{[ 140,150 ),[ 160,170 ),...,[ 200, 210]

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "{[ 140,150 ),[ 160,170 ),...,[ 200, 210]"

Transcript

1 Σημειώσεις στη Πληροφορική ΙΙΙ 1. Πείραμα τύχης και πιθαότητα Έα φυσικό φαιόμεο με χαρακτηριστικά που δε μπορούμε α τα προβλέψουμε, οομάζεται στοχαστικό ή τυχαίο. Για παράδειγμα το ύψος τω κυμάτω στη θάλασσα, ότα τα παρατηρούμε από κάποιο σταθερό σημείο, όπως επίσης και η περιοχή εκδήλωσης εός κεραυού. Ομοίως έα πείραμα του οποίου δε μπορούμε α προβλέψουμε το αποτέλεσμα οομάζεται στοχαστικό ή πείραμα τύχης. Τέτοιο πείραμα μπορεί α είαι η ρήψη εός κύβου ή η κλήρωση του λόττο. Δειγματικός χώρος εός πειράματος τύχης οομάζεται το σύολο όλω τω δυατώ αποτελεσμάτω του και συμβολίζεται συήθως με Ω. Κάθε στοιχείο του Ω οομάζεται απλό εδεχόμεο και κάθε υποσύολο του Ω, εδεχόμεο. Παράδειγμα 1. Στο πείραμα τύχης «ρήψη δύο ομισμάτω», ο δειγματικός χώρος αποτελείται από 4 απλά εδεχόμεα, Ω= { ΚΚ, ΚΓ, ΓΚ, ΓΓ } και το υποσύολο { ΚΚ, ΚΓ, ΓΚ } του Ω είαι το εδεχόμεο «α φέρω μια τουλάχιστο κεφαλή». Παράδειγμα 2. Έστω ότι μετράμε το ύψος εός τυχαία επιλεγμέου άδρα σπουδαστή του τμήματος Διατροφής και Διαιτολογίας του ΤΕΙ Κρήτης. Επειδή το αποτέλεσμα μπορεί α είαι οποιοσδήποτε αριθμός από 120(cm) έως 230(cm), μπορούμε α θεωρήσουμε ότι {[ 140,150 ),[ 160,170 ),...,[ 200, 210] } Ω=, που περιέχει 7 απλά εδεχόμεα. Εδώ στη πραγματικότητα το ύψος μπορεί α πάρει οποιαδήποτε τιμή στο διάστημα [ 140,210 ], όμως συήθως στη πράξη, τέτοιους δειγματικούς χώρους οι στατιστικολόγοι τους χωρίζου σε κλάσεις. Ω= 1, 2,..., ο δειγματικός Έστω τώρα ότι εκτελούμε έα πείραμα τύχης και { ω ω ω } χώρος του. Α σε κάθε απλό εδεχόμεο { ω } του Ω, ατιστοιχίσουμε έα μη αρητικό αριθμό p έτσι ώστε α ισχύει p1+ p p = 1, τότε έχουμε ορίσει μία πιθαότητα P για κάθε εδεχόμεο A του πειράματος τύχης ως εξής P( A) = p. { ω A}

2 Το παραπάω άθροισμα σημαίει ότι αθροίζω τα p για όλους τους δείκτες τω στοιχείω ω που περιέχοται στο A. Α το A είαι το κεό σύολο, δηλαδή δε περιέχει καέα στοιχείο, τότε P( A ) = 0. Παράδειγμα 3. Στο πείραμα τύχης «ρήψη δύο ομισμάτω», όλα τα απλά εδεχόμεα θεωρούται ισοπίθαα μεταξύ τους, ω ΚΚ ΚΓ ΓΚ ΓΓ p 1/ 4 1/ 4 1/ 4 1/ 4 και για τη πιθαότητα του εδεχομέου A= { ΚΚ, ΚΓ, ΓΚ } θα έχουμε P( A ) = = 4 Επιλέξαμε τη παραπάω «μοτελοποίηση» γιατί δε υπάρχει καέας λόγος μια όψη τω ομισμάτω α είαι «πιθαότερη» στη εμφάιση της από τη άλλη. Παράδειγμα 4. Στο παράδειγμα 2 δε γωρίζουμε πως καταέμοται τα ύψη τω σπουδαστώ στις κλάσεις του δειγματικού χώρου και για το λόγο αυτό δε μπορούμε α προχωρήσουμε στη μοτελοποίηση, δηλαδή α ατιστοιχήσουμε μια πιθαότητα p σε κάθε κλάση. Μπορούμε όμως α εκτιμήσουμε αυτή τη πιθαότητα μετρώτας το ύψος σε έα τυχαίο δείγμα σπουδαστώ, ως εξής: Α 175 είαι η συχότητα της κλάσης [ 170,180 ) στο δείγμα, τότε 175 p 175 =. Όπου p 175 είαι η πιθαότητα του ατιστοιχούμε και ομοίως για όλες τις υπόλοιπες κλάσεις. 2. Τυχαία μεταβλητή Τυχαία μεταβλητή είαι μια απεικόιση τω στοιχείω του δειγματικού χώρου Ω του πειράματος τύχης στο σύολο τω (πραγματικώ) αριθμώ και συμβολίζεται συήθως με,y ή Z. Παράδειγμα 5. Στο πείραμα τύχης «ρήψη δύο ομισμάτω» μπορούμε α ορίσουμε μία τυχαία μεταβλητή ως εξής: ω ΚΚ ΚΓ ΓΚ ΓΓ ( ω)

3 Επειδή δε υπάρχει λόγος, για δύο «δίκαια» ομίσματα, α θεωρήσουμε κάποιο αποτέλεσμα του πειράματος πιθαότερο τω υπολοίπω, πραγματοποιούμε τη εξής «μοτελοποίηση»: 1 P( = 0) = P( = 1) = P( = 2) = P( = 3) =. 4 Α επααλάβουμε το πείραμα για έα αρκετά μεγάλο πλήθος δοκιμώ και καταγράψουμε τα αποτελέσματα τους, τότε θα παρατηρήσουμε ότι v και το ραβδόγραμμα συχοτήτω θα έχει τη παρακάτω μορφή =0 =1 =2 =3 όπου όλες οι ράβδοι έχου περίπου το ίδιο ύψος. Σε αυτή τη περίπτωση λέμε ότι η τυχαία μεταβλητή ακολουθεί τη ομοιόμορφη καταομή. Παράδειγμα 6. Το ύψος τω σπουδαστώ του παραδείγματος 4 μπορεί α πάρει οποιαδήποτε τιμή στο διάστημα [ 140,210 ] και συεπώς μπορούμε α ορίσουμε μία τυχαία μεταβλητή η οποία «μετράει» το ύψος τω σπουδαστώ και παίρει τιμές στο ίδιο διάστημα. Επειδή όμως έχουμε χωρίσει το δειγματικό χώρο σε 7 κλάσεις θα ορίσουμε τη ως εξής: ω [140,150) [150,160) [160,170) [170,180) [180,190) [190, 200) [200, 210] ( ω)

4 Α μετρήσουμε το ύψος σε έα δείγμα σπουδαστώ αρκετά μεγάλου μεγέθους και καταγράψουμε τα αποτελέσματα, θα προκύψει έα ραβδόγραμμα συχοτήτω της μορφής =145 =155 =165 =175 =185 =195 =205. Σε αυτό το ραβδόγραμμα φαίεται ότι υπάρχει μία «μεσαία» κλάση [ 170,180 ) με τη μεγαλύτερη συχότητα 4, που είαι η πιθαότερη κλάση και μέσα σε αυτή βρίσκεται η μέση τιμή της. Α σχεδιάσουμε τη καμπύλη η οποία «προσεγγίζει» το παραπάω ραβδόγραμμα θα μοιάζει με μία καμπάα,

5 Σε αυτή τη περίπτωση λέμε ότι η τυχαία μεταβλητή ακολουθεί τη καοική καταομή. Η καοική είαι η σηματικότερη καταομή στη στατιστική και τη ακολουθού σχεδό όλα τα φυσικά μεγέθη. 3. Η καοική καταομή. Έστω μια τυχαία μεταβλητή που ακολουθεί τη καοική καταομή. Τότε η καμπύλη που περάει από τις κορυφές του ιστογράμματος θα μοιάζει με μία «καμπάα», της οποίας η θέση και το σχήμα καθορίζεται από τη μέση τιμή µ και τη τυπική απόκλιση σ της. Η κορυφή της βρίσκεται σε σημείο με τετμημέη µ και έχει άξοα συμμετρίας τη κατακόρυφη ευθεία που διέρχεται από το µ. Η τυπική απόκλιση σ της, καθορίζει το σχήμα της καμπάας: όσο μεγαλύτερη είαι η τιμή της, τόσο πιο «πλατιά» και «κοτή» είαι και όσο μειώεται η καμπάα γίεται πιο «στεή» και «ψιλή». Συεπώς η καοική καταομή καθορίζεται από δύο παραμέτρους, τη μέση τιμή µ και τη τυπική απόκλιση σ. Η πιθαότητα P( α < < β ) α «πετύχουμε» μία παρατήρηση στο διάστημα ( α, β ) είαι ίση με το σκιασμέο εμβαδό,. Αυτή η πιθαότητα α πολλαπλασιαστεί με 100 εκφράζει το % ποσοστό τω παρατηρήσεω της που βρίσκοται στο διάστημα ( α, β ). Θα δείτε σε αρκετά βιβλία στατιστικής ότι

6 στα διαστήματα ( µ σ, µ + σ ), ( µ 2 σ, µ + 2 σ ) και ( µ 3 σ, µ + 3 σ ) βρίσκεται το 68, 26%, το 95,44% και το 99,72% τω παρατηρήσεω ατιστοίχως. Μπορούμε α ορίσουμε μια έα τυχαία μεταβλητή Z η οποία ατιστοιχεί κάθε τιμή της στη «τυποποιημέη» της τιμή, ως εξής µ Z =. σ Όπως μπορούμε α διαπιστώσουμε, η Z ακολουθεί και αυτή τη καοική καταομή με μέση τιμή 0 και τυπική απόκλιση 1. Σε πολλά βιβλία ααφέρεται ως τυποποιημέη καοική καταομή, Η χρησιμότητα της είαι ότι μπορούμε σε πίακες α βρούμε, με ακρίβεια 2 δεκαδικώ ψηφίω του z, τα ποσοστά τω παρατηρήσεω που βρίσκοται στο διάστημα (0, z ). Παράδειγμα 7. Ας υποθέσουμε ότι η μέση τιμή της είαι µ= 10, η τυπική της απόκλιση είαι σ = 3 και ότι θέλουμε α υπολογίσουμε το ποσοστό τω παρατηρήσεω που έχου τιμή μεγαλύτερη του 15. Αρχικά υπολογίζουμε τη z τιμή του 15 η οποία είαι, z = = 2 3 και από το πίακα τω z τιμώ βρίσκουμε ότι το ποσοστό τω παρατηρήσεω στο διάστημα (0, 2) είαι 47,72%. Συεπώς το ποσοστό τω παρατηρήσεω, που έχου τιμή μεγαλύτερη του 2 είαι (50 47, 72)% = 2, 28%. Στη πράξη καμία τυχαία μεταβλητή δε ακολουθεί ακριβώς τη θεωρητική μορφή της καοικής καταομής. Μπορούμε όμως, με τη βοήθεια κάποιω αλγορίθμω του SPSS, α ελέγξουμε πόσο κοτά βρίσκεται η καταομή μιας τυχαίας μεταβλητής στη καοική και α αποφασίσουμε α θα τη θεωρήσουμε καοική ή όχι. Δύο τέτοιοι αλγόριθμοι είαι τα τεστ Kolmogorov-Smrnov και Shapro-Wlk. Ότα το μέγεθος του δείγματος είαι < 20 χρησιμοποιούμε το τεστ Shapro-Wlk εώ σε μεγαλύτερα δείγματα το Kolmogorov-Smrnov. 4. Το κετρικό οριακό θεώρημα Έστω μια τυχαία μεταβλητή, η οποία «μετράει» κάποια παράμετρο εός πληθυσμού, ο οποίος έχει μέση τιμή µ και τυπική απόκλιση σ. Το κετρικό οριακό θεώρημα μας λέει ότι η καταομή τω μέσω τιμώ της, για έα αρκετά μεγάλο πλήθος δειγμάτω, προσεγγίζει τη καοική καταομή.

7 Έστω ότι λαμβάουμε δείγματα με επαάθεση, δηλαδή κάθε δείγμα που λαμβάουμε το επαατοποθετούμε πίσω στο πληθυσμό και στη συέχεια λαμβάουμε το επόμεο. Τότε σύμφωα με το κετρικό οριακό θεώρημα, η μέση τιμή τω μέσω τιμώ τω δειγμάτω µ, θα είαι ίση με τη μέση τιμή του πληθυσμού: µ = µ. Επίσης το κετρικό οριακό θεώρημα μας λέει ότι α το μέγεθος τω δειγμάτω είαι, τότε η τυπική απόκλιση σ στη καταομή τω μέσω τιμώ θα είαι, σ σ =. Σύμφωα με τα παραπάω, στο διάστημα ( µ σ, µ + σ ) θα βρίσκεται το 68, 26%, εώ στα διαστήματα ( µ 2 σ, µ + 2 σ ), ( µ 3 σ, µ + 3 σ ) θα βρίσκεται το 95,44% και 99,72% τω μέσω τιμώ ατιστοίχως. Η τυπική απόκλιση σ δείχει το σφάλμα κατά τη προσέγγιση της μέσης τιμής µ του πληθυσμού, από τη μέση τιμή εός δείγματος και συμβολίζεται με S. E. M. Επειδή συήθως δε γωρίζουμε τη τυπική απόκλιση σ του πληθυσμού, τη προσεγγίζουμε με τη τυπική απόκλιση S. D. S του δείγματος, οπότε θα ισχύει ότι: S. D. S S. E. M =. Παράδειγμα 8. Έστω ότι θέλουμε α εκτιμήσουμε που βρίσκεται η μέση τιμή µ του ύψους του πληθυσμού τω εηλίκω αδρώ, λαμβάοτας έα δείγμα μεγέθους 100, με μέση τιμή 175 (εκ) και τυπική απόκλιση 10 (εκ). Τότε σύμφωα με τα παραπάω θα έχουμε S. E. M S. D. S = 10 = 100 =1 και συεπώς θα έχουμε. με πιθαότητα 68, 26% η µ βρίσκεται στο διάστημα (174,176). με πιθαότητα 95,44% η µ βρίσκεται στο διάστημα (173,177). με πιθαότητα 99,72% η µ βρίσκεται στο διάστημα (172,178). Οι παραπάω πιθαότητες οομάζοται επίπεδα εμπιστοσύης στη εκτίμηση της μέσης τιμής. Στη περίπτωση η πιθαότητα α κάουμε λάθος εκτίμηση είαι 31,74% εώ στις

8 περιπτώσεις και είαι 4,56% και 0, 28% ατιστοίχως. Οι στατιστικολόγοι έχου ορίσει ως ελάχιστο αποδεκτό επίπεδο εμπιστοσύης, στη εκτίμηση της μέσης τιμής, το 95%. Συεπώς η μέγιστη αποδεκτή πιθαότητα λάθους θεωρείται το 5%. Το διάστημα εκείο στο οποίο έχουμε 5% πιθαότητα λάθους μπορούμε α το βρούμε με τη βοήθεια του πίακα τω z τιμώ και είαι το ( µ 1,96 S. E., µ + 1,96 S. E. ). Στο παράδειγμα μας είαι το (173,04, 176,96), γιατί S. E. M = 1. M M

{[ 140,150 ),[ 160,170 ),...,[ 200, 210]

{[ 140,150 ),[ 160,170 ),...,[ 200, 210] Σημειώσεις στις Πιθαότητες Πείραμα τύχης και πιθαότητα Έα φυσικό φαιόμεο με χαρακτηριστικά που δε μπορούμε α τα προβλέψουμε, οομάζεται στοχαστικό ή τυχαίο Για παράδειγμα το ύψος τω κυμάτω στη θάλασσα,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ ο. Τι οοµάζεται συάρτηση ; Είαι µια διαδικασία µε τη οποία κάθε στοιχείο εός συόλου Α ατιστοιχίζεται σε έα ακριβώς στοιχείο κάποιου άλλου συόλου Β.. Ποιες είαι οι κυριότερες γραφικές παραστάσεις

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 2013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 2013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο ) ΘΕΜΑ Α 1. α) Απόλυτη συχότητα οομάζεται ο φυσικός αριθμός που μας δείχει πόσες φορές εμφαίζεται η τιμή

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Του Κώστα Βακαλόπουλου ΑΣΚΗΣΗ (ΣΤΑΤΙΣΤΙΚΗ) Το εύρος (R) τω παρατηρούμεω υψώ τω 00 πελατώ εός γυμαστηρίου είαι cm. A) Να ομαδοποιήσετε τα δεδομέα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α.. Να αποδείξετε ότι η παράγωγος της συάρτησης f ( ), για κάθε R. Α.. Α.. (

Διαβάστε περισσότερα

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi

είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός λέγεται έα σύολο που θέλουμε α εξετάσουμε τα στοιχεία του ως προς έα ή περισσότερα χαρακτηριστικά τους Μεταβλητές λέγοται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε

Διαβάστε περισσότερα

(c f (x)) = c f (x), για κάθε x R

(c f (x)) = c f (x), για κάθε x R ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Α η συάρτηση f είαι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, 3 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Α οι συαρτήσεις f, g είαι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΓΙΑ ΜΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΓΙΑ ΜΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Περιοδικό ΕΥΚΕΙΔΗ Β Ε.Μ.Ε. (τεύχος 7) ΕΡΩΤΗΕΙ ΚΑΤΑΝΟΗΗ ΓΙΑ ΜΙΑ ΕΠΑΝΑΗΨΗ ΤΗΝ ΥΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ Α) Να χαρακτηρίσετε τις παρακάτω προτάσεις με () α είαι σωστές και με () α είαι λάθος, αιτιολογώτας

Διαβάστε περισσότερα

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 1. Περιγραφική Στατιστική

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 1. Περιγραφική Στατιστική Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 860). Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης

Διαβάστε περισσότερα

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας ΘΕΜΑ Α. Παελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γεικης Παιδειας Θέµατα-Εδεικτικές Λύσεις Νικόλαος. Κατσίπης 17 Μαϊου 2010 Α1. Εστω t 1, t 2,..., t οι παρατηρήσεις µιας ποσοτικής µεταβλητής X εός δείγµατος

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε

Διαβάστε περισσότερα

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi

Στατιστική. μονάδα και ισχύει: i. ν ν. = ή ως ποσοστό % οπότε % = i fi Στατιστική "Υπάρχου τα μικρά ψέματα, τα μεγάλα ψέματα και οι στατιστικές" Μαρκ Τουαί Σε κάθε πρόβλημα της Στατιστικής υπάρχει έας «πληθυσμός» Ω τα στοιχεία του οποίου (άτομα) εξετάζοται ως προς έα χαρακτηριστικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι x 1,x,,x k είαι οι τιµές µιας µεταβλητής Χ, που αφορά τα άτοµα εός δείγµατος µεγέθους, όπου

Διαβάστε περισσότερα

5. Περιγραφική Στατιστική

5. Περιγραφική Στατιστική Μάθημα: Στατιστική (Κωδ. 05) Διδάσκω: Γιώργος Κ. Παπαδόπουλος 5. Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πληθυσμός (ή στατιστικός πληθυσμός) Τυχαίο δείγμα και πραγματοποίηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Aς υποθέσουµε ότι 1,,, k είαι οι τιµές µιας µεταβλητής Χ, που αφορά Β.1. τα άτοµα εός δείγµατος µεγέθους,

Διαβάστε περισσότερα

Ασκήσεις στη Στατιστική

Ασκήσεις στη Στατιστική Σχολείο: ο ΓΕΛ Κοµοτηής Να συµπληρώσετε το παρακάτω πίακα: Ασκήσεις στη Στατιστική 5 0, 3 0 0 Σύολο F % F % Να συµπληρώσετε το παρακάτω πίακα: F % F % 0 0 0 0,5 30 0,0 0 6 50 Σύολο 3 Να συµπληρώσετε το

Διαβάστε περισσότερα

5. Περιγραφική Στατιστική

5. Περιγραφική Στατιστική Μάθημα: Στατιστική (Κωδ. 05) Διδάσκω: Γιώργος Κ. Παπαδόπουλος 5. Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πληθυσμός (ή στατιστικός πληθυσμός) Τυχαίο δείγμα και πραγματοποίηση

Διαβάστε περισσότερα

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4

Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4 (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια: ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας

78 Ερωτήσεις Θεωρίας Στα Μαθηματικά Γενικής Παιδείας Στα Μαθηματιά Γειής Παιδείας Tι οομάζουμε συάρτηση Tι οομάζουμε παραγματιή συάρτηση πραγματιής μεταβλητής Μια διαδιασία με τη οποία άθε στοιχείο εός συόλου Α πεδίο ορισμού ατιστοιχίζεται σε έα αριβώς στοιχείο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή 7 Απριλίου 0 ιάρκεια Εξέτασης: ώρες Α.. Σχολικό βιβλίο Σελίδες

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ .Να συμπληρώσετε το παρακάτω πίακα. f N F f 0 0 F 0 0 8 0,4 0 5 4 0,9 5 0 Σύολο. Οι μαθητές του Γ για το μήα Νοέμβρη απουσίασα από το σχολείο τους έως τέσσερις μέρες σύμφωα με το παρακάτω πίακα. ) Να συμπληρωθεί

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα

Ιγνάτιος Ιωαννίδης. Στατιστική Όριο - Συνέχεια συνάρτησης Παράγωγοι Ολοκληρώματα Ιγάτιος Ιωαίδης Στατιστική Όριο - Συέχεια συάρτησης Παράγωγοι Ολοκληρώματα Περιέχει: Συοπτική Θεωρία Μεθοδολογία Λύσης τω Ασκήσεω Λυμέα Παραδείγματα Ασκήσεις με τις απατήσεις τους ΘΕΣΣΑΛΟΝΙΚΗ Το βιβλίο

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 7 MAΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Στατιστική είαι ο κλάδος τω μαθηματικώ, ο οποίος ως έργο έχει τη συγκέτρωση στοιχείω, τη ταξιόμησή τους και τη παρουσίασή τους σε κατάλληλη μορφή, ώστε α μπορού

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή

ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή Μέρος πέµπτο ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ Εισαγωγή Στα προηγούµεα κεφάλαια είδαµε τις διάφορες µεθόδους συλλογής και επεξεργασίας του βιοµετρικού υλικού. Κάθε βιοµετρική επεξεργασία όµως έχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ Στο άρθρο αυτό θα παρουσιάσουμε μια μικρή συλλογή ασκήσεω οι οποίες καλύπτου τις έοιες που μάθαμε στο κεφάλαιο της Στατιστικής. Σε

Διαβάστε περισσότερα

Κάνουμε πρώτα διαλογή και κατασκευάζουμε τον πίνακα συχνοτήτων: και επίσης κατασκευάζουμε το ραβδόγραμμα: Αυτοκίνητο Τραμ Τρόλεϊ Μετρό Λεωφορείο

Κάνουμε πρώτα διαλογή και κατασκευάζουμε τον πίνακα συχνοτήτων: και επίσης κατασκευάζουμε το ραβδόγραμμα: Αυτοκίνητο Τραμ Τρόλεϊ Μετρό Λεωφορείο .Στη ερώτηση με ποιο μέσο πηγαίετε στη δουλειά σας 0 άτομα απάτησα: αυτοκίητο, τραμ, τρόλεϊ, αυτοκίητο, λεωφορείο, τραμ, τραμ, αυτοκίητο, λεωφορείο, τραμ, τρόλεϊ, αυτοκίητο, τραμ, αυτοκίητο, μετρό, τρόλεϊ,

Διαβάστε περισσότερα

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε .3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ ΘΕΩΡΙΑ. Μέση τιµή x = x = x = + + + t t... t = x + x +... + x + +... + x κ κ = f x κ t κ κ = κ κ x = κ x. Σταθµικός Μέσος x = xw + x w +... + x w w + w +... + w = x w w όπου

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση - 4 o Γεικό Λύκειο Χαίω Γ τάξη Μαθηματικά Γεικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mpapagr 4 ο Γεικό Λύκειο Χαίω ΚΑΤΑΝΟΜΕΣ ΣΥΧΝΟΤΗΤΩΝ 95 ΝΑ ΣΥΜΠΛΗΡΩΘΟΥΝ ΟΙ

Διαβάστε περισσότερα

) είναι παράλληλη προς στον άξονα x x τότε: α. Να βρείτε την f ( x)

) είναι παράλληλη προς στον άξονα x x τότε: α. Να βρείτε την f ( x) taeeolablogspotcom Άσκηση η Δίεται η συάρτηση f() S + +, R όπου η μέση τιμή και S > η τυπική απόκλιση τω παρατηρήσεω εός δείγματος μεγέθους Α η εφαπτομέη της καμπύλης f στο σημείο της A(,f ( ) ) είαι παράλληλη

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R (http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ,

υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ, Προβλήματα Πιθαοτήτω Προβλήματα Πιθαοτήτω Από εξετάσεις που έγια σε 5000 ζώα μιας κτηοτροφικής μοάδας, διαπιστώθηκε ότι 000 είχα προσβληθεί από μια ασθέεια Α, 800 είχα προσβληθεί από μια ασθέεια Β εώ 00

Διαβάστε περισσότερα

Τυπολόγιο Σχετική συχότητα: = = κ f,,..., Αθροιστική συχότητα: Ν = και Ν, 2... = Ν + = κ Αθροιστική σχετική συχότητα: Ν F = f και F = F + f, = 2,...,

Τυπολόγιο Σχετική συχότητα: = = κ f,,..., Αθροιστική συχότητα: Ν = και Ν, 2... = Ν + = κ Αθροιστική σχετική συχότητα: Ν F = f και F = F + f, = 2,..., Μετά το τέλος της µελέτης του 2ου κεφαλαίου, ο µαθητής θα πρέπει α γωρίζει: Τις βασικές έοιες της στατιστικής όπως πληθυσµός, δείγµα κ.λ.π. καθώς και τις κατηγορίες τω µεταβλητώ. Τους ορισµούς της απόλυτης,

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ 1. Τι λέγεται δειγματικός χώρος εός πειράματος τύχης. Το σύολο τω δυατώ αποτελεσμάτω λέγεται δειγματικός χώρος (sample space) και συμολίζεται συήθως με το γράμμα Ω. Α δηλαδή ω 1,ω 2,...,ω κ είαι τα δυατά

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ Γενικές έννοιες

ΣΤΑΤΙΣΤΙΚΗ Γενικές έννοιες ΣΤΑΤΙΣΤΙΚΗ Γειές έοιες Στατιστιή είαι ο λάδος τω μαθηματιώ, ο οποίος ως έργο έχει τη συγέτρωση στοιχείω, τη ταξιόμησή τους αι τη παρουσίασή τους σε ατάλληλη μορφή, ώστε α μπορού α ααλυθού αι α ερμηευθού

Διαβάστε περισσότερα

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 2. Τυχαίες μεταβλητές-βασικές κατανομές

Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ. 2860) 2. Τυχαίες μεταβλητές-βασικές κατανομές Μάθημα: Γεωργικός Πειραματισμός-Βιομετρία (Κωδ 860) Τυχαίες μεταβλητές-βασικές καταομές Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Ο κλασικός ορισμός της πιθαότητας (Laplace, 181) Ο στατιστικός ορισμός

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Επίπεδο εκπαίδευσης πατέρα 2

Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε ααφέρει, στόχος της Περιγραφικής Στατιστικής είαι, «η αάπτυξη μεθόδω για τη συοπτική και τη αποτελεσματική παρουσίαση τω δεδομέω» Για το σκοπό αυτό, έχου ααπτυχθεί,

Διαβάστε περισσότερα

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμέο Όριο στο R - Κεφ..7: Όρια Συάρτησης

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ

ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ Αρχικά, με τη έοια στατιστική θεωρούσαμε τη απαρίθμηση και καταγραφή τω μετρήσεω. Οι παρατηρήσεις αυτές ή οι μετρήσεις ααφέροται σε συγκεκριμέο ατικείμεο ή γεγοός.

Διαβάστε περισσότερα

Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)

Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης) Ε Διαφορικός λογισμός Καόες παραγώγισης Σελίδα από Πότε μια συάρτηση λέγεται παραγωγίσιμη στο σημείο του πεδίου ορισμού της ; Μια συάρτηση λέμε ότι είαι παραγωγίσιμη σ έα σημείο του πεδίου ορισμού της,

Διαβάστε περισσότερα

4. Δεσμευμένη Πιθανότητα - Ανεξαρτησία Ενδεχομένων

4. Δεσμευμένη Πιθανότητα - Ανεξαρτησία Ενδεχομένων Δεσμευμέη Πιθαότητα Αεξαρτησία Εδεχομέω 4 Δεσμευμέη Πιθαότητα - Αεξαρτησία Εδεχομέω 4 Γιατί δεσμευμέη πιθαότητα Το όημα της δεσμευμέης πιθαότητας Η πιθαότητα, ως έα μέτρο του βαθμού βεβαιότητας που έχουμε

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχολογική Κατεύθυση Θεωρία - Μέθοδοι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Μάθημα ο ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ Η εξίσωση x δε έχει λύση στο σύολο τω πραγματικώ αριθμώ, αφού

Διαβάστε περισσότερα

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά.

Πληθυσμός μιας έρευνας λέγεται το σύνολο των αντικειμένων που εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά. ΣΤΑΤΙΣΤΙΚΗ Στατιστιή λέγεται ο λάδος τω Μαθηματιώ ο οποίος συγετρώει στοιχεία που ααφέροται σε έα σύολο ατιειμέω, τα ταξιομεί, αι τα παρουσιάζει σε ατάλληλη μορφή ώστε α μπορού α ααλυθού αι α ερμηευθού.

Διαβάστε περισσότερα

2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ Σύμφωα με το ορισμό του R, η πρόσθεση και ο πολλαπλασιασμός δύο μιγαδικώ αριθμώ γίοται όπως ακριβώς και οι ατίστοιχες πράξεις με διώυμα α + βx στο, όπου βέβαια ατί για

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Μαθηματικά Γενικής Παιδείας. Γ Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μαθηματιά Γειής Παιδείας Γ Λυείου Δημήτρης Αργυράης Γεράσιμος Κουτσαδρέας Μαθηματιά Γειής Παιδείας Στατιστιή Γ. Λυείου ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

Διαβάστε περισσότερα

Εκφωνήσεις Λύσεις των θεμάτων

Εκφωνήσεις Λύσεις των θεμάτων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Α Γεικού Ημερησίου Λυκείου Προσθήκη θεμάτω 6 Οκτωβρίου 04 Εκφωήσεις Λύσεις τω θεμάτω Έκδοση η (3//04) Περιέχοται τα θέματα ΓΗ_Α_ΑΛΓ 480 ΓΗ_Α_ΑΛΓ 3073 ΓΗ_Α_ΑΛΓ 3096 ΓΗ_Α_ΑΛΓ 35 ΓΗ_Α_ΑΛΓ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ

ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Παγόσμιο χωριό γώσης 0 ο ΜΑΘΗΜΑ ΕΝΟΤΗΤΑ 2.3. ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Σοπός: Στη εότητα αυτή παρουσιάζοται τα μέτρα θέσης αι τα μέτρα διασποράς. Ο ορισμός τους αι διάφοροι μέθοδοι υπολογισμού. Γίεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Η διαίρεση στους φυσικούς αριθμούς

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Η διαίρεση στους φυσικούς αριθμούς ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Η διαίρεση στους φυσικούς αριθμούς 12 Η διαίρεση στους φυσικούς αριθμούς 12 Διερεύηση 1. 1. Έας χώρος στάθμευσης έχει 21 σειρές, καθεμιά από τις οποίες έχει 8 θέσεις.

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μέτρα Θέσης

Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μέτρα Θέσης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μέτρα Θέσης. Ποιους ορισμούς πρέπει α ξέρω; Τι οομάζουμε αι πώς συμβολίζεται: η επιρατούσα τιμή μιας μεταβλητής ; Οομάζεται η τιμή της μεταβλητής, που παρουσιάζει

Διαβάστε περισσότερα

Γ Λυκείου Μαθηματικά Γενικής Παιδείας o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας Ασκήσεις για λύση. M. Παπαγρηγοράκης 1 11.

Γ Λυκείου Μαθηματικά Γενικής Παιδείας o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας Ασκήσεις για λύση. M. Παπαγρηγοράκης 1 11. Γ Λυκείου Μαθηματικά Γεικής Παιδείας 0-0 4 o Γεικό Λύκειο Χαίω Γ τάξη γ Μαθηματικά Γεικής Παιδείας.09 Ασκήσεις για λύση M. Παπαγρηγοράκης.09 Γ Λυκείου Μαθηματικά Γεικής Παιδείας Επιμέλεια: Μ. Ι. Παπαγρηγοράκης

Διαβάστε περισσότερα

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β.

Όταν πραγματοποιείται το Α πραγματοποιείται και το Β. Βασικές έοιες και τύποι πιθαοτήτω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός πειράματος τύχης (πεπερασμέος, απείρως αριθμήσιμος, συεχής) Εδεχόμεα Α, Β, (απλά, σύθετα) Βέβαιο εδεχόμεο Αδύατο

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεων

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεων ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεω 1 Α. ΜΕΡΟΣ :ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑΔΙΚΩΝ Γωρίζουμε ότι η δευτεροβάθμια εξίσωση με αρητική διακρίουσα δε έχει λύση στο σύολο R τω πραγματικώ

Διαβάστε περισσότερα

Επιτρέπεται η χ ρήση του εκπαιδευτικού υλικού εντός του φροντιστηρίου

Επιτρέπεται η χ ρήση του εκπαιδευτικού υλικού εντός του φροντιστηρίου Θεωρία Θ Ε Ω Ρ Ι Α Παελλαδικώ εξετάσεω Βασίλης Γατσιάρης ωρεά υποστηρικτικό υλικό Θεωρία Στο βιβλίο αυτό, για πρακτικούς λόγους χρησιµοποιούµε τα πιο κάτω σύµβολα, για τις διάφορες κατηγορίες τω θεµάτω

Διαβάστε περισσότερα

Τι είναι εκτός ύλης. Σχολικό έτος

Τι είναι εκτός ύλης. Σχολικό έτος Τι είαι εκτός ύλης. Σχολικό έτος 06-07 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε. Το Λεξιλόγιο της Λογικής...9 Ε. Σύολα...3 ΚΕΦΑΛΑΙΟ o: Πιθαότητες. Δειγματικός Χώρος - Εδεχόμεα...0. Έοια της Πιθαότητας...9 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς

Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς Μαθηματικά κατεύθυσης Γ Λυκείου Όλη η θεωρία και οι ασκήσεις τω παελλαδικώ εξετάσεω Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς wwwaskisopolisgr Η θεωρία τω παελλαδικώ εξετάσεω [] [] Ορισμοί ) Πότε μια συάρτηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Επιµέλεια: Ι. Σπηλιώτης,. Λεπίπας, Π. Αγγελόπουλος Άσκηση.3 σελ. 4 α) εύκολο β) Αφού C F θα είαι σ( C) σ( F) και λόφω του α) θα είαι σ( C) F. Για τη απόδειξη του ατίθετου

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΑ ΘΕΣΗΣ

Παρουσίαση 1 ΜΕΤΡΑ ΘΕΣΗΣ Παρουσίαση ΜΕΤΡΑ ΘΕΣΗΣ Παρουσίαση.4 Μέτρα θέσης Στη συέχεια θα περιγράψουµε κάποια µέτρα, τα οοµαζόµεα µέτρα θέσης. Τα µέτρα θέσης µίας καταοµής, είαι κάποια αριθµητικά µεγέθη που δίου τη θέση του κέτρου

Διαβάστε περισσότερα

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = =

Παράδειγμα Το γνωστό παράδειγμα με τα βάρη 30 ατόμων ταξινομημένα σε 5 ομάδες. Η μέση τιμή για το δείγμα έχει βρεθεί x = 77. = = Παράδειγα Το γωστό παράδειγα ε τα βάρη 0 ατόω ταξιοηέα σε 5 οάδες. Η έση τιή για το δείγα έχει βρεθεί 77. Τάξη Απόλυτες συχότητες Κετρική τιή τάξης Απόκλιση από το έσο 65-69 67,5 9,5 70-7 6 7,5,5 75-79

Διαβάστε περισσότερα

2. Πιθανότητα και Δεσμευμένη Πιθανότητα

2. Πιθανότητα και Δεσμευμένη Πιθανότητα Μάθημα: Στατιστική (Κωδ 105) Διδάσκω: Γιώργος Κ Παπαδόπουλος 2 Πιθαότητα και Δεσμευμέη Πιθαότητα Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω Πείραμα τύχης - Η έοια του τυχαίου Δειγματικός χώρος Ω εός

Διαβάστε περισσότερα

Εκφωνήσεις Λύσεις των θεμάτων

Εκφωνήσεις Λύσεις των θεμάτων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Α Γεικού Ημερησίου Λυκείου Προσθήκη θεμάτω 8 Νοεμβρίου 04 Εκφωήσεις Λύσεις τω θεμάτω Έκδοση 3 η (//04) Περιέχοται τα θέματα ΓΗ_Α_ΑΛΓ 480 ΓΗ_Α_ΑΛΓ 3073 ΓΗ_Α_ΑΛΓ 3096 ΓΗ_Α_ΑΛΓ 35

Διαβάστε περισσότερα

ειγματοληπτικές κατανομές

ειγματοληπτικές κατανομές ειγματοληπτικές καταομές Σκοπός της τατιτικής υμπεραματολογίας: η εξαγωγή ατικειμεικώ υμπεραμάτω για έα πληθυμό από περιοριμέο αριθμό δεδομέω (δείγμα). Με τη περιγραφική τατιτική υχά μπορούμε α βγάλουμε

Διαβάστε περισσότερα

7. Βασικές Συνεχείς Κατανομές και το Κεντρικό Οριακό Θεώρημα

7. Βασικές Συνεχείς Κατανομές και το Κεντρικό Οριακό Θεώρημα Βασικές Συεχείς Καταομές και το Κετρικό Οριακό Θεώρημα 7. Βασικές Συεχείς Καταομές και το Κετρικό Οριακό Θεώρημα 7. Η Καοική Καταομή H καοική καταομή (normal dstrbuton) θεωρείται η σπουδαιότερη καταομή

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 7-05-00 ΘΕΜΑ Α Α. ος τρόπος Οι παρατηρήσεις t, t,..., t έχου μέση τιμή. Οι έες παρατηρήσεις είαι της μορφής: yi = ti, όπου i =,,...,

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

Στατιστική Ι-Πιθανότητες Ι

Στατιστική Ι-Πιθανότητες Ι Στατιστική Ι-Πιθανότητες Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 15 Οκτωβρίου 2015 Περιγραφή 1 Ενωση και Τομή Ενδεχομένων Περιγραφή 1 Ενωση και

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει α είαι σε θέση: 1 Να μπορεί α βρίσκει απο τη γραφική παράσταση μιας συάρτησης το πεδίο ορισμού της το σύολο τιμώ της τη τιμή της σε έα σημείο x 2

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Γωνία και κεντρική γωνία κανονικού πολυγώνου

Γωνία και κεντρική γωνία κανονικού πολυγώνου ΜΕΡΟΣ Β 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 327 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ Κατασκευή καοικώ πολυγώω Η διαδικασία κατασκευής εός καοικού πολυγώου µε πλευρές (καοικό -γωο) ακολουθεί τα εξής βήματα: 1ο Βήμα: 3 Υπολογίζουμε

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

«Χρηματοδοτική Ανάλυση και Διοικητική», Τόμος A

«Χρηματοδοτική Ανάλυση και Διοικητική», Τόμος A ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδώ : Διοίκηση Επιχειρήσεω και Οργαισμώ Θεματική Εότητα : Δ.Ε.Ο. 3 Χρηματοοικοομική Διοίκηση Ακαδημαϊκό Έτος : 202-203 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ «Χρηματοδοτική Αάλυση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΛΓΕΡΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΘΟΥΣ ΠΙΘΝΟΤΗΤΕΣ 1. Για οποιαδήποτε εδεχόμεα, εός δειγματικού χώρου Ω ισχύει η σχέση PA B= PA+ PB. ( ) ( ) ( ). Ισχύει ότι PA ( B) + PA ( B) = PA ( ) + PB ( )

Διαβάστε περισσότερα

Σωστό - Λάθος Επαναληπτικές

Σωστό - Λάθος Επαναληπτικές ΘΕΩΡΙΑ ΣΤΑΤΙΣΤΙΚΗ ΟΛΩΝ ΤΩΝ ΕΤΩΝ ημιτελές(veron 6-4-206) ΠΡΟΣΟΧΗ! Επισημαίω ότι οι λύσεις ούτε πλήρεις είαι ούτε έχου διπλοελεγχθεί τουλάχιστο μέχρι τώρα.ετσι ο ααγώστης πρέπει α έχει υπόψη του ότι μπορεί

Διαβάστε περισσότερα

Μοριακή Φασµατοσκοπία

Μοριακή Φασµατοσκοπία Μοριακή Φασµατοσκοπία Ασκήσεις του χειµεριού εξαµήου 5-6. α) Για τη τρίτη "γραµµή" της σειράς Pasch του υδρογοοειδούς ιότος C VI (ή C 5+ ) α υπολογίσετε το κυµαταριθµό της µεταπτώσεως, τη συχότητα του

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει:

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει: ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )

Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, ) Η έοια του ορίου Όριο συάρτησης Ότα οι τιµές µιας συάρτησης f προσεγγίζου όσο θέλουµε έα πραγµατικό αριθµό l, καθώς το προσεγγίζει µε οποιοδήποτε τρόπο το αριθµό, τότε γράφουµε lim f() = l και διαβάζουµε

Διαβάστε περισσότερα

Βασικές συνεχείς κατανομές και το Κεντρικό Οριακό Θεώρημα

Βασικές συνεχείς κατανομές και το Κεντρικό Οριακό Θεώρημα Βασικές συεχείς καταομές και το Κετρικό Οριακό Θεώρημα 7. Καοική καταομή 7. Το Κετρικό Οριακό Θεώρημα 7.. Καοική προσέγγιση της Διωυμικής καταομής 7.. Καοική προσέγγιση της καταομής Posson 7..3 Διόρθωση

Διαβάστε περισσότερα

www.fr-anodos.gr (, )

www.fr-anodos.gr (, ) ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Το lim f ( ) έχει όηµα σε γειτοικά σηµεία µε το δηλαδή ότα ( a, ) (, β ) a. Δε µε εδιαφέρει α το ίδιο το αήκει η όχι στο πεδίο ορισµού της f αλλά µε εδιαφέρει α υπάρχου στο πεδίο ορισµού

Διαβάστε περισσότερα

1. Το σύνολο των μιγαδικών αριθμών

1. Το σύνολο των μιγαδικών αριθμών Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. φυσικός αριθµός, που δείχνει πόσες φορές εµφανίζεται η τιµή x i της µεταβλητής αυτής. Σ Λ

ΣΤΑΤΙΣΤΙΚΗ. φυσικός αριθµός, που δείχνει πόσες φορές εµφανίζεται η τιµή x i της µεταβλητής αυτής. Σ Λ 2o Κεφάλαιο ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Το χρώµα κάθε αυτοκιήτου είαι ποιοτική µεταβλητή. Σ Λ 2. * Ο αριθµός τω αθρώπω που παρακολουθού µια συγκεκριµέη τηλεοπτική εκποµπή είαι διακριτή

Διαβάστε περισσότερα

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ.

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Μάθημα: Στατιστική αάλυση δεδομέω με χρήση Η/Υ (του 8 ου Εξαμήου Σπουδώ του Τμήματος Βιοτεχολογίας) Διδάσκω: Γιώργος Κ. Παπαδόπουλος. Περιγραφική Στατιστική Σύτομη αασκόπηση βασικώ εοιώ, προτάσεω και τύπω

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

Μετρήσεις Χρόνου Η ακρίβεια

Μετρήσεις Χρόνου Η ακρίβεια Μετρήσεις Χρόου Η ακρίβεια 1. 1. Παρατηρώτας διάφορες συσκευές μέτρησης του χρόου στις παρακάτω εικόες, ατιστοίχισε ποιες είαι "κλεψύδρα", "ααλογικές", "ηλιακές", "ψηφιακές" και συμπλήρωσε το παρακάτω

Διαβάστε περισσότερα

BIOΣΤΑΤΙΣΤΙΚΗ. ιδάσκων: Τριανταφύλλου Ιωάννης Τ.Ε.Ι. ΑΘΗΝΑΣ

BIOΣΤΑΤΙΣΤΙΚΗ. ιδάσκων: Τριανταφύλλου Ιωάννης Τ.Ε.Ι. ΑΘΗΝΑΣ BIOΣΤΑΤΙΣΤΙΚΗ ιδάσκω: Τριαταφύλλου Ιωάης Τ.Ε.Ι. ΑΘΗΝΑΣ Αιγάλεω 04 Που και πως θα µας φαεί χρήσιµη??? Για α περιγράψουµε έα δείγµα παρατηρήσεω ως προς τα χαρακτηριστικά του Παράδειγµα Κατά τη διόρθωση 00

Διαβάστε περισσότερα

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε

Διαβάστε περισσότερα