Αλληλεπιδράσεις µε Ανταλλαγή Σωµατιδίων

Save this PDF as:
Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλληλεπιδράσεις µε Ανταλλαγή Σωµατιδίων"

Transcript

1 Αλληλεπιδράσεις µε Ανταλλαγή Σωµατιδίων X! g! g! X! g! g! Σπύρος Ευστ. Τζαµαρίας

2 Θα αναπτύξουµε υπολογιστικές µεθόδους για ενεργές διατοµές σκέδασης Θα αρχίσουµε µε: e + µ + e e e + e µ + µ γ e q e q e µ q q Σε αυτή την Ενότητα θα ασχοληθούµε µε Lorentz Invariant Matrix Elements Αλληλεπίδραση µε ανταλλαγή σωµατιδίου Εισαγωγή στα διαγράµµατα Feynman Tους κανόνες Feynman για την Κβαντική Ηλεκτροδυναµική (QED) Σπύρος Ευστ. Τζαµαρίας

3 Θεωρία Διαταραχών Υπολογίζουµε ρυθµούς µεταπτωσης µε τον Fermi s Golden Rule όπου είναι η ανάπτυξη, σε όρους διαταραχών, των στοιχείων πίνακα Για σκέδαση σωµατίων, οι δύο πρώτοι όροι της σειράς διαταραχών µπορούν να θεωρηθούν ως: f! f! σκέδαση σε δυναµικό i! i! Η Κλασική Εικόνα τα σωµάτια δρουν ως πηγές πεδίων που προσφέρουν το δυναµικό µέσα στο οποίο σκεδάζονται άλλα σωµάτια δράση από απόσταση Η Εικόνα της Κβαντικής Θεωρίας Πεδίου οι δυνάµεις ωφείλονται στην ανταλλαγή υπερβατικών σωµατιδίων. Δεν υπάρχει δράση από απόσταση, οι δυνάµεις µεταξύ σωµατίων ωφείλονται σε διάδοση σωµατίων. Σπύρος Ευστ. Τζαµαρίας j! σκέδαση µέσω ενδιάµεσης κατάστασης

4 Θεωρείστε την αλληλεπίδραση η οποία συµβαίνει µέσω µίας ενδιάµεσης κατάστασης που αντιστοιχεί στην ανταλλαγή σωµατίου Μία δυνατή χρονική εξέλιξη του φαινοµένου είναι:: χώρος V ji! x! V fj! i! j! f! χρονος Αρχική Κατάσταση i : Τελική Κατάσταση f : Ενδιάµεση Κατάσταση j : Αυτό το διατεταγµένο-χρονικά διαγραµµα αντιστοιχεί σε: a εκπέµπει το x και µετά το b απορροφά το x Ο αντίστοιχος όρος, για την συγκεκριµένη ενδιάµεση κατάσταση, θα είναι: αντιστοιχεί στην χρονική διάταξη όπου a εκπέµπει x πριν b το απορροφήσει Σπύρος Ευστ. Τζαµαρίας

5 Χρειαζόµαστε µία έκφραση για το που ορίζει το µη-li στοιχείο πίνακα Δείξαµε ότι κάθε µη-li LI στοιχείο πίνακα ως a! σχετίζεται µε το αντιστοιχο g a! c! x! όπου k =1, αριθµό σωµατίων στην αλληλεπίδραση Συνεπώς είναι το Lorentz Invariant στοιχείο πίνακα για a c + x Θα θεωρήσουµε ότι το Lorentz Invariant στοιχείο πίνακα είναι απλώς ενας αριθµός Καθορίζει την ισχύ της αλληλεπίδρασης a c + x το στοιχείο πίνακα είναι LI υπό την έννοια ότι ορίζεται µε LI κανονικοποιήσεις των κυµατοσυναρτήσεων και επειδή η µορφή της αλληλεπίδρασης (ένα βαθµωτό µέγεθος σ αυτό το παράδειγµα) είναι LI. To g βέβαια έχει διαστάσεις. Σπύρος Ευστ. Τζαµαρίας

6 Οµοίως Ώστε x! g b! Το Lorentz Invariant στοιχείο πίνακα για όλη την αλληλεπίδραση είναι: Επισήµανση: αντιστοιχεί σε χρονική διάταξη όπου a εκπέµπει x πριν b απορροφήσει και ΔΕΝ ΕΙΝΑΙ Lorentz invariant, η χρονική διαταξη εξαρτάται από το Σ.Α. Η ορµή διατηρείται σε κάθε κορυφή της αλληλεπίδρασς αλλά όχι η ενέργεια Το σωµάτιο x είναι on-mass shell, δηλαδή Σπύρος Ευστ. Τζαµαρίας

7 Βεβαίως θα µπορούσαµε να διατάξουµε χρονικά τα «συµβάντα» µε διαφορετικό τρόπο: Αυτή η χρονική διάταξη αντιστοιχεί σε: ~! ~! b εκπέµπει x και µετά a απορροφά x ~! space! i! j! f! x είναι το αντισωµάτιο του x, π.χ. e W+ ν time! µ µ ν µ µ Το Lorentz invariant στοιχείο πίνακα γι αυτή την διάταξη: W ν e e ν e Στην QM προσθέτουµε τα στοιχεία πίνακα που καταλήγουν στην ίδια τελική κατάσταση: Διατήρηση Ενέργειας: Σπύρος Ευστ. Τζαµαρίας

8 που καταλήγει Από την1 η χρονική διάταξη τελικά a! g a! c! Αφού αθροίσαµε όλες τις δυνατές χρονικές διατάξεις, το είναι Lorentz invariant. Αυτό είναι αξιοσηµείωτο αποτέλεσµα το άθροισµα όλων των χρονικών διατάξεων καταλήγει σε αποτέλεσµα που δεν εξαρτάται από το Σ.Α. Σπύρος Ευστ. Τζαµαρίας

9 Feynman Diagrams Το άθροισµα όλων των χρονικών διατάξεων αντιστοιχεί σε ένα Διάγραµµα FEYNMAN space! space! time! time! Σε ένα Feynman Διάγραµµα: " το LHS αντιπροσωπεύει την αρχική κατάσταση " το RHS είναι η τελική κατάσταση " οτιδήποτε άλλο σηµατοδοτεί «πως έγινε η αλληλεπίδραση επισηµαίνεται ότι η ενέργεια και η ορµή διατηρούνται σε κάθε κόµβο αλληλεπίδρασης του ο παράγων, ο διαδότης (propagator), αντιστοιχεί στην µετάδοση της δύναµης µέσω ανταλλαγής σωµατιδίου Σπύρος Ευστ. Τζαµαρίας

10 Tο στοιχείο πίνακα: εξαρτάται από: " Την θεµελιώδη ισχύ των αλληλεπιδράσεων στους δύο κόµβους " Την τετραορµή,, που µεταφέρεται από το υπερβατικό (virtual) σωµάτιο η οποία καθορίζεται από την διατήρηση ενέργειας/ορµής στους κόµβους. (Σηµειώστε πως το µπορεί να είναι θετικό ή αρνητικό) Εδώ Για ελαστική σκέδαση: t-channel q 2 < 0! Εδώ Στό CoM: Χαρακτηρίζεται ως: space-like s-channel q 2 > 0! Χαρακτηρίζεται ως: time-like Σπύρος Ευστ. Τζαµαρίας

11 Virtual Particles space! Χρονικά διατεταγµένη QM space! Διάγραµµα Feynman time! b! d! time! Η ορµή διατηρείται στους κόµβους Η ενέργεια ΔΕΝ διατηρείται στους κόµβους Το σωµάτιο ανταλλαγής είναι on mass shell Η ορµή ΚΑΙ η ενέργεια διατηρούνται στους κόµβους Σωµάτιο ανταλλαγής off mass shell VIRTUAL PARTICLE Σπύρος Ευστ. Τζαµαρίας

12 Το δυναµικό V(r) για ανταλλαγή σωµατίου Μπορουµε να περιγράψουµε µε δύο τρόπους την σκεδαση e από ακίνητο p: Αλληλεπίδραση µε ανταλλαγή σε 2 ης τάξης θεωρία διαταραχών. Με πρώτης τάξη διαταραχή θεωρώντας το πρωτόνιο ως ακίνητη πηγή ενός πεδίου που δηµιουργεί δυναµικό V(r) f! i! V(r)! p! Δείξετε πως θα βρείτε την ίδια έκφραση για χρησιµοποιώντας YUKAWA potential Ωστόσο, η σκέδαση από σταθερό δυναµικό σχετικιστική περιγραφή δεν αντιστοιχεί σε Σπύρος Ευστ. Τζαµαρίας

13 e mr M fi f g a g b i r για : E f = E ι και p i p f = q = q ẑ e i ( p f r E f t) e mr r e i ( pi r Ei t) d 3 r e i ( p f r E f t) 1 2π ( q e r cosθ) 0 e mr r e i ( pi r Ei t) d 3 r = d cosθdϕ = 2π e i e mr r q r cosθ ( ) ( ) e mr d 3 r = e i ( q r cosθ ) r 2 d cosθdϕdr (1) r e i q r d cosθ = 2π cos q r cosθ Αντικαθιστώντας την (2) στην (1)... e i ( p f r E f t) e mr r e i pi r Ei t ( ) d 3 r e mr 0 r ( ) sin q r q r 1 1 2π 0 ( ( ) + isin( q r cosθ) ) r 2 dr = 1 q 2 + m 2 ( ) d cosθ = 4π sin q r q r (2) Συνεπώς: M fi g a g b q 2 + m 2 Αλλά, στην περίπτωση στατικού δυναµικού και ελαστικής σκέδασης q 2 = E f E i ( ) 2 q 2 = q 2 M fi g a g b q 2 m 2 Σπύρος Ευστ. Τζαµαρίας

14 Quantum Electrodynamics (QED) Θεωρείστε την αλληλεπίδραση ενός e και ενός τ λεπτονίου µε ανταλλαγή φωτονίου. Αν και οι γενικές αρχές που χρησιµοποιήσαµε ισχύουν και εδώ, τώρα θα πρέπει να λάβουµε υπ όψιν το spin των e και τ λεπτονίων και επίσης το spin (την πόλωση) του υπερβατικού φωτονίου. Θα χρησιµοποιήσουµε τους ακόλουθους µετασχηµατισµούς, για να πάρουµε υπ όψιν τις ηλεκτροµαγνητικές αλληλεπιδράσεις Στην QM: (όπου φορτίο) ή: όπου Σ αυτή την περίπτωση η εξίσωση Dirac παίρνει την µορφή: Σπύρος Ευστ. Τζαµαρίας

15 Μάζα ηρεµίας Δυναµική + K.E. Ενέργεια Με άλλα λόγια, η δυναµική ενέργεια ενός φορτισµένου spin-1/2 σωµατίου µέσα σε ηλεκτροµαγνητικό πεδίο είναι: (δείτε ότι ο όρος A 0 είναι ) Χρειαζόµαστε όµως να περιγράψουµε και τις καταστάσεις πόλωσης του ΗΜ πεδίου. Δηλαδή για ένα πραγµατικό φωτόνιο που κινείται κατά τη z-διεύθυνση έχουµε δύο ορθογώνιες, κάθετες προς την κίνηση, καταστάσεις πόλωσης Αυθαίρετη επιλογή καταστάσεων βάσης Σπύρος Ευστ. Τζαµαρίας

16 Στο προηγούµενο παράδειγµα, αλληλεπίδρασης χωρίς spin, καταλήξαµε ότι: = g a! g b! = Στην QED µπορούµε να επαναλάβουµε την µέθοδο της άθροισης χρονικά διατεταγµένων διαγραµµάτων, µε Dirac spinors και την κατάλληλη έκφραση για. Κάνοντας αυτό, αλλά αθροίζοντας για όλες τις καταστάσεις spin του φωτονίου, θα καταλήξουµε ότι: e τ e τ Αλληλεπίδραση e Διαδότης φωτονίου (m=0) µε Αλληλεπίδραση τ µε φωτόνιο Άθροισµα των καταστάσεων µε φωτόνιο πόλωσης Όλη η φυσική της QED εµπεριέχεται σε αυτή την έκφραση! Σπύρος Ευστ. Τζαµαρίας

17 Το άθροισµα των καταστάσεων πόλωσης για VIRTUAL φωτόνια πρέπει να εµπεριέχει βαθµωτά, διαµήκη και εγκάρσια µεγέθη, δηλ. 4 καταστάσιες Όπου τελικά: Προφανώς, δεν είναι τεριµµένο πάρτε το όµως ως δεδοµένο... και το στοιχείο πίνακα γίνεται: χρησιµοποιώντας τον adjoint spinor Δείξαµε όµως πως η ποσότητα µετασχηµατίζεται ως τετραδιάνυσµα Δείχνοντας πως M είναι Lorentz Invariant Σπύρος Ευστ. Τζαµαρίας

18 Κανόνες Feynman για QED Επισηµαίνεται ότι η έκφραση εµπεριέχει πολλά υπολογιστικά στάδια. Έχουν αθροισθεί όλα τα χρονικώς διατεταγµένα διαγράµµατα καθώς και οι κατάστασεις πόλωσης του virtual φωτονίου. Για κάθε νέο διάγραµµα Feynman δεν θα θέλαµε να επαναλαµβάνουµε Όλους αυτούς τους υπολογισµούς. Ευτυχώς δεν είναι απαραίτητο µπορούµε να ακολούθησουµε κανόνες που θα µας οδηγήσουν στον υπολογισµό του LI στοιχείου πίνακα e + µ + γ e µ Βασικοί Κανόνες Feynman: " Παράγων διαδότη για κάθε εσωτερική γραµµή (iδηλ. για κάθε vistual σωµάτιο) " Dirac Spinor για κάθε εξωτερική γραµµή (δηλ. για κάθε εισερχόμενο ή εξερχόμενο σωμάτιο)6 " Παράγων αλληλεπίδρασης για κάθε κόµβο Σπύρος Ευστ. Τζαµαρίας

19 " Εξωτερικές Γραµµές Βασικοί Κανόνες για QED Εισερχόµενο σωµάτιο Εξερχόµενο σωµάτιο spin 1/2 Εισερχόµεο αντισωµάτιο Εξερχόµενο αντισωµάτιο Εισερχόµενο φωτόνιο spin 1 Εξερχόµενο φωτόνιο " Εσωτερικές γραµµές (διαδότες) spin 1 φωτόνιο m n spin 1/2 φερµιόνιο " Παράγων Κόµβου spin 1/2 φερµιόνιο (charge - e ) " Matrix Element = γινόµενο όλων των παραγόντων Σπύρος Ευστ. Τζαµαρίας

20 Παραδείγµατα e e e e τ τ τ τ e + µ + γ e µ Σηµείωση: Σε κάθε κόµβο, ο adjoint spinor γράφεται πρώτος Κάθε κόµβος έχει τον δικό του δείκτη Ο του διαδότη συνδέει τους δείκτες των κόµβων Σπύρος Ευστ. Τζαµαρίας

21 Ανακεφαλαίωση Η αλληλεπίδραση µε ανταλαγή σωµατίου εκφράζεται από Lorentz Invariant Στοιχείο Πίνακα (Matrix Element) της µορφής Η βασική αλληλεπίδραση στην QED που εµπεριέχει τα spins των φερµιονίων και τις καταστάσεις πόλωσης των virtual φωτονίων περιγράφεται: Σπύρος Ευστ. Τζαµαρίας

Ενεργός Διατοµή (Cross section)

Ενεργός Διατοµή (Cross section) Ενεργός Διατοµή (Cross section) σ = # αλληλεπδράσεων / µ. Χρ. / σωµάτιο στόχου προσπίπτουσα ροή σ, µπορεί να θεωρηθεί ως η ενεργός επιφάνεια του στόχου, δηλ. το άθροισµα των ενεργών επιφανειών των σωµατίων

Διαβάστε περισσότερα

Εξαϋλωση Ηλεκτρονίου-Ποζιτρονίου

Εξαϋλωση Ηλεκτρονίου-Ποζιτρονίου Εξαϋλωση Ηλεκτρονίου-Ποζιτρονίου Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1 Υπολογισµοί στην QED! Υπολογισµός ενεργούς διατοµής στην QED (π.χ. e + e ): Σχεδιάζουµε όλα τα δυνατά Feynman Diagrams Για e

Διαβάστε περισσότερα

Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας

Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας Προλεγόµενα Σπύρος Ευστ. Τζαµαρίας 2016 1 S.I. UNITS: kg m s Natural Units δεν είναι ιδιαίτερα «βολικές» για τους υπολογισµούς µας αντί αυτών χρησιµοποιούµε Natural Units που βασίζονται σε θεµελιώδεις

Διαβάστε περισσότερα

Η εξίσωση Dirac (ΙI) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1

Η εξίσωση Dirac (ΙI) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Η εξίσωση Dirac (ΙI) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Συναλλοίωτη Μορφή: οι Dirac γ Matrices Η εξίσωση Dirac μπορεί να γραφεί σε συναλλοίωτη μορφή χρησιμοποιώντας τις 4 Dirac γ matrices: Πολλαπλασιάζοντας

Διαβάστε περισσότερα

Ρυθµός Διάσπασης Σωµατιδίου

Ρυθµός Διάσπασης Σωµατιδίου Ρυθµός Διάσπασης Σωµατιδίου Ας θεωρήσουµε την «two-body» διάσπαση i! q 1! Θέλουµε να υπολογίσουµε τον ρυθµό διάσπασης σε πρώτης τάξης θεωρίας διαταραχών, περιγράφοντας τα αρχικά σωµάτια ως ελεύθερα, επίπεδα

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 23η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

Charge Conjuga,on. Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε. ελεύθερου σωματίδιου ως:

Charge Conjuga,on. Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε. ελεύθερου σωματίδιου ως: Charge Conjuga,on Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε ηλεκτρομαγνητικό πεδίο αντικαθιστώντας την ορμή και την ενέργια του ελεύθερου σωματίδιου ως: χρησιμοποιώντας τους τελεστές

Διαβάστε περισσότερα

Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας. Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1

Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας. Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1 Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1 Parity Εφαρµόζοντας τον δύο φορές : άρα Αλλά θα πρέπει να διατηρείται και η κανονικοποίηση της κυµατοσυνάρτησης

Διαβάστε περισσότερα

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Μη- Σχετικιστική Κβαντομηχανική Η μη- σχετικιστική έκφραση για την ενέργεια: Στην QM αντιστοιχούμε την ενέργεια και την ορμή με Τελεστές:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Κλασσική-Κβαντική Εικόνα Πεδίου Εικονικά σωµάτια Διαγράµµατα Feynman Ηλεκτροµαγνητικές και Ασθενείς

Διαβάστε περισσότερα

Πειραµατική Θεµελίωση της Φυσικής Στοιχειωδών Σωµατιδίων

Πειραµατική Θεµελίωση της Φυσικής Στοιχειωδών Σωµατιδίων Πειραµατική Θεµελίωση της Φυσικής Στοιχειωδών Σωµατιδίων 8 Εξάµηνο Διδάσκουσα Χαρά Πετρίδου Συµµετέχει η Υποψ. Διδάκτορας Δέσποινα Σαµψωνίδου (για βοήθεια στις ασκήσεις) Μαθηµα 2 0 Ανασκόπηση 9-3-2017

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 016 Κλασική Κβαντική Κβαντική Εικόνα Πεδίου Θεωρία Yukawa Διαγράμματα Feynman

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (16-12- 2014) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική

Διαβάστε περισσότερα

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια Περιεχόµενα Διαγράµµατα Feynman Δυνητικά σωµάτια Οι τρείς αλληλεπιδράσεις Ηλεκτροµαγνητισµός Ισχυρή Ασθενής Περίληψη Κ. Παπανικόλας, Ε. Στυλιάρης, Π. Σφήκας

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 11η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική 2 Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (21-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική

Διαβάστε περισσότερα

V fn V ni 2πδ(E f E i )

V fn V ni 2πδ(E f E i ) Ο διαδότης Εχουμε δεί ήδη ότι στα διαγράμματα Feynman η γραμμή του εικονικού φωτονίου αντιστοιχεί στο όρο 1/q 2 με q η ορμή του εικονικού φωτονίου (q 2 0). Αν το εικονικό σωματίδιο έχει μάζα ο διαδότης

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (8-1- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια II. Διάλεξη 7η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια II. Διάλεξη 7η Πετρίδου Χαρά Στοιχειώδη Σωματίδια II Διάλεξη 7η Πετρίδου Χαρά Ηλεκτροµαγνητικές Αλληλεπιδράσεις Σκεδάσεις λεπτονίων και κουάρκ 14-Jan-13 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Σκέδαση ηλεκτρονίων με σπιν - Η Ελικότητα

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά Στοιχειώδη Σωματίδια II Διάλεξη 11η Πετρίδου Χαρά Η εξίσωση Dirac Οι Ασθενείς Αλληλεπιδράσεις 29-5-2014 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Η κυματική εξίσωση ελεύθερου σωματιδίου 3 Η σχετικιστική εξίσωση

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 3η Πετρίδου Χαρά Τα Λεπτόνια 2 Δεν έχουν Ισχυρές Αλληλεπιδράσεις Spin 1/2 Παρατηρούνται ως ελεύθερα σωματίδια Είναι σημειακά (r < 10-17 cm) H δομή των οικογενειών... Γιατί

Διαβάστε περισσότερα

Ενοποίηση της Ηλεκτροµαγνητικής και Ασθενούς Αλληλεπίδρασης τα W και Z Μποζόνια. Σ. Ε. Τζαµαρίας Σωµατιδιακή Φυσική

Ενοποίηση της Ηλεκτροµαγνητικής και Ασθενούς Αλληλεπίδρασης τα W και Z Μποζόνια. Σ. Ε. Τζαµαρίας Σωµατιδιακή Φυσική Ενοποίηση της Ηλεκτροµαγνητικής και Ασθενούς Αλληλεπίδρασης τα W και Z Μποζόνια Σ. Ε. Τζαµαρίας Σωµατιδιακή Φυσική 2016 1 Ας θυµηθούµε τον Ηλεκτροµαγνητισµό... Σε Heaviside-Lorentz µοναδες στο κενό, γράφονται

Διαβάστε περισσότερα

Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα

Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα Θεωρία Yukawa Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα έφτασε στο συμπέρασμα ότι η εμβέλεια της δύναμης εξαρτάται από τη μάζα, m, του κβάντου. t /mc R c t /mc Η εξίσωση Klein-Gordon

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

T fi = 2πiδ(E f E i ) [< f V i > + 1 E i E n. < f V n > E i H 0 164/389

T fi = 2πiδ(E f E i ) [< f V i > + 1 E i E n. < f V n > E i H 0 164/389 164/389 Ο διαδότης του ηλεκτρονίου Από την μη σχετικιστική θεωρία είχαμε δει T fi = 2πiδ(E f E i ) < f V i > + < f V n > n i 1 < n V i > +... E i E n όπου H 0 n >= E n n >. Φορμαλιστικά μπορούμε να γράψουμε

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 10η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Σωμάτια & Αντισωμάτια Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2011 Πετρίδου Χαρά Στοιχειώδη Σωμάτια

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman. Λέκτορας Κώστας Κορδάς

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman. Λέκτορας Κώστας Κορδάς Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 18 Μαϊου 2010 Λίγο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης 1 Stathis STILIARIS,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Συντεταγμένες Κ. Βελλίδη (Στοιχειώδη Σωμάτια): Τομέας ΠΦΣΣ: β όροφος, 10-77-6946 ΙΕΣΕ: β όροφος,

Διαβάστε περισσότερα

Πειραµατική Θεµελείωση της Φυσικής

Πειραµατική Θεµελείωση της Φυσικής Πειραµατική Θεµελείωση της Φυσικής Στοιχειωδών Σωματιδίων (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 23 Μαρτίου 2017

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Hideki Yukawa and the Nuclear Force Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής πυρηνική δύναμη Η πυρηνική δύναμη (ή αλληλεπίδραση νουκλεονίουνουκλεονίου, ή NN forces,

Διαβάστε περισσότερα

Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1

Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1 Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1 Παραβίαση της CP Συµµετρίας στο πρώιµο Σύµπαν αναµένεται ίσος αριθµός βαρυονίων και αντί-βαρυονίων σήµερα, στο παρατηρούµενο

Διαβάστε περισσότερα

Ενότητα 6: Μη θερµική ακτινοβολία σε blazars: Αντίστροφη Σκέδαση Compton Φύλλο Φοιτητή

Ενότητα 6: Μη θερµική ακτινοβολία σε blazars: Αντίστροφη Σκέδαση Compton Φύλλο Φοιτητή ΑστροφυσικήΥψηλώνΕνεργειών Διδάσκ.:Β.Παυλίδου Ενότητα6:ΑντίστροφηΣκέδασηCompton 1 Ενότητα 6: Μη θερµική ακτινοβολία σε blazars: Αντίστροφη Σκέδαση Compton Φύλλο Φοιτητή Σκοπός της ενότητας αυτής: Όπως

Διαβάστε περισσότερα

Μάθημα 7 Διαγράμματα Feynman

Μάθημα 7 Διαγράμματα Feynman Στοιχειώδη Σωμάτια (M.Sc Υπολογιστικής Φυσικής) Μάθημα 7 Διαγράμματα Feynman Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη M.Sc. Υπολ. Φυσ., AΠΘ, 2 Δεκεμβρίου 2013 Κουάρκ και Λεπτόνια

Διαβάστε περισσότερα

E + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389

E + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389 97/389 Χρησιμοποιώντας τον ίδιο νορμαλισμό N = E + m έχουμε vp, s = σ p E + m E +m χs χ s, s =, 2 και ψ = vp, se i p x = vp, se ip x με p = E, p. Η επιλογή είναι χ = και χ 2 = γιατί η απουσία ενός άνω

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 24η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 24η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 24η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 2η Πετρίδου Χαρά Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 10-Jan-11 Πετρίδου Χαρά Στοιχειώδη Σωµάτια

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Μονάδες Energy [E] ev, kev, MeV, GeV, TeV, PeV, 10 0, 10 3, 10 6, 10 9, 10 12, 10 15 1eV = 1.6 10 19 J ev είναι πιο χρήσιμη στη φυσική

Διαβάστε περισσότερα

Φερμιόνια & Μποζόνια

Φερμιόνια & Μποζόνια Φερμιόνια & Μποζόνια Φερμιόνια Στατιστική Fermi-Dirac spin ημιακέραιο 1 3 5,, 2 2 2 Μποζόνια Στατιστική Bose-Einstein 0,1, 2 spin ακέραιο δύο ταυτόσημα φερμιόνια, 1 & 2 δύο ταυτόσημα μποζόνια, 1 & 2 έχουν

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (14-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης

Διαβάστε περισσότερα

55/377. 2E A 2E 1 (2π) 3 d 3 p n. p f

55/377. 2E A 2E 1 (2π) 3 d 3 p n. p f 55/377 Ο ρυθμός διάσπασης ως συνάρτηση του M Για διασπάσεις της μορφής A 1 + 2 + 3 +... + n ακολουθούμε την ίδια μέθοδο dγ = 1 M 2 d 3 p 1 2E A 2E 1 (2π) 3 d 3 p n 2E n (2π) 3 (2π)4 δ 4 (p A p 1 p 2...

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ PhD Τηλ: 1 69 97 985, wwwdlaggr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ: 1 69 97 985, E-mail: dlag@ottgr, wwwdlaggr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, PhD KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ: 1 69

Διαβάστε περισσότερα

1. Μετάπτωση Larmor (γενικά)

1. Μετάπτωση Larmor (γενικά) . Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται

Διαβάστε περισσότερα

Θέµατα εξετάσεων και λύσεις

Θέµατα εξετάσεων και λύσεις Θέµατα εξετάσεων και λύσεις Μάθηµα : Κβαντική Θεωρία Πεδίου Ι Ηµεροµηνία : 9 Μαρτίου 016 ΘΕΜΑ 1) ίνεται Λαγκρανζιανή Lpφ a, B µ φ a q η οποία είναι συνάρτηση ϐαθµωτών πεδίων φ a και των πρώτων παραγώγων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

Μη Σχετικιστική Κβαντομηχανική

Μη Σχετικιστική Κβαντομηχανική Μη Σχετικιστική Κβαντομηχανική Υπενθυμίζουμε τη συνταγή που θέτει την εξίσωση Schrödger σε αντιστοιχία με τη μη-σχετικιστική σχέση ενέργειας-ορμής: p E () m μέσω της αντικατάστασης των E, p με διαφορικούς

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 016 Χαρακτηριστικές Κλίμακες και Μονάδες Κλασσική & Κβαντική Εικόνα Πεδίου Η

Διαβάστε περισσότερα

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο

Διαβάστε περισσότερα

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ ΜΑΘΗΜΑ 4ο Αλληλεπιδράσεις αδρονίου αδρονίου Μελέτη χαρακτηριστικών των ισχυρών αλληλεπιδράσεων (αδρονίων-αδρονίων) Σε θεµελιώδες επίπεδο: αλληλεπιδράσεις µεταξύ quark

Διαβάστε περισσότερα

ΖΑΝΝΕΙΟ ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ Η ΕΠΙΣΚΕΨΗ ΣΤΟ CERN

ΖΑΝΝΕΙΟ ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ Η ΕΠΙΣΚΕΨΗ ΣΤΟ CERN ΖΑΝΝΕΙΟ ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ Η ΕΠΙΣΚΕΨΗ ΣΤΟ CERN Η ΘΕΩΡΙΑ ΤΟΥ ΚΑΘΙΕΡΩΜΕΝΟΥ ΠΡΟΤΥΠΟΥ ΤΑ ΔΥΟ «ΣΥΣΤΑΤΙΚΑ» ΤΗΣ ΘΕΩΡΙΑΣ ΟΙ ΔΥΝΑΜΕΙΣ Το τρίτο «συστατικό» του καθιερωμένου προτύπου είναι οι θεμελιώδεις δυνάμεις που

Διαβάστε περισσότερα

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων 1) Ποιες από τις πιο κάτω αντιδράσεις επιτρέπονται και ποιες όχι βάσει των αρχών διατήρησης που ισχύουν για τις ασθενείς αλληλεπιδράσεις ν μ + p μ + +n ν e +

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Ζήτηµα 1ο Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε το πρότυπο

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 19 Μαρτίου 2015 Σκέδαση, ενεργός διατομή

Διαβάστε περισσότερα

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο 1 Το Μποζόνιο Higgs 29/05/13 Σκοποί: I. Να απαντήσει στο ερώτημα του τι είναι ακριβώς το σωματίδιο Higgs. II. Να εισάγει τους διάφορους τρόπους παραγωγής και μετάπτωσης του Higgs. III. Να δώσει μία σύντομη

Διαβάστε περισσότερα

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων + + 0 K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων

Διαβάστε περισσότερα

Ενεργός διατοµή Χρυσός Κανόνας του Fermi (a)

Ενεργός διατοµή Χρυσός Κανόνας του Fermi (a) Μαθηµα 3 0 Ενεργός διατοµή Χρυσός Κανόνας του Fermi (a) 16-3-2017 Μετρήσιμες ποσότητες Παρατηρώντας τη φύση για να καταλάβουμε ποιά είναι τα στοιχειώδη σωμάτια και πώς αλληλεπιδρούν μεταξύ τους, έχουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο;

Φυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο; Εκεί, κάτω στον μικρόκοσμο... Από τί αποτελείται ο κόσμος και τί τον κρατάει ενωμένο; Αθανάσιος Δέδες Τμήμα Φυσικής, Τομέας Θεωρητικής Φυσικής, Πανεπιστήμιο Ιωαννίνων 5 Οκτωβρίου 2015 Φυσική Στοιχειωδών

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (18-12- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16 Διάλεξη 20: Διαγράμματα Feynman Ισχυρές αλληλεπιδράσεις Όπως στην περίπτωση των η/μ αλληλεπιδράσεων έτσι και στην περίπτωση των ισχυρών αλληλεπιδράσεων υπάρχει η αντίστοιχη αναπαράσταση μέσω των διαγραμμάτων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Φλοιώδης Δομή των Πυρήνων Η σύζευξη Spin Τροχιάς (L S)( Διέγερση και Αποδιέγερση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι c. Να λύσετε

Διαβάστε περισσότερα

Ομοτιμία Parity Parity

Ομοτιμία Parity Parity Ομοτιμία Parity Ο μετασχηματισμός της Parity, αντιστρέφει κάθε χωρική συντεταγμένη. P(t,x) (t,-x), ή Pψ(r) ψ(-r) που αντιστοιχεί σε ανάκλαση και μετά στροφή 18 ο. αν επαναλάβουμε την διαδικασία προφανώς

Διαβάστε περισσότερα

Μάθημα 7o Οπτικό θεώρημα και Συντονισμοί 23/4/2015

Μάθημα 7o Οπτικό θεώρημα και Συντονισμοί 23/4/2015 Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7o Οπτικό θεώρημα και Συντονισμοί 23/4/2015 Οπτικό θεώρημα: Τι θα συζητήσουμε σήμερα Η ολική ενεργός διατομή έχει άνω όριο Η ολική ενεργός διατομή

Διαβάστε περισσότερα

Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης

Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης Σκέδαση Δομή Διάλεξης Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης Κβαντική θεωρία σκέδασης Πλάτος σκέδασης Υπολογισμός διατομής σκέδασης με την μέθοδο στοιχειωδών κυμάτων (partial waves) Υπολογισμός

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 ΔΥΟ Μεγάλες, απλές κατηγοριοποιήσεις σωματίων, Ι. Φερμιόνια Μποζόνια Στατιστική Συμπεριφορά Νόμοι διατήρησης. Τα φερμιόνια δεν «καταστρέφονται»

Διαβάστε περισσότερα

Μάθημα 6o Οπτικό θεώρημα και Συντονισμοί 10/4/2014

Μάθημα 6o Οπτικό θεώρημα και Συντονισμοί 10/4/2014 Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6o Οπτικό θεώρημα και Συντονισμοί 10/4/014 Οπτικό θεώρημα: Συντονισμοί Τι θα συζητήσουμε σήμερα Η ολική ενεργός διατομή μπορεί να βρεθεί γνωρίζοντας

Διαβάστε περισσότερα

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο γ - διάσπαση Δήμος Σαμψωνίδης (6-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές

Διαβάστε περισσότερα

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο γ - διάσπαση Δήμος Σαμψωνίδης (21-11- 2017) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας

Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας 1 Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας Σκοπός της δέκατης διάλεξης: 10/11/12 Η κατανόηση των εννοιών της ολικής ενέργειας, της κινητικής ενέργειας και της ορμής στην ειδική θεωρία της

Διαβάστε περισσότερα

( ) Φ.27 είξετε ότι, για ένα σωµατίδιο µε µάζα ηρεµίας m 0, το οποίο κινείται µε ταχύτητα υκαι έχει ορµή pκαι κινητική ενέργεια Κ, ισχύει η σχέση ΛΥΣΗ

( ) Φ.27 είξετε ότι, για ένα σωµατίδιο µε µάζα ηρεµίας m 0, το οποίο κινείται µε ταχύτητα υκαι έχει ορµή pκαι κινητική ενέργεια Κ, ισχύει η σχέση ΛΥΣΗ Φ.7 είξετε ότι, για ένα σωµατίδιο µε µάζα ηρεµίας m 0, το οποίο κινείται µε ταχύτητα υκαι έχει ορµή pκαι κινητική ενέργεια Κ, ισχύει η σχέση pυ = + / K + K m c Η κινητική ενέργεια του σωµατιδίου είναι

Διαβάστε περισσότερα

Σχετικιστικές συμμετρίες και σωμάτια

Σχετικιστικές συμμετρίες και σωμάτια Κεφάλαιο 1 Σχετικιστικές συμμετρίες και σωμάτια 1.1 Η συμμετρία Πουανκαρέ 1.1.1 Βασικοί ορισμοί και ιδιότητες Η θεμελιώδης κινηματική συμμετρία για ένα φυσικό σύστημα είναι η συμμετρία των μετασχηματισμών

Διαβάστε περισσότερα

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 Εκπομπή και απορρόφηση ακτινοβολίας ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ Στέλιος Τζωρτζάκης 1 3 4 Ηλεκτρομαγνητικά πεδία Απορρόφηση είναι Σε αυτή τη διαδικασία το ηλεκτρόνιο

Διαβάστε περισσότερα

( x) (( ) ( )) ( ) ( ) ψ = 0 (1)

( x) (( ) ( )) ( ) ( ) ψ = 0 (1) ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΘΕΣΗΣ ΟΡΜΗΣ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ Στην προηγούµενη ανάρτηση, δείξαµε ότι η κατάσταση είναι κατάσταση ελάχιστης αβεβαιότητας των µη µετατιθέµενων ερµιτιανών τελεστών

Διαβάστε περισσότερα

5. ΣΧΕΤΙΚΙΣΤΙΚΗ ΥΝΑΜΙΚΗ

5. ΣΧΕΤΙΚΙΣΤΙΚΗ ΥΝΑΜΙΚΗ 5. ΣΧΕΤΙΚΙΣΤΙΚΗ ΥΝΑΜΙΚΗ Σχετικιστικήµάζα. Σχετικιστική ορµή. Αν εξετάσουµε µια σύγκρουση δύο µαζών σε ένα αδρανειακό σύστηµα αναφοράς και επιβάλουµε τη διατήρηση της ορµής, όπως αυτή ορίζεται στην κλασική

Διαβάστε περισσότερα

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου γ-διάσπαση Διάλεξη 17η Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου 1 Τι θα μάθουμε σήμερα 2 Τι είναι η γ-διάσπαση γ-αποδιέγερση ηλεκτρόνια εσωτερικών μετατροπών εσωτερική δημιουργία ζεύγους (e + e - ) Πως προκύπτει?

Διαβάστε περισσότερα

Ο Πυρήνας του Ατόμου

Ο Πυρήνας του Ατόμου 1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.

Διαβάστε περισσότερα

ΤΟ ΜΟΝΤΕΛΟ ΤΩΝ ΠΑΡΤΟΝΙΩΝ

ΤΟ ΜΟΝΤΕΛΟ ΤΩΝ ΠΑΡΤΟΝΙΩΝ ΤΟ ΜΟΝΤΕΛΟ ΤΩΝ ΠΑΡΤΟΝΙΩΝ Παρουσίαση στα πλαίσια του Μεταπτυχιακού Μαθήματος: Στοιχειώδη Σωμάτια Υπεύθ. Καθηγήτρια: Μ. Σπυροπούλου - Στασινάκη 05.0.008 Σύνοψη Παρουσίασης Εισαγωγή Ελαστική σκέδαση e-μ-->e-μ

Διαβάστε περισσότερα

ΦΥΣ Διαλ Δυναµική

ΦΥΣ Διαλ Δυναµική ΦΥΣ 131 - Διαλ.08 1 Δυναµική Ø F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Ø Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Ø Γιατί σώµατα κινούνται µε το τρόπο που κινούνται q Θεµελιώδεις νόµοι της µηχανικής:

Διαβάστε περισσότερα

Απώλεια Ενέργειας λόγω Ιονισμού

Απώλεια Ενέργειας λόγω Ιονισμού Απώλεια Ενέργειας λόγω Ιονισμού Τύπος Bethe-Bloh β=υ/, z ο ατομικός αριθμός του υλικού, ενώ το I εξαρτάται απ την ενέργεια ιονισμού του ατόμου. Απώλειες ενέργειας φορτισμένων σωματιδίων Ιονισμός Σχετικιστική

Διαβάστε περισσότερα

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15 Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων

Διαβάστε περισσότερα

ΟΠΤΙΚΟ ΘΕΩΡΗΜΑ (Optical Theorem)

ΟΠΤΙΚΟ ΘΕΩΡΗΜΑ (Optical Theorem) ΟΠΤΙΚΟ ΘΕΩΡΗΜΑ (Optica heorem Συνδέει την ολική ενεργό διατοµή σκέδασης µε το φανταστικό µέρος του πρόσω πλάτους ελαστικής σκέδασης (Forward eastic scattering Im k 4& F (' % "#$? ελαστ. k / (κυµατάριθµος

Διαβάστε περισσότερα

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης. Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,

Διαβάστε περισσότερα

Η κλασσική, η σχετικιστική και η κβαντική προσέγγιση. Θωµάς Μελίστας Α 3

Η κλασσική, η σχετικιστική και η κβαντική προσέγγιση. Θωµάς Μελίστας Α 3 Η κλασσική, η σχετικιστική και η κβαντική προσέγγιση Θωµάς Μελίστας Α 3 Σύµφωνα µε την κλασσική µηχανική και την γενική αντίληψη η µάζα είναι µία εγγενής ιδιότητα των φυσικών σωµάτων. Μάζα είναι η ποσότητα

Διαβάστε περισσότερα

ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 5 Απρίλη 2015 Φως - Ατοµικά Φαινόµενα - Ακτίνες Χ

ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 5 Απρίλη 2015 Φως - Ατοµικά Φαινόµενα - Ακτίνες Χ ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 5 Απρίλη 2015 Φως - Ατοµικά Φαινόµενα - Ακτίνες Χ Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς

Διαβάστε περισσότερα

ΚΩΝΣΤΑΝΤΙΝΟς Ε. ΒΑΓΙΟΝΑΚΗς. Καθηγητής Πανεπιστημίου Ιωαννίνων ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ. Μια Εισαγωγή στη Βασική Δομή της Ύλης

ΚΩΝΣΤΑΝΤΙΝΟς Ε. ΒΑΓΙΟΝΑΚΗς. Καθηγητής Πανεπιστημίου Ιωαννίνων ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ. Μια Εισαγωγή στη Βασική Δομή της Ύλης ΚΩΝΣΤΑΝΤΙΝΟς Ε. ΒΑΓΙΟΝΑΚΗς Καθηγητής Πανεπιστημίου Ιωαννίνων ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ Μια Εισαγωγή στη Βασική Δομή της Ύλης πανεπιστημιακεσ ΕΚΔΟΣΕΙς Ε.Μ.Π. Κωνσταντίνος Ε. Βαγιονάκης Σωματιδιακή Φυσική, Μια

Διαβάστε περισσότερα

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες ΦΥΣ 211 - Διαλ.06 1 Ανακεφαλαίωση Τι είδαμε μέχρι τώρα: q Συζητήσαμε συστήματα πολλών σωμάτων Ø Εσωτερικές και εξωτερικές δυνάμεις Ø Νόμους δράσης-αντίδρασης Ø Ορμές, νόμους διατήρησης (γραμμική ορμή,

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Οπτικό θεώρημα και συντονισμοί

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Οπτικό θεώρημα και συντονισμοί Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Οπτικό θεώρημα και συντονισμοί Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 21 Μαρτίου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 2013 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 213 Τα δεδομένα όλων των ερωτημάτων αναφέρονται σε σύστημα μονάδων όπου η ταχύτητα του φωτός c είναι ίση με 1. Σας προτρέπουμε

Διαβάστε περισσότερα