Asset & Liability Management Διάλεξη 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Asset & Liability Management Διάλεξη 3"

Transcript

1 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 3 Cash-flow matching Μιχάλης Ανθρωπέλος 1

2 Ορισμός προβλήματος Το ταίριασμα χρηματοροών (cash-flow matching) αναφέρεται στον σχεδιασμό ενός χαρτοφυλακίου που ταιριάζει (βέβαιες) υποχρεώσεις με την αγορά ανάλογων περιουσιακών στοιχείων. Η διαδικασία αυτή ονομάζεται συχνά dedication και το χαρτοφυλάκιο που ονομάζεται dedicated portfolio. Σκοπός του χαρτοφυλακίου είναι να ταιριάξει ακριβώς τα έσοδα από των περιουσιακών στοιχείων με τις υποχρεώσεις σε κάθε χρονική στιγμή (συνήθως σε μηνιαία βάση). Δηλαδή, το ταίριασμα είναι τόσο στο μέγεθος όσο και στο χρόνο (size and time matching). Πρόκειται για συντηρητική και παθητική στρατηγική, όπου ο κίνδυνος περιορίζεται μόνο στην σωστή εκτίμηση του reinvestment interest rate (και βεβαίως στο πάντα παρόντα πιστωτικό κίνδυνο). Ωστόσο και οι δύο κίνδυνοι μπορούν να εξαλειφτούν ή να μειωθούν. Η μέθοδος του cash-flow matching μπορεί να εφαρμοστεί και σε περιπτώσεις όπου τόσο οι υποχρεώσεις όσο και τα στοιχεία του χαρτοφυλακίου δεν έχουν απαραίτητα βέβαιες, αλλά αναμενόμενες χρηματοροές. Ωστόσο στην περίπτωση αυτή ο κίνδυνος να μην είναι επιτυχημένο το ταίριασμα είναι ασφαλώς μεγαλύτερος. 2

3 Dedication vs immunization Επειδή το dedicated portfolio είναι σχεδιασμένο να ταιριάζει ακριβώς τις υποχρεώσεις θα έχει το ίδιο duration με τις υποχρεώσεις. Επομένως, το dedicated portfolio μπορεί να θεωρηθεί μια ειδική (πιο περιορισμένη) περίπτωση μιας στρατηγικής immunization. Το ταίριασμα δεν γίνεται μόνο σε παράλληλες μετατοπίσεις της καμπύλης επιτοκίων. Με την dedication στρατηγική γίνεται στην ουσία πλήρης αντιστάθμιση των υποχρεώσεων (full hedging), μέσα από την αγορά των κατάλληλων περιουσιακών στοιχείων. Σε αντίθεση με την immunization portfolio, ένα dedicated portfolio συχνά εμπεριέχει πολλά αξιόγραφα που έχουν διαφορετική διάρκεια. Αυτό το καθιστά πιο ακριβό και δυσκολότερο στην διαχείρισή του ( it lacks flexibility ). Τα dedicated portfolios προτιμούνται ωστόσο όταν πρόκειται να καλυφθούν υποχρεώσεις που συνδέονται με εγγυημένα επενδυτικά προγράμματα (guaranteed investment contracts, GICs) ή με πολύ σημαντικές για την εταιρία υποχρεώσεις. 3

4 Βήματα μιας dedication strategy 1. Επιλογή χρονικού ορίζοντα (Time horizon choice) Άλλος ο τρόπος χρηματοδότησης βραχυπρόθεσμων υποχρεώσεων και άλλος μακροπρόθεσμων. Στις βραχυπρόθεσμες υποχρεώσεις το ταίριασμα γίνεται πιο συχνά (ανά βδομάδα ή ακόμα και ανά ημέρα). 2. Προσδιορισμός των υποχρεώσεων (Determining the liabilities) Οι υποχρεώσεις που λογίζονται θα πρέπει να είναι καλά εκτιμημένες ή βέβαιες. Για παράδειγμα, πληρωμές συντάξεων/ζημιών, πληρωμές σε GICs, πληρωμές δανειακών υποχρεώσεων, συμφωνημένες πληρωμές επενδυτικών πλάνων κτλ. 3. Καθορισμός περιορισμών χαρτοφυλακίου (setting portfolio constrains) Τίθενται συγκεκριμένα κριτήρια στα αξιόγραφα που μπορεί να αγοράσει η εταιρία για να φτιάξει ένα τέτοιο χαρτοφυλάκιο. Τα κριτήρια αναφέρονται στον τομέα του εκδότη, στη ποιότητα, το μέγεθος αγοράς, στο νόμισμα του αξιόγραφου, στην διάρκεια κτλ. Τίθενται επίσης κριτήρια διαφοροποίησης στο χαρτοφυλάκιο, όπως πχ ότι θα πρέπει το χαρτοφυλάκιο να έχει τουλάχιστον 20% κρατικών αξιόγραφων ή ότι δεν θα μπορεί να έχει περισσότερο από 10% αξιόγραφα του τραπεζικού κλάδου κτλ. 4

5 Βήματα μιας dedication strategy 4. Επιπλέον περιορισμοί (Additional constrains) Τα αξιόγραφα δεν θα πρέπει να είναι ανακλητά (callable) από τον εκδότη. Δεν επιλέγονται αξιόγραφα στα οποία υπάρχει μεγάλος κίνδυνος πρόωρης αποπληρωμής (prepayment risk). 5. Προσδιορισμός του κίνδυνου επανεπένδυσης (Determining the reinvestment risk) Επειδή μπορεί το καλύτερο dedicated portfolio να έχει σε κάποιες περιόδους πλεόνασμα καθαρής χρηματοροής, θα πρέπει να προσδιοριστεί/εκτιμηθεί ένα επιτόκιο επανεπένδυσης αυτών των πλεονασμάτων (όταν υπάρχουν). Όσο πιο συντηρητική είναι η εκτίμηση για το reinvestment rate, τόσο πιο πολύ στενές είναι οι επιλογές χαρτοφυλακίου. 6. Επιλογή βέλτιστου χαρτοφυλακίου (Selection of the optimal dedicated portfolio) Το κριτήριο είναι η επιλογή του χαρτοφυλακίου που κάνει ταίριασμα χρηματοροών αλλά έχει το μικρότερο δυνατό κόστος ή το μεγαλύτερο πλεόνασμα κεφαλαίου στο τέλος του χρονικού ορίζοντα. Το μαθηματικό πρόβλημα που καλείται η επιχείρηση να λύσει είναι ένα πρόβλημα βελτιστοποίησης γραμμικής συνάρτησης με γραμμικούς περιορισμούς. 5

6 Παράδειγμα βραχυπρόθεσμου ορίζοντα Για να καταλάβουμε καλύτερα πως γίνεται η μοντελοποίηση ενός προβλήματος cash-flow matching θα δούμε πρώτα ένα απλό παράδειγμα βραχυπρόθεσμης χρηματοδότησης. Έστω ότι μία επιχείρηση αντιμετωπίζει τις παρακάτω καθαρές (εκτιμώμενες) χρηματοροές σε χιλιάδες ευρώ στους επόμενους έξι μήνες: Μήνας Ιαν Φεβ Μαρτ Απρ Μαϊ Ιουν Καθαρή Χρηματοροή Η επιχείρηση έχει τις παρακάτω πηγές βραχυπρόθεσμης χρηματοδότησης: 1) Μπορεί να δανειστεί για ένα μήνα μέχρι και 100χιλ ευρώ με 1%. 2) Σε κάθε ένα από τους τρεις πρώτους μήνες μπορεί να εκδώσει ένα γραμμάτιο 90 ημερών με συνολικό επιτόκιο 2%. 3) Αν έχει πλεόνασμα κεφαλαίου μπορεί να επενδύσει μηνιαίως με επιτόκιο 0,3%. Πώς θα επιλέξει την χρηματοδότηση; Ποιο είναι το κριτήριο; 6

7 Μοντελοποίηση Πρόκειται για ένα απλό πρόβλημα μοντελοποίησης. Επειδή τόσο το κριτήριο μεγιστοποίησης όσο και οι περιορισμοί είναι γραμμικές συναρτήσεις, το πρόβλημα αυτό ονομάζεται: πρόβλημα γραμμικού προγραμματισμού (linear programming). Η μοντελοποίηση γίνεται σε τρία βήματα: Εντοπισμός των μεταβλητών ελέγχου (control or decision variables) Ποια είναι η συνάρτηση που θα πρέπει να βελτιστοποιήσουμε (αντικειμενική συνάρτηση, objective variable). Ποιοι είναι οι ενδογενείς περιορισμοί στο πρόβλημα (constrains). Έστω x i το ποσό που δανείζεται η επιχείρηση στην αρχή του μήνα i. Έστω y i το ποσό της έκδοσης γραμματίου στην αρχή του μήνα i. Έστω z i το ποσό που επενδύει η επιχείρηση στην αρχή του μήνα i (δηλαδή το πλεόνασμα κεφαλαίου). 7

8 Μοντελοποίηση Ο περιορισμός της μη αρνητικότητας: x, y, z 0 i 1,..., 5 Επίσης λόγω του περιορισμού στον βραχυπρόθεσμο δανεισμό θα πρέπει να έχουμε τις ανισότητες: Στον πρώτο μήνα ο δανεισμός μαζί με την έκδοση θα πρέπει να καλύπτουν τουλάχιστον την υποχρέωση των 150χιλ. ευρώ: Στον δεύτερο μήνα ο περιορισμός γίνεται: Ομοίως, για τον τρίτο μήνα έχουμε ότι: i i x i i 100 i 1,..., 5 x 1 y1 z1 150 x 2 y2 1, 003z1 101, x1 z2 100 x 3 y3 1, 003z2 101, x2 z

9 Μοντελοποίηση Στον τέταρτο μήνα δεν μπορεί να εκδοθούν επιπλέον γραμμάτια, άρα y 4 = y 5 = 0. Από τον τέταρτο μήνα θα αρχίσει και η πληρωμή των γραμματίων: Τέλος, θα έχουμε: x 4 1, 003z3 101, x3 102, y1 z4 Ποιος θα είναι ο τελικός πλούτος της επιχείρησης μετά από 6 μήνες; Αυτό ακριβώς είναι και το κριτήριο που μπορεί να βάλει η επιχείρηση για να βρει το καλύτερο τρόπο για να ταιριάξει τις χρηματοροές: κάτω από όλους τους περιορισμούς που αναφέραμε. 200 x 5 1, 003z4 101, x4 102, y3 z5 50 V 1,01x 1,02y3 1,003z5 5 max{ 1,01x 1,02y3 1,003z } 300 Ακριβώς επειδή τόσο το κριτήριο μεγιστοποίησης όσο και οι περιορισμοί είναι γραμμικές συναρτήσεις των μεταβλητών απόφασης, το πρόβλημα ονομάζεται: πρόβλημα γραμμικού προγραμματισμού (linear programming). 9

10 Λύση προβλήματος Τα προβλήματα γραμμικού προγραμματισμού λύνονται με την μέθοδο simplex. Η μέθοδος αυτή (που είναι χρονοβόρα όταν γίνεται χωρίς υπολογιστή) δίνει την βέλτιστη μοναδική λύση μετά από δοκιμές των πιθανών λύσεων του προβλήματος. Με την βοήθεια ενός λογισμικού (πχ του solver στο πρόγραμμα της Microsoft Excel) μπορούμε εύκολα να πάρουμε την μοναδική βέλτιστη λύση. Στο συγκεκριμένο πρόβλημα η λύση είναι x 2 =50,98 y 1 =150 y 2 =49,01 y 3 =203,43 z 3 =351,94 Ενώ η μέγιστη τιμή x i = 0, για κάθε i 2 και z i = 0, για κάθε i 3 V= 92,49. 10

11 Υποθέσεις του μοντέλου Για να μπορέσουμε να δουλέψουμε με αυτό το γραμμικό υπόδειγμα έχουμε (σιωπηρά) υποθέσει τα εξής: Υπάρχει αναλογικότητα στα μεγέθη που εξετάζονται/ αναφέρονται/ αναζητούνται. Δεν υπάρχει αλληλεξάρτηση ανάμεσα στις μεταβλητές ελέγχου πέρα από αυτές που αναφέρονται στους περιορισμούς. Μπορούν οι μεταβλητές να πάρουμε δεκαδικές τιμές. Υπάρχει βεβαιότητα ως προς τις πληρωμές των επενδύσεων, αλλά και ως προς τις παραμέτρους που αναφέρονται. 11

12 Ανάλυση ευαισθησίας Για να μπορέσει να γίνει η καλύτερη δυνατή ανάλυση στο πρόβλημα θα πρέπει να εξετάσουμε και την ευαισθησία που έχει τόσο η λύση όσο και η βέλτιστη τιμή του προβλήματος όταν αλλάξουν κάποιες από τις παραμέτρους του προβλήματος. Η ανάλυση ευαισθησίας (sensitivity analysis ή what if analysis) μελετά τις αλλαγές που μπορούν να γίνουν στις παραμέτρους του προβλήματος έτσι ώστε η λύση να παραμείνει η ίδια. Αν τα διαστήματα των επιτρεπτών αλλαγών είναι μικρά, τότε η στρατηγική θεωρείται εύθραυστη. Σε περιπτώσεις όπου οι χρηματοροές που αναφέρονται στο πρόβλημα είναι εκτιμημένες (αβέβαιες), τότε θα πρέπει τα εύρη των αλλαγών να είναι μέσα στο διάστημα εμπιστοσύνης των εν λόγω εκτιμήσεων. Για παράδειγμα, η επιλογή του χαρτοφυλακίου θα παραμείνει η ίδια ακόμα και η γραμμή μηνιαίου δανεισμού ήταν 50,98 χιλιάδες. 12

13 Homework #3 1) Έστω το εξής βραχυπρόθεσμο πρόγραμμα καθαρών χρηματοροών σε χιλ ευρώ: 1 ος μήνας 2 ος μήνας 3 ος μήνας 4 ος μήνας 5 ος μήνας Η επιχείρηση έχει τις παρακάτω πηγές βραχυπρόθεσμης χρηματοδότησης: i. Μπορεί να δανειστεί για ένα μήνα μέχρι και 200χιλ ευρώ με 2%. ii. Σε κάθε ένα από τους τρεις πρώτους μήνες μπορεί να εκδώσει ένα γραμμάτιο 60 ημερών με συνολικό επιτόκιο 3%. iii. Αν έχει πλεόνασμα κεφαλαίου μπορεί να επενδύσει μηνιαίως με επιτόκιο 1%. a) Μοντελοποιήστε το πρόβλημα εύρεσης του καλύτερου χρηματοδοτικού σχεδιασμού. b) Λύστε το πρόβλημα με την βοήθεια του solver. c) Θα αλλάξει η λύση που βρήκατε στο πρόβλημα εάν το επιτόκιο μηνιαίου δανεισμού ήταν 3%; 2) Επαληθεύστε την λύση που σας δόθηκε στο παράδειγμα της σελίδας

Asset & Liability Management Διάλεξη 2

Asset & Liability Management Διάλεξη 2 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asse & Liabiliy Managemen Διάλεξη 2 Η μέτρηση και η αντιμετώπιση του επιτοκιακού κινδύνου (συνέχεια) Μιχάλης Ανθρωπέλος anhropel@unipi.gr

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΗΤΙΚΟΥ ΚΑΙ ΠΑΘΗΤΙΚΟΥ

ΚΕΦΑΛΑΙΟ 6 ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΗΤΙΚΟΥ ΚΑΙ ΠΑΘΗΤΙΚΟΥ ΚΕΦΑΛΑΙΟ 6 ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΗΤΙΚΟΥ ΚΑΙ ΠΑΘΗΤΙΚΟΥ Εισαγωγή Ο σκοπός της διαχείρισης του ενεργητικού και παθητικού μιας τράπεζας είναι η μεγιστοποίηση του πλούτου των μετόχων. Η επίτευξη αυτού

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 5

Asset & Liability Management Διάλεξη 5 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 5 Συναλλαγματικός Κίνδυνος Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 6

Asset & Liability Management Διάλεξη 6 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 6 A case study Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 1

Asset & Liability Management Διάλεξη 1 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη Η μέτρηση και η αντιμετώπιση του επιτοκιακού κινδύνου Μιχάλης Ανθρωπέλος anthopel@unipi.g

Διαβάστε περισσότερα

Credit Risk Διάλεξη 1

Credit Risk Διάλεξη 1 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Credit Risk Διάλεξη 1 Εκτιμώντας πιθανότητες αθέτησης από τις τιμές αγοράς Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 5: Εφαρμογές Γραμμικού Προγραμματισμού (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Στρατηγική κατανομή περιουσίας δημόσιων Ταμείων: Το σύγχρονο πρότυπο

Στρατηγική κατανομή περιουσίας δημόσιων Ταμείων: Το σύγχρονο πρότυπο Στρατηγική κατανομή περιουσίας δημόσιων Ταμείων: Το σύγχρονο πρότυπο Η Αξιοποίηση της Περιουσίας των Ασφαλιστικών Οργανισμών: Λύση στο Πρόβλημα; Αθήνα, 9 Μαρτίου, 2010 Δρ. Δανιήλ Γιαμουρίδης Επ. Καθηγητής

Διαβάστε περισσότερα

Διαδικασία Διαχείρισης Επενδύσεων (Investment Management Process)

Διαδικασία Διαχείρισης Επενδύσεων (Investment Management Process) Διαδικασία Διαχείρισης Επενδύσεων (Investment Management Process) 1. Καθορισμός Επενδυτικών στόχων (Setting Investment Objectives) Ιδιώτες επενδυτές (Individual Investors) Θεσμικοί επενδυτές (Institutional

Διαβάστε περισσότερα

Credit Risk Διάλεξη 4

Credit Risk Διάλεξη 4 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Credt Rsk Διάλεξη 4 Αντιστάθμιση πιστωτικού κινδύνου Μιχάλης Ανθρωπέλος anthropel@unp.gr http://web.xrh.unp.gr/faculty/anthropelos

Διαβάστε περισσότερα

Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ

Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ εκαετές πρόγραµµα επενδύσεων Οκτώ επενδυτικές ευκαιρίες Έντοκα γραµµάτια δηµοσίου, κοινές µετοχές εταιρειών, οµόλογα οργανισµών κ.ά. H επένδυση

Διαβάστε περισσότερα

Credit Risk Διάλεξη 5

Credit Risk Διάλεξη 5 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Credit Risk Διάλεξη 5 Μια αναφορά στα τιτλοποιημένα αξιόγραφα Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

MANAGEMENT OF FINANCIAL INSTITUTIONS

MANAGEMENT OF FINANCIAL INSTITUTIONS MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: «ΣΥΝΑΛΛΑΓΜΑΤΙΚΟΣ ΚΙΝΔΥΝΟΣ» (Foreign Exchange Risk) Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής Καθηγητής Γκίκας Χαρδούβελης 1 ΠΕΡΙΕΧΟΜΕΝΑ Ορισμός Συναλλαγματικού

Διαβάστε περισσότερα

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Ο χρονικός ορίζοντας απαρτίζεται από διαδοχικές χρονικές περιόδους. Διαμόρφωση ενός χαρτοφυλακίου στο οποίο, καθώς ο χρόνος εξελίσσεται, το διαθέσιμο

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό

Διαβάστε περισσότερα

Συστήματα Χρηματοοικονομικής Διοίκησης

Συστήματα Χρηματοοικονομικής Διοίκησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συστήματα Χρηματοοικονομικής Διοίκησης Ακαδημαϊκό Έτος 2014 2015 Εξάμηνο 8 ο 7 η Διάλεξη: Αξιολόγηση επενδύσεων Ιωάννης

Διαβάστε περισσότερα

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος.

Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Τι είναι Επιχειρησιακή Έρευνα (Operations Research); Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Το σύνολο των τεχνικών (μαθηματικά μοντέλα) οι οποίες δημιουργούν μια ποσοτική

Διαβάστε περισσότερα

Αποτελεσματικό ονομάζεται το χαρτοφυλάκιο το οποίο έχει τη μεγαλύτερη απόδοση για δεδομένο επίπεδο κινδύνου ή το μικρότερο κίνδυνο για δεδομένο επίπεδο απόδοσης. Το σύνολο των αποτελεσματικών χαρτοφυλακίων

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΕΡΩΤΗΣΗ 2 (25 μονάδες) Υποθέστε ότι η Κεντρική Τράπεζα της χώρας Lowland ασκεί πολιτική ανοικτής αγοράς με στόχο την διευκόλυνση της οικονομικής μεγέθυνσης. α) Παρουσιάστε διαγραμματικά την πιθανή επίπτωση

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ 1 ΕΙΣΑΓΩΓΗ 2 ΜΑΘΗΜΑΤΙΚΟΙ ΟΡΙΣΜΟΙ 3 ΜΟΝΤΕΛΟΠΟΙΗΣΗ Δρ. Δημήτρης Βαρσάμης Μάρτιος / 31 Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Μάρτιος 2014 Δρ. Δημήτρης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Α Ξ Ι Ο Λ Ο Γ Η Σ Η Ε Ρ Γ Ω Ν. ΡΟΜΠΟΓΙΑΝΝΑΚΗΣ ΙΩΑΝΝΗΣ, PhD.

ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Α Ξ Ι Ο Λ Ο Γ Η Σ Η Ε Ρ Γ Ω Ν. ΡΟΜΠΟΓΙΑΝΝΑΚΗΣ ΙΩΑΝΝΗΣ, PhD. ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ Α Ξ Ι Ο Λ Ο Γ Η Σ Η Ε Ρ Γ Ω Ν ΡΟΜΠΟΓΙΑΝΝΑΚΗΣ ΙΩΑΝΝΗΣ, PhD. ΑΞΙΟΛΟΓΗΣΗ ΕΡΓΩΝ Κάθε έργο αποτελεί ένα οικονομικό μηχανισμό, ο οποίος αναλώνει, αλλά και παράγει χρήμα. Οι εμπλεκόμενοι στο έργο

Διαβάστε περισσότερα

Επένδυση µέρους των ρευστών διαθεσίµων ύψους

Επένδυση µέρους των ρευστών διαθεσίµων ύψους Case 03: Επιλογή Χαρτοφυλακίου Ι «ΖΗΤΑ A.E.» ΣΕΝΑΡΙΟ (Portfolio Selection) Επένδυση µέρους των ρευστών διαθεσίµων ύψους 600.000 Επένδυση Ετήσιο αναµενόµενο ποσοστό απόδοσης (%) ΤραπεζικήΜετοχήΑ 13,7 ΤραπεζικήΜετοχήΒ

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10

ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10: Επαναληπτική Βελτίωση Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr Ερώτηση 1 Την 30 η Σεπτεμβρίου 2013, τα επιτόκια ενός έτους του γιεν Ιαπωνίας και της λίρας Αγγλίας είναι αντιστοίχως i = 1% και i = 4%, ενώ η ισοτιμία όψεως είναι 150 ανά λίρα (S 30-9-13 = 150/ ). Οι

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Συστήματα Χρηματοοικονομικής Διοίκησης

Συστήματα Χρηματοοικονομικής Διοίκησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συστήματα Χρηματοοικονομικής Διοίκησης Ακαδημαϊκό Έτος 2007 2008 Εξάμηνο 8 ο 7η Διάλεξη: Αξιολόγηση Επενδύσεων Ιωάννης Ψαρράς

Διαβάστε περισσότερα

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ2013-2014 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Τα προβλήματα τους Ακεραίου γραμμικού Προγραμματισμού (Integer Linear Programming) είναι

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100)

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μέρος ΙΙ Τεχνικές Μαθηματικού Προγραμματισμού Μαθηματικά Μοντέλα Εισαγωγή Μεθοδολογία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΤΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΕΠΙΤΟΚΙΩΝ

ΚΕΦΑΛΑΙΟ 11 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΤΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΕΠΙΤΟΚΙΩΝ ΚΕΦΑΛΑΙΟ 11 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΤΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΕΠΙΤΟΚΙΩΝ Εισαγωγή Αν μια τράπεζα θέλει να μειώσει τις διακυμάνσεις των κερδών που προέρχονται από τις μεταβολές των επιτοκίων θα πρέπει να έχει ένα

Διαβάστε περισσότερα

Συστήματα Χρηματοοικονομικής Διοίκησης

Συστήματα Χρηματοοικονομικής Διοίκησης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συστήματα Χρηματοοικονομικής Διοίκησης Ακαδημαϊκό Έτος 2008 2009 Εξάμηνο 8 ο 5η Διάλεξη: Αξιολόγηση Επενδύσεων Ιωάννης Ψαρράς

Διαβάστε περισσότερα

Τι ενδιαφέρει τον ιδιώτη

Τι ενδιαφέρει τον ιδιώτη ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΠΜΣ «Επιστήµη και Τεχνολογία Υδατικών Πόρων» Οικονοµικά του Περιβάλλοντος και των Υδατικών Πόρων Αξιολόγηση επενδύσεων Τι ενδιαφέρει τον ιδιώτη Πόσα χρήµατα θα επενδύσω; Πότε

Διαβάστε περισσότερα

ΑΠΟ ΚΟΙΝΟΥ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΟΥΣΙΑΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΥΠΟΧΡΕΩΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΕΘΟΔΩΝ ΣΤΟΧΑΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΑΠΟ ΚΟΙΝΟΥ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΟΥΣΙΑΚΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΥΠΟΧΡΕΩΣΕΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΕΘΟΔΩΝ ΣΤΟΧΑΣΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Ε Ι Ρ Α Ι Ω Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗ ΚΙΝΔΥΝΟΥ ΑΠΟ ΚΟΙΝΟΥ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΟΥΣΙΑΚΩΝ

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Τρόποι χρήσης των ETFs

Τρόποι χρήσης των ETFs ΔΙΑΠΡΑΓΜΑΤΕΥΣΙΜΑ ΑΜΟΙΒΑΙΑ ΚΕΦΑΛΑΙΑ (Δ.Α.Κ.) (Exchange Traded Funds ETFs) Τρόποι χρήσης των ETFs Χρηματιστήριο Αθηνών A.E. Απρίλιος 2010 Σημαντική Παρατήρηση Το Χρηματιστήριο Αθηνών (ΧΑ) πιστεύει ότι οι

Διαβάστε περισσότερα

Διεθνείς Αγορές Χρήματος και Κεφαλαίου. Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων

Διεθνείς Αγορές Χρήματος και Κεφαλαίου. Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων Διεθνείς Αγορές Χρήματος και Κεφαλαίου Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων 1 Η ομολογία είναι ένα εμπορικό έγγραφο, με το οποίο η εκδότρια εταιρεία αναγνωρίζει (ομολογεί) ότι

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος

Διαβάστε περισσότερα

Συνταξιοδοτικό πρόγραμμα Interamerican Sales Division Group & Corporate Business. Απρίλιος Διεύθυνση Ομαδικών & Corporate Business

Συνταξιοδοτικό πρόγραμμα Interamerican Sales Division Group & Corporate Business. Απρίλιος Διεύθυνση Ομαδικών & Corporate Business Συνταξιοδοτικό πρόγραμμα Interamerican Sales Division Group & Corporate Business Απρίλιος 2016 Διεύθυνση Ομαδικών & Corporate Business Περιεχόμενα Interamerican Profile Παροχές του προγράμματος Επενδύσεις

Διαβάστε περισσότερα

Να απαντήσετε τα παρακάτω θέματα σύμφωνα με τις οδηγίες των εκφωνήσεων. Η διάρκεια της εξέτασης είναι 3 (τρεις) ώρες.

Να απαντήσετε τα παρακάτω θέματα σύμφωνα με τις οδηγίες των εκφωνήσεων. Η διάρκεια της εξέτασης είναι 3 (τρεις) ώρες. Οικονομικό Πανεπιστήμιο Αθηνών ΜΠΣ Χρηματοοικονομικής και Τραπεζικής για Στελέχη Μάθημα: Οικονομική για Στελέχη Επιχειρήσεων Εξέταση Δεκεμβρίου 2007 Ονοματεπώνυμο: Να απαντήσετε τα παρακάτω θέματα σύμφωνα

Διαβάστε περισσότερα

Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Πολυκριτηριακός Γραμμικός Προγραμματισμός Πολλαπλά κριτήρια στη λήψη απόφασης Λήψη Αποφάσεων με Πολλαπλά Κριτήρια Διακριτό σύνολο επιλογών Συνεχές σύνολο επιλογών Πολυκριτηριακή Ανάλυση (ELECTRE, Promethee,

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση

Διαβάστε περισσότερα

Ημερομηνία Ποσό Περιγραφή Επιτόκιο Κάτοχοι εντόκων

Ημερομηνία Ποσό Περιγραφή Επιτόκιο Κάτοχοι εντόκων Πιστωτής Ημερομηνία Ποσό Περιγραφή Επιτόκιο Λήξης Οκτ. 9, 2015 1,400,000,000 Βραχυπρόθεσμα έντοκα γραμμάτια 2.97% ΔΝΤ Οκτ. 13, 2015 450,652,613 Δάνεια από το πρώτο πρόγραμμα διάσωσης για την Οκτ. 16, 2015

Διαβάστε περισσότερα

Ανάλυση Κόστους Κύκλου Ζωής

Ανάλυση Κόστους Κύκλου Ζωής Ανάλυση Κόστους Κύκλου Ζωής ρ Γ. Γιαννακίδης Εισαγωγή Στόχοι και Οφέλη Ανάλυση Κόστους Κύκλου Ζωής Life Cycle Cost Analysis - LCCA Μέθοδος οικονοµικής σύγκρισης εναλλακτικών επενδύσεων που βασίζεται στο

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

CAPM. Το Μοντέλο Αποτίμησης Κεφαλαιουχικών Αγαθών (Capital Asset Pricing Model): ανάλυση ρίσκου και απόδοσης επενδύοντας στις παγκόσμιες χρηματαγορές

CAPM. Το Μοντέλο Αποτίμησης Κεφαλαιουχικών Αγαθών (Capital Asset Pricing Model): ανάλυση ρίσκου και απόδοσης επενδύοντας στις παγκόσμιες χρηματαγορές CAPM Το Μοντέλο Αποτίμησης Κεφαλαιουχικών Αγαθών (Capital Asset Pricing Model): ανάλυση ρίσκου και απόδοσης επενδύοντας στις παγκόσμιες χρηματαγορές 1 Το Capital Asset Pricing Model & Tο Κόστος Κεφαλαίου

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος

ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου. Πιστωτικός Κίνδυνος. Διάλεξη 2: Pricing Defaultable Assets. Μιχάλης Ανθρωπέλος ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πιστωτικός Κίνδυνος Διάλεξη 2: Pricing Defaultable Assets Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos Μιχάλης

Διαβάστε περισσότερα

Fermat, 1638, Newton Euler, Lagrange, 1807

Fermat, 1638, Newton Euler, Lagrange, 1807 Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου

Διαβάστε περισσότερα

Σύγχρονες Μορφές Χρηματοδότησης

Σύγχρονες Μορφές Χρηματοδότησης Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 13: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

Διάλεξη 5- Σημειώσεις

Διάλεξη 5- Σημειώσεις Διάλεξη 5- Σημειώσεις 1 Κοίλες (concave) και κυρτές (convex) συναρτήσεις Σημείωση: Μόνο για συναρτήσεις που είναι συνεχείς σε ένα (κυρτό) διάστημα R και παραγωγίσιμες τουλάχιστον δύο φορές στο εσωτερικό

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ. ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ. ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΑΣΚΗΣΕΙΣ-ΠΡΑΞΕΙΣ Εισαγωγική εισήγηση Νο1 ΒΑΣΙΚΑ ΒΗΜΑΤΑ ΕΡΩΤΗΜΑΤΑ Είναι η επένδυση συμφέρουσα; Ποιός είναι ο πραγματικός χρόνος αποπληρωμής της επένδυσης; Κατά πόσο επηρεάζεται

Διαβάστε περισσότερα

Investment Banking Διάλεξη 2 Αρχές Τραπεζικής Διοικητικής

Investment Banking Διάλεξη 2 Αρχές Τραπεζικής Διοικητικής Πανεπιστήμιο Πειραιώς, Τμήμα Τραπεζικής και Χρηματοοικονομικής Διοικητικής Investment Banking Διάλεξη 2 Αρχές Τραπεζικής Διοικητικής Μιχάλης Ανθρωπέλος anthropel@unipi.gr 1 Βασικά στοιχεία της τραπεζικής

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 6 η. Ανάλυση Κινδύνου και Κοινωνικό Προεξοφλητικό Επιτόκιο

Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 6 η. Ανάλυση Κινδύνου και Κοινωνικό Προεξοφλητικό Επιτόκιο Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 6 η Ανάλυση Κινδύνου και Κοινωνικό Προεξοφλητικό Επιτόκιο Ζητήματα που θα εξεταστούν: Πως ορίζεται η έννοια της αβεβαιότητας και του κινδύνου. Ποια είναι

Διαβάστε περισσότερα

Αποφάσεις Χρηματοδοτήσεων

Αποφάσεις Χρηματοδοτήσεων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ακαδημαϊκό Έτος 2008 2009 Εξάμηνο 8 ο 6η Διάλεξη: Αποφάσεις Χρηματοδοτήσεων Ιωάννης Ψαρράς Καθηγητής Χρηματοοικονομικές

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

MANAGEMENT OF FINANCIAL INSTITUTIONS

MANAGEMENT OF FINANCIAL INSTITUTIONS MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΟΥ: Εισαγωγή Πανεπιστήμιο Πειραιώς Καθηγητής Γκ. Χαρδούβελης Τμήμα Χρηματοοικονομικής ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΟΥ: ΠΕΡΙΕΧΟΜΕΝΑ Κατηγορίες κινδύνων των

Διαβάστε περισσότερα

ΔΙΕΘΝΗ ΤΡΑΠΕΖΙΚΑ ΘΕΜΑΤΑ

ΔΙΕΘΝΗ ΤΡΑΠΕΖΙΚΑ ΘΕΜΑΤΑ Ενότητα 6: Διαχείριση Διεθνούς Δραστηριότητας Τραπεζών Μιχαλόπουλος Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 7: Μετοχικοί τίτλοι. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 7: Μετοχικοί τίτλοι. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 7: Μετοχικοί τίτλοι Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Ανατοκισμός. -Χρόνος (συμβολισμός n Ακέραιες περιόδους, μ/ρ κλάσμα χρονικών περιόδων)

Ανατοκισμός. -Χρόνος (συμβολισμός n Ακέραιες περιόδους, μ/ρ κλάσμα χρονικών περιόδων) Ανατοκισμός Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχικό κεφάλαιο ή παρούσα αξία (συμβολισμός Κ ο ή PV) -Τελικό κεφάλαιο ή μελλοντική αξία (συμβολισμός Κ n ή FV) -Επιτόκιο (συμβολισμός

Διαβάστε περισσότερα

(sensitivity analysis, postoptimality analysis).

(sensitivity analysis, postoptimality analysis). Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 7 Ανάλυση ευαισθησίας Παραμετρική ανάλυση Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 11 Φεβρουαρίου 2016 Α.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 13: ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΟΙ ΘΕΣΜΟΙ ΚΑΙ ΠΡΟΪΟΝΤΑ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 1: Κεφαλαιοποίηση Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Προεξοφλητικό επιτόκιο Η χρονική αξία του χρήματος είναι το κόστος ευκαιρίας του κεφαλαίου της επιχείρησης. Το προεξοφλητικό επιτόκιο ή επιτόκιο αναγωγής σε παρούσα

Διαβάστε περισσότερα

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης Εφαρμογές Επιχειρησιακής Έρευνας Δρ. Γεώργιος Κ.Δ. Σαχαρίδης 1 Outline Introduction to mathematical programming Introduction to scheduling Flow shop optimization Scheduling of crude oil Decomposition techniques

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 1ης σειράς ασκήσεων Προθεσμία παράδοσης: 22 Απριλίου 2015 Πρόβλημα 1.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ

ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Πανεπιστημίου Αθηνών 1 Ανάλυση Επενδύσεων και Διαχείριση

Διαβάστε περισσότερα

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους Τμήμα Διεθνούς Εμπορίου Οικονομικά Μαθηματικά Καλογηράτου Ζ. Μονοβασίλης Θ. ΑΝΑΤΟΚΙΣΜΟΣ 4.. Εισαγωγή Στον σύνθετο τόκο (ή ανατοκισμό), στο τέλος κάθε περιόδου, ο τόκος και το κεφάλαιο αθροίζονται και το

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31 Άσκηση η 2 η Εργασία ΔEO3 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ3 Η επιχείρηση Α εκδίδει σήμερα ομολογία ονομαστικής αξίας.000 με ετήσιο επιτόκιο έκδοσης 7%. Το

Διαβάστε περισσότερα

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε09 Πολυκριτήρια

Διαβάστε περισσότερα

Απαντήστε όλες τις ερωτήσεις. ιάρκεια εξετάσεων: Μια ώρα και 30 λεπτά Ονοµατεπώνυµο φοιτητού/τριας;... Αρ. Μητρ.:...

Απαντήστε όλες τις ερωτήσεις. ιάρκεια εξετάσεων: Μια ώρα και 30 λεπτά Ονοµατεπώνυµο φοιτητού/τριας;... Αρ. Μητρ.:... ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: ΙΟΥΝΙΟΣ 2004 ΜΑΘΗΜΑ: ΤΡΑΠΕΖΙΚΗ ΙΟΙΚΗΤΙΚΗ ΑΝ. ΚΑΘΗΓΗΤΗΣ: Α.ΝΟΥΛΑΣ Απαντήστε όλες τις ερωτήσεις. ιάρκεια εξετάσεων: Μια

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΥΠΟΔΕΙΓΜΑ ΤΗΣ ΔΙΑΡΚΕΙΑΣ (DURATION MODEL)

ΚΕΦΑΛΑΙΟ 8 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΥΠΟΔΕΙΓΜΑ ΤΗΣ ΔΙΑΡΚΕΙΑΣ (DURATION MODEL) ΚΕΦΑΛΑΙΟ 8 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΥΠΟΔΕΙΓΜΑ ΤΗΣ ΔΙΑΡΚΕΙΑΣ (DURATION MODL) Ορισμός και μέτρηση της διάρκειας H διάρκεια ενός χρηματοοικονομικού προϊόντος είναι ο μέσος σταθμικός χρόνος που απαιτείται

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Περιεχόμενα 9. Περιεχόμενα

Περιεχόμενα 9. Περιεχόμενα Περιεχόμενα 9 Περιεχόμενα Εισαγωγή... 15 1. Οικονομικές και Χρηματοπιστωτικές Κρίσεις... 21 2. Χρηματοπιστωτικό Σύστημα... 31 2.1. Ο Ρόλος και οι λειτουργίες των κεντρικών τραπεζών... 31 2.2. Το Ελληνικό

Διαβάστε περισσότερα

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ.

Α) δηλώνουν τις ποσότητες που, ανάλογα με το πρόβλημα, θα παραχθούν, επενδυθούν, αγοραστούν, κατασκευαστούν κ.λπ. 1. 0 γραμμικός προγραμματισμός μπορεί να εφαρμοστεί στη διαχείριση αγροτικής παραγωγής για τη βέλτιστη κατανομή πόρων όπως., με τρόπο που να οδηγεί στη μεγιστοποίηση των κερδών. Α) διαθέσιμης προς καλλιέργειας

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής

Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής Αλέξανδρος Α. Ζυµπίδης Λέκτορας Οικονοµικού Πανεπιστηµίου Αθηνών Αναλογιστής τ. Πρόεδρος της Εθνικής Αναλογιστικής Αρχής Αθήνα, Φεβρουάριος 2009 ii Π Ε Ρ Ι Ε Χ Ο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εισαγωγή... 17. Κεφάλαιο 1 Εισαγωγή... 23. Κεφάλαιο 2 Εισαγωγή στον γραμμικό προγραμματισμό... 63

ΠΕΡΙΕΧΟΜΕΝΑ. Εισαγωγή... 17. Κεφάλαιο 1 Εισαγωγή... 23. Κεφάλαιο 2 Εισαγωγή στον γραμμικό προγραμματισμό... 63 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή..................................................................... 17 Κεφάλαιο 1 Εισαγωγή..................................................................... 23 1.1 Επίλυση προβλημάτων

Διαβάστε περισσότερα

MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: ΣΤΑΘΜΙΣΜΕΝΗ ΔΙΑΡΚΕΙΑ (DURATION) Τμήμα Χρηματοοικονομικής

MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: ΣΤΑΘΜΙΣΜΕΝΗ ΔΙΑΡΚΕΙΑ (DURATION) Τμήμα Χρηματοοικονομικής MNGEMENT OF FINNI INSTITUTIONS ΔΙΑΛΕΞΗ: ΣΤΑΘΜΙΣΜΕΝΗ ΔΙΑΡΚΕΙΑ (URTION) Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής Γκ. Χαρδούβελης ΠΕΡΙΕΧΟΜΕΝΑ Παράδειγμα Σταθμισμένης Διάρκειας (uaion) Σταθμισμένη Διάρκεια

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή. 1.1 Επιχειρησιακή Ερευνα

Κεφάλαιο 1. Εισαγωγή. 1.1 Επιχειρησιακή Ερευνα Κεφάλαιο 1 Εισαγωγή 1.1 Επιχειρησιακή Ερευνα Η Βελτιστοποίηση είναι η διαδικασία απόκτησης του ϐέλτιστου αποτελέσματος κάτω από δεδομένες καταστάσεις. Στο σχεδιασμό, στην εφαρμογή και στη συντήρηση οποιουδήποτε

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιτρέπεται µια σελίδα Α4 σηµειώσεων. Γράψτε ΜΟΝΟ τέσσερα θέµατα (αν υπάρχει 5 ο ΕΝ λαµβάνεται υπόψη) άριστα 3,5 θέµατα. Κάθε θέµα έχει ίδια αξία,

Διαβάστε περισσότερα

Μέθοδοι εκτίμησης των κεφαλαιουχικών αγαθών της γεωργικής επιχείρησης (1)

Μέθοδοι εκτίμησης των κεφαλαιουχικών αγαθών της γεωργικής επιχείρησης (1) Μέθοδοι εκτίμησης των κεφαλαιουχικών αγαθών της γεωργικής επιχείρησης (1) 1. Εκτίμηση με βάση την τρέχουσα τιμή αγοράς ή πώλησης του αγαθού (γεωργικά προϊόντα και εφόδια, γεωργικά εδάφη, ζώα, δενδρύλλια,

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΣΤΟΧΑΣΤΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΔΡΟΛΟΓΙΚΩΝ & ΕΝΕΡΓΕΙΑΚΩΝ ΜΕΓΕΘΩΝ

ΠΛΑΙΣΙΟ ΣΤΟΧΑΣΤΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΔΡΟΛΟΓΙΚΩΝ & ΕΝΕΡΓΕΙΑΚΩΝ ΜΕΓΕΘΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ ΕΠΙΣΤΗΜΗ & ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΛΑΙΣΙΟ ΣΤΟΧΑΣΤΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΔΡΟΛΟΓΙΚΩΝ & ΕΝΕΡΓΕΙΑΚΩΝ ΜΕΓΕΘΩΝ ΕΚΠΟΝΗΣΗ: ΙΩΑΝΝΑ

Διαβάστε περισσότερα