4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες"

Transcript

1 25 4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες Η υλοποίηση ενός συµβατικού πλαισίου αναφοράς για την διάσταση του χρόνου, το οποίο θα ονοµάζεται κλίµακα χρόνου (time scale), απαιτεί την ίδια διαδικασία όπως η υλοποίηση ενός συστήµατος αναφοράς για τον χώρο: επιλογή ιδεατού συστήµατος, ορισµό, και υλοποίηση. Ιδεατή κλίµακα χρόνου είναι µια κλίµακα χρόνου που χρησιµοποιεί µια σαφώς ορισµένη και σταθερή µονάδα µέτρησης. Επιπλέον, ακόµη και αν αυτή η συνθήκη πληρούται, θα πρέπει η εν λόγω κλίµακα χρόνου να µπορεί να εφαρµοστεί σε διάφορα σηµεία του χώρου, κάτι το οποίο είναι ασύµβατο µε την Θεωρία της Σχετικότητας. Ετσι, η διαδικασία ορισµού και υλοποίησης των κλιµάκων χρόνου περιπλέκεται και απαιτεί µια σειρά από παραδοχές. Ο απλούστερος τρόπος για να οριστεί µια κλίµακα χρόνου είναι να µελετηθεί ένα επαναλαβανόµενο φαινόµενο και να ληφθεί η διάρκειά του ως µονάδα µέτρησης. Πρώτος ο Poincare σχολίασε σε σχέση µε την µέτρηση του χρόνου: Οταν χρησιµοποιούµε το εκκρεµές για την µέτρηση του χρόνου υποθέτουµε: η διάρκεια δύο ίδιων φαινοµένων είναι η ίδια ή ότι τα ίδια αίτια απαιτούν τον ίδιο χρόνο για να προκαλέσουν τα ίδια αποτελέσµατα. Η εµπειρία µας δείχνει ότι περίπου όµοιες αιτίες απαιτούν σχεδόν τον ίδιο χρόνο για να προκαλέσουν περίπου τα ίδια αποτελέσµατα. Υπάρχουν δύο ορισµοί για την µέτρηση του χρόνου, ο χρόνος που προκύπτει από την επαναληψιµότητα τοπικών φαινοµένων και ο χρόνος που προκύπτει από τη δυναµική του Νεύτωνα. Είναι όµως αυτές οι δύο προσεγγίσεις ισοδύναµες; Μέχρι την αρχή του 20ου αιώνα ήταν αποδεκτή η άποψη ότι οι δύο προσεγγίσεις οδηγούν σε αναπαραστάσεις του ίδιου απόλυτου χρόνου. Οµως, σύµφωνα µε τη Γενική Θεωρία της Σχετικότητας, µόνο ο τοπικός χρόνος µπορεί να µετρηθεί άµεσα µε ένα χρονόµετρο. Με άλλα λόγια το µέγεθος που µετριέται είναι ο ιδιοχρόνος (proper time) του χρονοµέτρου ή του παρατηρητή. Από την άλλη πλευρά, το µέγεθος που κάνει τις εξισώσεις της κίνησης πιο απλές σε µια περιοχή του χώρου είναι µια συντεταγµένη χρόνου που επιλέγεται ακριβώς για την ιδιότητα της να απλοποιεί τις εξισώσεις και δεν έχει κανένα ιδιαίτερο φυσικό νόηµα. Αυτό το µέγεθος λέγεται συντεταγµένος χρόνος (coordinate time). Εποµένως, η µέτρηση του χρόνου έχει ως σκοπό τη δηµιουργία αναπαραστάσεων : για την µονάδα ιδιοχρόνου που χρησιµοποιείται από οποιονδήποτε παρατηρητή για τα τοπικά πειράµατα και παρατηρήσεις για τους διάφορους συντεταγµένους χρόνους που είναι χρήσιµοι στην µελέτη συµβάντων του χώρου. Αφού υιοθετηθεί ένα δυναµικό µοντέλο που να είναι ικανοποιητικό, η µέτρηση του χρόνου µπορεί να βασιστεί είτε σε τοπικές µετρήσεις ιδιοχρόνου είτε σε πειραµατικό προσδιορισµό ενός συντεταγµένου χρόνου.

2 26 Το επαναλαµβανόµενο φαινόµενο που λαµβάνεται ως πρότυπο πρέπει να ορίζεται µε τέτοιο τρόπο που η διάρκειά του να θεωρείται ιδεατά σταθερή. Αυτό σηµαίνει ότι θα πρέπει να είµαστε σε θέση να καθορίσουµε τις ίδιες αιτίες ή αλλιώς ότι θα µπορούµε να ελαχιστοποιήσουµε οποιαδήποτε αιτία θα µπορούσε να προκαλέσει διαταραχή. Το πρότυπο φαινόµενο, στην επαναληψιµότητα του οποίου βασίστηκαν οι πρώτες κλίµακες χρόνου, ήταν η περιστροφή της Γης. Στην συνέχεια, αφού διαπιστώθηκε ότι η περιστροφή της Γης δεν γίνεται µε απολύτως σταθερή ταχύτητα, οι κλίµακες χρόνου βασίστηκαν στην συµπεριφορά ατόµων. 4.2 Αστρικός Χρόνος Ο Αστρικός Χρόνος είναι µια άµεση µέτρηση της ηµερήσιας περιστροφής της Γης. Ισες γωνίες στροφής ισοδυναµούν µε ίσα διαστήµατα Αστρικού Χρόνου, έτσι ώστε ο Αστρικός Χρόνος να αντανακλά την πραγµατική περιστροφή της Γης και να µπορεί να προσδιοριστεί από παρατηρήσεις ουράνιων σωµάτων. Ο προσδιορισµός του χρόνου από την παρατήρηση της καθηµερινής περιστροφής της ουράνιας σφαίρας έχει αντιστοιχία µε την ανάγνωση ενός κοινού ρολογιού. Η ουράνια σφαίρα αντιπροσωπεύει την πλάκα του ρολογιού, ενώ τα διάφορα άστρα αντιστοιχούν στις χαραγµένες υποδιαιρέσεις του κύκλου. Ο δείκτης του ρολογιού είναι ο αστρονοµικός µεσηµβρινός του τόπου, που αλλάζει συνεχώς θέση πάνω στην ουράνια σφαίρα καθώς παρασύρεται από την περιστροφή της Γης. Μπορεί κανείς να διαβάσει αυτό το ουράνιο ρολόι παρατηρώντας κάθε στιγµή ποια άστρα περνούν από τον µεσηµβρινό. Το σύστηµα του χρόνου που προσδιορίζεται µε τον τρόπο αυτό είναι ο Αστρικός Χρόνος. Ο τοπικός αστρικός χρόνος θ ο (Local Sidereal Time LST) ορίζεται από το εαρινό ισηµερινό σηµείο και τον αστρονοµικό µεσηµβρινό του τόπου. Κάθε στιγµή, η αριθµητική του τιµή είναι ίση µε την ωριαία γωνία του σηµείου. Όταν η ωριαία γωνία του αναφέρεται στον µεσηµβρινό του Greenwich, ο χρόνος που προκύπτει λέγεται αστρικός χρόνος Greenwich θ (Greenwich Sidereal Time GST). Η βασική µονάδα µέτρησης του αστρικού χρόνου είναι η µέση αστρική ηµέρα (Mean Sidereal Day), που είναι το χρονικό διάστηµα που χρειάζεται για να αυξηθεί η τιµή του µέσου αστρικού χρόνου Greenwich κατά 24 h. Η αστρική ηµέρα χωρίζεται σε 24 αστρικές ώρες, κάθε ώρα σε 60 λεπτά και κάθε λεπτό σε 60 δευτερόλεπτα. Η µέση αστρική ηµέρα είναι περίπου 8msec µικρότερη από την διάρκεια µιας πλήρους περιστροφής της Γης ως προς ένα αδρανειακό σύστηµα αναφοράς εξ αιτίας της κίνησης του στον Ισηµερινό (λόγω της µετάπτωσης βλέπε επόµενο κεφάλαιο). Από τον ορισµό της ορθής αναφοράς ενός άστρου προκύπτει πως όταν ένα άστρο περνά από τον µεσηµβρινό (άνω µεσουράνηση), εκείνη τη στιγµή η ωριαία γωνία του είναι όση η ορθή αναφορά α του άστρου. Εποµένως, µπορούµε εύκολα να προσδιορίσουµε τον τοπικό αστρικό χρόνο παρατηρώντας τις µεσηµβρινές διαβάσεις άστρων µε γνωστή ορθή αναφορά. Είναι όµως χρήσιµο να αναζητήσουµε την γενικότερη συσχέτιση του αστρικού χρόνου µε την ωριαία γωνία ενός άστρου σε τυχαία θέση της τροχιάς του. Για τον σκοπό αυτό,

3 27 θα χρησιµοποιήσουµε την ορθή προβολή της ουράνιας σφαίρας στο επίπεδο του ουράνιου Ισηµερινού, όπως στο σχήµα 4.1. Σχήµα 4.1 Από το σχήµα 4.1 βλέπουµε πως όταν ένα άστρο Σ (που έχει ορθή αναφορά α) µεσουρανεί στον µεσηµβρινό του Greenwich, στον τόπο παρατήρησης Τ έχει ωριαία γωνία ίση µε το µήκος Λ του τόπου. Γενικότερα, εποµένως, όταν στο Greenwich η ωριαία γωνία του άστρου είναι h G, την ίδια στιγµή στον τόπο Τ η ωριαία γωνία του άστρου είναι h = h G + Λ. Αν, αντί ενός άστρου, αναφερθούµε στο σηµείο, προκύπτει πως ο τοπικός αστρικός χρόνος θ 0 είναι ίσος µε θ + Λ, όπου θ ο αστρικός χρόνος Greenwich. Από το ίδιο σχήµα είναι προφανές ότι, σε οποιοδήποτε τόπο, ένα άστρο έχει ωριαία γωνία h = θ 0 α. Συνδυάζοντας όλα τα παραπάνω, προκύπτει η γενική σχέση: h = θ + Λ - α Αρχικά ο Αστρικός Χρόνος προσδιοριζόταν από παρατηρήσεις µεσουράνησης ουράνιων σωµάτων. Παρατηρήσεις της ηµερήσιας κίνησης των άστρων παρέχουν µια άµεση µέτρηση του Αστρικού Χρόνου, αφού οι ορθές αναφορές µετρώνται από το σηµείο. Η αναγωγή αυτών των παρατηρήσεων βασιζόταν στην ωριαία γωνία του σηµείου µηδεν της ορθής αναφοράς του καταλόγου των άστρων. Σήµερα ο Αστρικός

4 28 Χρόνος προσδιορίζεται µε µεγαλύτερη ακρίβεια από παρατηρήσεις VLBI. Μπορεί επίσης να προσδιοριστεί µε µετρήσεις LLR και SLR. 4.3 Παγκόσµιος Χρόνος Παρόλο που ο αστρικός χρόνος µπορεί να προσδιοριστεί γρήγορα και µε αρκετή ακρίβεια, υπάρχει η πρακτική αναγκαιότητα για ένα σύστηµα χρόνου που να συµβαδίζει µε την εναλλαγή ηµέρας και νύχτας, να συµφωνεί δηλαδή µε την καθηµερινή κίνηση του Ήλιου. Έτσι καθιερώθηκε ο Παγκόσµιος Χρόνος (Universal Time) που ιστορικά βασίστηκε στη µέση κίνηση του Ήλιου αλλά σήµερα ορίζεται από τον αστρικό χρόνο, που προσδιορίζεται από παρατηρήσεις. Ο Παγκόσµιος Χρόνος συνδέεται απευθείας µε τον (µέσο) Αστρικό Χρόνο Greenwich θ µέσω µιας συµβατικής µαθηµατικής σχέσης. Η σχέση αυτή (από την 1 η Ιανουαρίου 1984) είναι η ακόλουθη : θ = d d d h m s s s 11 2 s 19 3 όπου d είναι το διάστηµα σε µέρες από τις 12 h UT1 της 1 ης Ιανουαρίου Αν υπολογίσουµε πόσο µεταβάλλεται ο µέσος αστρικός χρόνος Greenwich θ για δύο τιµές του d που να διαφέρουν ακριβώς µια ακέραια µονάδα, το χρονικό διάστηµα που χρειάζεται για να αυξηθεί ο θ κατά το ποσό αυτό λέγεται µέση ηλιακή ηµέρα (mean solar day) και χωρίζεται σε 24 ηλιακές ώρες, κάθε ώρα σε 60 ηλιακά λεπτά και κάθε λεπτό σε 60 ηλιακά δευτερόλεπτα. Με άλλα λόγια, η µέση ηλιακή ηµέρα (που έχει ηλιακά δευτερόλεπτα) είναι το χρονικό διάστηµα ανάµεσα σε δύο διαδοχικές στιγµές 0 h UT1, όπως υπολογίζονται από τον παραπάνω τύπο. Στην κλίµακα του Παγκόσµιου χρόνου αναφέρονται και οι συµβατικές ηµεροµηνίες. Κάθε ηµερολογιακή ηµέρα αρχίζει τα µεσάνυχτα (0 h UT1) και τελειώνει τα επόµενα µεσάνυχτα (24 h UT1). Επειδή ο προσδιορισµός χρονικών διαστηµάτων µε το συµβατικό ηµερολόγιο δεν είναι καθόλου πρακτικός στους υπολογισµούς, έχει καθιερωθεί ένα σύστηµα συνεχούς αρίθµησης των ηµερών, από µεσηµέρι σε µεσηµέρι, αρχίζοντας από µια µακρινή ηµεροµηνία στο παρελθόν. Ο αύξων αριθµός κάθε ηµέρας στο σύστηµα αυτό λέγεται Αριθµός Ιουλιανής Ηµέρας ή Ιουλιανή Ηµεροµηνία (Julian Day Number ή Julian Date) και είχε την τιµή 1 το µεσηµέρι (12 h UT) της 1ης Ιανουαρίου του 4713 π.χ. Ο προσδιορισµός του αριθµού Ιουλιανής ηµέρας γίνεται µε ειδικούς αλγορίθµους (βλέπε «Αστρονοµικούς Πίνακες»). Η Ιουλιανή ηµεροµηνία µετριέται από το µεσηµέρι κάθε µέρας, εποµένως έχει δεκαδικό µέρος ίσο µε UT/24 h. Για παράδειγµα, η Ιουλιανή ηµεροµηνία στις 18 h UT της 21ης Μαρτίου 2006 είναι: JD Για να αποφύγουµε τη χρήση πολύ µεγάλων αριθµών χρησιµοποιούµε ακόµα και την Τροποποιηµένη Ιουλιανή ηµεροµηνία (Modified Julian Date) που είναι: MJD = JD Σε οποιαδήποτε στιγµή, ο Παγκόσµιος Χρόνος µπορεί να προσδιοριστεί από παρατηρήσεις της ηµερήσιας κίνησης των άστρων. Αυτή η αρχική και ανεπεξέργαστη κλίµακα µέτρησης χρόνου, η οποία εξαρτάται από την θέση παρατήρησης, ονοµάζεται UT0. Εάν αυτή η αρχική κλίµακα διορθωθεί για την κίνηση του πόλου προκύπτει ο

5 29 χρόνος UT1, ο οποίος είναι ανεξάρτητος από την περιοχή παρατήρησης αλλά επηρεάζεται από την µεταβαλλόµενη περιστροφή της Γης. Η παραπάνω σχέση, που συνδέει τον Αστρικό µε τον Παγκόσµιο Χρόνο, ιστορικά θεωρείτο ως ορισµός του Παγκόσµιου Χρόνου διότι, όταν δηµιουργήθηκε, ο καλύτερος τρόπος για τον υπολογισµό του UT1 ήταν οι παρατηρήσεις άστρων. Σύµφωνα µε το σύγχρονο ορισµό, ο χρόνος UT1 πρέπει να πληροί τις ακόλουθες προϋποθέσεις : 1. να είναι ανάλογος της γωνίας περιστροφής της Γης γύρω από την αληθή θέση του άξονα περιστροφής, 2. ο ρυθµός του UT1 επιλέγεται έτσι ώστε η διάρκεια µιας ηµέρας UT1 να προσεγγίζει όσο το δυνατό περισσότερο τη διάρκεια της µέσης ηλιακής µέρας, 3. η φάση του UT1 επιλέγεται έτσι ώστε η στιγµή 12 h UT1 να αντιστοιχεί περίπου στη στιγµή που ο Ήλιος µεσουρανεί στο µεσηµβρινό του Greenwich. Στα µέσα του 20 ου αιώνα επιβεβαιώθηκε η µη οµαλή περιστροφή της Γης και γι αυτό εγκαταλείφθηκε ο ορισµός του δευτερολέπτου ως το 1/86400 της µέσης ηλιακής µέρας. Τόσο ο Αστρικός όσο και ο Παγκόσµιος Χρόνος UT1 επηρεάζονται από την ασταθή περιστροφή της Γης, γι αυτό και τα µήκη των αστρικών και των δευτερολέπτων UT1 δεν είναι σταθερά όταν εκφράζονται σε µια οµοιόµορφη κλίµακα χρόνου. Από τον τύπο ορισµού του Παγκόσµιου Χρόνου προκύπτει ότι η µέση ηλιακή ηµέρα περιέχει αστρικά δευτερόλεπτα (παραβλέποντας όρους ανώτερης τάξης), εποµένως ο λόγος της µέσης ηλιακής προς τη µέση αστρική ηµέρα είναι ίσος µε f = Μπορούµε λοιπόν να εκφράσουµε διαστήµατα Παγκόσµιου Χρόνου στα αντίστοιχα του Αστρικού Χρόνου πολλαπλασιάζοντας µε το λόγο αυτό και αντίστροφα. Επειδή η αστρική ηµέρα έχει αστρικά δευτερόλεπτα, τα επιπλέον δευτερόλεπτα που χρειάζονται για να συµπληρωθεί µια ηλιακή ηµέρα οφείλονται στον συνδυασµό περιστροφής και περιφοράς της Γης γύρω από τον Ήλιο (σχήµα 4.2). Σχήµα 4.2

6 30 Στην διάρκεια µιας πλήρους περιστροφής (αστρική ηµέρα) η Γη έχει µετακινηθεί στην τροχιά της κατά µια περίπου µοίρα. Για να συµπληρώσει λοιπόν µια πλήρη περιστροφή ως προς τον Ήλιο (ηλιακή ηµέρα) πρέπει να περιστραφεί σχεδόν µια µοίρα ακόµη, για την οποία χρειάζεται περίπου 4 λεπτά. Η µετατροπή των ενδείξεων των δύο κλιµάκων χρόνου γίνεται εύκολα, µε την βοήθεια του λόγου ƒ των µονάδων µέτρησης και της αντιστοιχίας σε κάποια γνωστή χρονική στιγµή, όπως είναι η στιγµή 0 h UT κάθε µέρας. Όπως φαίνεται και στο παραπάνω διάγραµµα, η χρονική στιγµή UT Παγκόσµιου Χρόνου και η αντίστοιχη στιγµή θ µέσου αστρικού χρόνου Greenwich συνδέονται µε την σχέση: θ = θ 0h UT + UT ƒ Με την σχέση αυτή µπορεί να γίνει µετατροπή Παγκόσµιου χρόνου σε αστρικό και αντίστροφα. 4.4 Κλίµακες οµοιόµορφου χρόνου Όταν επιβεβαιώθηκε η µη οµαλή περιστροφή της Γης, προέκυψε η ανάγκη ορισµού κλιµάκων χρόνου που να είναι ανεξάρτητες από την περιστροφή της Γης και να έχουν σταθερό µέτρο. Ως µονάδα των κλιµάκων χρόνου σταθερού µέτρου χρησιµοποιείται το δευτερόλεπτο του συστήµατος SI, το οποίο σήµερα ορίζεται ως ακολούθως: Το δευτερόλεπτο ορίζεται ως η διάρκεια περιόδων της ακτινοβολίας που αντιστοιχεί στην µετάπτωση µεταξύ των δύο επιπέδων υπέρλεπτης υφής της βασικής στάθµης του ατόµου του καισίου 133. Από τη στιγµή που ο ορισµός αναφέρεται σε ένα παρατηρήσιµο φαινόµενο, µπορεί να εφαρµοστεί σε κάθε σύστηµα αναφοράς. Έτσι κλίµακες χρόνου που βασίζονται στο δευτερόλεπτο του SI µπορούν να υλοποιηθούν στην επιφάνεια της Γης ή σε άλλα ουράνια σώµατα, σε διαστηµόπλοια ή σε θεωρητικού ενδιαφέροντος µέρη, όπως το βαρύκεντρο του ηλιακού συστήµατος.

7 Ατοµικός Xρόνος Ο ιεθνής Ατοµικός Χρόνος (Τemps Αtomique Ιnternational) είναι µια πρακτική κλίµακα χρόνου που βασίζεται όσο το δυνατόν καλύτερα στον ορισµό του δευτερολέπτου SI. Εκπληρώνει τις απαιτήσεις σε ακρίβεια, µακροπρόθεσµη σταθερότητα και αξιοπιστία. Το δευτερόλεπτο SI και ο ΤΑΙ χρησιµοποιούνται ως βάση για παρεµβολή και πρόβλεψη σε άλλες κλίµακες χρόνου. Ο ΤΑΙ είναι µία συντονισµένη κλίµακα χρόνου που έχει ως µονάδα της το δευτερόλεπτο SI στο γεωειδές. Ο όρος «συντονισµένη κλίµακα» σηµαίνει µια κλίµακα χρόνου κατασκευασµένη από ένα κατάλληλο συνδυασµό πολλών κλιµάκων χρόνου, που υλοποιούνται από διάφορες συσκευές. Ο ΤΑΙ προκύπτει από την ανάγνωση πολλών ατοµικών χρονοµέτρων, κατανεµηµένων σε όλη τη Γη, µέσω µιας συγκεκριµένης στατιστικής διαδικασίας, αφού αφαιρεθουν οι συστηµατικές διαφορές αναµεσά τους. Ακριβέστερα, ο υπολογισµός του ΤΑΙ γίνεται συνδυάζοντας δεδοµένα από όλα τα χρονόµετρα ακριβείας (πρότυπα χρονόµετρα καισίου ή MASER Υδρογόνου) που συµµετέχουν στην υλοποίησή του. Η διαθεσιµότητα, η αξιοπιστία και η βραχυπρόθεσµη σταθερότητα του ΤΑΙ εξασφαλίζονται από έναν µεγάλο αριθµό εµπορικών χρονοµέτρων, ενώ η ακρίβεια και η µακροπρόθεσµη σταθερότητα παρέχονται από εργαστηριακά χρονόµετρα καισίου και MASER Υδρογόνου. Ο χρόνος ΤΑΙ µπορεί να επεκταθεί σε οποιοδήποτε σταθερό ή κινούµενο σηµείο κοντά στο γεωειδές εφαρµόζοντας τις διορθώσεις της Γενικής Θεωρίας της Σχετικότητας (διορθώσεις για τις διαφορές στο βαρυτικό δυναµικό, για την ταχύτητα και για την περιστροφή της Γης). 4.6 Συντονισµένος Παγκόσµιος Χρόνος Από την 1 η Ιανουαρίου 1972 τέθηκε σε ισχύ ο Συντονισµένος Παγκόσµιος Χρόνος (Universal Time Coordinated), ο οποίος διαφέρει από τον ΤΑΙ κατά ένα ακέραιο αριθµό δευτερολέπτων. Πιο συγκεκριµένα, ο χρόνος UTC πρέπει να πληροί τις ακόλουθες προυποθέσεις : TAI UTC = nsec, όπου n ακέραιος αριθµός και UT1 UTC 0.9sec Ο χρόνος UTC υπολογίζεται από τον Ατοµικό Χρόνο ΤΑΙ µέσω της σχέσης : UTC = TAI (10 + εµβόλιµα δευτερόλεπτα) Εξαιτίας της αιώνιας επιβράδυνσης της περιστροφής της Γης, η κλίµακα UTC συντηρείται µε την εισαγωγή ενός ακέραιου εµβόλιµου δευτερολέπτου (leap second) όποτε απαιτείται. Επιφορτισµένη µε την απόφαση για την εισαγωγή εµβόλιµων δευτερολέπτων και την ανακοίνωσή τους είναι η ιεθνής Υπηρεσία για την Περιστροφή της Γης (International Earth Rotation Service). Στο σχήµα 4.3 φαίνεται η πορεία της διαφοράς TAI UT1, καθώς και η πορεία του UTC, για το χρονικό διάστηµα

8 32 Σχήµα 4.3 Η ακριβής τιµή της διαφοράς UT1 - UTC βρίσκεται µε ανάλυση διαφόρων παρατηρήσεων και δηµοσιεύεται στο ειδικό δελτίο (Bulletin A) του IERS. Μια προσεγγιστική τιµή της διαφοράς, που συµβολίζεται µε DUT και έχει ακρίβεια δύο εκατοστών του δευτερολέπτου, εκπέµπεται κωδικοποιηµένη στα σήµατα των ειδικών ραδιοσταθµών που διανέµουν το χρόνο UTC. Τα σήµατα αυτά εξυπηρετούν τον συγχρονισµό των χρονοµέτρων για τις διάφορες παρατηρήσεις. Όπου απαιτείται ακρίβεια χρόνου καλύτερη από δέκατο του δευτερολέπτου, χρησιµοποιούνται τα σήµατα χρόνου των δορυφόρων του Global Positioning System (GPS), οι οποίοι διαθέτουν ατοµικά ρολόγια και υλοποιούν την κλίµακα του GPS time, που έχει σταθερή διαφορά από τον ατοµικό χρόνο ΤΑΙ ακριβώς 19sec. Με την βοήθεια του GPS µπορεί να επιτευχθεί σήµερα ακρίβεια συγχρονισµού καλύτερη από 1 µsec (10-6 sec). Ο Συντονισµένος Παγκόσµιος Χρόνος UTC συµβαδίζει µε τον παραδοσιακό ηλιακό χρόνο στον µεσηµβρινό του Greenwich. Για να διατηρηθεί αυτή η συµφωνία και σε άλλα µέρη, η Γη έχει χωριστεί σε 24 ζώνες, µε πλάτος 15 γεωγραφικού µήκους η κάθε µια, και σε κάθε ζώνη ισχύει ο Πολιτικός Χρόνος ή Χρόνος ζώνης (Zone Time) που διαφέρει από τον UTC ένα ακέραιο αριθµό ωρών. Για παράδειγµα, η Ελλάδα έχει Χρόνο Ζώνης UTC+ 2 h, ενώ η θερινή ώρα Ελλάδας είναι UTC+ 3 h.

9 Σχετικιστικές κλίµακες χρόνου Η µέτρηση του χρόνου είναι η πιο ακριβής µέτρηση που µπορούµε να κάνουµε σήµερα. Στους ορισµούς κλιµάκων χρόνου πρέπει να εισαχθούν έννοιες της Γενικής Θεωρίας της Σχετικότητας γιατί το σφάλµα του καλύτερου χρονοµέτρου σήµερα είναι µικρότερο από το µέγεθος των κύριων διορθωτικών όρων της Γενικής Θεωρίας της Σχετικότητας. Στη νευτώνεια µηχανική ο χρόνος είναι απόλυτος. Θεωρείται µοναδικός και οµοιόµορφος παντού, ενώ το χρονικό διάστηµα µεταξύ δύο γεγονότων θεωρείται σταθερό σε οποιοδήποτε σύστηµα αναφοράς και αν χρησιµοποιείται για τη µέτρηση. Στη Γενική Σχετικότητα ο χώρος και ο χρόνος αποτελούν µια γεωµετρική οντότητα και δεν µπορούν να διαχωριστούν µεταξύ τους. Ακόµη η παρουσία µαζών επηρεάζει το χωροχρόνο και οδηγεί σε προβλήµατα στον ορισµό συστηµάτων χρόνου. Το βαρυτικό πεδίο ή η σχετική κίνηση µεταξύ ενός ζεύγους χρονοµέτρων που βρίσκονται σε διαφορετικές τοποθεσίες προκαλεί µια διαφορά στις αναγνώσεις τους. Ο ιδιοχρόνος του παρατηρητή είναι ο τοπικός χρόνος ο οποίος µπορεί να µετρηθεί άµεσα µε ένα χρονόµετρο. Από την άλλη πλευρά, ο συντεταγµένος χρόνος είναι ένα µέγεθος που κάνει τις εξισώσεις της κίνησης πιο απλές σε µια περιοχή του χώρου και δεν έχει κανένα φυσικό νόηµα. Η έννοια του ιδιοχρόνου είναι τοπική, εποµένως µπορούν να οριστούν τόσοι ιδιοχρόνοι όσοι και χρονόµετρα και κανένας από αυτούς δεν παρουσιάζει ιδιαίτερο πλεονέκτηµα. Όµως δεν µπορούµε να συγκρίνουµε άµεσα δύο διαφορετικούς ιδιοχρόνους διότι δεν υπάρχει κοινή περιοχή στην οποία να ισχύουν και οι δύο. Η ιδέα του συντεταγµένου χρόνου προέρχεται από τη θεώρηση του χρόνου ως σχετιζόµενου µε µια από τις τέσσερις συντεταγµένες που περιγράφουν τον χωροχρόνο. Έτσι υπάρχουν τόσοι συντεταγµένοι χρόνοι όσοι και συστήµατα συντεταγµένων. Όπως ένα σύστηµα συντεταγµένων είναι ένα εργαλείο φτιαγµένο από τον άνθρωπο µε σκοπό την περιγραφή του χώρου γύρω του, έτσι και ο συντεταγµένος χρόνος, ως µέρος του συστήµατος συντεταγµένων, είναι επίσης ένα εργαλείο και δεν έχει φυσική υπόσταση. Συνήθως ο συντεταγµένος χρόνος ορίζεται ως ο ιδιοχρόνος ενός πρότυπου χρονο- µέτρου που ηρεµεί στην αφετηρία του συστήµατος συντεταγµένων. Για παράδειγµα, ο συντεταγµένος χρόνος ενός γεωκεντρικού συστήµατος συντεταγµένων ορίζεται ως ο ιδιοχρόνος ενός χρονοµέτρου που ηρεµεί στο γεώκεντρο, όταν αγνοείται η βαρυτική επίδραση της Γης. Η παγκόσµια χρήση ενός υλοποιήσιµου γεωκεντρικού συντεταγµένου χρόνου που βασίζεται στον ορισµό του δευτερολέπτου του ιδιοχρόνου και επίσης η υιοθέτηση ενός κοινώς αποδεκτού τανυστή είναι χρήσιµη γιατί: Παρέχει µια βάση για συγχρονισµό των χρονοµέτρων που βρίσκονται στη Γη και στο κοντινό της περιβάλλον, Παρέχει τον συντεταγµένο χρόνο που, όταν σχετίζεται µε τις κατάλληλες χωρικές συντεταγµένες, επιτρέπει την περιγραφή των τροχιακών κινήσεων.

10 34 Μέσω ενός τετραδιάστατου µετασχηµατισµού παρέχει µια πρακτική υλοποίηση άλλων συντεταγµένων χρόνων, όπως του βαρυκεντρικού συντεταγµένου χρόνου που χρησιµοποιείται για τον υπολογισµό των τροχιών των πλανητών, Μέσω των κατάλληλων µετασχηµατισµών παρέχει τον τοπικό ιδιοχρόνο και το δευτερόλεπτο SI (ιδιο-δευτερόλεπτο) που πρέπει να χρησιµοποιούνται για τοπικες µετρήσεις. 4.8 υναµικός χρόνος Ο υναµικός Χρόνος (Dynamical Time) αντιπροσωπεύει την ανεξάρτητη µεταβλητή στις εξισώσεις κίνησης των σωµάτων του ηλιακού συστήµατος. Σύµφωνα µε την Θεωρία της Σχετικότητας, αυτή η ανεξάρτητη µεταβλητή εξαρτάται από το σύστηµα συντεταγµένων που χρησιµοποιείται. Στη σύγχρονη πρακτική, οι εξισώσεις κίνησης συχνά αναφέρονται στο βαρύκεντρο του ηλιακού συστήµατος. Η ανεξάρτητη µεταβλητή µιας γεωκεντρικής εφηµερίδας είναι ο γήινος δυναµικός χρόνος. Για µια δοσµένη σχετικιστική θεωρία υπάρχει ένας µετασχηµατισµός µεταξύ της βαρυκεντρικής και της γήινης δυναµικής κλίµακας χρόνου. Οι αυθαίρετες σταθερές του µετασχηµατισµού µπορούν να επιλεχθούν έτσι ώστε οι κλίµακες χρόνου να έχουν µόνο περιοδικές µεταβολές η µία ως προς την άλλη. Από τη στιγµή που ο µετασχηµατισµός µεταξύ των βαρυκεντρικών και των γεωκεντρικών κλιµάκων χρόνου εξαρτώνται από τη θεωρία, οι δύο τύποι κλιµάκων δεν είναι δυνατόν να είναι µοναδικοί. Έτσι, επιλέχθηκε µια µοναδική δυναµική κλίµακα χρόνου για τις γεωκεντρικές εφηµερίδες, ενώ οι δυναµικές κλίµακες χρόνου για τις βαρυκεντρικές εφηµερίδες εξαρτώνται από τη θεωρία. Ο Χρόνος Εφηµερίδων (Ephemeris Time) αποτέλεσε την πρώτη υλοποίηση δυναµικού χρόνου βασισµένου στην τροχιακή κίνηση της Γης. Ο χρόνος ΕΤ ορίζεται από την υιοθέτηση µιας εφηµερίδας του Ήλιου στο συµβατικό σύστηµα αναφοράς που ορίζεται από την εκλειπτική και το µέσο Εαρινό Ισηµερινό σηµείο. Ο υναµικός Χρόνος ορίστηκε το 1976 σύµφωνα µε τις ακόλουθες αρχές : h m 1. Τη χρονική στιγµή s TAI της 1 ης Ιανουαρίου 1977, η τιµή της νέας κλίµακας χρόνου για τη γεωκεντρική εφηµερίδα (Γεωκεντρικός υναµικός d h m s Χρόνος Terrestrial Dynamical Time) θα είναι ακριβώς. 2. Η µονάδα αυτής της κλίµακας χρόνου θα είναι η ηµέρα των δευτερολέπτων SI, όπως αυτά µετρώνται στην µέση στάθµη της θάλασσας. 3. Οι κλίµακες χρόνου που χρησιµοποιούνται στις εξισώσεις κίνησης που αναφέρονται στο βαρύκεντρο του ηλιακού συστήµατος και η κλίµακα χρόνου της γεωκεντρικής εφηµερίδας πρέπει να έχουν µόνο περιοδικές µεταβολές µεταξύ τους. Ο Βαρυκεντρικός υναµικός Χρόνος (Barycentric Dynamical Time TDB) είναι η ανεξάρτητη µεταβλητή των εξισώσεων κίνησης που αναφέρονται στο βαρύκεντρο του ηλιακού συστήµατος. Στην πράξη ο TDB προσδιορίζεται από τον TDT µέσω µιας

11 35 µαθηµατικής σχέσης. Αυτή η σχέση εξαρτάται από τις σταθερές, τις θέσεις και τις κινήσεις των σωµάτων του ηλιακού συστήµατος και την βαρυτική θεωρία. Η προσεγγιστική σχέση που συνήθως χρησιµοποιείται για τον µετασχηµατισµό από τον TDT στον TDB είναι: s s TDB = TDT sin g sin 2g όπου g = ( JD ) Το 1991, όταν ορίστηκαν το βαρυκεντρικό και το γεωκεντρικό σύστηµα αναφοράς, ορίστηκαν επίσης ο Βαρυκεντρικός Συντεταγµένος Χρόνος (Barycentric Coordinate Time) και ο Γεωκεντρικός Συντεταγµένος Χρόνος (Geocentric Coordinate Time) για να χρησιµοποιούνται µε τα αντίστοιχα συστήµατα, µε σκοπό να αντικαταστήσουν τις κλίµακες TDT και TDB. Οι χωροχρονικές συντεταγµένες ορίζονται µε τέτοιο τρόπο ώστε : 1. το βαρυκεντρικό και το γεωκεντρικό σύστηµα να µην περιστρέφονται ως προς µακρινά εξωγαλαξιακά αντικείµενα. 2. Ο συντεταγµένος χρόνος να προκύπτει από κλίµακα χρόνου που υλοποιείται µέσω ατοµικών χρονοµέτρων που λειτουργούν στη Γη. 3. Οι βασικές µονάδες µέτρησης του χωροχρόνου σε όλα τα συστήµατα είναι το δευτερόλεπτο του συστήµατος SI για τον ιδιοχρόνο και το µέτρο του SI για το ίδιο µήκος. h m s 4. Οι συντεταγµένοι χρόνοι BCG και TCG έχουν τιµή h m s TAI την 1 η Ιανουαρίου 1977, στο γεώκεντρο. ακριβώς, στις 4.9 Γήινος Χρόνος Η κλίµακα χρόνου που χρησιµοποιείται στις εξισώσεις κίνησης ως προς το βαρύκεντρο του ηλιακού συστήµατος πρέπει να είναι τέτοια, ώστε µεταξύ αυτής της κλίµακας και της κλίµακας των γεωκεντρικών εφηµερίδων να υπάρχουν µόνο περιοδικές µεταβολές. Όπως είδαµε, το 1979 στις προαναφερόµενες κλίµακες χρόνου δόθηκαν τα ονόµατα Γήινος υναµικός Χρόνος TDT και Βαρυκεντρικός υναµικός Χρόνος TDB. Με βάση τους ορισµούς τους, η µονάδα του TDT είναι η ηµέρα των SI δευτερολέπτων και συνεπώς ο TDT είναι µια ιδεατή µορφή του Ατοµικού Χρόνου που καµία σχέση δεν έχει µε τις δυναµικές θεωρίες. Ετσι, το επίθετο «δυναµικός» στην ονοµασία του TDT είναι παραπλανητικό, διότι υπονοεί ότι ο χρόνος δίνεται από τη δυναµική θεωρία. Σε µια προσπάθεια να αποφευχθούν οι ασάφειες, προτάθηκε να δοθεί στον χρόνο TDT το όνοµα Γήινος Χρόνος (Terrestrial Time) και στον χρόνο TDB το όνοµα ΤΒ. Ο Γήινος Χρόνος ΤΤ ορίζεται τώρα ως εξής: 1. ο χρόνος ΤΤ είναι ο χρόνος που χρησιµοποιείται στις γεωκεντρικές εφηµερίδες. 2. Ο χρόνος ΤΤ διαφέρει από τον χρόνο TCG κατά ένα σταθερό ρυθµό, ενώ η µονάδα µέτρησής του είναι το δευτερόλεπτο του SI, όπως αυτό µετράται στο γεωειδές.

12 36 h m s 3. Ο χρόνος ΤΤ είχε την τιµή Ιανουαρίου h m στις s TAI της 1 ης Σύµφωνα µε τον αρχικό ορισµό του ΤΤ υπάρχει µια διαφορά µεταξύ του ΤΤ και του ΤΑΙ ίση µε δευτερόλεπτα: TT = TAI s Στο σχήµα που ακολουθεί παρουσιάζεται η αλληλουχία και η διαφορά των κλιµάκων οµοιόµορφου χρόνου, όπως ίσχυε την 1η Ιανουαρίου sec 19 sec sec UTC µεταβλητό GPSTime σταθερό TAI σταθερό TT Ανακεφαλαίωση Η ηµερήσια περιστροφή της Γης ορίζει την κλίµακα του αστρικού χρόνου. Η µονάδα της κλίµακας αυτής είναι η µέση αστρική ηµέρα και περιέχει αστρικά δευτερόλεπτα. Ισοδύναµη κλίµακα χρόνου είναι ο Παγκόσµιος Χρόνος. Η µονάδα του UT είναι η µέση ηλιακή µέρα, που έχει ηλιακά δευτερόλεπτα αλλά ισοδυναµεί µε αστρικά δευτερόλεπτα. Η µεγαλύτερη διάρκεια (κατά 4 περίπου λεπτά) οφείλεται στον συνδυασµό περιστροφής και περιφοράς της Γης γύρω από τον Ήλιο. Οι κλίµακες αυτές ορίζονται µε την βοήθεια του εαρινού ισηµερινού σηµείου. Η µετακίνηση του εξ αιτίας της µετάπτωσης και της κλόνησης της Γης επηρεάζει τον αστρικό χρόνο. Από την ιδιοσυχνότητα συντονισµού του ατόµου του καισίου ορίζεται το δευτερόλεπτο SI, που δηµιουργεί την κλίµακα του Ατοµικού Χρόνου. Σε σχέση µε αυτήν, η κλίµακα του αστρικού χρόνου, συνεπώς και του Παγκόσµιου Χρόνου, παρουσιάζει πολλές µικροµεταβολές, που οφείλονται στις ανωµαλίες της περιστροφής της Γης. Ο Συντονισµένος Χρόνος UTC και ο Πολιτικός Χρόνος κάθε χώρας, που βασίζεται σ αυτόν, έχουν το σταθερό µέτρο του ατοµικού χρόνου (δευτερόλεπτο SI) αλλά παρακολουθούν από κοντά την πορεία του Παγκόσµιου Χρόνου µε την εισαγωγή εµβόλιµων δευτερολέπτων, όταν χρειάζεται. Το ίδιο σταθερό µέτρο έχει και ο Γήινος Χρόνος ΤΤ.

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες 23 4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες Η υλοποίηση ενός συμβατικού πλαισίου αναφοράς για την διάσταση του χρόνου, το οποίο θα ονομάζεται κλίμακα χρόνου (time scale), απαιτεί την ίδια διαδικασία όπως

Διαβάστε περισσότερα

Διαταραχές των κινήσεων της Γης. Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD)

Διαταραχές των κινήσεων της Γης. Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD) Διαταραχές των κινήσεων της Γης Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD) Μεταβολή στην διεύθυνση του άξονα περιστροφής στον χώρο (μετάπτωση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ Μάθημα 3 ο (Κεφ. 2 ο ) Ν. Στεργιούλας Τα 3 πρώτα ορίζονται με βάση περιοδικές κινήσεις ουρανίων σωμάτων. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ Τα κυριότερα συστήματα χρόνου στην Αστρονομία: (α) Αστρικός

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 3: Συστήματα Χρόνου Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Κύρια σημεία του μαθήματος Το σχήμα και οι κινήσεις της Γης Μετάπτωση και κλόνιση του άξονα της Γης Συστήματα χρόνου και ορισμοί: αστρικός χρόνος,

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Yπενθύμιση: Ισημερινές συντεταγμένες Βασικός κύκλος: ο ουράνιος ισημερινός Πρώτος κάθετος: o μεσημβρινός

Διαβάστε περισσότερα

Γεωδαιτική Αστρονομία

Γεωδαιτική Αστρονομία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Γεωδαιτική Αστρονομία Ρωμύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr ΑΝΑΚΕΦΑΛΑΙΩΣΗ Σφαιρικό σύστημα αναφοράς

Διαβάστε περισσότερα

Σφαιρικό σύστημα αναφοράς

Σφαιρικό σύστημα αναφοράς Σφαιρικό σύστημα αναφοράς Ουρανογραφικό σύστημα αναφοράς Αστρονομικό σύστημα αναφοράς Οριζόντιο σύστημα αναφοράς Ισημερινό σύστημα αναφοράς Το τρίγωνο θέσης Αστρικός Χρόνος - 1 Ο αστρικός χρόνος είναι

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Εφαρμογή: Μεταβολή των ουρανογραφικών συντεταγμένων λόγω της μετάπτωσης του άξονα του κόσμου (προηγούμενο

Διαβάστε περισσότερα

Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις

Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις Διπλωματική εργασία Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις Καλλιανού Φωτεινή Θέμα της εργασίας : Τα συστήματα και τα πλαίσια αναφοράς (ουράνια και γήινα) Οι κινήσεις

Διαβάστε περισσότερα

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 37 5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 5.1 Εισαγωγή Οι κύριες κινήσεις της Γης είναι: μια τροχιακή κίνηση του κέντρου μάζας γύρω από τον Ήλιο και μια περιστροφική κίνηση γύρω από τον άξονα που περνά από

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Ανατολή-δύση αστέρων Από την σχέση αυτή προκύπτουν δυο τιμές για την ωριαία γωνία Η Δ για την οποία ο αστέρας βρίσκεται στον

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 3 1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 1.1 Βασικές έννοιες Για τις εφαρμογές της Γεωδαιτικής Αστρονομίας είναι απαραίτητος ο ορισμός συστημάτων συντεταγμένων, στα οποία περιγράφονται οι θέσεις και

Διαβάστε περισσότερα

Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number)

Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number) ΚΛΙΜΑΚΕΣ ΧΡΟΝΟΥ Διάστημα ισχύος ( 0 h UTC ) TAI - UTC Άλλες κλίμακες 1980 Jan 1. - 1981 Jul 1. 19 s TAI - GPS Time = 19 s 1981 Jul 1. - 1982 Jul 1. 20 s 1982 Jul 1. - 1983 Jul 1. 21 s 1983 Jul 1. - 1985

Διαβάστε περισσότερα

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 73 9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 9.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό μήκος ενός τόπου είναι η δίεδρη γωνία μεταξύ του αστρονομικού μεσημβρινού του τόπου και του μεσημβρινού του Greenwich. Η γωνία αυτή

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση)

ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση) ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 4ο εξάμηνο ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1. Ορισμός της ς - Συνδέσεις των γεωεπιστημών

Διαβάστε περισσότερα

Μετρήσεις. Η διαδικασία να μπορούμε να ποσοτικοποιήσουμε εκείνο για το οποίο μιλάμε και να το εκφράσουμε με αριθμούς ονομάζεται μέτρηση.

Μετρήσεις. Η διαδικασία να μπορούμε να ποσοτικοποιήσουμε εκείνο για το οποίο μιλάμε και να το εκφράσουμε με αριθμούς ονομάζεται μέτρηση. Μετρήσεις Η διαδικασία να μπορούμε να ποσοτικοποιήσουμε εκείνο για το οποίο μιλάμε και να το εκφράσουμε με αριθμούς ονομάζεται μέτρηση. 1 Οι ποσότητες που μετράμε ονομάζονται Φυσικές Ποσότητες και είναι

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα 1 ΕΙΣΑΓΩΓΗ Η Γεωδαιτική Αστρονομία (Geodetic Astronomy) είναι ο κλάδος της Αστρονομίας Θέσης (Positional Astronomy) που ασχολείται με τον προσδιορισμό διευθύνσεων στον χώρο, από σημεία πάνω ή κοντά στην

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ ΠΑΡΑΡΤΗΜΑ A Οι δορυφόροι του συστήµατος GPS GPS Block Ι Η σειρά δορυφόρων GPS Block Ι (Demonstration) ήταν η πρώτη σειρά δορυφόρων και είχε δοκιµαστικό χαρακτήρα, ακολουθήθηκε από την επόµενη επιχειρησιακή

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

Να το πάρει το ποτάµι;

Να το πάρει το ποτάµι; Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής

Διαβάστε περισσότερα

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 1.- Από τα πρώτα σχολικά µας χρόνια µαθαίνουµε για το πλανητικό µας σύστηµα. Α) Ποιος είναι ο πρώτος και

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

Οι Κινήσεις της Γης. Eπιπτώσεις. Η κίνηση της Γης. στα Συστήματα Αναφοράς για τη ορυφορική Γεωδαισία. Η περιστροφή της Γης

Οι Κινήσεις της Γης. Eπιπτώσεις. Η κίνηση της Γης. στα Συστήματα Αναφοράς για τη ορυφορική Γεωδαισία. Η περιστροφή της Γης Οι Κινήσεις της Γης. Eπιπτώσεις στα Συστήματα για τη ορυφορική Γεωδαισία Οι αρχαίοι θεωρούσαν τη Γη ακίνητη και κέντρο του σύμπαντος Η κίνηση της Γης TEPAK ορυφορική Γεωδαισία 6 ο Εξάμηνο 2011-12 Στην

Διαβάστε περισσότερα

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Σφαιρικό Τρίγωνο Σφαιρικό τρίγωνο λέγεται το μέρος της σφαίρας, το οποίο περικλείεται μεταξύ των τόξων τριών μέγιστων κύκλων, με την προϋπόθεση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ 1 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ Κεφάλαιο 2 ο Συστήματα αστρονομικών συντεταγμένων και χρόνος ΑΣΚΗΣΗ 1 η (α) Να εξηγηθεί γιατί το αζιμούθιο της ανατολής και της δύσεως του Ηλίου σε ένα τόπο,

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 -

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 - ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ H Γη είναι ένας πλανήτης από τους οκτώ συνολικά του ηλιακού μας συστήματος, το οποίο αποτελεί ένα από τα εκατοντάδες δισεκατομμύρια αστρικά συστήματα του Γαλαξία μας, ο οποίος με την

Διαβάστε περισσότερα

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται Sfaelos Ioannis Τα ουράνια σώµατα φαίνονται από τη Γη σαν να βρίσκονται στην εσωτερική επιφάνεια µιας γιγαντιαίας σφαίρας, απροσδιόριστης ακτίνας, µε κέντρο τη Γη. Τη φανταστική αυτή σφαίρα τη λέµε "ουράνια

Διαβάστε περισσότερα

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ Χαρτογραφία Ι 1 Το σχήμα και το μέγεθος της Γης [Ι] Σφαιρική Γη Πυθαγόρεια & Αριστοτέλεια αντίληψη παρατηρήσεις φυσικών φαινομένων Ομαλότητα γεωμετρικού σχήματος (Διάμετρος

Διαβάστε περισσότερα

Data Analysis Examination

Data Analysis Examination Data Analysis Examination Page 1 of (D1) Διπλός Πάλσαρ Κάνοντας συστηµατικές έρευνες τις τελευταίες δεκαετίες, οι αστρονόµοι κατάφεραν να εντοπίσουν ένα µεγάλο πλήθος από πάλσαρς µε περίοδο περιστροφής

Διαβάστε περισσότερα

6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ 45 6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ 6.1 Εισαγωγή Ως τώρα έχουμε δεχθεί ότι οι ουρανογραφικές συντεταγμένες (α,δ) κάθε άστρου ή οι αστρονομικές συντεταγμένες (Λ,Φ) ενός συγκεκριμένου τόπου παραμένουν σταθερές,

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH TZΕΜΟΣ ΑΘΑΝΑΣΙΟΣ Α.Μ. 3507 ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH Όλοι γνωρίζουμε ότι η εναλλαγή των 4 εποχών οφείλεται στην κλίση που παρουσιάζει ο άξονας περιστροφής

Διαβάστε περισσότερα

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 19/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΝΑΥΣΙΠΛΟΪΑ ΙΙ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Γεωκεντρικό σύστημα παρατήρησης Με εξαίρεση έναν αριθμό από διαστημικές αποστολές, οι παρατηρήσεις των ουράνιων αντικειμένων

Διαβάστε περισσότερα

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle 21 3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ Ως τώρα είδαμε πως ορίζονται διάφορα συστήματα αναφοράς και πως οι συντεταγμένες, σε κάθε σύστημα, αλλάζουν ανάλογα με την διεύθυνση παρατήρησης, τον τόπο και τον χρόνο. Για να γίνουν

Διαβάστε περισσότερα

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι:

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: ΗΛΙΑΚΑ ΩΡΟΛΟΓΙΑ Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: Οριζόντια Κατακόρυφα Ισημερινά Το παρακάτω άρθρο αναφέρεται στον τρόπο λειτουργίας αλλά και κατασκευής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Θεωρητική Εξέταση. 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ»

Θεωρητική Εξέταση. 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ» 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής 2018 4 η φάση: «ΠΤΟΛΕΜΑΙΟΣ» Θεωρητική Εξέταση 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας 2018 4 η φάση Θεωρητική Εξέταση 1 Παρακαλούμε, διαβάστε

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης)

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα με γεωγραφική

Διαβάστε περισσότερα

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 69 8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 8.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό πλάτος ενός τόπου είναι η γωνία μεταξύ της διεύθυνσης της κατακορύφου του τόπου και του επιπέδου του ουράνιου Ισημερινού. Ο προσδιορισμός

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Η γέννηση της Αστροφυσικής Οι αστρονόμοι μελετούν τα ουράνια σώματα βασισμένοι στο φως, που λαμβάνουν από αυτά. Στα πρώτα χρόνια των παρατηρήσεων,

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Οι μεταβολές της παραμέτρου «χρόνος» λόγω Σχετικότητας και εφαρμογές στη Γεωδαισία

Οι μεταβολές της παραμέτρου «χρόνος» λόγω Σχετικότητας και εφαρμογές στη Γεωδαισία Οι μεταβολές της παραμέτρου «χρόνος» λόγω Σχετικότητας και εφαρμογές στη Γεωδαισία Αντωνοπούλου Αλεξάνδρα Διπλωματική Εργασία που υποβλήθηκε στη Σχολή Μηχανικών Ορυκτών Πόρων ως μέρος των απαιτήσεων για

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Σύστημα γήινων συντεταγμένων Γήινος μεσημβρινός του τόπου Ο Μεσημβρινός του Greenwich (πρώτος κάθετος) Γεωγραφικό μήκος 0

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Φαινόμενα που μεταβάλλουν στις συντεταγμένες των ουρανίων σωμάτων Ακριβές σχήμα της Γης αστρονομικό και γεωκεντρικό ζενίθ

Διαβάστε περισσότερα

ΧΑΡΤΟΓΡΑΦΙΑ. Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων

ΧΑΡΤΟΓΡΑΦΙΑ. Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων ΧΑΡΤΟΓΡΑΦΙΑ Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων ρ. Ε. Λυκούδη Αθήνα 2005 Χώρος Η ανάπτυξη της ικανότητας της αντίληψης του χώρου, ως προς τις διαστάσεις του και το περιεχόµενό του είναι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Θέµα: Εφαρµογές Παγκόσµιου ορυφορικού Συστήµατος Εντοπισµού Θέσης (GPS) Καρπούζας Ηρακλής Μάρτιος 2008

Θέµα: Εφαρµογές Παγκόσµιου ορυφορικού Συστήµατος Εντοπισµού Θέσης (GPS) Καρπούζας Ηρακλής Μάρτιος 2008 Θέµα: Εφαρµογές Παγκόσµιου ορυφορικού Συστήµατος Εντοπισµού Θέσης (GPS) Καρπούζας Ηρακλής Μάρτιος 2008 ΠΑΓΚΟΣΜΙΟ ΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ ΘΕΣΗΣ GLOBAL POSITIONING SYSTEM (GPS) ΑΡΧΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ Γενικά

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΠΑΓΚΟΣΜΙΟ ΣΥΣΤΗΜΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΣΗΣ (GPS - Global Positioning System) ΕΙΣΑΓΩΓΗ

ΕΝΟΤΗΤΑ ΠΑΓΚΟΣΜΙΟ ΣΥΣΤΗΜΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΣΗΣ (GPS - Global Positioning System) ΕΙΣΑΓΩΓΗ ΕΝΟΤΗΤΑ 10 10.0 ΠΑΓΚΟΣΜΙΟ ΣΥΣΤΗΜΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΣΗΣ (GPS - Global Positioning System) ΕΙΣΑΓΩΓΗ Το σύστημα GPS επιτρέπει τον ακριβή προσδιορισμό των γεωγραφικών συντεταγμένων μιας οποιασδήποτε θέσης,

Διαβάστε περισσότερα

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M, ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙ Α ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ»

ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙ Α ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ» ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙΑ ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ» ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ z z y y ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΓΑΛΙΛΑΙΟΥ Αδρανειακό σύστηµααναφοράςείναι αυτό στο οποίο ενα σώµαπουδεν του ασκούνται

Διαβάστε περισσότερα

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή Κεφάλαιο 5: 5.1. Εισαγωγή Η ηλιακή γεωμετρία περιγράφει τη σχετική κίνηση γης και ήλιου και αποτελεί ένα σημαντικό παράγοντα που υπεισέρχεται στον ενεργειακό ισολογισμό κτηρίων. Ανάλογα με τη γεωμετρία

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΧΡΟΝΟΥ

ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΧΡΟΝΟΥ ΧΡΟΝΟΣ ΟΡΙΣΜΟΣ Ο χρόνος εννοείται "η ακαθόριστη κίνηση της ύπαρξης και των γεγονότων στο παρελθόν, το παρόν, και το μέλλον, θεωρούμενη ως σύνολο". 2 Γενικά Χρόνος χαρακτηρίζεται η ακριβής μέτρηση μιας

Διαβάστε περισσότερα

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις.

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις. ΕΙΣΑΓΩΓΗ Στα πλαίσια του προγράμματος περιβαλλοντικής Αγωγής, τη σχολική χρονιά 2012-2013, αποφασίσαμε με τους μαθητές του τμήματος Β 3 να ασχοληθούμε με κάτι που θα τους κέντριζε το ενδιαφέρον. Έτσι καταλήξαμε

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Γεωκεντρικό σύστημα παρατήρησης Με εξαίρεση έναν αριθμό από διαστημικές αποστολές, οι παρατηρήσεις των ουράνιων αντικειμένων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc ΤΑΛΑΝΤΩΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 1 Να συμπληρώσετε τα κενά στις επόμενες προτάσεις: α. Το χρονικό διάστημα μέσα στο οποίο πραγματοποιείται μία πλήρης ταλάντωση ονομάζεται.. και το πηλίκο του αριθμού των ταλαντώσεων

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

Μάθηµα 4 ο : ορυφορικές τροχιές

Μάθηµα 4 ο : ορυφορικές τροχιές Μάθηµα 4 ο : ορυφορικές τροχιές Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Tις σηµαντικότερες κατηγορίες δορυφορικών τροχιών Τους παράγοντες που οδηγούν στην επιλογή συγκεκριµένης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 1. Τρια αντικείµενα Α, Β και C µε µάζα m, 2m και 8m αντίστοιχα βρίσκονται στο ίδιο επίπεδο και στις θέσεις που φαίνονται στο σχήµα. Σε ποια θέση (x,y) πρέπει να τοποθετεί ένα τέταρτο

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ. Διπλωματική εργασία.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ. Διπλωματική εργασία. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Διπλωματική εργασία ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΠΛΑΙΣΙΑ ΑΝΑΦΟΡΑΣ ΣΤΗ ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΟΙ ΔΙΕΘNΕΙΣ ΣΥΜΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΓΕΩΜΕΤΡΙΑ Δ. Κουζούδης Πανεπιστήμιο Πατρών

ΗΛΙΑΚΗ ΓΕΩΜΕΤΡΙΑ Δ. Κουζούδης Πανεπιστήμιο Πατρών ΗΛΙΑΚΗ ΓΕΩΜΕΤΡΙΑ Δ. Κουζούδης Πανεπιστήμιο Πατρών Συντεταγμένες του τόπου (γεωγραφικό μήκος και πλάτος) Π.χ. το Google Maps δίνει για το Παν. Πατρών 38.3, 21.8. Προσοχή, το πρώτο είναι το γεωγραφικό πλάτος

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του

Διαβάστε περισσότερα

Το στοιχείο που διαφοροποιεί τις γεωγραφικές πληροφορίες από τους υπόλοιπους τύπους πληροφοριών

Το στοιχείο που διαφοροποιεί τις γεωγραφικές πληροφορίες από τους υπόλοιπους τύπους πληροφοριών Γεωγραφική θέση Το στοιχείο που διαφοροποιεί τις γεωγραφικές πληροφορίες από τους υπόλοιπους τύπους πληροφοριών Η τριάδα: () θέση στο χώρο, (2) θέση στο χρόνο και (3) θεματικά χαρακτηριστικά αποτελεί τη

Διαβάστε περισσότερα

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης 1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης Απαραίτητο όλων των ωκεανογραφικών ερευνών και μελετών Προσδιορισμός θέσης & πλοήγηση σκάφους Σε αυτό το εργαστήριο.. Τι περιλαμβάνει

Διαβάστε περισσότερα

dv = dx dy dz = r 2 sin θ dr dθ dϕ = r 2 dω

dv = dx dy dz = r 2 sin θ dr dθ dϕ = r 2 dω Παράρτημα Αʹ Στοιχεία αστρονομίας θέσης - πηγές δεδομένων Αʹ.1 Εισαγωγή Απαραίτητη προϋπόθεση για να αξιοποιηθούν όλα όσα αναπτύξαμε στο κυρίως βιβλίο είναι να γνωρίζουμε τη θέση στον ουρανό του αντικειμένου

Διαβάστε περισσότερα

ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ

ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΝΑΥΣΙΠΛΟΙΑ ΙΙ 3/02/2019 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή

Διαβάστε περισσότερα

Στοιχείατης. τηςθεωρίαςτης Σχετικότητας. Άλµπερτ Αϊνστάιν 1905

Στοιχείατης. τηςθεωρίαςτης Σχετικότητας. Άλµπερτ Αϊνστάιν 1905 Στοιχείατης τηςθεωρίαςτης Σχετικότητας Άλµπερτ Αϊνστάιν 1905 Έννοια Συστήµατος Αναφοράς Ένα σταθερό σύστηµα (x,y,z) και t βάσει του οποίου περιγράφουµε ένα φυσικό γεγονός. Συνήθως σύστηµα Εργαστηρίου.

Διαβάστε περισσότερα

Ερωτήσεις Λυκείου 22 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2017

Ερωτήσεις Λυκείου 22 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2017 ΠΡΟΣΟΧΗ: Δεν θα συμπληρώσετε τίποτα πάνω σε αυτό το έγγραφο, ούτε θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε,

Διαβάστε περισσότερα

Θεωρία μετασχηματισμών

Θεωρία μετασχηματισμών Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί

Διαβάστε περισσότερα

Ο ειδικός μετασχηματισμός του Lorentz

Ο ειδικός μετασχηματισμός του Lorentz Ο ειδικός μετασχηματισμός του Lorentz Με αφετηρία τις δυο απαιτήσεις της Ειδικής Θεωρίας Σχετικότητας του Einstein θα βρούμε τον ειδικό μετασχηματισμό του Lorentz Πρώτη απαίτηση: Όλοι οι αδρανειακοί παρατηρητές

Διαβάστε περισσότερα

Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους

Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους 1 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους Σκοποί της πέμπτης διάλεξης: 10.11.2011 Εξοικείωση με τους μετασχηματισμούς του Lorentz και τις διάφορες μορφές που μπορούν να πάρουν για την επίλυση

Διαβάστε περισσότερα

7. To GPS και άλλα συστήµατα GNSS

7. To GPS και άλλα συστήµατα GNSS 7. To GPS και άλλα συστήµατα GNSS 7.1 GPS και άλλα συστήµατα προσδιορισµού θέσης GNSS Παράλληλα µε το GPS η πρώην Σοβιετική Ένωση προχώρησε στη δηµιουργία ενός παρόµοιου συστήµατος προσδιορισµού θέσης

Διαβάστε περισσότερα

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήενέργεια Ηλιακή γεωµετρία Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήγεωµετρία Ηλιακήγεωµετρία Η Ηλιακή Γεωµετρία αναφέρεται στη µελέτη της θέσης του ήλιου σε σχέση

Διαβάστε περισσότερα

2. Ένα μπαλάκι το δένουμε στην άκρη ενός νήματος και το περιστρέφουμε. Αν το μπαλάκι

2. Ένα μπαλάκι το δένουμε στην άκρη ενός νήματος και το περιστρέφουμε. Αν το μπαλάκι 1. Α. Η κίνηση του εκκρεμούς είναι μια ( περιοδική/ ομαλή κυκλική κίνηση) Β. Ένα αυτοκίνητο που κινείται σε κυκλική πλατεία, σίγουρα εκτελεί (κυκλική / ομαλή κυκλική) κίνηση. Γ. Η κίνηση του άκρου ενός

Διαβάστε περισσότερα

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001 Τµήµα Π Ιωάννου & Θ Αποστολάτου 3/2001 Μηχανική ΙI Λαγκρανζιανή συνάρτηση Είδαµε στο προηγούµενο κεφάλαιο ότι ο δυναµικός νόµος του Νεύτωνα είναι ισοδύναµος µε την απαίτηση η δράση ως το ολοκλήρωµα της

Διαβάστε περισσότερα

2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β.

2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β. 2.1.. 2.1.. Ομάδα Β. 2.1.Σχέσεις μεταξύ γραμμικών και γωνιακών μεγεθών στην ΟΚΚ. Κινητό κινείται σε περιφέρεια κύκλου ακτίνας 40m με ταχύτητα μέτρου 4m/s. i) Ποια είναι η περίοδος και ποια η συχνότητά

Διαβάστε περισσότερα

(βλ. σελ. 174 του βιβλίου ΚΣ). Το y έχει τεθεί για τη διόρθωση λόγω μη KΕΦΑΛΑΙΟ 12: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ

(βλ. σελ. 174 του βιβλίου ΚΣ). Το y έχει τεθεί για τη διόρθωση λόγω μη KΕΦΑΛΑΙΟ 12: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ KΕΦΑΛΑΙΟ 1: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ Σελ. : 03 έως 16 του βιβλίου ΚΣ 0 ο VIDO, 11013 0λ έως 8:40λ : Σχόλια στα αποτελέσματα της εξέτασης προόδου 8:40λ έως το τέλος: Σε ένα πλανήτη η βαρυτική του αυτοενέργεια

Διαβάστε περισσότερα

= 2, s! 8,23yr. Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016

= 2, s! 8,23yr. Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 1. Αστρική μέρα ονομάζουμε: (α) τον χρόνο από την ανατολή μέχρι τη δύση ενός αστέρα (β) τον χρόνο περιστροφής ενός αστέρα

Διαβάστε περισσότερα

ΝΑΥΣΙΠΛΟΪΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ

ΝΑΥΣΙΠΛΟΪΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΑΥΣΙΠΛΟΪΑ 1 o ΔΙΑΓΩΝΙΣΜΑ α. Τι είναι έξαρμα του πόλου υπέρ τον ορίζοντα και γιατί ενδιαφέρει τον ναυτιλλόμενο. β. Να ορίσετε τα είδη των αστέρων (αειφανείς, αφανείς και Αμφιφανείς)και να γράψετε τις συνθήκες

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ενδιάμεσο Διαγώνισμα Διάρκεια 11 Επιλέξτε

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ Ενότητα 9: Προβολικά Συστήματα (Μέρος 1 ο ) Νικολακόπουλος Κωνσταντίνος, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Διαβάστε περισσότερα

ΗΈνταξητουλογισµικού SalsaJσε. σεµιαδιαθεµατική προσέγγισητης Αστρονοµίας. Γρηγόρης Ζυγούρας Φυσικός Τεχνολόγος 2 ο Γυµνάσιο Χαλανδρίου

ΗΈνταξητουλογισµικού SalsaJσε. σεµιαδιαθεµατική προσέγγισητης Αστρονοµίας. Γρηγόρης Ζυγούρας Φυσικός Τεχνολόγος 2 ο Γυµνάσιο Χαλανδρίου ΗΈνταξητουλογισµικού SalsaJσε σεµιαδιαθεµατική προσέγγισητης Αστρονοµίας Γρηγόρης Ζυγούρας Φυσικός Τεχνολόγος 2 ο Γυµνάσιο Χαλανδρίου ΧΡΗΣΗΤΟΥ ΤΟΥΛΟΓΙΣΜΙΚΟΥ SALSAJ ΓΙΑΤΟΝ ΤΟΝΥΠΟΛΟΓΙΣΜΟ ΤΗΣΜΑΖΑΣ ΜΑΖΑΣΤΟΥ

Διαβάστε περισσότερα

Μέρος A: Νευτώνιες τροχιές (υπό την επίδραση συντηρητικών δυνάμεων) (3.0 μονάδες)

Μέρος A: Νευτώνιες τροχιές (υπό την επίδραση συντηρητικών δυνάμεων) (3.0 μονάδες) Theory LIGO-GW150914 (10 μονάδες) Q1-1 Το 015, το παρατηρητήριο βαρυτικών κυμάτων LIGO ανίχνευσε για πρώτη φορά τη διέλευση των βαρυτικών κυμάτων (gravitational waves ή GW) διαμέσου της Γης. Το συμβάν

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού. ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου

Διαβάστε περισσότερα