Προσομοίωση ΚΕΦΑΛΑΙΟ 7

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προσομοίωση ΚΕΦΑΛΑΙΟ 7"

Transcript

1 ΚΕΦΑΛΑΙΟ 7 Προσομοίωση 7.1 Συστήματα και πρότυπα συστημάτων 7.2 Η διαδικασία της προσομοίωσης 7.3 Ανάπτυξη προτύπων διακριτών γεγονότων 7.4 Τυχαίοι αριθμοί 7.5 Δείγματα από τυχαίες μεταβλητές 7.6 Προσομοίωση Monte-Carlo 7.7 Ανάπτυξη προγραμμάτων προσομοίωσης 7.8 Ανάλυση των αποτελεσμάτων προσομοίωσης

2 Προσομοίωση Προσομοίωση Στα προηγούμενα κεφάλαια έγινε αναφορά σε μαθηματικά πρότυπα συγκεκριμένων κατηγοριών προβλημάτων, όπως επίσης και στις τεχνικές επίλυσής τους. Πολλά προβλήματα όμως δεν μπορούν να επιλυθούν αναλυτικά. Στις περιπτώσεις αυτές επιδιώκεται η πειραματική τους αντιμετώπιση. Αυτό σημαίνει ότι αν, για παράδειγμα, σε ένα πρόβλημα υπάρχουν πολλές εναλλακτικές αποφάσεις (λύσεις), εξετάζονται κάποιες από αυτές μία προς μία και καταγράφονται τα αποτελέσματά τους. Η καλύτερη απόφαση είναι εκείνη που οδηγεί στο καλύτερο αποτέλεσμα, σύμφωνα με κάποιο κριτήριο. Ωστόσο, η πραγματοποίηση πειραματισμών σε ένα πραγματικό σύστημα μπορεί να μην είναι εφικτή ή να είναι ιδιαίτερα δαπανηρή και χρονοβόρα. Έτσι, όταν η επίλυση ενός προβλήματος δεν μπορεί να πραγματοποιηθεί διαμέσου κάποιου μαθηματικού προτύπου, αλλά ούτε και με πειράματα στο πραγματικό σύστημα, τότε αναπαράγεται τεχνητά η πραγματική κατάσταση με κάποιο πρότυπο που δημιουργείται με τη χρήση Η/Υ και γίνονται δοκιμές σε αυτό. Η διαδικασία αυτή λέγεται προσομοίωση. Γενικά, αν το μαθηματικό πρότυπο που περιγράφει ένα σύστημα δεν μπορεί να επιλυθεί αναλυτικά, τότε εφαρμόζονται αριθμητικές μέθοδοι. Τέτοιες μέθοδοι είναι η αριθμητική ανάλυση και η προσομοίωση. Ειδικά η προσομοίωση συνίσταται στην ανάπτυξη ενός προτύπου, με τη μορφή ενός προγράμματος σε υπολογιστή, που περιγράφει το σύστημα που εξετάζεται και δίνει τη δυνατότητα να εκτελούνται πειράματα που καταγράφουν την εξέλιξή του, στο χρόνο. Ο όρος προσομοίωση (simulation) συγχέεται συχνά με τον όρο εξομοίωση (emulation), αν και οι όροι αυτοί υποδηλώνουν τελείως διαφορετικές μεθοδολογίες. Η προσομοίωση είναι μέθοδος μελέτης ενός συστήματος με τη βοήθεια ενός άλλου συστήματος, το οποίο συνήθως είναι ο υπολογιστής. Η εξομοίωση είναι μέθοδος αναπαραγωγής ενός συστήματος παρόμοιου με το αρχικό. Είναι φανερό ότι κατά την προσομοίωση δεν υλοποιείται το πραγματικό σύστημα, διότι σκοπός είναι η μελέτη κι όχι η χρήση του. Αντίθετα, κατά την εξομοίωση, υπάρχει η εντύπωση υλοποίησης του πραγματικού συστήματος, επειδή σκοπός είναι η χρήση του. Το εύρος των εφαρμογών της προσομοίωσης είναι δύσκολο να προσδιοριστεί με ακρίβεια. Η δυσκολία αυτή οφείλεται στη γενικότητα της μεθόδου, η οποία επιτρέπει την εφαρμογή της σε ένα τεράστιο φάσμα προβλημάτων. Αυτό όμως δε σημαίνει ότι η προσομοίωση πρέπει να εφαρμόζεται σε όλα τα προβλήματα. Για κάθε περίπτωση, η ανάγκη για την εφαρμογή ή όχι της μεθόδου προσδιορίζεται από τα χαρακτηριστικά του συστήματος που πρόκειται να μελετηθεί και το είδος του προβλήματος, στο οποίο πρέπει να βρεθεί λύση. Η προσομοίωση χρησιμοποιείται για: τη μελέτη της συμπεριφοράς ενός συστήματος 323

3 Κεφάλαιο 7 τον έλεγχο υποθέσεων ή θεωριών για την παρατηρούμενη συμπεριφορά του την πρόβλεψη ή εκτίμηση της μελλοντικής του συμπεριφοράς. Με την προσομοίωση μπορεί επιπλέον να αξιολογηθεί η αποτελεσματικότητα ή η απόδοση ενός συστήματος, πριν αυτό κατασκευαστεί, με σκοπό τη βέλτιστη σχεδίαση και χρήση του. Κάποιες από τις εφαρμογές της προσομοίωσης αφορούν στην ανάλυση και σχεδίαση συστημάτων παραγωγής (βιομηχανία) στον έλεγχο αποθεμάτων (βιομηχανία, εμπορικές επιχειρήσεις) στη μελέτη κυκλοφοριακών συστημάτων (οδικό, θαλάσσιο, εναέριο δίκτυο) στη μελέτη συστημάτων εξυπηρέτησης πελατών (τράπεζες, νοσοκομεία, τηλεπικοινωνίες, δίκτυα υπολογιστών) στην αξιολόγηση αποφάσεων κάτω από συνθήκες αβεβαιότητας (επενδύσεις, μάρκετινγκ) Επειδή στη συνέχεια χρησιμοποιούνται συχνά οι όροι του συστήματος και του προτύπου (μοντέλου), κρίνεται σκόπιμο αυτοί να αναλυθούν περισσότερο. 7.1 Συστήματα και πρότυπα συστημάτων Με τον όρο σύστημα εννοείται ένα σύνολο στοιχείων, τα οποία εξελίσσονται στο χρόνο και αλληλεπιδρούν σύμφωνα με κάποιους κανόνες για την επίτευξη κάποιου σκοπού. Η μελέτη συστημάτων αφορά τόσο στην ανάλυσή τους, όταν πρόκειται για υπάρχοντα συστήματα, όσο και στη σύνθεσή τους, όταν πρόκειται για συστήματα που σχεδιάζονται. Η ανάλυση χρησιμοποιείται, όταν είναι γνωστά τα στοιχεία του συστήματος και επιδιώκεται να διαπιστωθεί η λειτουργία του και να καθοριστεί η έξοδος του, δεδομένης της εισόδου. Η σύνθεση περιλαμβάνει τον καθορισμό των στοιχείων του συστήματος, όταν είναι γνωστή η είσοδος και η αντίστοιχη έξοδος του και χρησιμοποιείται κατά το σχεδιασμό του συστήματος. Τα βασικά χαρακτηριστικά ενός συστήματος είναι τα στοιχεία του, οι σχέσεις ανάμεσα σε αυτά και ο σκοπός του. Σχήμα 7.1: Διάγραμμα συστήματος Στοιχεία ενός συστήματος είναι εκείνες οι οντότητες που αναγνωρίζονται ανεξάρτητα και που η συλλογική τους λειτουργία καθορίζει το αποτέλεσμα του συστήματος. Για παράδειγμα, σε ένα σύστημα παραγωγής τα στοιχεία είναι οι εργαζόμενοι, οι κτηριακές εγκαταστάσεις, τα μηχανήματα, οι πρώτες ύλες κ.λπ. Τα στοιχεία ενός συστήματος έχουν διάφορες ιδιότητες, όπως η κατάσταση μιας μηχανής (χαλασμένη ή σε λειτουργία), ο αριθμός των εργαζομένων, η στάθμη του αποθέματος στους χώρους αποθήκευσης κ.λπ. Κάθε φορά λαμβάνονται υπόψη εκείνες οι ιδιότητες που έχουν σημασία για το συγκεκριμένο πρόβλημα που μελετάται. Ο τιμές των 324

4 Προσομοίωση μεταβλητών, που συμβολίζουν τις ιδιότητες των στοιχείων του συστήματος κάποια χρονική στιγμή, ορίζουν την κατάσταση του συστήματος. Συνεπώς, κατάσταση του συστήματος είναι το σύνολο των μεταβλητών, οι οποίες δίνουν την απαραίτητη πληροφορία για την περιγραφή του συστήματος. Όπως θα γίνει αντιληπτό στη συνέχεια, η προσομοίωση ασχολείται ακριβώς με την παρακολούθηση της κατάστασης ενός συστήματος, όπως αυτή μεταβάλλεται με την πάροδο του χρόνου. Η κατάσταση ενός συστήματος όμως, μπορεί να εξαρτάται κι από παράγοντες εκτός συστήματος. Για το λόγο αυτό, ορίζεται ως περιβάλλον του συστήματος το σύνολο των μεταβολών που συμβαίνουν εκτός συστήματος. Στοιχεία, για παράδειγμα, έξω από το σύστημα παραγωγής μπορεί να είναι οι πελάτες, οι προμηθευτές, οι ανταγωνιστικές εταιρείες κ.λπ. Οι δραστηριότητες που λαμβάνουν χώρα μέσα στο σύστημα ονομάζονται ενδογενείς, ενώ οι δραστηριότητες που συμβαίνουν στο περιβάλλον του συστήματος, αλλά επηρεάζουν το σύστημα, ονομάζονται εξωγενείς. Επίσης, οι δραστηριότητες χωρίζονται σε καθοριστικές (ή ντετερμινιστικές) και στοχαστικές ανάλογα με τον τρόπο ορισμού των αποτελεσμάτων τους. Τα αποτελέσματα μιας καθοριστικής δραστηριότητες μπορούν να περιγραφούν πλήρως από την είσοδο. Δηλαδή για κάθε είσοδο, η έξοδος του συστήματος είναι συγκεκριμένη και προσδιορισμένη. Αντίθετα, τα αποτελέσματα μιας στοχαστικής δραστηριότητας δεν μπορούν να προσδιοριστούν πλήρως από την είσοδο, αλλά μεταβάλλονται τυχαία μέσα σε ένα σύνολο δυνατών αποτελεσμάτων. Αυτό σημαίνει ότι για δεδομένη είσοδο υπάρχουν πολλαπλά σύνολα εξόδων και αυτό που συμβαίνει κάθε φορά είναι αποτέλεσμα τυχαίων παραγόντων. Οι σχέσεις ανάμεσα στα στοιχεία ενός συστήματος περιγράφουν τον τρόπο αλληλεπίδρασης των οντοτήτων ή τις μαθηματικές σχέσεις που σχετίζουν μια μεταβλητή ή μια παράμετρο με μία άλλη μεταβλητή ή παράμετρο. Οι περιοριστικές συνθήκες προσδιορίζουν τις μέγιστες ή τις ελάχιστες τιμές που μπορούν να λαμβάνουν οι άγνωστες μεταβλητές. Τέλος, ο σκοπός ή στόχος ενός συστήματος εκφράζεται με μια συνάρτηση, καθώς και τον τρόπο εκτίμησής της. Τα συστήματα χωρίζονται σε κατηγορίες ανάλογα με τις μεταβολές της κατάστασης τους ή τη σχέση τους με το περιβάλλον. Συγκεκριμένα, όσον αφορά τις μεταβολές της κατάστασης, διακρίνονται σε διακριτά ή συνεχή. Διακριτό είναι ένα σύστημα, στο οποίο οι μεταβλητές που περιγράφουν την κατάστασή του αλλάζουν σε πεπερασμένο αριθμό χρονικών στιγμών. Η κατάσταση του συστήματος αλλάζει ό- ταν τελειώνει μια δραστηριότητα (π.χ. στο σύστημα εξυπηρέτησης πελατών μιας τράπεζας). Συνεχές είναι το σύστημα, στο οποίο οι μεταβλητές που περιγράφουν την κατάστασή του αλλάζουν συνεχώς στο χρόνο (π.χ. στην πτήση ενός αεροπλάνου είναι μεταβλητή τόσο η θέση του, όσο και η ταχύτητά του). Όσον αφορά τη σχέση του συστήματος με το περιβάλλον, τα συστήματα διακρίνονται σε ανοικτά ή κλειστά. Ένα σύστημα λέγεται ανοικτό, αν επηρεάζεται από εξωγενείς δραστηριότητες, ενώ αν δεν επηρεάζεται, ονομάζεται κλειστό. Ως πρότυπο μπορεί να οριστεί οτιδήποτε αναπαριστά κάτι άλλο. Ο ορισμός αυτός όμως είναι πολύ γενικός και μπορεί να συμπεριλάβει ακόμα και χάρτες, γραφικές παραστάσεις κ.λπ. Η έννοια που ενδιαφέρει εδώ είναι τα μαθηματικά πρότυπα, δη- 325

5 Κεφάλαιο 7 λαδή τα πρότυπα που αποτελούνται από μαθηματικά σύμβολα ή και λογικά διαγράμματα. Η λέξη πρότυπο τονίζει το γεγονός ότι δε μελετάται το ίδιο το σύστημα αλλά μια αναπαράστασή του. Συνεπώς, πρότυπο ή μοντέλο είναι μια αναπαράσταση ενός φυσικού συστήματος ή οργανισμού ή φυσικού φαινομένου ή ακόμα και μιας ιδέας, που δημιουργείται με σκοπό τη μελέτη του συστήματος αυτού. Μετά την οριοθέτηση του συστήματος, με την αναγνώριση των στοιχείων του και των ιδιοτήτων τους, πρέπει να διαμορφωθεί ένα πρότυπο που να αντιπροσωπεύει το σύστημα, όσο πιο πιστά γίνεται, ακόμα κι αν αυτό δεν μπορεί να επιλυθεί. Η μελέτη του προτύπου έχει ως στόχο την εξαγωγή συμπερασμάτων για το σύστημα. Τα πρότυπα στα πλαίσια της προσομοίωσης δε λύνονται, αλλά «εκτελούνται» όσο χρειάζεται, για να προσδιοριστεί κάποιο μέτρο αξιολόγησης της λειτουργίας του συστήματος που περιγράφουν. Τα πρότυπα διακρίνονται σε καθοριστικά (ή ντετερμινιστικά), στοχαστικά, στατικά και δυναμικά. Στα πρώτα δεν περιλαμβάνονται τυχαίες μεταβλητές, ενώ στα στοχαστικά υπάρχει τουλάχιστον μία τυχαία μεταβλητή. Στατικά είναι τα πρότυπα, τα ο- ποία δεν εμφανίζουν εξέλιξη (δεν μεταβάλλονται) με την πάροδο του χρόνου, ενώ δυναμικά είναι τα πρότυπα, στα οποία η κατάσταση του συστήματος είναι συνάρτηση του χρόνου. Τα δυναμικά πρότυπα διακρίνονται σε διακριτού χρόνου, συνεχούς χρόνου και υβριδικά. Στα πρότυπα διακριτού χρόνου, η κατάσταση μεταβάλλεται βηματικά (απότομα) σε διακριτές χρονικές στιγμές, ενώ παραμένει σταθερή στα ενδιάμεσα διαστήματα. Στα πρότυπα συνεχούς χρόνου η κατάσταση είναι συνεχής συνάρτηση του χρόνου και η διαχρονική συμπεριφορά τους περιγράφεται συνήθως από διαφορικές εξισώσεις. Στην πράξη, σπάνια συναντώνται αμιγώς διακριτά ή αμιγώς συνεχή συστήματα. Στα συνήθη συστήματα, η κατάσταση είναι κατά διαστήματα συνεχής συνάρτηση του χρόνου και κάποιες χρονικές στιγμές παρουσιάζει βηματικές (απότομες) μεταβολές. Τα συστήματα αυτά ονομάζονται υβριδικά. Η κατασκευή προτύπων προσομοίωσης είναι δύσκολη, γιατί πρέπει να εξισορροπήσει αντικρουόμενους παράγοντες. Το πρότυπο πρέπει να είναι αρκετά απλό, ώστε να μπορεί να κατασκευαστεί και να μελετηθεί, ενώ ταυτόχρονα πρέπει να είναι αρκετά πολύπλοκο, ώστε να αντιπροσωπεύει όσο πιο πιστά γίνεται το σύστημα που πρόκειται να μελετηθεί. Η ισορροπία αυτή μπορεί να επιτευχθεί με προσεκτική ανάλυση του προτύπου. Ένα «καλό» πρότυπο, όχι μόνο αντιπροσωπεύει πιστότερα το σύστημα από ένα «κακό», αλλά βοηθά περισσότερο στην κατανόηση των λειτουργιών του συστήματος και στην ανάλυση των αποτελεσμάτων της προσομοίωσης. Γενικά, τα καλά πρότυπα είναι εύκολα στην κατανόηση από το χρήστη, προσανατολίζονται στους σκοπούς ή στόχους που έχουν τεθεί και δε δίνουν περίεργες και δυσνόητες απαντήσεις. Επίσης, για τα καλά πρότυπα υπάρχουν εύκολες και ακριβείς διαδικασίες τροποποίησης ή ενημέρωσής τους και παρέχουν τη δυνατότητα εξέλιξής τους. Δηλαδή, ξεκινούν από μια απλή μορφή και εξελίσσονται σε μια πιο πολύπλοκη, ανάλογα με τη λεπτομέρεια που επιθυμεί να μελετήσει ο χρήστης. 326

6 Προσομοίωση Πριν γραφεί το απαραίτητο πρόγραμμα στον υπολογιστή, πρέπει πάντα να ελέγχεται το πρότυπο που διαμορφώνεται. Ο έλεγχος του προτύπου σε αυτό το στάδιο είναι εξαιρετικά δύσκολος, όμως πρέπει να πραγματοποιείται οπωσδήποτε. Συνήθως γίνονται μικροί υπολογισμοί με βάση το πρότυπο και ελέγχεται κατά πόσο τα αποτελέσματα είναι λογικά και το πρότυπο πλήρες. Κάνοντας τους παραπάνω ελέγχους, δεν πρέπει να αγνοείται ότι η αξία ενός προτύπου προσομοίωσης καθορίζεται από την ακρίβεια, με την οποία αυτό μπορεί να προβλέψει τη συμπεριφορά του συστήματος που περιγράφει. Ο καλύτερος τρόπος να γίνει αυτός ο έλεγχος είναι να δημιουργηθεί με την προσομοίωση το «παρελθόν» του συστήματος. Αυτό σημαίνει ότι, γίνεται η υπόθεση ότι η ιστορία του συστήματος δεν είναι γνωστή για μια ορισμένη περίοδο του παρελθόντος, αλλά δημιουργείται με προσομοίωση και συγκρίνεται με την πραγματική. 7.2 Η διαδικασία της προσομοίωσης Όπως ήδη αναφέρθηκε, η προσομοίωση μπορεί να χρησιμοποιηθεί για την επίλυση πληθώρας πραγματικών προβλημάτων που πολλές φορές είναι εξαιρετικά ανομοιογενή μεταξύ τους. Έτσι, δεν μπορεί να εφαρμοστεί σε κάθε περίπτωση με τον ίδιο τρόπο. Ωστόσο, σε γενικές γραμμές ακολουθούνται ορισμένα στάδια. Αυτά α- ναφέρονται στη συνέχεια, έστω κι αν είναι ενδεικτικά, και πρέπει να προσαρμόζονται κάθε φορά στις πραγματικές συνθήκες των προβλημάτων που αντιμετωπίζονται Διαμόρφωση του προβλήματος Για να χρησιμοποιηθεί η προσομοίωση ως μεθοδολογικό εργαλείο, πρέπει να καθοριστούν με πληρότητα και ακρίβεια οι στόχοι του προβλήματος. Πολλές φορές αυτό δεν είναι εύκολο να γίνει. Όμως, ακόμα και σε αυτές τις περιπτώσεις, καθορίζονται αρχικά, όσο καλύτερα γίνεται, και στη συνέχεια μπορούν να τροποποιηθούν. Γενικά, οι στόχοι εντάσσονται στις εξής κατηγορίες: α) ερωτήματα που πρέπει να απαντηθούν. Για παράδειγμα, πόσοι εργαζόμενοι χρειάζονται σε μια επιχείρηση για ένα συγκεκριμένο χρονικό διάστημα; πόσες πτήσεις μπορούν να πραγματοποιηθούν σε ένα αεροδρόμιο στη διάρκεια μιας μέρας; πόσοι πελάτες μπορούν να εξυπηρετηθούν ημερησίως σε μια τράπεζα; ποιο είναι το βέλτιστο πλάνο παραγωγής ενός εργοστασίου; κ.λπ. β) υποθέσεις που πρέπει να ελεγχθούν. Για παράδειγμα, οι αρχικές συνθήκες επηρεάζουν τα αποτελέσματα της προσομοίωσης; η αύξηση του χρόνου παραγγελίας επηρεάζει σημαντικά το κόστος παραγωγής; κ.λπ. γ) χαρακτηριστικά που πρέπει να εκτιμηθούν. Για παράδειγμα, εκτίμηση του χρόνου αναμονής των πελατών για διαφορετικούς χρόνους ανάμεσα στις αφίξεις, εκτίμηση του νεκρού χρόνου μιας μηχανής για διαφορετικούς ρυθμούς παραγωγής κ.λπ. Ταυτόχρονα με τον καθορισμό των στόχων, πρέπει να αποφασίζονται και τα κριτήρια που θα χρησιμοποιηθούν για τη μέτρηση της αποτελεσματικότητας του συστήματος που προσομοιώνεται. Εκτός από τα κριτήρια μείωσης του κόστους ή αύ- 327

7 Κεφάλαιο 7 ξησης του κέρδους, μπορούν να χρησιμοποιηθούν πολλά άλλα για την αξιολόγηση της συμπεριφοράς του συστήματος, όπως η συνολική καθυστέρηση παραγγελιών, ο συνολικός νεκρός χρόνος, οι απώλειες υλικών, η ποιότητα προϊόντων, ο αριθμός ατυχημάτων κ.λπ. Αφού καθοριστούν ο στόχος και τα κριτήρια, πρέπει να περιγραφεί το σύστημα και να αναγνωριστούν οι απλοποιήσεις και οι υποθέσεις που έχουν γίνει Κατασκευή προτύπου προσομοίωσης Για την κατασκευή του προτύπου είναι απαραίτητη η κατανόηση της δομής του συστήματος και των κανόνων που ακολουθεί η λειτουργία του. Τα στοιχεία, οι μεταβλητές, οι παράμετροι και οι σχέσεις τους που περιγράφουν το σύστημα πρέπει να συνδεθούν, ώστε να δημιουργηθεί ένα μαθηματικό πρότυπο που να είναι ρεαλιστική απομίμηση του συστήματος. Η διαδικασία αυτή περιλαμβάνει τα εξής στάδια: α) καθορισμό των στοιχείων του συστήματος, β) περιγραφή της λειτουργίας κάθε στοιχείου και των αλληλεπιδράσεων μεταξύ των στοιχείων ή με άλλα λόγια προσδιορισμό των δραστηριοτήτων του συστήματος. Τα στάδια αυτά δεν είναι ανεξάρτητα μεταξύ τους και κατά τη διάρκεια της κατασκευής και επαλήθευσης του προτύπου είναι αναγκαίο να επαναληφθούν αρκετές φορές. Κάθε σύστημα αποτελείται από στοιχεία, τα οποία μπορούν να χωριστούν σε κατηγορίες. Τα στοιχεία μιας κατηγορίας δεν είναι αναγκαστικά πανομοιότυπα ακολουθούν όμως, παρόμοιους τρόπους συμπεριφοράς. Για παράδειγμα, στην προσομοίωση ενός σουπερμάρκετ κατηγορίες στοιχείων είναι οι πελάτες και οι ταμίες. Τα αντίστοιχα στοιχεία κάθε κατηγορίας είναι ο πελάτης 1, ο πελάτης 2 κ.λπ. και ο ταμίας Α, ο ταμίας Β κ.λπ. Τα στοιχεία του συστήματος μπορούν ακόμα να έχουν ένα ή περισσότερα χαρακτηριστικά (ιδιότητες), π.χ. άντρας ή γυναίκα, ταμίες που εξυπηρετούν πελάτες με λίγα προϊόντα και ταμίες που εξυπηρετούν πελάτες με πολλά κ.λπ. Επίσης, μπορεί να έχουν και πρόσθετα χαρακτηριστικά, εκτός από τα φυσικά χαρακτηριστικά, όπως ο συνολικός χρόνος παραμονής του πελάτη στο σουπερμάρκετ. Κατά τη διάρκεια της προσομοίωσης, τα στοιχεία του συστήματος είτε θα βρίσκονται σε κάποια λειτουργία, εκτελώντας κάποια δραστηριότητα είτε θα είναι α- δρανή. Το επόμενο βήμα είναι ο προσδιορισμός των δραστηριοτήτων των στοιχείων του συστήματος. Δραστηριότητα είναι γενικά μια ενεργή κατάσταση, στην οποία βρίσκονται ένα ή περισσότερα στοιχεία του συστήματος που συνεργάζονται μεταξύ τους. Κάθε δραστηριότητα έχει χρονική διάρκεια που μπορεί να προσδιοριστεί κατά την έναρξη της. Ο αριθμός των στοιχείων που συνεργάζονται στην εκτέλεση μιας δραστηριότητας παραμένει σταθερός σε όλη τη διάρκειά της και, με εξαίρεση κάποια περίπλοκα πρότυπα, ένα στοιχείο δεν μπορεί να συμμετέχει ταυτόχρονα σε διαφορετικές δραστηριότητες. Οι δραστηριότητες των στοιχείων ενός προτύπου προσομοίωσης διακρίνονται σε δύο κατηγορίες. Στην πρώτη, ανήκουν οι δραστηριότητες που μπορούν να ξεκινήσουν να εκτελούνται ανεξάρτητα από την κατάσταση του συστήματος στη συγκε- 328

8 Προσομοίωση κριμένη χρονική στιγμή (π.χ. η άφιξη ενός πελάτη) και ονομάζονται Β- δραστηριότητες (από το bound activities, οριοθετημένες). Στη δεύτερη κατηγορία, ανήκουν οι δραστηριότητες που δεν μπορούν να εκτελεστούν, αν δεν ικανοποιούνται κάποιες συνθήκες (π.χ. η εξυπηρέτηση ενός πελάτη δεν μπορεί να αρχίσει αν δεν υπάρχει τουλάχιστον ένας διαθέσιμος ταμίας και ένας τουλάχιστον πελάτης σε αναμονή), γι αυτό και ονομάζονται C- δραστηριότητες (από το conditional activities, υπό συνθήκη). Οι δραστηριότητες αυτές απαιτούν τη συνεργασία δύο ή περισσοτέρων στοιχείων του συστήματος και μόνο όταν τα στοιχεία αυτά είναι διαθέσιμα μπορεί να αρχίσει η δραστηριότητα Μηχανισμοί αύξησης του χρόνου Ο καθορισμός των στοιχείων και των δραστηριοτήτων του προτύπου είναι δύο στάδια που διαφέρουν σε κάθε προσομοίωση ανάλογα με το σύστημα που μελετάται. Σε κάθε όμως πρότυπο προσομοίωσης υπάρχουν ορισμένες εργασίες που παραμένουν ίδιες. Η σπουδαιότερη τυπική εργασία, κοινή και απαραίτητη σε κάθε πρότυπο προσομοίωσης, είναι η προσαύξηση του χρόνου. Οι μηχανισμοί χρόνου βασίζονται στα γεγονότα που συμβαίνουν κατά την προσομοίωση. Γεγονός είναι μια αλλαγή της κατάστασης του συστήματος, η οποία συμβαίνει σε κάποια χρονική στιγμή. Το τμήμα της προσομοίωσης που ασχολείται με την παρέλευση του χρόνου ονομάζεται μηχανισμός ροής χρόνου. Το τμήμα αυτό, από τη μια αυξάνει τον προσομοιούμενο χρόνο και από την άλλη προσφέρει τον απαιτούμενο συγχρονισμό ανάμεσα στα υπόλοιπα τμήματα της προσομοίωσης, καθώς εμφανίζονται τα διάφορα γεγονότα. Υπάρχουν δύο βασικοί μηχανισμοί ροής χρόνου: Μηχανισμός επόμενου γεγονότος. Με το μηχανισμό αυτό καθορίζεται η χρονική στιγμή, κατά την οποία θα συμβεί το επόμενο γεγονός και το ρολόι της προσομοίωσης προχωρά σε αυτή η χρονική στιγμή, προσπερνώντας όλο τον ενδιάμεσο χρόνο, στον οποίο δεν συμβαίνει τίποτα. Η εφαρμογή της μεθόδου αυτής προϋποθέτει την ύπαρξη μιας λίστας γεγονότων, όπου καταγράφονται τα γεγονότα που πρόκειται να συμβούν στο μέλλον. Μηχανισμός σταθερού χρονικού διαστήματος. Σύμφωνα με το μηχανισμό αυτό ο χρόνος, δηλαδή το ρολόι της προσομοίωσης, αυξάνει κατά ένα μικρό και σταθερό χρονικό διάστημα. Όλα τα γεγονότα που εμφανίζονται τη συγκεκριμένη χρονική στιγμή, καθώς και όσα συνέβησαν στο διάστημα που μεσολάβησε από την προηγούμενη χρονική στιγμή, θεωρείται ότι συμβαίνουν τη συγκεκριμένη χρονική στιγμή. Το γενικό διάγραμμα του μηχανισμού ροής χρόνου φαίνεται στο σχήμα 7.2. Ο μηχανισμός του επόμενου γεγονότος χρησιμοποιείται κυρίως σε διακριτά συστήματα, ενώ ο μηχανισμός σταθερού χρονικού διαστήματος χρησιμοποιείται για την προσομοίωση συνεχών συστημάτων. 329

9 Κεφάλαιο 7 Σχήμα 7.2: Διάγραμμα ροής προσομοίωσης Για την κατανόηση και σύγκριση των δύο μηχανισμών εξετάζεται το παράδειγμα ενός απλού συστήματος ουράς. Στο σύστημα υπάρχει μία θέση εξυπηρέτησης και η ουρά σχηματίζεται μπροστά από αυτή. Οι πελάτες φτάνουν στο σύστημα και περιμένουν στην ουρά, μέχρι να εξυπηρετηθούν. Μόλις τελειώσει η εξυπηρέτηση ενός πελάτη, αυτός φεύγει από το σύστημα και αρχίζει η εξυπηρέτηση του επόμενου. Οι κατανομές των χρόνων ανάμεσα στις αφίξεις και των χρόνων εξυπηρέτησης είναι γνωστές. Η πειθαρχία της ουράς είναι FCFS και η ουρά έχει άπειρη χωρητικότητα. Σύμφωνα με το μηχανισμό του επόμενου γεγονότος, το ρολόι της προσομοίωσης σταματά μόνο στις χρονικές στιγμές, στις οποίες συμβαίνουν γεγονότα. Τα γεγονότα που συμβαίνουν στο σύστημα είναι οι αφίξεις και οι αναχωρήσεις πελατών. Έστω 330

10 Προσομοίωση ότι οι αρχικές τιμές των χρόνων άφιξης και εξυπηρέτησης των πελατών είναι αυτές που δίνονται στον επόμενο πίνακα. Πελάτης (i) Χρόνος άφιξης (A i ) Χρόνος εξυπηρέτησης (S i ) Οι τιμές αυτές μπορούν να αναπαρασταθούν σε ένα διάγραμμα, όπως φαίνεται στο σχήμα 7.3. Τα βέλη πάνω από τον άξονα του χρόνου υποδηλώνουν τις χρονικές στιγμές αφίξεων Α και αναχωρήσεων D (γεγονότα), ενώ τα βέλη κάτω από τον άξονα υποδηλώνουν τις χρονικές στάσεις του ρολογιού της προσομοίωσης. Σχήμα 7.3: Χρονοδιάγραμμα μηχανισμού επόμενου γεγονότος Στην περίπτωση του μηχανισμού σταθερού χρονικού διαστήματος, το ρολόι της προσομοίωσης αυξάνει κάθε φορά, κατά δεδομένο χρονικό διάστημα. Το διάστημα αυτό θα πρέπει να είναι αρκετά μικρό, ώστε να ελαχιστοποιείται η πιθανότητα να συμβούν κατά τη διάρκειά του δύο ανεξάρτητα γεγονότα. Διαφορετικά, δε θα προσομοιωθεί σωστά η αλληλουχία δύο ή περισσότερων γεγονότων που συμβαίνουν σε αυτό το χρονικό διάστημα, διότι δε θα είναι γνωστό ποιο συνέβη πρώτο και ποιο δεύτερο. Αν για την προσομοίωση θεωρηθεί ότι οι χρόνοι λαμβάνουν ακέραιες τιμές, το διάστημα αυτό μπορεί να τεθεί ίσο με τη χρονική μονάδα. Έτσι, διατηρείται η σωστή αλληλουχία των γεγονότων, επειδή δύο γεγονότα θα συμβούν είτε ταυτόχρονα είτε σε διαφορετικά χρονικά διαστήματα. Στην περίπτωση αυτού του μηχανισμού, οι χρόνοι άφιξης δεν υπολογίζονται κατά την έναρξη, αλλά κατά τη διάρκεια εκτέλεσης της προσομοίωσης. Στο σχήμα 7.4 φαίνεται το χρονικό διάγραμμα της προσομοίωσης, υποθέτοντας ότι οι χρόνοι άφιξης και αναχώρησης είναι οι ίδιοι, ό- πως και στο προηγούμενο παράδειγμα. 331

11 Κεφάλαιο 7 Σχήμα 7.4: Χρονοδιάγραμμα μηχανισμού σταθερού διαστήματος Με το μηχανισμό σταθερού διαστήματος, το ρολόι της προσομοίωσης σταματάει σε όλες τις χρονικές στιγμές που καθορίζονται από το μέγεθος του σταθερού διαστήματος, ανεξάρτητα από το αν συμβαίνει κάποιο γεγονός ή όχι. Το βασικό μειονέκτημα του μηχανισμού αυτού, σε σχέση με το μηχανισμό επόμενου γεγονότος, είναι η άσκοπη αύξηση του ρολογιού προσομοίωσης κατά το σταθερό χρονικό διάστημα και ο συνεχής έλεγχος, για να διαπιστωθεί αν έχει συμβεί κάποιο γεγονός. Αντίθετα, ο μηχανισμός επόμενου γεγονότος μειονεκτεί έναντι του μηχανισμού σταθερού διαστήματος, διότι πρέπει να προγραμματίζονται εξ αρχής τα επόμενα γεγονότα. Η μέθοδος των τριών φάσεων αποτελεί έναν συνδυασμό των δύο παραπάνω μηχανισμών χρόνου. Η μέθοδος αυτή προτάθηκε για πρώτη φορά από τον K.D. Tocher (1963) και, με τις διάφορες παραλλαγές της, θεωρείται η πλέον διαδεδομένη για την αντιμετώπιση του θέματος της προσαύξησης του χρόνου. Σύμφωνα με τη μέθοδο, όταν οριστούν τα στοιχεία και οι δραστηριότητες του συστήματος, η προσομοίωση προχωράει επαναλαμβάνοντας τον παρακάτω κύκλο: Φάση - C Εξετάζονται με τη σειρά όλες οι C-δραστηριότητες, για να διαπιστωθεί ποιες μπορούν να ξεκινήσουν, δηλαδή για ποιες ικανοποιούνται όλες οι προϋποθέσεις. Για τις δραστηριότητες που μπορούν να αρχίσουν, εκτελούνται οι αντίστοιχες εντολές και προσδιορίζονται η χρονική διάρκεια και ο μελλοντικός χρόνος λήξης τους. Φάση - Α Εξετάζονται οι χρόνοι λήξης κάθε δραστηριότητας που βρίσκεται σε εξέλιξη και επιλέγεται ο μικρότερος, δηλαδή ο νωρίτερος χρόνος, στον οποίο λήγει μια δραστηριότητα. Ο χρόνος αυτός ορίζεται ως ο νέος χρόνος προσομοίωσης (ρολόι προσομοίωσης). Φάση - Β Εξετάζονται όλες οι δραστηριότητες και επιλέγονται εκείνες που έχουν χρόνο λήξης ίσο με το νέο χρόνο προσομοίωσης. Για κάθε δραστηριότητα που λήγει, εκτελούνται οι αντίστοιχες εντολές (μεταβολές) που συνεπάγεται η λήξη τους. 332

12 Προσομοίωση Στη συνέχεια επαναλαμβάνεται ο κύκλος από τη φάση-c, μέχρις ότου, στη φάση- Β, να διαπιστωθεί ότι το ρολόι της προσομοίωσης ξεπερνάει τον τελικό χρόνο προσομοίωσης, οπότε αυτή έχει ολοκληρωθεί και σταματά. Η μέθοδος των τριών φάσεων εκμεταλλεύεται ένα από τα βασικά πλεονεκτήματα της μεθόδου επόμενου γεγονότος. Όπως στη μέθοδο του επόμενου γεγονότος δε χρειάζεται κανένας έλεγχος, για να συμβεί το επόμενο γεγονός, έτσι και εδώ ελαχιστοποιούνται οι έλεγχοι για την έναρξη των δραστηριοτήτων. Έχοντας προσδιορίσει τους χρόνους έναρξης των Β-δραστηριοτήτων, δε χρειάζεται έλεγχος αν ικανοποιούνται κάποιες συνθήκες, αλλά αρχίζει η εκτέλεσή τους, μόλις φτάσει ο χρόνος έναρξής τους Μεθοδολογίες προσομοίωσης Η μέθοδος που χρησιμοποιείται, για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το πρότυπο που δημιουργήθηκε για το σύστημα. Στα διακριτά συστήματα, οι αλλαγές της κατάστασης συμβαίνουν μόνο σε συγκεκριμένες χρονικές στιγμές, όταν δηλαδή συμβεί κάποιο γεγονός. Τα γεγονότα αυτά και η αλληλεπίδρασή τους μπορούν να προσομοιωθούν με διάφορους τρόπους. Στην προηγούμενη παράγραφο παρουσιάστηκαν οι μηχανισμοί αύξησης του χρόνου και, συγκεκριμένα, ο μηχανισμός επόμενου γεγονότος και ο μηχανισμός σταθερού διαστήματος. Οι ορισμοί των μηχανισμών αυτών συμπίπτουν με τους ορισμούς του McDougall (1975), ο οποίος τους επεκτείνει ως μεθοδολογίες προσομοίωσης, ορίζοντας έτσι την προσομοίωση γεγονότων (εκτιμάται το πρότυπο μόνο όταν αλλάζει η τιμή κάποιας παραμέτρου του) και την προσομοίωση δραστηριοτήτων (εκτιμάται το πρότυπο σε σταθερά χρονικά διαστήματα). Η μέθοδος των τριών φάσεων αποτελεί συνδυασμό των μεθόδων προσομοίωσης γεγονότων και δραστηριοτήτων. Επίσης, μια εντελώς διαφορετική τεχνική προσομοίωσης είναι η προσομοίωση διεργασιών, η οποία βασίζεται στην εκτέλεση εργασιών που περιγράφουν την προσομοίωση ανεξάρτητων στοιχείων ή τμημάτων του προτύπου. Τα γεγονότα θεωρούνται εσωτερικά σε κάθε τμήμα και απομονώνονται από τα γεγονότα που συμβαίνουν σε άλλα τμήματα του προτύπου. Άλλοι τύποι προσομοίωσης είναι οι εξής: Συνεχής προσομοίωση: Οι μεταβλητές κατάστασης του συστήματος αλλάζουν συνεχώς στο χρόνο. Για την επίλυση τέτοιων προβλημάτων χρησιμοποιούνται διαφορικές εξισώσεις. Συνδυασμένη προσομοίωση διακριτού-συνεχούς χρόνου: Υπάρχουν τρεις τύποι αλληλεπίδρασης διακριτών και συνεχών μεταβλητών: α) Ένα διακριτό γεγονός μπορεί να προκαλέσει μια διακριτή μεταβολή στην τιμή μιας συνεχούς μεταβλητής κατάστασης. β) Ένα διακριτό γεγονός μπορεί να μεταβάλλει μια συνεχή μεταβλητή κατάστασης σε ορισμένο χρόνο. γ) Μια συνεχής μεταβλητή κατάστασης μπορεί να προκαλέσει την έναρξη ενός διακριτού γεγονότος ή τον προγραμματισμό του, όταν πάρει την κατάλληλη τιμή. Προσομοίωση Monte-Carlo: Με τον όρο Monte-Carlo χαρακτηρίζεται κάθε πρότυπο προσομοίωσης που χρησιμοποιεί γεννήτριες τυχαίων αριθμών για 333

13 Κεφάλαιο 7 την επίλυση στοχαστικών ή καθοριστικών προβλημάτων, στα οποία ο χρόνος δεν έχει σημασία. Ως γεννήτρια τυχαίων αριθμών μπορεί να θεωρηθεί η ρουλέτα του καζίνου, από το οποίο προέρχεται και το όνομα της μεθόδου. Ένα τυπικό παράδειγμα της μεθοδολογίας είναι ο υπολογισμός ολοκληρώματος. Σε επόμενη παράγραφο γίνεται εκτενέστερη αναφορά στη συγκεκριμένη μέθοδο. 7.3 Ανάπτυξη προτύπων διακριτών γεγονότων Για την πλήρη κατανόηση και την ενοποίηση των ιδεών που αναπτύχθηκαν στα προηγούμενα, εξετάζεται στη συνέχεια η προσομοίωση συστημάτων διακριτών γεγονότων. Αρχικά, γίνεται αναφορά στην οργάνωση και τους παράγοντες ενός γενικού προτύπου προσομοίωσης διακριτών γεγονότων και έπειτα παρουσιάζονται κάποια παραδείγματα τέτοιων συστημάτων. Όλα τα πρότυπα αυτής της μορφής έχουν τους εξής κοινούς παράγοντες: Κατάσταση του συστήματος: πρόκειται για το σύνολο των μεταβλητών κατάστασης που είναι απαραίτητο για την περιγραφή του συστήματος σε κάθε χρονική στιγμή. Ρολόι προσομοίωσης: είναι μια μεταβλητή, η οποία δίνει την τρέχουσα τιμή του προσομοιωμένου χρόνου. Λίστα γεγονότων: είναι μια λίστα που περιλαμβάνει την επόμενη χρονική στιγμή για κάθε τύπο γεγονότος που πρόκειται να συμβεί. Στατιστικοί μετρητές: είναι μεταβλητές που χρησιμοποιούνται για την καταχώρηση στατιστικών πληροφοριών σχετικά με την απόδοση του συστήματος. Ρουτίνα έναρξης: είναι μια υπορουτίνα, η οποία ενεργοποιεί το πρότυπο προσομοίωσης στο χρόνο 0 (αρχικές συνθήκες). Χρονορουτίνα: είναι μια υπορουτίνα, η οποία προσδιορίζει το επόμενο γεγονός από τη λίστα των γεγονότων και στη συνέχεια προσαυξάνει το χρόνο προσομοίωσης, προχωρώντας το ρολόι στη χρονική στιγμή που το γεγονός αυτό θα συμβεί. Ρουτίνα γεγονότος: είναι μια υπορουτίνα, η οποία ενημερώνει την κατάσταση του συστήματος, όταν συμβαίνει κάποιο γεγονός (μια ρουτίνα για κάθε τύπο γεγονότος). Γεννήτρια ενημέρωσης κατάστασης: είναι μια ρουτίνα, η οποία υπολογίζει ε- κτιμητές των επιθυμητών μεγεθών απόδοσης και εκτυπώνει την ανάλογη κατάσταση στο τέλος της προσομοίωσης. Κυρίως πρόγραμμα: είναι ένα υποπρόγραμμα, το οποίο καλεί την χρονορουτίνα, για να καθορίσει το επόμενο γεγονός και στη συνέχεια μεταφέρει τον έ- λεγχο στην αντίστοιχη ρουτίνα γεγονότος, για να ενημερώσει την κατάσταση του συστήματος. 334

14 Προσομοίωση Στο σχήμα 7.5 παρουσιάζεται το λογικό διάγραμμα προσομοίωσης διακριτών γεγονότων Πρότυπο απλού συστήματος εξυπηρέτησης Το σύστημα που εξετάζεται είναι αυτό της ουράς αναμονής με μία θέση εξυπηρέτησης. Τα στάδια κατασκευής του προτύπου, όπως αναφέρθηκαν παραπάνω (παράγραφος 7.2.2), είναι τα εξής: προσδιορισμός των στοιχείων του συστήματος, τα οποία είναι η θέση εξυπηρέτησης (π.χ. ο ταμίας) και οι πελάτες προσδιορισμός των δραστηριοτήτων, οι οποίες είναι άφιξη του πελάτη έναρξη εξυπηρέτησης τέλος εξυπηρέτησης. Υπάρχει μία ουρά αναμονής, όπου βρίσκονται οι πελάτες και περιμένουν να εξυπηρετηθούν. Έστω Q ο αριθμός των πελατών που περιμένουν. Η κατάσταση του συστήματος περιγράφεται από τον αριθμό Q και την κατάσταση, στην οποία βρίσκεται ο ταμίας (ελεύθερος ή απασχολημένος). Οι μεταβολές στο σύστημα, που μπορούν να συμβούν για κάθε δραστηριότητα, είναι οι ακόλουθες: Άφιξη του πελάτη Με την άφιξη ενός πελάτη αυξάνει κατά 1 ο αριθμός των πελατών που περιμένουν, δηλαδή Q = Q+1. Η δραστηριότητα αυτή είναι μια Β-δραστηριότητα, γιατί η άφιξη είναι ανεξάρτητη από την κατάσταση του συστήματος, δηλαδή είναι ανεξάρτητη από τον αριθμό Q και το αν ο ταμίας είναι διαθέσιμος ή απασχολημένος. Στη δραστηριότητα αυτή θα πρέπει να προστεθεί και ο μηχανισμός δημιουργίας αφίξεων. Ο μηχανισμός αυτός κατά την άφιξη ενός πελάτη προσδιορίζει το χρόνο της ε- πόμενης άφιξης, συνήθως με δειγματοληψία από την κατανομή του χρόνου μεταξύ διαδοχικών αφίξεων. Η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν καθορισμένη κατανομή πιθανότητας εξετάζεται σε επόμενη παράγραφο. Έναρξη εξυπηρέτησης Η δραστηριότητα αυτή είναι μια C-δραστηριότητα, επομένως πρέπει να προηγηθούν οι προϋποθέσεις για την εκτέλεσή της. Αυτές είναι α) ύπαρξη τουλάχιστον ενός πελάτη στην ουρά (Q > 0) β) ο ταμίας είναι διαθέσιμος. Για τη διαπίστωση αυτή μπορεί να χρησιμοποιηθεί ένας δείκτης, έστω S, που έχει την τιμή 0, όταν ο ταμίας είναι διαθέσιμος, και 1, όταν είναι απασχολημένος. 335

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ 2.1 Εισαγωγή Η μέθοδος που θα χρησιμοποιηθεί για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το μοντέλο που δημιουργήθηκε για το σύστημα. Αυτό ισχύει και

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ. Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο.

ΠΡΟΣΟΜΟΙΩΣΗ. Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο. ΠΡΟΣΟΜΟΙΩΣΗ Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο. δημιουργία μοντέλου προσομοίωσης ( - χρήση μαθηματικών, λογικών και

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

5.1. Χωροταξικός Σχεδιασμός Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού Δραστηριότητες Χωροταξικού Σχεδιασμού...

5.1. Χωροταξικός Σχεδιασμός Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού Δραστηριότητες Χωροταξικού Σχεδιασμού... ΚΕΦΑΛΑΙΟ 5. ΧΩΡΟΤΑΞΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Περιεχόμενα 5.1. Χωροταξικός Σχεδιασμός... 2 5.2. Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού... 4 5.3. Δραστηριότητες Χωροταξικού Σχεδιασμού... 5 5.4. Τύποι Χωροταξίας...

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ 1 Εισαγωγικά Απόθεμα εννοείται κάθε είδους αγαθό, το οποίο μπορεί να αποθηκευτεί με στόχο την τρέχουσα ή μελλοντική χρησιμοποίησή του. Αποθέματα συναντώνται σε κάθε

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ Τι ορίζεται ως απόθεμα;

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ

ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ Ανάλυση - Προσομοίωση ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ 1 Προσομοίωση Η προσομοίωση είναι μέθοδος μελέτης ενός συστήματος και εξοικείωσης με τα χαρακτηριστικά του με

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο I. Τι είναι η επιστήμη; A. Ο στόχος της επιστήμης είναι να διερευνήσει και να κατανοήσει τον φυσικό κόσμο, για να εξηγήσει τα γεγονότα στο φυσικό κόσμο,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων

ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ Διοίκηση και Προγραμματισμός Έργων ΠΕΡΙΕΧΟΜΕΝΑ 1. Βασικές έννοιες 2. Ανάλυση του έργου και διαμόρφωση του δικτύου 3. Επίλυση δικτύου 1 1. Βασικές έννοιες Με τον όρο έργο, εκτός από

Διαβάστε περισσότερα

Εκπαιδευτική Μονάδα 10.2: Εργαλεία χρονοπρογραμματισμού των δραστηριοτήτων.

Εκπαιδευτική Μονάδα 10.2: Εργαλεία χρονοπρογραμματισμού των δραστηριοτήτων. Εκπαιδευτική Μονάδα 10.2: Εργαλεία χρονοπρογραμματισμού των δραστηριοτήτων. Στην προηγούμενη Εκπαιδευτική Μονάδα παρουσιάστηκαν ορισμένα χρήσιμα παραδείγματα διαδεδομένων εργαλείων για τον χρονοπρογραμματισμό

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ. Διδάσκων: Γεώργιος Γιαγλής. Παράδειγμα Μπαρ

ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ. Διδάσκων: Γεώργιος Γιαγλής. Παράδειγμα Μπαρ ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ Διδάσκων: Γεώργιος Γιαγλής Παράδειγμα Μπαρ Σκοπός της παρούσας άσκησης είναι να προσομοιωθεί η λειτουργία ενός υποθετικού μπαρ ώστε να υπολογίσουμε το μέσο χρόνο

Διαβάστε περισσότερα

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Προγραμματισμός και έλεγχος αποθεμάτων Στρατηγική παραγωγής Η αγορά απαιτεί μια ποσότητα προϊόντων και υπηρεσιών

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Εφαρμογές Προσομοίωσης

Εφαρμογές Προσομοίωσης Εφαρμογές Προσομοίωσης H προσομοίωση (simulation) ως τεχνική μίμησης της συμπεριφοράς ενός συστήματος από ένα άλλο σύστημα, καταλαμβάνει περίοπτη θέση στα πλαίσια των εκπαιδευτικών εφαρμογών των ΤΠΕ. Μπορούμε

Διαβάστε περισσότερα

Συλλογή και παρουσίαση στατιστικών δεδομένων

Συλλογή και παρουσίαση στατιστικών δεδομένων Συλλογή και παρουσίαση στατιστικών δεδομένων Απογραφή Δειγματοληψία Συνεχής καταγραφή Πίνακες Διαγράμματα Στατιστικές εκθέσεις Τρόποι συλλογής δεδομένων Οι μέθοδοι συλλογής δεδομένων ποικίλουν και κυρίως

Διαβάστε περισσότερα

Στάδιο Εκτέλεσης

Στάδιο Εκτέλεσης 16 ΚΕΦΑΛΑΙΟ 1Ο 1.4.2.2 Στάδιο Εκτέλεσης Το στάδιο της εκτέλεσης μίας έρευνας αποτελεί αυτό ακριβώς που υπονοεί η ονομασία του. Δηλαδή, περιλαμβάνει όλες εκείνες τις ενέργειες από τη στιγμή που η έρευνα

Διαβάστε περισσότερα

6. Διαχείριση Έργου. Έκδοση των φοιτητών

6. Διαχείριση Έργου. Έκδοση των φοιτητών 6. Διαχείριση Έργου Έκδοση των φοιτητών Εισαγωγή 1. Η διαδικασία της Διαχείρισης Έργου 2. Διαχείριση κινδύνων Επανεξέταση Ερωτήσεις Αυτοαξιολόγησης Διαχείριση του έργου είναι να βάζεις σαφείς στόχους,

Διαβάστε περισσότερα

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 Περιεχόμενα Πρόλογος...7 1 Κατανόηση της εφοδιαστικής αλυσίδας...9 2 Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 3 Πρόβλεψη της ζήτησης σε μια εφοδιαστική αλυσίδα...109 4 Συγκεντρωτικός προγραμματισμός

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΡΟΣΟΜΟΙΩΣΗ & ΑΝΑΛΥΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Επιβλέπων Καθηγητής: ΓΛΥΚΑΣ ΜΙΧΑΗΛ Εισηγητής: ΠΑΝΤΕΛΑΡΟΣ ΔΗΜΗΤΡΙΟΣ (Α.Μ.)

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ Ταχύτητα αντίδρασης και παράγοντες που την επηρεάζουν Διδάσκοντες: Αναπλ. Καθ. Β. Μελισσάς, Λέκτορας Θ. Λαζαρίδης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

Πλεονεκτήματα και μειονεκτήματα της προσομοίωσης

Πλεονεκτήματα και μειονεκτήματα της προσομοίωσης Πλεονεκτήματα και μειονεκτήματα της προσομοίωσης Πλεονεκτήματα 1. Σε περιπτώσεις που είναι αδύνατον να αναπαρασταθούν τα συστήματα με μαθηματικά μοντέλα είναι αναγκαστική καταφυγή η χρήση προσομοίωσης.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές 3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται

Διαβάστε περισσότερα

Μάθημα 7: Αλγόριθμοι Χρονοδρομολόγησης

Μάθημα 7: Αλγόριθμοι Χρονοδρομολόγησης Μάθημα 7: Αλγόριθμοι Χρονοδρομολόγησης 7.1 Ορισμός Στόχοι Αλγόριθμο χρονοδρομολόγησης (scheduling algorithm) ονομάζουμε την μεθοδολογία την οποία χρησιμοποιεί ο κάθε χρονοδρομολογητής (βραχυχρόνιος, μεσοχρόνιος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

Μάθημα 3 ο ΔΙΕΡΓΑΣΙΕΣ (PROCESSES)

Μάθημα 3 ο ΔΙΕΡΓΑΣΙΕΣ (PROCESSES) Μάθημα 3 ο ΔΙΕΡΓΑΣΙΕΣ (PROCESSES) Εισαγωγή H κεντρική μονάδα επεξεργασίας (ΚΜΕ) και η κύρια μνήμη αποτελούν τα βασικά δομικά στοιχεία ενός υπολογιστικού συστήματος. Η πρώτη εκτελεί εντολές χειρισμού δεδομένων

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Συστήματα Συνεχούς και Περιοδικής Αναθεώρησης Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Συστήματα ελέγχου αποθεμάτων Σύστημα συνεχούς

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ 1. Διαχείριση έργων Τις τελευταίες δεκαετίες παρατηρείται σημαντική αξιοποίηση της διαχείρισης έργων σαν ένα εργαλείο με το οποίο οι διάφορες επιχειρήσεις

Διαβάστε περισσότερα

Ένα σηµαντικό χαρακτηριστικό γνώρισµα των τελευταίων ετών αλλά και αυτών που ακολουθούν είναι οι αλλαγές που σηµειώνονται στο χώρο των επιχειρήσεων.

Ένα σηµαντικό χαρακτηριστικό γνώρισµα των τελευταίων ετών αλλά και αυτών που ακολουθούν είναι οι αλλαγές που σηµειώνονται στο χώρο των επιχειρήσεων. Atlantis MRP & MRP II MRP I Ένα σηµαντικό χαρακτηριστικό γνώρισµα των τελευταίων ετών αλλά και αυτών που ακολουθούν είναι οι αλλαγές που σηµειώνονται στο χώρο των επιχειρήσεων. Στις προβλέψεις αναφέρεται

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα Στατιστική είναι ο κλάδος των μαθηματικών που εμβαθύνει σε μεθόδους συλλογής δεδομένων, οργάνωσης, παρουσίασης των δεδομένων και εξαγωγής συμπερασμάτων

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

Ενότητα 12 (κεφάλαιο 28) Αρχιτεκτονικές Εφαρμογών

Ενότητα 12 (κεφάλαιο 28) Αρχιτεκτονικές Εφαρμογών ΕΠΛ362: Τεχνολογία Λογισμικού ΙΙ (μετάφραση στα ελληνικά των διαφανειών του βιβλίου Software Engineering, 9/E, Ian Sommerville, 2011) Ενότητα 12 (κεφάλαιο 28) Αρχιτεκτονικές Εφαρμογών Οι διαφάνειες αυτές

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

Στρατηγική Αξιολόγησης κατά την Υλοποίηση Εκπαιδευτικού Λογισμικού

Στρατηγική Αξιολόγησης κατά την Υλοποίηση Εκπαιδευτικού Λογισμικού Στρατηγική Αξιολόγησης κατά την Υλοποίηση Εκπαιδευτικού Λογισμικού Μαρία Καραβελάκη, Γεώργιος Παπαπαναγιώτου, Γιάννα Κοντού INTE*LEARN Αγν.Στρατιώτη 46, Καλλιθέα τηλ. 95 91 853, fax. 95 72 098, e-mail:

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ Οικονομική Επιστήμη: Η κοινωνική επιστήμη που ερευνά την οικονομική δραστηριότητα

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Βασικές Αρχές και Κατηγοριοποιήσεις Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισμός αποθεμάτων Κατηγορίες αποθεμάτων Λόγοι πίεσης

Διαβάστε περισσότερα

Εισαγωγή στην Επιχειρησιακή Έρευνα

Εισαγωγή στην Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Εισαγωγή στην Επιχειρησιακή Έρευνα Γκόγκος Χρήστος ΤΕΙ Ηπείρου τελευταία ενημέρωση: 7/10/2016 1 Τι είναι η Επιχειρησιακή Έρευνα; Η Επιχειρησιακή Έρευνα (Operations

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1)

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1) ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1) 2. ΑΝΑΠΑΡΑΣΤΑΣΗ ΠΡΟΒΛΗΜΑΤΟΣ H υλοποίηση ενός προβλήµατος σε σύστηµα Η/Υ που επιδεικνύει ΤΝ 1 απαιτεί: Την κατάλληλη περιγραφή του προβλήµατος

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΔΙΕΚ ΜΥΤΙΛΗΝΗΣ ΤΕΧΝΙΚΟΣ ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΟΥ ΛΟΓΙΣΤΗΡΙΟΥ Γ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ: ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Ι ΜΑΘΗΜΑ 2 ο

ΔΙΕΚ ΜΥΤΙΛΗΝΗΣ ΤΕΧΝΙΚΟΣ ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΟΥ ΛΟΓΙΣΤΗΡΙΟΥ Γ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ: ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Ι ΜΑΘΗΜΑ 2 ο ΔΙΕΚ ΜΥΤΙΛΗΝΗΣ ΤΕΧΝΙΚΟΣ ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΟΥ ΛΟΓΙΣΤΗΡΙΟΥ Γ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ: ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ Ι ΜΑΘΗΜΑ 2 ο 1. Γενικά για την επιχείρηση Η επιχείρηση αποτελεί ένα στοιχείο της κοινωνίας μας, το ίδιο σημαντικό

Διαβάστε περισσότερα

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Το διαστημόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά

Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Εισαγωγή στην Πληροφορική Προγραμματισμός-Λειτουργικά Ηλ. Γκρίνιας Τ. Ε. Ι. Σερρών Τμήμα Πληροφορικής και Επικοινωνιών Αλγόριθμοι Ορισμός: ο αλγόριθμος είναι μια σειρά από πεπερασμένα βήματα που καθορίζουν

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

H Λήψη των Αποφάσεων. Αθανασία Καρακίτσιου, PhD

H Λήψη των Αποφάσεων. Αθανασία Καρακίτσιου, PhD H Λήψη των Αποφάσεων Αθανασία Καρακίτσιου, PhD 1 Πως λαμβάνονται οι αποφάσεις Η λήψη αποφάσεων είναι η επιλογή μίας λύσης μεταξύ εναλλακτικών προτάσεων που έχουμε στην διάθεση μας. Η άποψη αυτή παρουσιάζει

Διαβάστε περισσότερα

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών. Κουτσογιάννης Α. Ευστρατιάδης Φεβρουάριος 2002 Εισαγωγή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2005-6 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ 1.1 Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ Ι. ΓΙΑΝΝΑΤΣΗΣ

ΑΝΤΙΚΕΙΜΕΝΟ Ι. ΓΙΑΝΝΑΤΣΗΣ ΣΧΕΔΙΑΣΜΟΣ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΜΕΤΡΗΣΗ ΕΡΓΑΣΙΑΣ Ι. ΓΙΑΝΝΑΤΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ Η Μέτρηση Εργασίας (Work Measurement ή Time Study) έχει ως αντικείμενο τον προσδιορισμό του χρόνου που απαιτείται από ένα ειδικευμένο

Διαβάστε περισσότερα

Διοίκηση Έργων Πληροφορικής - Τηλεπικοινωνιών

Διοίκηση Έργων Πληροφορικής - Τηλεπικοινωνιών Διοίκηση Έργων Πληροφορικής - Τηλεπικοινωνιών ΔΗΜΗΤΡΑ ΤΖΙΓΚΟΥ Λ Ε Υ Κ Α Δ Α 2 0 1 2 (1/2) Ένα έργο (project) Πληροφορικής είναι ένα σύνολο από δραστηριότητες, δηλαδή εργασίες που η υλοποίηση τους απαιτεί

Διαβάστε περισσότερα

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ 7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ Για να αναπτυχθούν οι βασικές έννοιες της δυναμικής του εργοστασίου εισάγουμε εδώ ορισμένους όρους πέραν αυτών που έχουν ήδη αναφερθεί σε προηγούμενα Κεφάλαια π.χ. είδος,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων

ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ Οι αποφάσεις σχετικά µε την διαχείριση ή «πολιτική» των αποθεµάτων που πρέπει να πάρει κάποιος, ασχολείται µε το «πόσο» πρέπει να παραγγείλει (ή να παράγει) και «πότε» να παραγγείλει

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

Το αερόπλοιο. Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες

Το αερόπλοιο. Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Το αερόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δύναμη) - Τεχνολογία Τάξη: Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι μαθητές: - Να εξηγούν

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ ΔΙΑΔΙΚΑΣΙΕΣ ΠΑΡΑΓΩΓΗΣ ΛΟΓΙΣΜΙΚΟΥ Διδάσκων: Γ. Χαραλαμπίδης,

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ Δ.Δ ΔΗΜΗΣΡΑΚΟΠΟΤΛΟ

ΠΕΡΙΛΗΨΗ Δ.Δ ΔΗΜΗΣΡΑΚΟΠΟΤΛΟ ΠΕΡΙΛΗΨΗ Δ.Δ ΔΗΜΗΣΡΑΚΟΠΟΤΛΟ Μετά το άλλοτε ταχύ και άλλοτε χρονοβόρο πέρασμα από τα τηλεπικοινωνιακά συστήματα των τριών πρώτων γενεών, η αλματώδης εξέλιξη στις τηλεπικοινωνίες αντικατοπτρίζεται σήμερα

Διαβάστε περισσότερα

9. Τοπογραφική σχεδίαση

9. Τοπογραφική σχεδίαση 9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 10 ΟΥ ΚΕΦΑΛΑΙΟΥ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Πως ορίζεται ο τμηματικός προγραμματισμός; Τμηματικός προγραμματισμός

Διαβάστε περισσότερα

Γενικές αρχές διοίκησης. μιας μικρής επιχείρησης

Γενικές αρχές διοίκησης. μιας μικρής επιχείρησης Γενικές αρχές διοίκησης μιας μικρής επιχείρησης Η επιχείρηση αποτελεί μια παραγωγική - οικονομική μονάδα, με την έννοια ότι συνδυάζει και αξιοποιεί τους συντελεστές παραγωγής (εργασία, κεφάλαιο, γνώση,

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

Κεφάλαιο 5 Διαχείριση του Χρόνου Ανοχής

Κεφάλαιο 5 Διαχείριση του Χρόνου Ανοχής Κεφάλαιο 5 Διαχείριση του Χρόνου Ανοχής ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ προσδιορισμός ορισμών και εννοιών σχετικών με τον ανταγωνισμό που βασίζεται στο χρόνο ανάδειξη τρόπου διαχείρισης χρόνου ανοχής με σκοπό την εξυπηρέτηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Μάθημα 7 ο. Αλγόριθμοι Χρονοδρομολόγησης

Μάθημα 7 ο. Αλγόριθμοι Χρονοδρομολόγησης Μάθημα 7 ο Αλγόριθμοι Χρονοδρομολόγησης Σκοπός του μαθήματος Στην ενότητα αυτή θα εξηγήσουμε το ρόλο και την αξιολόγηση των αλγορίθμων χρονοδρομολόγησης, και θα παρουσιάσουμε τους κυριότερους. Θα μάθουμε:

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία: Επικοινωνία: spzygouris@gmail.com Να δοθεί ο ορισμός του Αλγορίθμου. Αλγόριθμος, σύμφωνα με το βιβλίο, είναι μια πεπερασμένη σειρά ενεργειών (όχι άπειρες), αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα