Το βιβλίο υτό πρέχει μι πλήρ άλυσ τς θεωρίς του σχολικού βιβλίου, κθώς κι σχεδιγράμμτ που ελπίζω βοθήσου στ πόλυτ κτόσή τς. Επίσς περιλμβάει μεθοδολογί γι τ επίλυσ τω σκήσεω, σκήσεις γι λύσ, ώστε οι μθτές εξοικειωθού με υτές κι επλπτικές ερωτήσεις. Ελπίζω το βιβλίο υτό βοθήσει τους μθτές στ επίτευξ του στόχου τους κι διευκολύει τους συδέλφους κθγτές στ διδσκλί του μθήμτός τους. Γιώτ Πππά

7

8 ΚΕΦΑΛΑΙΟ 1 1 : Ο : Άθρωπος κι Υγεί Πράγοτες που επρεάζου τ υγεί του θρώπου Μικροοργισμοί Κτγορίες πθογόω μικροοργισμώ Μετάδοσ κι...5 τιμετώπισ τω πθογόω μικροοργισμώ Μχισμοί άμυς του θρώπιου οργισμού Βσικές ρχές οσίς Μχισμοί μ ειδικής άμυς Μχισμοί ειδικής άμυς Αοσί Προβλήμτ στ δράσ του...13 οσοβιολογικού συστήμτος Σύδρομο Επίκττς Αοσοβιολογικής...16 Αεπάρκεις Μεθοδολογί Ασκήσεω Ασκήσεις Προβλήμτ Ερωτήσεις Επάλψς Οδγίες Επάλψς ΚΕΦΑΛΑΙΟ 2 Ο : Άθρωπος...36 κι Περιβάλλο Η έοι του οικοσυστήμτος Χρκτριστικά 2 : οικοσυστμάτω Ροή εέργεις Τροφικές λυσίδες κι τροφικά...39 πλέγμτ Τροφικές πυρμίδες κι τροφικά...40 επίπεδ Η έοι τς πργωγικόττς Βιογεωχμικοί κύκλοι Ο κύκλος του άθρκ Ο κύκλος του ζώτου Ο κύκλος του ερού Ερμοποίσ Ρύπσ Μεθοδολογί Ασκήσεω Ασκήσεις Προβλήμτ Ερωτήσεις Επάλψς Οδγίες Επάλψς Θέμτ Πελλίω...57 Εξετάσεω Απτήσεις Ερωτήσεω...59 Επάλψς Βιβλιογρφί

9

10 9

11 Όμιλος ΝΕΟ Φροτιστήριο Άθρωπος κι Υγεί 1.1 : (..,..)., : 1., 2. CO 2, 3. ph ( 7,4), 4..,! 36,6 C ( 36,6 C).,, (..,..) (,,..) 10

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, 13671 Χαμόμυλο Αχαρνών τηλ.: 210 34 10 436, fax: 210 34 25 967

ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, 13671 Χαμόμυλο Αχαρνών τηλ.: 210 34 10 436, fax: 210 34 25 967 ΙΟΥ ι: ριέχε άθος ε ς π -Λ λίο λογή ίας ι ό β ι τ π β σ Ε λής ις Σω εωρ αρόν Το π ερωτήσε Πολλαπ ης της Θ ύ ο ξ ις 49 ερωτήσε Ανάπτυ σης Κεν ω ις 73 ερωτήσε Συµπλήρ ήµατα λ 23 ρωτήσεις ς & προβ ι ε κήσε

Διαβάστε περισσότερα

JEAN-CHARLES BLATZ 02XD34455 01RE52755

JEAN-CHARLES BLATZ 02XD34455 01RE52755 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΤΩΝ ΕΝ Ι ΑΜ ΕΣ ΩΝ ΟΙ Κ ΟΝΟΜ Ι Κ ΩΝ Κ ΑΤΑΣ ΤΑΣ ΕΩΝ ΤΗΣ ΕΤΑΙ ΡΙ ΑΣ Κ ΑΙ ΤΟΥ ΟΜ Ι ΛΟΥ Α Τρίµηνο 2005 ΑΝΩΝΥΜΟΣ Γ ΕΝΙ Κ Η ΕΤ ΑΙ Ρ Ι Α Τ ΣΙ ΜΕΝΤ ΩΝ Η Ρ ΑΚ Λ Η Σ ΑΡ. ΜΗ Τ Ρ. Α.Ε. : 13576/06/Β/86/096

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει: Ν γωρίζει τις συρτήσεις f( )=, f( )= log, τις βσικές τους ιδιότητες κι μπορεί τις σχεδιάζει. Ν μπορεί επιλύει εκθετικές εξισώσεις, ισώσεις κι εκθετικά

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ANAΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΗΣ ΓΙΑ ΚΑΤΑΡΤΙΣΗ ΣΥΜΒΑΣΗΣ ΜΙΣΘΩΣΗΣ ΕΡΓΟΥ Αριθμ.

Διαβάστε περισσότερα

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ Φροτιστήρι -ΟΡΟΣΗΜΟ ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Επιμέλει: Σεμσίρης Αριστείδης -- Φροτιστήρι -ΟΡΟΣΗΜΟ - - Φροτιστήρι -ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Περιέχει Συοπτική Θεωρί Μεθοδολογί Ασκήσεω Λυμέες Ασκήσεις Λυμέ

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

Εργαστήριο Άλγεβρας Συμπληρωματικές Προτάσεις και Αποδείξεις στην Άλγεβρα της Α Λυκείου

Εργαστήριο Άλγεβρας Συμπληρωματικές Προτάσεις και Αποδείξεις στην Άλγεβρα της Α Λυκείου Συμπληρωμτικές Προτάσεις κι Αποδείξεις στη Άλγεβρ της Α Λυκείου Μπορεί πρχθεί κι διεμηθεί ελεύθερ ρκεί διτηρηθεί η μορφή του. Προλεγόμε Η διδσκλί ποδείξεω στη Άλγεβρ της Α Τάξης μπορεί υποβοηθηθεί ο δάσκλος

Διαβάστε περισσότερα

Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις

Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις Γραπτές αακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις Δρ. Πααγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Για το υπολογισμό του βαθμού της ετήσιας επίδοσης τω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΤΟΜΟΣ Α': ΜΗΧΑΝΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ (8η ΕΚ ΟΣΗ) ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ (4η ΒΕΛΤΙΩΜΕΝΗ ΕΚ ΟΣΗ)

ΦΥΣΙΚΗ ΤΟΜΟΣ Α': ΜΗΧΑΝΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ (8η ΕΚ ΟΣΗ) ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ (4η ΒΕΛΤΙΩΜΕΝΗ ΕΚ ΟΣΗ) Τ.E.I.: Κρήτης ΣΧΟΛΗ: Παράρτηµα Ρεθύµνου ΤΜΗΜ: Μουσικής Τεχνολογίας και κουστικής Συµφωνα µε την υπ' αριθµ. 50 Γενική Συνέλευση Τµήµατος στις 2/4/2009 ΣΥΝΟΛΙΚΟΣ ΚΤΛΟΓΟΣ ΠΡΟΤΙΝΟΜΝΩΝ ΠΡΟΣ ΠΙΛΟΓΗ Ι ΚΤΙΚΩΝ

Διαβάστε περισσότερα

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε

Διαβάστε περισσότερα

Πτερυγιοφόροι σωλήνες

Πτερυγιοφόροι σωλήνες ΛΕΒΗΤΕΣ ΑΤΜΟΥ Πτερυγιοφόροι σωλήνε ΑΤΜΟΛΕΒΗΤΕΣ Εύκολη λειτουργία και συντήρηση Για όλου του τύπου καυήρων και καυσίµων Ο οπίσθιο θάλαµο αναροφή καυσαερίων είναι λυόµενο, γεγονό που επιτρέπει τον πλήρη

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ Ι: ΟΦΕΙΛΕΣ ΕΡΓΩΝ ΕΘΝΙΚΟΥ ΣΚΕΛΟΥΣ. Ληξιπρόθεσµες οφειλές (τιµολόγιο>90 ηµερών) Εγκεκριµένη πίστωση. Χωρις κατανοµή πίστωσης

ΠΙΝΑΚΑΣ Ι: ΟΦΕΙΛΕΣ ΕΡΓΩΝ ΕΘΝΙΚΟΥ ΣΚΕΛΟΥΣ. Ληξιπρόθεσµες οφειλές (τιµολόγιο>90 ηµερών) Εγκεκριµένη πίστωση. Χωρις κατανοµή πίστωσης ΦΟΡΕΑΣ: Υπουργείο / Αποκεντρωµένη ιοίκηση..... ΕΙ ΙΚΟΣ ΦΟΡΕΑΣ: Γενική γραµµατεία... / Περιφέρεια..... Αναφορά για το µήνα: Ετος: 2012 ΣΑ έργου (Π Ε) Υποχρεώσεις πιστοποιηµένων εργασιών χωρίς τιµολόγιο

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

Ορισμοί των εννοιών Τύποι και ιδιότητες Βασική μεθοδολογία

Ορισμοί των εννοιών Τύποι και ιδιότητες Βασική μεθοδολογία Θάση Π. Ξέου Απρίτητο βοήθημ γι κάθε μθητή Λυκείου Ορισμοί τω εοιώ Τύποι κι ιδιότητες Βσική μεθοδολογί ΘΕΣΣΑΛΟΝΙΚΗ Πρόλογος Τ ο βιβλιράκι που κρτάς στ χέρι σου, μοδικό στη ελληική βιβλιογρφί, θ σου φεί

Διαβάστε περισσότερα

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό

Εικονογραφημένο Λεξικό Το Πρώτο μου Λεξικό ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Ι.Τ.Υ.Ε. «ΔΙΟΦΑΝΤΟΣ» Αή Εί Ηίς Δής Μί Μά Ιί Αύ Εέ Λό Τ Πώ Λό Τός 11ς (Π, (-ά) ) Εέ Λό Α, Β, Γ Δύ Τ Πώ Λό Τός 11ς (Π, (-ά) ) ΣΥΓΓΡΑΦΕΙΣ Αή

Διαβάστε περισσότερα

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον;

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ Ο ρ ι σ μ ο ς Μι κολουθι οομζετι γεωμετρικη προοδος, κι μοο, υπρχει λ, τετοιος ωστε. γι A κθε, β θετικοι, συγκριετι τους ριθμους Α = + β, Β = β + β + + = λ η = λ * 3. Ν δειχτει οτι +

Διαβάστε περισσότερα

---------------------------------------------------------------------------------------- 1.1. --------------

---------------------------------------------------------------------------------------- 1.1. -------------- ΕΚΘΕΣΗ Τ Ο Υ Ι Ο Ι ΚΗΤ Ι ΚΟ Υ ΣΥ Μ Β Ο Υ Λ Ι Ο Υ Π Ρ Ο Σ Τ ΗΝ Τ Α ΚΤ Ι ΚΗ Γ ΕΝ Ι ΚΗ ΣΥ Ν ΕΛ ΕΥ ΣΗ Τ Ω Ν Μ ΕΤ Ο Χ Ω Ν Kύριοι Μ έ τ οχοι, Σ ύµ φ ω ν α µ ε τ ο Ν όµ ο κ α ι τ ο Κα τ α σ τ α τ ικ ό τ ης ε

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΚΟ ΠΕΔΙΟ ΧΑΜΗΛΗΣ ΕΝΘΑΛΠΙΑΣ ν. ΜΗΛΟΥ

ΓΕΩΘΕΡΜΙΚΟ ΠΕΔΙΟ ΧΑΜΗΛΗΣ ΕΝΘΑΛΠΙΑΣ ν. ΜΗΛΟΥ ΓΕΩΘΕΡΙ ΕΔΙ ΧΗΗΣ ΕΝΘΙΣ Η ΕΡΙΓΡΦΗ ΕΔΙ - Ση ή δω έχε επσεί πώ εωθεό πεδί ψηή θεσί ση χώ η δπσώθηε, πό εεηέ εσίε ΙΓΕ, ό σ όη ησί πσσε έ εωθεό πεδί χηή εθπί έχ βθ ω 200 πείπ σ πί δπέσ θί σχησί δχωίζ πό ψηή

Διαβάστε περισσότερα

Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν

Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν Κ Α Ν Ο Ν Ι Σ Μ Ο Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Α Σ Ε Π Ι Τ Ρ Ο Π Ω Ν Ψ η φ ί σ τ η κ ε α π ό τ η Γ ε ν ι κ ή Σ υ ν έ λ ε υ σ η τ ω ν Μ ε λ ώ ν τ ο υ Σ Ε Π Ε τ η ν 24 η Μ α ΐ ο υ 2003 Δ ι ά τ α ξ η Ύ λ η ς 1. Π

Διαβάστε περισσότερα

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟ ΟΙ 6 Ακολουθίες Ορισµός Ακολουθί λέγετι κάθε συάρτηση, η οποί έχει πεδίο ορισµού το σύολο τω φυσικώ ριθµώ N *. Μί κολουθί συµβολίζετι συήθως µε το γράµµ όπου κάτω δεξιά βάζουµε το δείκτη,

Διαβάστε περισσότερα

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ

Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ γ Ε ο ζ δ μ ΝΝ λ Α σ λ Π Ι Λ Ρ υ λ δ ο Ρ β ε Δ Ο υ Π ο π λ ρ υ Ι ξ ρ ρ Ν μ υ β γ α ρ δ ψ λ ε Δ υ λ Π Κ Ο υ ξ δ Τ γ α τ Ψ υ ο α Ιφε γ α Ψφ δ Ρ ολ υ ω Π Ρατ υ Υ ψ δ ξ ξ ο υ ο ψ χ υ ΠΟ ψ Ν χ Λ Υ Υ Ψ ω Ρ ψ Ψ

Διαβάστε περισσότερα

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ ι ε α τ Τ εγνα α α ετ κ λε τ υργικ ο τημα Η οτ ρ α τ υ αρ Γ ζε τ τη Φ λα δ α απ τ α φ ιτητ τ υ Πα ετ τημ υ τ υ λ νκ ξεκ νη ε αν μ α τ ρ τ Θε α να δημ υργηθε ακαλ τερ Ενα τ υ αμτ ρε ααντατ κρ ετα καλ τερα

Διαβάστε περισσότερα

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.

Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα. 1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι

Διαβάστε περισσότερα

Α σ καταθετε κα π γρ φε γ α λ γαρ ασμ μ υ λα τα α αγκα α εγγραφα για τη σι σταση ηζ ετα ρε αζ

Α σ καταθετε κα π γρ φε γ α λ γαρ ασμ μ υ λα τα α αγκα α εγγραφα για τη σι σταση ηζ ετα ρε αζ Π Δ Γ π τ Ξ Σ Δ τ Σ Π Θ Ν Δ ΛΩΣ ρορ ακρ βε α τω στ ε ω π υ υπ β λλ ται με αυτη τη δηλω η μπ ρε α ελεγ ΘεΙ με β ση τ αρ ε λλω πηρε Φ ρθρ παρ Ν Π Σ τη πηρεσ α αζ Στ σηζ τ τη ΦΩ ΔΑΣ μα πι υμ μα κα π υμ Γ

Διαβάστε περισσότερα

1κΝΓΕΝΙΚΟΝΛΤΚΕΙΟΝΚΙΛΚΙ

1κΝΓΕΝΙΚΟΝΛΤΚΕΙΟΝΚΙΛΚΙ 1κΝΓΕΝΙΚΟΝΛΤΚΕΙΟΝΚΙΛΚΙ ά η: Α - Α Ε Ε Ό ο α έσος α/α Ε ώ ο Ό ο α Πα έ α Ό ος 1 Α Α Α 20 2 Α Α Α Α Ω Α 19,8 3 Α Α Α Α 19,3 4 Α Ω Α Ω Α Α Α Α Α 19,2 5 Α Α Ω Α Α 19,2 6 Α Α ΩΑ 19,2 7 Α Α Α Ω Α 19,2 8 ΩΑ Α

Διαβάστε περισσότερα

Μία γενίκευση της Αριθμητικής και της Γεωμετρικής προόδου - Ο Σταθμικός μέσος ως γενικός μέσος

Μία γενίκευση της Αριθμητικής και της Γεωμετρικής προόδου - Ο Σταθμικός μέσος ως γενικός μέσος Μί γείκευση της Αιθμητικής κι της Γεμετικής πόδυ - Ο Στθμικός μέσς ς γεικός μέσς Δ. Πγιώτης Λ. Θεδόπυς Σχικός Σύμυς κάδυ ΠΕ0 www.p-theodoropoulos.gr Πείηψη Στη εγσί υτή μεετάτι η ειδική κτηγί τ κυθιώ όπυ

Διαβάστε περισσότερα

Πανελλήνιεσ Εξετάςεισ Ημερήςιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 16 Μαίου 2011

Πανελλήνιεσ Εξετάςεισ Ημερήςιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 16 Μαίου 2011 Πανελλήνιεσ Εξετάςεισ Ηρήςιων Γενικών Λυκείων Εξεταζόνο Μάθημα: Μαθηματικά Θετικής εχνολογικής Κατεύθυνσης Ημ/νία: 6 Μαίου παντήσεις Θεμάτων Β ΙΣ Σ Η Θεμα Θεωρία από το ςχολικό βιβλίο (Θεώρημα Fermat)

Διαβάστε περισσότερα

α ία,anastasiosba@gmail.com goumas.kostas@gmail.com

α ία,anastasiosba@gmail.com goumas.kostas@gmail.com Η - 14 ο ο 2015 «Η ν οχ ( ο ν ν ο : χ ο) : / ο : ων ( ν χ ο ων χ ν ο ) οο» anastasiosba@gmailcom goumaskostas@gmailcom - Η 2000/60 & & & ) Η & Η ( & & - 90% Ζ 2000/60 Ζ & 1 & Ο & 2000 1979/87 2000/60 &

Διαβάστε περισσότερα

ΙΔΡΥΜΑ ΝΕΟΛΑΙΑΣ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΣΧΟΛΕΣ ΓΟΝΕΩΝ ΝΟΜΟΥ ΚΟΡΙΝΘΙΑΣ

ΙΔΡΥΜΑ ΝΕΟΛΑΙΑΣ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΣΧΟΛΕΣ ΓΟΝΕΩΝ ΝΟΜΟΥ ΚΟΡΙΝΘΙΑΣ Σε συνέχει της επικοινωνίς μς πρκλώ όπως προωθήσετε τ κόλουθ στο Σύλλογο Γονέων κι Κηδεμόνων κθώς κι στο Σύλλογο Διδσκόντων του σχολείου σς. Οι Σχολές Γονέων Νομού Κορινθίς προσκλούν το Σύλλογο Γονέων

Διαβάστε περισσότερα

Προσοµοίωση Ανάλυση Απ ο τ ε λε σµ άτ ω ν ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Ανάλυση Απ ο τ ε λε σµ άτ ω ν Τα απ ο τ ε λ έ σ µ ατ α απ ό τ η ν π αρ αγ ω γ ή κ αι τ η χ ρ ή σ η τ υ χ αί ω ν δ ε ι γ µ

Διαβάστε περισσότερα

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς

Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς 9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1

Διαβάστε περισσότερα

ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ

ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ B ΓΥΜΝΑΣΙΟΥ υάµεις Ορισµός =... πργοτες 1 = = 1µε Ιδιότητες µ = µ : = µ ( ) = = = ( ) µ µ + µ = µε µε, Αλγερικές πρστάσεις Επιµεριστική ιδιότητ γωγή οµοίω όρω. γ + γ = + γ ( ) Χρήσιµες ιδιότητες τω πράξεω

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

ΠΟΛΥΕΛΕΟΣ ''Λόγον Ἀγαθόν''

ΠΟΛΥΕΛΕΟΣ ''Λόγον Ἀγαθόν'' «ΑΕΛΙΟΣ ΧΟΡΟΣ» Ι.. ΣΙΩΟΣ ΕΤΡΑΣ ΟΛΥΕΛΕΟΣ ''Λόγον Ἀγθόν'' Ἦχος 1. ο γο ον γ θο ον Α λ λη η η λ Ε ξη ρ υ ξ το η η η κ ρ δ µ λο ο ο γον γ θον Χ ρ πν τ ν σ σ π νυ υ υ µνη η η η τ µη η η τηρ Χρ στ τ Θ η η η

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ

ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ ΕΛΛΗΝΟΓΛΩΣΣΗ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΔΙΑΠΟΛΙΤΙΣΜΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗ ΔΙΑΣΠΟΡΑ ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ ΜΟΝΑΔΕΣ 25 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, Ε.ΔΙΑ.Μ.ΜΕ. Ρέθυμνο, 2014 1 ΚΑΤΑΝΟΗΣΗ ΓΡΑΠΤΟΥ ΛΟΓΟΥ Άσκηση 1 (6

Διαβάστε περισσότερα

2006 (20/5/06 31/12/06)

2006 (20/5/06 31/12/06) ΤΣΙΜΕΝΤΑ Χ ΑΛ Κ Ι Ο Σ ΙΕΘ ΝΗ Σ Α.Ε. ΥΠΟ Ε Κ Κ Α Θ Α Ρ Ι Σ Η ΟΙΚΟΝΟΜΙΚΕΣ ΚΑ Τ Α ΣΤ Α ΣΕΙΣ ΜΕΤ Α ΣΧ Η ΜΑ Τ ΙΣΜΟΥ ΣΥ ΜΦ Ω ΝΑ ΜΕ Τ Α ΙΕΘ ΝΗ Π Ρ ΟΤ Υ Π Α Χ Ρ Η ΜΑ Τ ΟΟΙΚΟΝΟΜΙΚΗ Σ Π Λ Η Ρ ΟΦ ΟΡ Η ΣΗ Σ Γ ΙΑ Τ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

ΟΙ ΠΕΛΑΤΕΣ ΕΡΧΟΝΤΑΙ ΣΤΟΝ ΠΩΛΗ- ΤΗ. ΔΕΝ ΥΠΑΡΧΕΙ ΑΝΑΓΚΗ ΑΝΑΖΗΤΗ- ΣΗΣ ΠΕΛΑΤΩΝ ΔΕΝ ΥΠΑΡΧΕΙ ΑΝΑΓΚΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΣΠΙΤΙ

ΟΙ ΠΕΛΑΤΕΣ ΕΡΧΟΝΤΑΙ ΣΤΟΝ ΠΩΛΗ- ΤΗ. ΔΕΝ ΥΠΑΡΧΕΙ ΑΝΑΓΚΗ ΑΝΑΖΗΤΗ- ΣΗΣ ΠΕΛΑΤΩΝ ΔΕΝ ΥΠΑΡΧΕΙ ΑΝΑΓΚΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΣΠΙΤΙ ΛΙΑΝΙΚΗ ΠΩΛΗΣΗ 1 ΙΔΙΑΙΤΕΡΕΣ ΔΙΑΣΤΑΣΕΙΣ ΤΗΣ ΛΙΑΝΙΚΗΣ ΠΩΛΗΣΗΣ ΟΙ ΠΕΛΑΤΕΣ ΕΡΧΟΝΤΑΙ ΣΤΟΝ ΠΩΛΗ- ΤΗ. ΔΕΝ ΥΠΑΡΧΕΙ ΑΝΑΓΚΗ ΑΝΑΖΗΤΗ- ΣΗΣ ΠΕΛΑΤΩΝ ΔΕΝ ΥΠΑΡΧΕΙ ΑΝΑΓΚΗ ΕΡΓΑΣΙΑΣ ΣΤΟ ΣΠΙΤΙ 2 Η ΣΥΝΑΛΛΑΓΗ ΓΙΝΕΤΑΙ Σ ΕΝΑ

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 4 IOYNIOY 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α.1.

Διαβάστε περισσότερα

Άλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια

Άλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Άλγερ κι Στοιχεί Πιθοτήτω Θεωρί & Σχόλι 014 015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ 1 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΗ ΓΙΑ ΤΟ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΠΕΡΑΚΗ ΒΑΣΙΛΙΚΗ, δρ Βιολογίας, σύμβουλος Παιδαγωγικού Ινστιτούτου.

ΥΠΕΥΘΥΝΗ ΓΙΑ ΤΟ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΠΕΡΑΚΗ ΒΑΣΙΛΙΚΗ, δρ Βιολογίας, σύμβουλος Παιδαγωγικού Ινστιτούτου. ΒΙΟΛΟΓΙΑ Η συγγραφή του βιβλίου είναι αποτέλεσμα συλλογικής εργασίας μελών της Πανελλήνιας Ένωσης Βιολόγων, στα πλαίσια του διαγωνισμού του Παιδαγωγικού Ινστιτούτου για τη συγγραφή διδακτικών βιβλίων Βιολογίας

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2012:

Θέματα Εξετάσεων Φεβρουαρίου 2012: ΑΡΙΘΜΗΙΚΗ ΑΝΑΛΥΣΗ ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΔΙΔΑΣΚΟΝΕΣ: Ι. ΑΝΑΓΝΩΣΟΠΟΥΛΟΣ - Κ.Χ. ΓΙΑΝΝΑΚΟΓΛΟΥ ΕΞΕΑΣΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξτάσων Φβρουρίου : ΘΕΜΑ μονάδς Κμπύλη ezier δημιουργίτι πό σημί

Διαβάστε περισσότερα

Μετά το Λύκειο τι; ΛΕΟΝΤΕΙΟ ΛΥΚΕΙΟ ΠΑΤΗΣΙΩΝ 2009-2010

Μετά το Λύκειο τι; ΛΕΟΝΤΕΙΟ ΛΥΚΕΙΟ ΠΑΤΗΣΙΩΝ 2009-2010 Μετά το Λύκειο τι; ΛΕΟΝΤΕΙΟ ΛΥΚΕΙΟ ΠΑΤΗΣΙΩΝ 2009-2010 ΚΕΣΥΠ ΝΕΑΠΟΛΗΣ 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙ ΕΥΣΗ ΚΑΤΕΥΘΥΝΣΕΙΣ ΚΑΙ ΠΕ ΙΑ Παρουσίαση των Σχολών του Μηχανογραφικού ελτίου Οι Σχολές και τα Τµήµατα

Διαβάστε περισσότερα

α β α < β ν θετικός ακέραιος.

α β α < β ν θετικός ακέραιος. Τυτότητες ( ± ) ± ( ± ) ± ± ( ± ) m (γ) γ γγ - (-)() - (-)( ) - (-)( - - - - ) Α. Βσικές γώσεις ()( - ) ()( - - - - - - ) ΜΟΝΟ ΓΙΑ ΠΕΡΙΤΤΟ. γ --γ-γ [(-) (-γ) (γ-) ] γ -γ (γ)[(-) (-γ) (γ-) ] Αισώσεις. Οι

Διαβάστε περισσότερα

y ay uoy Uy t -1050 m -9,8 m/s^2 0 m/s

y ay uoy Uy t -1050 m -9,8 m/s^2 0 m/s ΚΙΝ ΣΟ ΠΙΠ Ο ΠαλΪ δΰηα 1 Π υ β παεϋ ου ίοάγ δαμ απσ Ϋθα α λοπζϊθο Σκ α λκπζϊθκ εδθ έ αδ κλδασθ δα η ηέα αγ λά αξτ β α +115 m / s εαδ υοση λκ 1050 m. Καγκλέ κθ απαδ κτη θκ ξλσθκ πκυ ξλ δϊα αδ κ παεϋ κ ΰδα

Διαβάστε περισσότερα

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ

Πέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 006 Πέµπτη, 5 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ, που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

i) Αν ο φυσικός αριθμός n δεν είναι τετράγωνο ακεραίου, τότε ο n είναι άρρητος.

i) Αν ο φυσικός αριθμός n δεν είναι τετράγωνο ακεραίου, τότε ο n είναι άρρητος. Πρόλογος 3 Πρόλογος Τ ο βιβλίο αυτό απευθύεται σε κάθε συάδελφο Μαθηματικό, αλλά κυρίως σε κάθε έο συάδελφο που πρόκειται α συμμετάσχει στο διαγωισμό του Α.Σ.Ε.Π. Επίσης, απευθύεται σε μαθητές με υψηλούς

Διαβάστε περισσότερα

Κ Ω Δ Ι Κ Α Σ Δ Ε Ο Ν Τ Ο Λ Ο Γ Ι Α Σ

Κ Ω Δ Ι Κ Α Σ Δ Ε Ο Ν Τ Ο Λ Ο Γ Ι Α Σ Κ Ω Δ Ι Κ Α Σ Δ Ε Ο Ν Τ Ο Λ Ο Γ Ι Α Σ Ψ η φ ί σ τ η κ ε α π ό τ η Γ ε ν ι κ ή Σ υ ν έ λ ε υ σ η τ ω ν Μ ε λ ώ ν τ ο υ Σ Ε Π Ε τ η ν 1 9 η Ο κ τ ω β ρ ί ο υ 1 9 9 6 Π ρ ό λ ο γ ο ς Τ ο π ρ ώ τ ο α ι ρ ε

Διαβάστε περισσότερα

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό

Δηθνλνγξαθεκέλν Λεμηθό Σν Πξώην κνπ Λεμηθό ΤΠΟΤΡΓΔΗΟ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΩΝ, ΠΟΛΗΣΗΜΟΤ ΚΑΗ ΑΘΛΖΣΗΜΟΤ Η.Σ.Τ.Δ. «ΓΗΟΦΑΝΣΟ» Αή Δί Ζίο Γήο Μί Μά Ηί Αύ Δέ Λό Σ Πώ Λό Α, Β, Γ Γύ Σόο 4ο (Λ, - Μ, - Ν, - Ξ,) Δέ Λό Α, Β, Γ Γύ Σ Πώ Λό Σόο 4ο (Λ, - Μ, -

Διαβάστε περισσότερα

Smart Shop uu ss ii nn g g RR FF ii dd Παύλος ΚΚ ατ σσ αρ όό ς Μ Μ MM Ε Ε ΞΞ ΥΥ ΠΠ ΝΝ ΟΟ ΜΜ ΑΑ ΓΓ ΑΑ ΖΖ Ι Ι ΡΡ ΟΟ ΥΥ ΧΧ ΙΙ ΣΣ ΜΜ ΟΟ ΥΥ E E TT HH N N ΧΧ ΡΡ ΗΗ ΣΣ ΗΗ TT OO Y Y RR FF II DD Απευθύνεται σσ

Διαβάστε περισσότερα

Πληροφορική και Ειδική αγωγή

Πληροφορική και Ειδική αγωγή 1 Πληροφορική και Ειδική αγωγή Αξιολόγηση εκπαι δευτικού λογισμικού πολυμέσων - υπερμέσων. του Θώδη Κων/νου Μ ε το ν ό ρ ο Τε χ ν ο λο γ ί ε ς τ η ς Π λ η ρ ο φ ο ρ ί α ς ( Τ Π ) ή Τε - χ ν ο λο γ ί ε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΟΜΑ Α ΤΡΙΤΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΟΜΑ Α ΤΡΙΤΗ ΤΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΝΤΟΛΙΣΜΟΣ: ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΘΗΜ: ΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΣ 1. Λάθος. 2. Λάθος. 3. Λάθος. 4. Σωστό. 5. Σωστό. 6. στ. 7. β. Ηµεροµηνία: Κυριακή 24 πριλίου 2016 ιάρκεια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΩΝ ΟΡΓΑΝΩΤΙΚΩΝ ΔΟΜΩΝ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΟΥ ΝΟΜΟΥ ΚΕΦΑΛΛΗΝΙΑΣ

ΑΝΑΛΥΣΗ ΤΩΝ ΟΡΓΑΝΩΤΙΚΩΝ ΔΟΜΩΝ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΟΥ ΝΟΜΟΥ ΚΕΦΑΛΛΗΝΙΑΣ τ. Ε. I. Ν-λ ε λ λ λ ς : ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΑΛΥΣΗ ΤΩΝ ΟΡΓΑΝΩΤΙΚΩΝ ΔΟΜΩΝ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΟΥ ΝΟΜΟΥ ΚΕΦΑΛΛΗΝΙΑΣ ΕΙΣΗΓΗΤΗΣ; MIX. ΠΙΠΙΛΙΑΓΚΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 30 Αµφιάλη 43890-43

Διαβάστε περισσότερα

ΑΔΑ: 6ΓΜΒ465ΦΘ3-8ΔΗ. α ούσι, 26/06/2015 Α / 26917/ ς. αθ ός Ασφα ίας: -----

ΑΔΑ: 6ΓΜΒ465ΦΘ3-8ΔΗ. α ούσι, 26/06/2015 Α / 26917/ ς. αθ ός Ασφα ίας: ----- INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.06.26 12:33:38 EEST Reason: Location: Athens ΑΔΑ: 6ΓΜΒ465ΦΘ3-8ΔΗ Α Α, Α Α Α Α Ω Ω Ω Α Α Α Α Α Α.. Α Α Α & Ω..

Διαβάστε περισσότερα

Βόμβα στην Καρδιά της Ελληνικής Οικονομίας

Βόμβα στην Καρδιά της Ελληνικής Οικονομίας Restart Λθεμπό Κπύ: Βόμβ τη Κδ της Εηής Ομίς Γης Αθδης Δευθυτής Χημ/ώ & Τεωεώ Θεμτω Νέμβς 2015, Θείη Ο δς τω πώ τη εηή μί Κθ έδ ττύ πϋπγμύ (2014)* 47 δ. Ευώ 100% 6δ πό Εδό Φό Κτωης (ΕΦΚ) ΦΠΑ πό Κπ Πϊότ

Διαβάστε περισσότερα

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ (Επλήψεις Συμπληρώσεις) Εισγωγή Στο Γυμάσιο μάθμε ότι οι πργμτικοί ριθμοί ποτελούτι πό τους ρητούς κι τους άρρητους ριθμούς κι πριστάοτι με

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου

ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστα Βακαλόπουλου, Βασίλη Καρκάνη, Άννας Βακαλοπούλου ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ EΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ των Κώστ Βκλόπουλου, Βσίλη Κρκάνη, Άννς Βκλοπούλου Άσκηση η Δίνοντι τ δινύσμτ, β διάφορ του μηδνικού γι τ οποί ισχύι: β, β κι β i) Ν βρθούν τ μέτρ των δινυσμάτων,

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι

Διαβάστε περισσότερα

Α Α Α Α Α Α 1) Α Α Α Α Α Α 3) Α Α Α Α Α Α Α ο οθ σία -> > ό ος ύ α -> Ύ α η α α αίο φα αίο 4) α ασ άσ ις οβά ω ο οθέ ηση α ασ άσ ω

Α Α Α Α Α Α 1) Α Α Α Α Α Α 3) Α Α Α Α Α Α Α ο οθ σία -> > ό ος ύ α -> Ύ α η α α αίο φα αίο 4) α ασ άσ ις οβά ω ο οθέ ηση α ασ άσ ω 1 ΕΙΣΓΩΓΗ Η οβ ο οφί σ η Κύ ο ο ί ό χιο ω χ ό ω έ ό ο ς ιο ση ι ούς ο ς ης η ο οφίςτ όβ ού η β σ ηση, ις βοσ ές ι ό ό οι οϊό ω ω ι ώ ι ιώ Πέ ό ό ό ως έχ ι ή ης σχό ηση σ 3000 ί ο οι ο έ ι ς ο έχο 325000

Διαβάστε περισσότερα

e-biologia.gr Το γονίδιο που είναι υπεύθυνο για την σύνθεση της α-πεπτιδικής αλυσίδας της αιμοσφιαρίνης εδράζεται στο 16 χρωμόσωμα.

e-biologia.gr Το γονίδιο που είναι υπεύθυνο για την σύνθεση της α-πεπτιδικής αλυσίδας της αιμοσφιαρίνης εδράζεται στο 16 χρωμόσωμα. Προτεινόμενο θέμ στη βιολογί προσντολισμού Εκφώνηση Το γονίδιο που είνι υπεύθυνο γι την σύνθεση της -πεπτιδικής λυσίδς της ιμοσφιρίνης εδράζετι στο 16 χρωμόσωμ. Α. Πόσ ντίγρφ του συγκεκριμένου γονιδίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο.. Οι πράξεις πρόσθεση κι πολλπλσισµός κι οι ιδιότητές τους. Πρόσθεση Πολλπλσισµός Ιδιότητ.. Ατιµετθετική (γ)()γ (γ)()γ Προσετιρική (γ)γ Επιµεριστική 0. Ουδέτερο

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ Περιέχει την ύλη που διδάσκετι στ Μθημτικά της Κτεύθυνσης στη Γ Λυκείου Στους δσκάλους μου με ευγνωμοσύνη Στους μθητές μου με ελπίδ Κάθε γνήσιο ντίτυπο έχει την ιδιόχειρη υπογρφή του συγγρφέ

Διαβάστε περισσότερα

ΙΝΣΤΙΤΙ ΒΙΟΛΟΓΙΑ. γενικής ηαιεείας. Β'τόξης ενιαίου (ΙυΗείου ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΟΣ ΑΙΔΑΚΤΙΚΟΝ BIBA1QN ΑΘΗΝΑ

ΙΝΣΤΙΤΙ ΒΙΟΛΟΓΙΑ. γενικής ηαιεείας. Β'τόξης ενιαίου (ΙυΗείου ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΟΣ ΑΙΔΑΚΤΙΚΟΝ BIBA1QN ΑΘΗΝΑ ΓΕΙΟΕ ΑΙ ΚΑ ΙΝΣΤΙΤΙ ΒΙΟΛΟΓΙΑ γενικής ηαιεείας Β'τόξης ενιαίου (ΙυΗείου ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΟΣ ΑΙΔΑΚΤΙΚΟΝ BIBA1QN ΑΘΗΝΑ ΒΙΟΛΟΓΙΑ Γενικής Παιδείας Β' ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΒΙΒΛΙΟ ΚΑΘΗΓΗΤΗ ΟΜΑΔΑ ΣΥΓΓΡΑΦΗΣ ΑΘΑΝΑΣΙΟΣ

Διαβάστε περισσότερα

Βιολογία. Γ λυκειου ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Βιολογία. Γ λυκειου ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Βιολογία Γ λυκειου ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σειρά: Γενικό Λύκειο Θετικές Επιστήμες Νότα Λαζαράκη, Βιολογία Γ Λυκείου Γενικής Παιδείας Υπεύθυνος έκδοσης: Αποστόλης Αντωνόπουλος Θεώρηση κειμένου: Κυριάκος Εμμανουηλίδης

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

[ΜΥΘΟΙ ΚΑΙ ΑΛΗΘΕΙΕΣ ΓΙΑ ΤΙΣ ΔΙΑΙΤΕΣ ΚΑΙ Η ΚΑΤΑΛΛΗΛΗ ΔΙΑΤΡΟΦΗ ΓΙΑ

[ΜΥΘΟΙ ΚΑΙ ΑΛΗΘΕΙΕΣ ΓΙΑ ΤΙΣ ΔΙΑΙΤΕΣ ΚΑΙ Η ΚΑΤΑΛΛΗΛΗ ΔΙΑΤΡΟΦΗ ΓΙΑ 213 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ [ΜΥΘΟΙ ΚΑΙ ΑΛΗΘΕΙΕΣ ΓΙΑ ΤΙΣ ΔΙΑΙΤΕΣ ΚΑΙ Η ΚΑΤΑΛΛΗΛΗ ΔΙΑΤΡΟΦΗ ΓΙΑ ΑΘΛΟΥΜΕΝΟΥΣ] ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΗΣ: ΤΑΟΥΞΙΔΟΥ

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ Στο άρθρο αυτό θα παρουσιάσουμε μια μικρή συλλογή ασκήσεω οι οποίες καλύπτου τις έοιες που μάθαμε στο κεφάλαιο της Στατιστικής. Σε

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΚΑΛΟΚΑΙΡΙΝΟ ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΕΜΕ ΛΕΠΤΟΚΑΡΥΑ ΠΙΕΡΙΑΣ 0 ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Αργύρης Φελλούρης Απληρωτής Κθηγητής ΕΜΠ ΚΕΦΑΛΑΙΟ Ι ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Στο Κεφάλιο υτό θεωρούμε γωστές τις σικές

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΤΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΛ ΜΕ ΤΟ ΝΕΟ ΣΥΣΤΗΜΑ

ΠΡΟΓΡΑΜΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΤΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΛ ΜΕ ΤΟ ΝΕΟ ΣΥΣΤΗΜΑ ΠΡΟΓΡΜΜ ΠΝΕΛΛΔΙΚΩΝ ΕΞΕΤΣΕΩΝ ΤΩΝ ΗΜΕΡΗΣΙΩΝ ΚΙ ΕΣΠΕΡΙΝΩΝ ΓΕΛ ΜΕ ΤΟ ΝΕΟ ΣΥΣΤΗΜ ΗΜΕΡ/Ν Ι ΜΘΗΜ ΚΤΗΓΟΡΙ ΜΘΗΜΤΟΣ (Ο.Π.= Ομάδα Προσανατολισμού) 16-5- ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣ ΡΧΙ ΕΛΛΗΝΙΚ 18-5- ΜΘΗΜΤΙΚ + Ο.Π. ΣΠΟΥΔΩΝ

Διαβάστε περισσότερα

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ ΤΕΧΝ Οη ΟΓ ΙΚ Ο Ε Κ ΠΟ ΙΔ ΕΥ ΤΙ ΚΟ ΙΔΡΥΜΟ ΚΟΒΟΠΑΕ ΕΧΟΠΗ ΔΙϋΙ ΚΗ ΕΗ Σ ΚΑΙ Ο Ι ΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ηο ΓΙ ΣΤ ΙΚ ΗΣ ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - Καθηγητή ΚΑΡΑ ΣΑ ΒΒ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ (γραμμικός προγραμματισμός) Μια εταιρεία χρησιμοποιεί δύο διαφορετικούς τύπους ζωοτροφών (τον τύπο Ι και τον τύπο ΙΙ), ως πρώτες ύλες, τις οποίες αναμιγνύει για την εκτροφή γαλοπούλων ώστε να πετύχει

Διαβάστε περισσότερα

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή 49 43 ΔΙΑΙΡΕΤΟΤΗΤΑ Εισαγωγή Στα Στοιχεία του Ευκλείδη, βιβλία VII, VIII και IX (περίπου 300 πχ), οι θετικοί ακέραιοι παριστάοται ως ευθύγραμμα τμήματα και η έοια της διαιρετότητας συδέεται άμεσα με τη

Διαβάστε περισσότερα

! ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ

! ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ ! ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ: 0 < 0 ΙΔΙΟΤΗΤΕΣ ΑΠΟΛΥΤΩΝ ΤΙΜΩΝ 1. 0 Όλες οι πόλυς τιμές είι θετικές ή μηδέ ( 0 0). 3.. Οι τίθετοι ριθμοί (ποσότης) έχου τη ίδι πόλυτη τιμή. 5. 6. θ ±θ με θ >

Διαβάστε περισσότερα

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟ ΒΑΙΗ - ΜΑΥΡΑΓΑΝΗ ΤΑΘΗ ΠΑΝΕΗΝΙΕ ΕΞΕΤΑΕΙ 5 - - Οι πρκάτω σημειώσεις βσίστηκν στ έντυπ του Κ.Ε.Ε. (999 ) κι στη θεμτοδοσί των Πνελλδικών Εξετάσεων στ Μθημτικά Κτεύθυνσης της Γ υκείου. τις επόμενες

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων

Διαβάστε περισσότερα

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 2000 Ζήτηµ 1ο Θέµτ Γεωµετρίς Γενικής Πιδείς Β Λυκείου 000 Α.1. Σε κάθε τρίγωνο ΑΒΓ µε διάµεσο ΑΜ ν ποδείξετε ότι το άθροισµ των τετργώνων δύο πλευρών του ισούτι µε το διπλάσιο του τετργώνου της διµέσου που

Διαβάστε περισσότερα

ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ίας νου ω αραγ ου π ς ν θεση ης κειµέ ν. κ θούν έ υ ς ο ω ψ η λ τ τ ι η ίλ ία έχε ακο εµά Περι θοδολογ α της περ πτυξη θ οτήτων ί ά ν ε M θοδολογ ατική αν απάνω ε η

Διαβάστε περισσότερα

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ν ν = α 0 α β = ( ) β α = α ( α β)( α β)

ν ν = α 0 α β = ( ) β α = α ( α β)( α β) Γ ΓΥΜΝΑΣΙΟΥ ν 0 ν = 1 = β β ν 1= ν µ = ν + µ ν ν µ 1 µ = ν = ν ( ν ) µ ν ν = ν µ β = β ( β) ν = ν βν ν > 0 τότε 2 = β = β β = β Ιδιότητες υνάµεων ν > β τότε + γ > β+ γ. ν > β κι γ > δ τότε + γ > β+ δ.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Γι τις ερωτήσεις 1.1-1.4 ν γράψετε στο

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ & ΙΟΙΚΗΣΗΣ. Γ ΛΥΚΕΙΟΥ τεχνολογικής κατεύθυνσης. Θέµατα και ερωτήσεις κλειστού τύπου Ερωτήσεις του τύπου Σωστό - Λάθος

ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ & ΙΟΙΚΗΣΗΣ. Γ ΛΥΚΕΙΟΥ τεχνολογικής κατεύθυνσης. Θέµατα και ερωτήσεις κλειστού τύπου Ερωτήσεις του τύπου Σωστό - Λάθος Θέµατα και ερωτήσεις κλειστού τύπου Ερωτήσεις του τύπου Σωστό - Λάθος Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις αντιστοίχησης Ερωτήσεις συµπλήρωσης κενών Ερωτήσεις ανάπτυξης Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ & ΙΟΙΚΗΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ 0 ΜΑΘΗΜΑΤΙΚΑ κτεύθυνσης Β ΛΥΚΕΙΟΥ Συνοπτικη θεωρι με ποδειξεις Λυμεν θεμτ γι εξετάσεις Θέμτ πό εξετάσεις Βγγέλης Α Νικολκάκης Μθημτικός ΠΕΡΙΕΧΟΜΕΝΑ ENOTHTA ΘΕΜΑ ΣΕΛΙΔΕΣ ΤΥΠΟΛΟΓΙΑ-ΑΠΟΔΕΙΞΕΙΣ-ΕΡΩΤΗΣΕΙΣ

Διαβάστε περισσότερα

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i

είναι n ανεξάρτητες τυποποιημένες κανονικές τυχαίες μεταβλητές, δηλαδή, αν Z i Οι Κτνομές χ, t κι F Οι Κτνομές χ, t κι F Σε υτή την ενότητ προυσιάζουμε συνοπτικά τρεις συνεχείς κτνομές οι οποίες, όπως κι η κνονική κτνομή, είνι πολύ χρήσιμες στη Σττιστική Συμπερσμτολογί Είνι ξιοσημείωτο,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ 1 01 Θετικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 02 Αρητικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 03 Το ηδέ είι θετικός ριθός. 04 Οόσηοι

Διαβάστε περισσότερα