ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ"

Transcript

1 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ IOYNIOY ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f(x) = 0 για κάθε εσωτερικό σημείο x του Δ, τότε να αποδείξετε ότι η f είναι σταθερή σε όλο το διάστημα Δ. Μονάδες 10 A. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η f παρουσιάζει στο x0 Α (ολικό) μέγιστο, το f( x ) ; 0 Μονάδες 5 A3. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Για κάθε z ισχύει z z = Im(z) (μονάδες ) β) Αν lim f ( x) x x 0 =+ ή, τότε 1 lim = 0 f x x x 0 ( ) (μονάδες ) γ) Αν μια συνάρτηση f παρουσιάζει (ολικό) μέγιστο, τότε αυτό θα είναι το μεγαλύτερο από τα τοπικά της μέγιστα. (μονάδες ) ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

2 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ δ) Οι πολυωνυμικές συναρτήσεις βαθμού μεγαλύτερου ή ίσου του δεν έχουν ασύμπτωτες. (μονάδες ) ε) Έστω συνάρτηση f συνεχής σε ένα διάστημα Δ και παραγωγίσιμη σε κάθε εσωτερικό σημείο του Δ. Αν η συνάρτηση f είναι γνησίως φθίνουσα στο Δ, τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του Δ. (μονάδες ) Μονάδες 10 ΘΕΜΑ Β Δίνεται η εξίσωση z + (z+ z)i 4 i= 0, z B1. Να λύσετε την παραπάνω εξίσωση. Μονάδες 9 B. Αν z=1+i 1 και z=1-i είναι οι ρίζες της παραπάνω εξίσωσης, τότε να αποδείξετε ότι ο αριθμός είναι ίσος με 3i w 39 z 1 = 3 z B3. Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών u για τους οποίους ισχύει u+ w = 4z1 z i όπου w, z 1, z οι μιγαδικοί αριθμοί του ερωτήματος Β. ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

3 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΘΕΜΑ Γ Δίνεται η συνάρτηση f με f ( x ) = (x 3) (x 1), x Γ1. Να βρείτε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα και τα διαστήματα στα οποία η f είναι γνησίως φθίνουσα. Γ. Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f η οποία α) είναι παράλληλη προς την ευθεία με εξίσωση y = 4x+ 3 και β) η τετμημένη του σημείου επαφής της με την γραφική παράσταση της f είναι ακέραιος αριθμός. Γ3. Να αποδείξετε ότι η συνάρτηση g(x) = (x 1) f(x), x έχει δύο θέσεις τοπικών ελαχίστων και μία θέση τοπικού μεγίστου. Μονάδες 9 ΘΕΜΑ Δ α x x+ Δίνεται η συνάρτηση h με hx ( ) =,x 1 και α. Αν η ευθεία x+ 1 με εξίσωση y = x είναι πλάγια ασύμπτωτη της γραφικής παράστασης της h στο +, τότε Δ1. Να αποδείξετε ότι α = 1 Μονάδες 7 Δ. α) Να εξετάσετε αν η ευθεία με εξίσωση y = x είναι πλάγια ασύμπτωτη της γραφικής παράστασης της h και στο. β) Να βρείτε την κατακόρυφη ασύμπτωτη της γραφικής παράστασης της h. Μονάδες 9 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

4 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ Δ3. Να αποδείξετε ότι η εξίσωση ( ) ρίζα στο διάστημα ( 1,0) 4 (x + 3) h x + = 0 έχει μια τουλάχιστον x Μονάδες 9 ΟΔΗΓΙΕΣ (για τους εξεταζομένους) 1. Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα Ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και μόνο για πίνακες, διαγράμματα κλπ. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: π.μ. ΣΑΣ ΕΥΧΟΜΑΣΤΕ KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 7 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α A1. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ α, β ]. Αν: η f είναι συνεχής στο [ α, β ] και f ( α) f ( β) τότε, να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f ( α ) και f ( β ) υπάρχει ένας τουλάχιστον x ( α, β) τέτοιος, ώστε 0 f( x0 ) = η Μονάδες 7 A. Να διατυπώσετε το Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού (Θ.Μ.Τ.) Μονάδες 4 A3. Πότε λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη σε ένα κλειστό διάστημα [ ] α, β του πεδίου ορισμού της; Μονάδες 4 A4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Η εξίσωση z z0 = ρ, ρ>0 παριστάνει τον κύκλο με κέντρο το σημείο K( z 0 ) και ακτίνα β) Αν lim f ( x) < 0, τότε ( ) x x 0 ρ, όπου z, z 0 μιγαδικοί αριθμοί. f x 0 < κοντά στο x 0 γ) Ισχύει ότι: ημx x για κάθε x ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

6 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ δ) Ισχύει ότι: συν x 1 lim = 1 x 0 x ΘΕΜΑ Β ε) Μια συνεχής συνάρτηση f διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της f χωρίζουν το πεδίο ορισμού της. Μονάδες 10 Θεωρούμε τους μιγαδικούς αριθμούς z για τους οποίους ισχύει: ( z )( z ) + z = B1. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών K,0 και ακτίνα ρ = 1 (μονάδες 5). αριθμών z, είναι κύκλος με κέντρο ( ) Στη συνέχεια, για κάθε μιγαδικό z που ανήκει στον παραπάνω γεωμετρικό τόπο, να αποδείξετε ότι z 3 (μονάδες 3) B. Αν οι μιγαδικοί αριθμοί z, 1 z που ανήκουν στον παραπάνω γεωμετρικό τόπο, είναι ρίζες της εξίσωσης w + βw + γ = 0, με w μιγαδικό αριθμό, β,γ, και ( ) ( ) Im z Im z = 1 τότε να αποδείξετε ότι: β = 4 και γ = 5 Μονάδες 9 B3. Για τους μιγαδικούς αριθμούς z1 = + i, z = i και u z + i 1 = z i να βρεθεί το εμβαδόν του τριγώνου με κορυφές τις εικόνες των μιγαδικών αριθμών z,z 1 και u. 013 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

7 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΘΕΜΑ Γ Δίνεται η συνάρτηση f( x) 4 = + α x x 1 με x 1, α Γ1. Να βρείτε το α, ώστε η εφαπτομένη της γραφικής παράστασης της ( ) συνάρτησης f στο σημείο ( ) ( ε):x 3y+ 6= 0 Αν α = 1, τότε: A, f να είναι κάθετη στην ευθεία Μονάδες 6 Γ. να μελετήσετε τη συνάρτηση f ως προς την μονοτονία και να βρεθούν τα ακρότατα Μονάδες 6 Γ3. να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f Γ4. να βρείτε το όριο lim x 1 ( ) ( ) x 1 f x 6 x 1 Μονάδες 5 ΘΕΜΑ Δ Θεωρούμε τη συνάρτηση f: Να αποδείξετε ότι: Δ1. η συνάρτηση f είναι γνησίως μονότονη Δ. η εξίσωση με τύπο f( x) = x ( x+ x ) ( + ) = ( ) f x x 1 f έχει μία τουλάχιστον ρίζα στο διάστημα ( 1, 3 ) ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ Μονάδες 7 Μονάδες 9 Δ3. Να εξετάσετε αν για τη συνάρτηση f ικανοποιούνται οι υποθέσεις του θεωρήματος Μέσης Τιμής στα διαστήματα [ 1, ], [, 3 ] και [ ] στη συνέχεια, να αποδείξετε ότι υπάρχουν ξ1 ( 1, ) και ξ (, 3) ξ ( 1, 3) τέτοια ώστε να ισχύει η σχέση: ( ) = ( ) + ( ) f ξ f ξ f ξ 1 1, 3, και και Μονάδες 9

8 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΟΔΗΓΙΕΣ (για τους εξεταζομένους) 1. Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μην γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, και μόνο για πίνακες, διαγράμματα κλπ. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

9 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) A1. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα. Αν f (x) > 0 σε κάθε εσωτερικό σημείο x του, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Μονάδες 7 A. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; Μονάδες 4 A3. Έστω συνάρτηση f με πεδίο ορισμού Α. Πότε λέμε ότι η f παρουσιάζει στο x 0 œa τοπικό μέγιστο; Μονάδες 4 A4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα. β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

10 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ( ) γ) Αν είναι lim f x = +, τότε f(x)<0 κοντά στο x x x 0 δ) Αν δύο συναρτήσεις f, g είναι ορισμένες και συνεχείς σε ένα διάστημα και ισχύει ότι f (x) = g ( x) για κάθε εσωτερικό σημείο x του, τότε ισχύει πάντα f(x)=g(x) για κάθε xœ ΘΕΜΑ Β ε) Ένα τοπικό μέγιστο μπορεί να είναι μικρότερο από ένα τοπικό ελάχιστο. 0 Μονάδες 10 Θεωρούμε τους μιγαδικούς z και w για τους οποίους ισχύουν οι επόμενες σχέσεις: z 3 + z+ 3 w 1 = w = 36 B1. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών z στο επίπεδο είναι κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ=3 B. Αν z 1, z είναι δύο από τους παραπάνω μιγαδικούς αριθμούς z με z =, να βρείτε το z z1 3 z1 + Μονάδες 9 B3. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών w στο επίπεδο είναι κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ=1 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

11 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΘΕΜΑ Γ ίνεται η συνάρτηση f(x)= + αx β, x + x>0 με α,βœ Γ1. Αν είναι α<0, να αποδείξετε ότι η f είναι γνησίως φθίνουσα στο διάστημα (0,+ ) Μονάδες 4 Γ. Αν είναι α<0, να αποδείξετε ότι η εξίσωση f(x)=0 έχει ακριβώς μία λύση στο (0,+ ) Γ3. Να αποδείξετε ότι η γραφική παράσταση της f : Μονάδες 7 i) έχει κατακόρυφη ασύμπτωτη για κάθε α,β, την οποία και να βρείτε (μονάδες 3) ii) έχει οριζόντια ασύμπτωτη μόνο για α=0 και βœ, την οποία και να βρείτε (μονάδες 3) Μονάδες 6 Γ4. Να βρείτε τις τιμές των α,β για τις οποίες η f παρουσιάζει στο σημείο x 0 =1 τοπικό ακρότατο, το f(x 0 )=7. Στη συνέχεια να καθορίσετε το είδος του ακροτάτου αυτού. ΘΕΜΑ Έστω συνάρτηση f δύο φορές παραγωγίσιμη στο για την οποία ισχύουν: f (x) > f(x) + ημx lim = x 0 x x f(1)= f (0) 1. Να αποδείξετε ότι f(0)=0 και f(1)= 3 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

12 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ. Αν η g(x)=f(x)+α(x+1), x και α ικανοποιεί τις υποθέσεις του θεωρήματος Rolle στο διάστημα [0,1], να βρείτε τον αριθμό α Μονάδες 5 3. Για α=1 να αποδείξετε ότι υπάρχει μοναδικό σημείο ξ (0,1) τέτοιο ώστε f (ξ)= (ξ+1) Μονάδες 6 4. Για α=1 να αποδείξετε ότι η g παρουσιάζει ελάχιστο στο σημείο ξ του προηγούμενου ερωτήματος. Μονάδες 6 Ο ΗΓΙΕΣ (για τους εξεταζομένους) 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Να μη χρησιμοποιήσετε χαρτί μιλιμετρέ. 6. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 7. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 8. Χρόνος δυνατής αποχώρησης: π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

13 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 16 ΜΑΪΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα και x 0 ένα εσωτερικό σημείο του. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι: f (x 0 ) = 0 Μονάδες 10 A. ίνεται συνάρτηση f ορισμένη στο. Πότε η ευθεία y=λx+β λέγεται ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 5 A3. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1 β) Μια συνάρτηση f:a λέγεται συνάρτηση 1-1, όταν για οποιαδήποτε x 1, x A ισχύει η συνεπαγωγή: αν x 1 x, τότε f(x 1 ) f(x ) γ) Για κάθε x 1 = {x συνx=0} ισχύει: 1 ( εφ x) = συν x ημ x δ) Ισχύει ότι: lim = 1 x + x ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

14 ΘΕΜΑ Β ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ε) Οι γραφικές παραστάσεις C και C των συναρτήσεων f και f 1 είναι συμμετρικές ως προς την ευθεία y=x που διχοτομεί τις γωνίες xoy και x Oy. Μονάδες 10 Έστω οι μιγαδικοί αριθμοί z και w, με z 3i, οι οποίοι ικανοποιούν τις σχέσεις: z 3i = 1 και 1 w = z 3i + z 3i B1. Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών z B. Να αποδείξετε ότι: z + 3i = 1 z 3i Μονάδες 7 Μονάδες 4 B3. Να αποδείξετε ότι ο w είναι πραγματικός αριθμός και ότι w B4. Να αποδείξετε ότι: z w = z Μονάδες 6 ΘΕΜΑ Γ ίνεται η συνάρτηση f(x)= x + x, x 0 Γ1. Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία και τα ακρότατα. Μονάδες 6 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

15 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ Γ. Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης f στο σημείο Α,f () ( ) Μονάδες 6 Γ3. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f. Γ4. Να βρείτε το όριο: ΘΕΜΑ 1 f 3 x lim x 1 x 1 Μονάδες 6 Μονάδες 7 ίνεται η παραγωγίσιμη συνάρτηση f :, με f(0)=0, η οποία ικανοποιεί τη σχέση f(x)+xf (x)=ημx, για κάθε x. 1. Να αποδείξετε ότι η συνάρτηση g(x)=xf(x)+συνx, x είναι σταθερή στο.. Να αποδείξετε ότι: συνx f (x) = 1, x και x 0 x Μονάδες 6 Μονάδες 6 3. Να αποδείξετε ότι η εξίσωση 1 συνx = xημx έχει μία π 3π τουλάχιστον ρίζα στο διάστημα, Μονάδες 6 4. Να αποδείξετε ότι υπάρχει ένα τουλάχιστον ξ (0,π) τέτοιο ώστε: ξημξ+συνξ=1+ ξ π Μονάδες 7 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

16 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ Ο ΗΓΙΕΣ (για τους εξεταζομένους) 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Να μη χρησιμοποιήσετε χαρτί μιλιμετρέ. 6. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 7. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 8. Χρόνος δυνατής αποχώρησης: π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

17 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ (ΟΜΑ ΑΣ Β ) ΤΡΙΤΗ 5 MAΪΟΥ 010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ Α Α1. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ Μονάδες 10 Α. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σ ένα διάστημα του πεδίου ορισμού της; Μονάδες 5 Α3. Για καθεμιά από τις επόμενες πέντε (5) προτάσεις, α. έως ε., να γράψετε στο τετράδιό σας το γράμμα της και ακριβώς δίπλα την ένδειξη Σ, αν η πρόταση είναι Σωστή, ή Λ, αν αυτή είναι Λανθασμένη. α. Το πεδίο ορισμού μιας συνάρτησης f είναι το σύνολο Α των τετμημένων των σημείων της γραφικής παράστασης C f της συνάρτησης. β. Για κάθε συνάρτηση f παραγωγίσιμη σ ένα διάστημα και για κάθε πραγματικό αριθμό c, ισχύει ότι: ( cf (x)) = f (x), για κάθε x. γ. Αν z 1, z μιγαδικοί αριθμοί με z 0, τότε ισχύει ότι: z 1 = z δ. Το σύνολο τιμών μιας συνεχούς συνάρτησης f με πεδίο ορισμού το κλειστό διάστημα [α, β] είναι το κλειστό διάστημα [m, M], όπου m η ελάχιστη και Μ η μέγιστη τιμή της. z z 1

18 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ε. Αν lim x x 0 f (x) = +, τότε f(x)<0 κοντά στο x0. ΘΕΜΑ Β Έστω ο μιγαδικός αριθμός z = x+yi με x,y. Μονάδες 10 B1. Αν ισχύει ότι z i z = 3, τότε να βρείτε τον μιγαδικό αριθμό z. B. Αν z=+i, τότε να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών w για τους οποίους ισχύει ότι: w + z = z. Μονάδες 7 z + iz B3. Αν z=+i και u=, τότε να αποδείξετε ότι: u 010 = 1. z 1 ΘΕΜΑ Γ ίνεται η συνάρτηση f(x) = x 3 +3x+συνx, x. Μονάδες 10 Γ1. Να αποδείξετε ότι η συνάρτηση f είναι γνησίως αύξουσα στο. Μονάδες 5 Γ. Να αποδείξετε ότι η εξίσωση f(x)=0 έχει ακριβώς μία ρίζα στο διάστημα (0,π). Γ3. Να λύσετε την εξίσωση: f(x +8) = f(6x) Γ4. Να βρείτε το όριο: f (x) + 1 lim x 0 x Μονάδες 10 Μονάδες 5 Μονάδες 5 ΤΕΛΟΣ ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ

19 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ x + 3 ίνεται η συνάρτηση f(x) = + x, x 1. Tα τοπικά ακρότατα της f. x 0. Να βρείτε:. Tις ασύμπτωτες της γραφικής παράστασης της f. 3. Tην εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο Α(1, f(1)). Μονάδες 4 4. To σημείο Μ(ξ, f(ξ)), ξ>0, της γραφικής παράστασης C f της f, στο οποίο η εφαπτομένη της C f είναι παράλληλη προς το ευθύγραμμο τμήμα ΑΒ με Α(1, f(1)), B(3, f(3)). Μονάδες 5 Ο ΗΓΙΕΣ (για τους εξεταζομένους) 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε οποιαδήποτε άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό διαρκείας και μόνο ανεξίτηλης μελάνης. 5. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 6. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 7. Χρόνος δυνατής αποχώρησης: μία (1) ώρα μετά τη διανομή των θεμάτων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 3ΗΣ ΑΠΟ 3 ΣΕΛΙ ΕΣ

20 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 MAΪΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. 1. Πότε η ευθεία x = x0 λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης μιας συνάρτησης f; Μονάδες 5. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι η συνάρτηση f + g είναι παραγωγίσιμη στο x 0 και ισχύει: ( f + g) (x 0 ) = f (x0) + g (x0) Β. Για καθεμιά από τις επόμενες προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και ακριβώς δίπλα την ένδειξη Σ, αν η πρόταση είναι Σωστή, ή Λ, αν αυτή είναι Λανθασμένη. 1. z = z, για κάθε μιγαδικό αριθμό z. Μονάδες 3. Η εικόνα του μιγαδικού αριθμού α+βi, α,β στο μιγαδικό επίπεδο είναι το σημείο Μ(α,β). Μονάδες 3 ημx 3. lim = 0. x x 0 Μονάδες 3 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

21 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ 4. Αν μία συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α,β] και παραγωγίσιμη στο ανοικτό διάστημα (α,β), τότε υπάρχει ένα τουλάχιστον ξ (α,β) τέτοιο, ώστε: ΘΕΜΑ ο ίνονται οι μιγαδικοί αριθμοί f ( β) f ( α) f ( ξ) =. β α z 1 = + 3i και z = (1 i) + 3i 1. α. Να αποδείξετε ότι z = 1+ i. β. Να βρείτε το μέτρο του μιγαδικού αριθμού z1 z. γ. Να εκφράσετε το πηλίκο z z 1 στη μορφή κ+λi, όπου Μονάδες 3 Μονάδες 7 κ, λ. Μονάδες 10 ΘΕΜΑ 3ο ίνεται η συνάρτηση αx + β, x 1 f (x) = με α, β. x + 3, x > 1 α. Αν η συνάρτηση f είναι συνεχής στο x 0 = 1, να αποδείξετε ότι α + β = 5. Μονάδες 5 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

22 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ β. Αν η συνάρτηση f είναι παραγωγίσιμη στο x 0 = 1, να αποδείξετε ότι α = 1 και β = 4. Μονάδες 10 γ. Για α = 1 και β = 4, να προσδιορίσετε τις ασύμπτωτες της f (x) γραφικής παράστασης της συνάρτησης g (x) =, x 0, x στο και στο +. Μονάδες 10 ΘΕΜΑ 4o Για λ δίνεται η συνάρτηση 3 f(x) = x + λx 3x + 1, x. I. Αν η συνάρτηση f παρουσιάζει τοπικό ακρότατο στο 1 x 0 =, να βρείτε την τιμή του λ. ΙΙ. Για λ = 0 Μονάδες 4 α. να μελετήσετε την f ως προς τη μονοτονία και τα ακρότατα. β. να βρείτε τις εξισώσεις των εφαπτομένων της γραφικής παράστασης της f που είναι παράλληλες προς την ευθεία y = 9x. γ. να αποδείξετε ότι η εξίσωση f (x) x = 0 έχει μία τουλάχιστον λύση στο ανοικτό διάστημα (0,1). Μονάδες 5 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

23 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε οποιαδήποτε άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. 5. Κάθε απάντηση τεκμηριωμένη είναι αποδεκτή. 6. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 7. Χρόνος δυνατής αποχώρησης: μία (1) ώρα μετά τη διανομή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

24 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 8 MAΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. 1. Αν z 1 = α + βi και z = γ + δi είναι δύο μιγαδικοί αριθμοί, να αποδείξετε ότι z 1 + z = z1 + z. Μονάδες 7. Έστω f μια συνάρτηση και x 0 ένα σημείο του πεδίου ορισμού της. Πότε λέμε ότι η f είναι συνεχής στο x 0 ; Μονάδες 6 Β. Για καθεμιά από τις επόμενες προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και ακριβώς δίπλα την ένδειξη Σ, αν η πρόταση είναι Σωστή, ή Λ, αν αυτή είναι Λανθασμένη. 1. Αν z 1, z είναι μιγαδικοί αριθμοί, τότε ισχύει: z + z > z z Μονάδες 3. Για κάθε x ισχύει: (ημx) = συνx. Μονάδες 3 3. Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα και δεν μηδενίζεται σ αυτό, τότε αυτή ή είναι θετική για κάθε x ή είναι αρνητική για κάθε x, δηλαδή διατηρεί πρόσημο στο διάστημα. Μονάδες 3 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

25 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ 4. Αν μια συνάρτηση f είναι ΘΕΜΑ ο συνεχής στο κλειστό διάστημα [α, β] παραγωγίσιμη στο ανοιχτό διάστημα (α, β) και f(α) = f(β) τότε υπάρχει ένα, τουλάχιστον, ξ (α, β) τέτοιο, ώστε: f (ξ) = 0. Μονάδες 3 ίνεται η εξίσωση 3z + λz + μ = 0, όπου λ, μ είναι πραγματικοί αριθμοί. Α. Αν ο αριθμός z 1 = 1 + i είναι ρίζα της εξίσωσης, να αποδείξετε ότι λ = 6, μ = 6 και να βρείτε τη δεύτερη ρίζα z της εξίσωσης. Β. Να αποδείξετε ότι: 1 = α. z + z 0 Μονάδες 14 Μονάδες 6 β z z = Μονάδες 5 ΘΕΜΑ 3ο Έστω η συνάρτηση f με f (x) = 1 x ( x 1),, x x 1 > 1 A. Να εξετάσετε αν η συνάρτηση f είναι: α. συνεχής στο σημείο x 0 = 1 ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

26 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ β. παραγωγίσιμη στο σημείο x 0 = 1. Μονάδες 10 Β. Nα βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο της Α(, 1). Μονάδες 7 ΘΕΜΑ 4o x + x + k Έστω η συνάρτηση f με f(x) =, x όπου k είναι πραγματικός αριθμός. Α. Να βρείτε το πεδίο ορισμού της f. Μονάδες 3 Β. Αν η εφαπτομένη της γραφικής παράστασης της f στο σημείο της Μ(1, f(1)) είναι παράλληλη στον άξονα x x, να βρείτε την τιμή του k. Γ. Για k = 1, α. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της f. β. Να μελετήσετε την f ως προς τη μονοτονία στο διάστημα [1, + ). Μονάδες 6 Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΥΠΟΨΗΦΙΟΥΣ 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). εν θα αντιγράψετε τα θέματα στο τετράδιο. ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

27 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων, αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε οποιαδήποτε άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. 5. Κάθε λύση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 6. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 7. Ώρα δυνατής αποχώρησης η 8.30 απογευματινή. ΣΑΣ ΕΥΧΟΜΑΣΤΕ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

28 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 30 MAΪΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. 1. Έστω η συνάρτηση f (x) = x, ν Ι Ν. {0,1}. ν Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη ν 1 στο και ισχύει f (x) = ν x. Μονάδες 10. Nα ορίσετε πότε μια συνάρτηση f λέγεται γνησίως αύξουσα σ ένα διάστημα του πεδίου ορισμού της. Μονάδες 5 Β. Για καθεμιά από τις επόμενες προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και ακριβώς δίπλα την ένδειξη Σ, αν η πρόταση είναι Σωστή, ή Λ, αν αυτή είναι Λανθασμένη. 1. Για κάθε μιγαδικό z ισχύει z = z z. Μονάδες. Μια συνάρτηση f είναι 1-1, αν και μόνο αν κάθε οριζόντια ευθεία (παράλληλη στον xx ) τέμνει τη γραφική παράστασή της το πολύ σε ένα σημείο. Μονάδες 3. Αν υπάρχει το όριο της συνάρτησης f στο x 0 και f (x) < 0, τότε f(x)<0 κοντά στο x 0. lim x x 0 Μονάδες ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ

29 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ 4. Aν f είναι συνεχής συνάρτηση στο [α,β], τότε η f παίρνει στο [α,β] μια μέγιστη τιμή Μ και μια ελάχιστη τιμή m. Μονάδες 5. Έστω η συνάρτηση f(x)=ημx με πεδίο ορισμού το, τότε f (x)= συνx, για κάθε x. Μονάδες ΘΕΜΑ ο Θεωρούμε τους μιγαδικούς αριθμούς z=(λ-)+λi, όπου λ. α. Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών z. 1 β. Αν ισχύει z + z =, να βρείτε το Re. z γ. Αν z = και Im(z) 0, να βρείτε το λ. Μονάδες 9 Μονάδες 7 Μονάδες 9 ΘΕΜΑ 3ο ίνεται η συνάρτηση α. Να βρείτε τα όρια i) lim x + f (x) f (x) 4 f (x) =, με x>0. x ii) x f (x) lim x (x ) β. Nα βρείτε το σημείο Μ της γραφικής παράστασης της συνάρτησης f που απέχει από το σημείο Ο(0,0) τη μικρότερη απόσταση. Μονάδες 9 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

30 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ γ. Nα αποδείξετε ότι υπάρχει μοναδικό σημείο της γραφικής παράστασης της συνάρτησης f, στο οποίο η εφαπτομένη είναι παράλληλη προς την ευθεία y=-x+6. ΘΕΜΑ 4o Έστω μια συνάρτηση f, η οποία είναι συνεχής στο. Aν για κάθε x 0 ισχύει xf(x)=x+ημx, τότε: α. Να βρείτε το f(0). π β. Να αποδείξετε ότι f(x)<3 για κάθε x 0,. Μονάδες 7 Μονάδες 10 γ. Να αποδείξετε ότι η εξίσωση f(x)= έχει τουλάχιστον μια π ρίζα στο,π. Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). εν θα αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε οποιαδήποτε άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

31 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ 4. Κάθε λύση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία (1) ώρα μετά τη διανομή των φωτοαντιγράφων. ΕΥΧΟΜΑΣΤΕ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

32 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 31 MAΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. Αν z 1, z είναι μιγαδικοί αριθμοί, τότε να δείξετε ότι: z 1 z = z1 z. Μονάδες 7 Β. Για καθεμιά από τις επόμενες προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και ακριβώς δίπλα την ένδειξη Σ, αν η πρόταση είναι Σωστή, ή Λ, αν αυτή είναι Λανθασμένη. 1. Έστω f πραγματική συνάρτηση με πεδίο ορισμού το και x ο. Έστω επίσης f(x) 0 για κάθε x. 1 Αν lim f(x) = + τότε lim =. x x f(x) x o x o Μονάδες 3. Έστω α, β πραγματικοί αριθμοί. Στο μιγαδικό επίπεδο οι εικόνες Μ(α,β) και Μ (α, β) των συζυγών μιγαδικών z=α+βi και z = α βi είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα. Μονάδες 3 3. Αν μια πραγματική συνάρτηση f δεν είναι συνεχής σε ένα σημείο x ο, τότε δεν μπορεί να είναι παραγωγίσιμη στο x ο. Μονάδες 3 ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ

33 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ 4. Έστω η συνάρτηση f (x) = x με πεδίο ορισμού = [0, + ), 1 τότε f (x) = για κάθε x (0, + ). x Μονάδες 3 5. Αν ένα τουλάχιστον από τα όρια lim f(x) lim o f(x) x x x x+ o είναι + ή, τότε η ευθεία x=xο λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f. Μονάδες 3 6. Έστω δύο συναρτήσεις f, g ορισμένες σε ένα διάστημα. Αν οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σημείο x του, τότε υπάρχει σταθερά c τέτοια, ώστε για κάθε x ισχύει: f(x) = g(x) + c. Μονάδες 3, ΘΕΜΑ ο ίνεται η εξίσωση x 4x + 13 = 0 (1) α. Να λυθεί στο σύνολο των μιγαδικών αριθμών η εξίσωση (1). Μονάδες 9 β. Αν z 1, z οι ρίζες της εξίσωσης (1), τότε να υπολογιστεί η τιμή της παράστασης z1 z + 13 z i A = z +. Μονάδες 9 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

34 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ γ. Αν z 1 = +3i, τότε να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών z για τους οποίους ισχύει: z z1 = 5. Μονάδες 7 ΘΕΜΑ 3ο ίνεται η συνάρτηση 3 x + λ, x 1 f(x) = 4 με λ ΙR.. x 8x + 4, x > 1 4x Ι. Να βρείτε την τιμή του λ ΙR. για την οποία η συνάρτηση f είναι συνεχής στο x ο = 1. Μονάδες 10 ΙΙ. Για λ=0 α. να εξετάσετε αν η συνάρτηση f είναι παραγωγίσιμη στο ΙR.. Μονάδες 7 β. να βρείτε την πλάγια ασύμπτωτη της γραφικής παράστασης της συνάρτησης f στο +. ΘΕΜΑ 4o Για k ΙR. δίνεται η συνάρτηση f(x) = x 3 kx + 10, για κάθε x ΙR.. Ι. Να βρεθεί η τιμή του k ΙR για την οποία η εφαπτομένη της γραφικής παράστασης της συνάρτησης f στο σημείο Α (1, f(1)) είναι παράλληλη στον άξονα x x. Μονάδες 5 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

35 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ ΙΙ. Για k = 3 α. να μελετήσετε την f ως προς την μονοτονία και τα ακρότατα. β. να βρείτε το σύνολο τιμών της f στο διάστημα (, 0]. Μονάδες 5 γ. και για κάθε α ( 14,15) να αποδείξετε ότι η εξίσωση f(x) = α 5 έχει ακριβώς μία λύση στο διάστημα (0,1). Μονάδες 7 Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Τα θέματα δεν θα τα αντιγράψετε στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε οποιαδήποτε άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε λύση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία (1) ώρα μετά τη διανομή των φωτοαντιγράφων. ΕΥΧΟΜΑΣΤΕ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

36 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 8 ΙΟΥΝΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. 1. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x ο, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 1. Έστω Μ(x,y) η εικόνα του μιγαδικού αριθμού z = x+yi στο μιγαδικό επίπεδο. Τι ορίζουμε ως μέτρο του z; Μονάδες 3 Β. Για καθεμιά από τις επόμενες προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και ακριβώς δίπλα την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1. Μία συνάρτηση f : Α ΙR. λέγεται συνάρτηση 1-1, όταν για οποιαδήποτε x 1, x Α ισχύει η συνεπαγωγή: αν x 1 x, τότε f(x 1 ) f (x ). Μονάδες. Mία συνάρτηση f με πεδίο ορισμού Α θα λέμε ότι παρουσιάζει στο x o A (ολικό) ελάχιστο, το f(x ο ), όταν f(x) < f (x ο ) για κάθε x A. Μονάδες ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ

37 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ 3. Αν οι συναρτήσεις f, g έχουν όριο στο x o και ισχύει f(x) g (x) κοντά στο x ο, τότε lim x xo f(x) > lim g(x). x x o 4. Αν z 1 και z είναι μιγαδικοί αριθμοί, τότε Μονάδες z 1 z = z1 z. Μονάδες 5. Αν μία συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α,β] και παραγωγίσιμη στο ανοικτό διάστημα (α,β) τότε υπάρχει ένα, τουλάχιστον, ξ (α,β) τέτοιο, ώστε: f(β) f(α) f (ξ) =. β α Μονάδες ΘΕΜΑ ο ίνονται οι μιγαδικοί αριθμοί: z = λ - + (3-λ)i, λ ΙR. και w = k+4i, k > 0. Για τους z, w ισχύουν: Re(z) + Im(z) = 0 και w = 5. α. Να αποδείξετε ότι z = -1+i. β. Να αποδείξετε ότι k = 3. γ. Να αποδείξετε ότι υπάρχει μ ΙR.., για το οποίο ισχύει z + μz = 3i - w. Μονάδες 9 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

38 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 3ο ίνεται η συνάρτηση f(x) = x 3 +kx +3x-, x ΙR., k ΙR., της οποίας η γραφική παράσταση διέρχεται από το σημείο Α(1,1). Να αποδείξετε ότι: α. k = -1. β. Η συνάρτηση f δεν έχει τοπικά ακρότατα. Μονάδες 5 Μονάδες 10 γ. Η εξίσωση f(x) = 0 έχει ακριβώς μία ρίζα στο διάστημα (0, 1). Μονάδες 10 ΘΕΜΑ 4o ίνεται η συνάρτηση ( α)x kx + f(x) = με α, k ΙR. και x 3. x -3 α. Αν η ευθεία y = x είναι πλάγια ασύμπτωτη της γραφικής παράστασης της συνάρτησης f στο +, τότε να αποδείξετε ότι α = 1 και k = 3. Μονάδες 10 β. Να αποδείξετε ότι υπάρχει ένα τουλάχιστον σημείο ξ (1, ), στο οποίο η εφαπτομένη της γραφικής παράστασης της συνάρτησης f είναι παράλληλη στον άξονα x x. γ. Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο με τετμημένη x ο = 1. Μονάδες 7 ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

39 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Ο ΗΓΙΕΣ (για τους υποψηφίους) 1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, κατεύθυνση, εξεταζόμενο μάθημα). Τα θέματα δεν θα τα αντιγράψετε στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε οποιαδήποτε άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Κάθε λύση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία (1) ώρα μετά τη διανομή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

40 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 4 ΙΟΥΝΙΟΥ 004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. Αν α + βi, γ+δi είναι µιγαδικοί αριθµοί, όπου α, β, γ, δ IR και γ+δi 0, να αποδείξετε ότι: α + βi γ + δi = αγ + βδ + γ + δ βγ αδ γ + δ i Μονάδες 9 Β. Στον παρακάτω πίνακα, κάθε µιγαδικός αριθµός της Στήλης Ι είναι ίσος µε ένα µόνο αριθµό της Στήλης ΙΙ (δύο αριθµοί στη Στήλη ΙΙ περισσεύουν). Στήλη Ι Α. i 1 B. i Γ. i 3. i 4 Στήλη ΙΙ 1. i i Να γράψετε στο τετράδιό σας τα γράµµατα της Στήλης Ι του παραπάνω πίνακα και ακριβώς δίπλα σε κάθε γράµµα τον αριθµό της Στήλης ΙΙ, ώστε να δηµιουργείται η σωστή αντιστοιχία. ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ Μονάδες 4

41 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Για καθεµιά από τις παρακάτω προτάσεις Γ,, Ε και ΣΤ, να γράψετε στο τετράδιό σας το γράµµα της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασµένη. Γ. Έστω δύο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο x του, τότε υπάρχει σταθερά c τέτοια, ώστε για κάθε x να ισχύει: f(x) = g(x) + c. Μονάδες 3. Μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστηµα του πεδίου ορισµού της, όταν για οποιαδήποτε x 1, x µε x 1 < x ισχύει: f(x 1 ) < f(x ). Μονάδες 3 Ε. Έστω η συνάρτηση f(x) = x. H συνάρτηση f είναι παραγωγίσιµη στο (0,+ ) και ισχύει f (x) =. x Μονάδες 3 ΣΤ. Ο συντελεστής διεύθυνσης, λ, της εφαπτοµένης στο σηµείο Α(x 0, f(x 0 )), της γραφικής παράστασης C f µιας συνάρτησης f, παραγωγίσιµης στο σηµείο x 0 του πεδίου ορισµού της είναι λ = f (x 0 ). Μονάδες 3 ΘΕΜΑ ο ίνεται η συνάρτηση, f(x) = 4x + 3, 6x + k, x < 1 x 1, όπου k IR. α. Να βρείτε την τιµή του k, ώστε η f να είναι συνεχής στο x 0 = 1. Μονάδες 10 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

42 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ β. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της f στο σηµείο Α( 1, f( 1)). γ. Να βρείτε τον πραγµατικό αριθµό µ, ώστε να ισχύει: µ f ( 5) + f (5) + 34 = 0. Μονάδες 7 ΘΕΜΑ 3ο ίνεται η συνάρτηση f(x) = x 3 3x + 6αx + β, όπου x IR και α, β πραγµατικοί αριθµοί. Η συνάρτηση f παρουσιάζει τοπικό ακρότατο στο σηµείο x 0 = και είναι f( ) = 98. α. Να αποδείξετε ότι α = 6 και β = 54. β. Να µελετήσετε την f ως προς τη µονοτονία. Μονάδες 6 Μονάδες 9 γ. Να καθορίσετε το είδος των ακροτάτων της συνάρτησης f. Μονάδες 4 δ. Να αποδείξετε ότι η εξίσωση f(x) = 0 έχει ακριβώς µία ρίζα στο διάστηµα ( 1, ). ΘΕΜΑ 4o Μονάδες 6 Θεωρούµε τους µιγαδικούς αριθµούς z = x + yi, όπου x, y πραγµατικοί αριθµοί, για τους οποίους υπάρχει α IR ώστε να ισχύει: z + z Να αποδείξετε ότι: + z z i i = α + ( 1 α)i. ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

43 α. αν Im(z) = 0, τότε α = 1. β. αν α = 0, τότε z + 1 = 0. ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Μονάδες 5 Μονάδες 5 γ. για τον πραγµατικό αριθµό α ισχύει: 0 α 1. Μονάδες 7 δ. οι εικόνες Μ των µιγαδικών αυτών αριθµών z στο µιγαδικό επίπεδο ανήκουν σε κύκλο, του οποίου να βρείτε το κέντρο και την ακτίνα. Ο ΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟΥΣ 1. Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, κατεύθυνση, εξεταζόµενο µάθηµα). Τα θέµατα δεν θα τα αντιγράψετε στο τετράδιο.. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε οποιαδήποτε άλλη σηµείωση. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε λύση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: µία (1) ώρα µετά τη διανοµή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

44 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. Έστω η συνάρτηση f(x) = εφx. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιµη στο R 1 = IR {x συνx = 0} και ισχύει f (x) = 1 συν x. Μονάδες 10 Β. Για καθεµιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθµό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασµένη. 1. Το µέτρο του µιγαδικού αριθµού z = x + yi, όπου x, y πραγµατικοί αριθµοί, δίνεται από τον τύπο z = x + y.. Αν δύο µεταβλητά µεγέθη x, y συνδέονται µε τη σχέση y = f(x), όταν f είναι µία παραγωγίσιµη συνάρτηση στο x 0, τότε ονοµάζουµε ρυθµό µεταβολής του y ως προς το x στο σηµείο x 0 την παράγωγο f (x 0 ). ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ

45 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ 3. Έστω µία συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του x 0, στο οποίο όµως η f είναι συνεχής. Αν f (x) > 0 στο (α, x 0 ) και f (x) < 0 στο (x 0, β), τότε το f(x 0 ) είναι τοπικό ελάχιστο της f. 4. Ο συζυγής κάθε µιγαδικού αριθµού z = x + yi, όπου x, y πραγµατικοί αριθµοί, είναι ο µιγαδικός z _ = x + yi. 5. Αν υπάρχουν τα όρια των συναρτήσεων f και g στο x 0, τότε ισχύει lim x x 0 ΘΕΜΑ ο f(x) g(x) lim f( x) x x0 =, εφόσον lim g(x) 0. lim g( x) x x 0 x x Έστω η συνάρτηση α. Να βρείτε το 0 x - 3x f(x) =, x IR {}. x - f(x) lim x 0 x. Μονάδες 15 Μονάδες 7 β. Να αποδείξετε ότι η ευθεία y = x 1 είναι πλάγια ασύµπτωτη της γραφικής παράστασης της f στο +. γ. Να αποδείξετε ότι η f είναι γνησίως αύξουσα στο (, + ). Μονάδες 10 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

46 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 3ο Έστω η συνάρτηση και το σηµείο x 0 = 5. x, f(x) = 10x - 5, αν αν x < 5 x 5 α. Να αποδείξετε ότι η f είναι συνεχής στο x 0 = 5. Μονάδες 5 β. Να αποδείξετε ότι η f παραγωγίζεται στο x 0 = 5 και να βρείτε την f (5). γ. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της f στο σηµείο Α(5, f(5)). Μονάδες 4 δ. Να βρείτε τα τοπικά ακρότατα της συνάρτησης f. ΘΕΜΑ 4o Έστω οι µιγαδικοί αριθµοί z = x + yi, όπου x, y i (i + z) πραγµατικοί αριθµοί και w = µε z i. i z Να αποδείξετε ότι : x 1 - x - y α. w = + i x + (y 1) x + (y 1), ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

47 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ β. αν ο w είναι πραγµατικός αριθµός, τότε η εικόνα του z ανήκει σε κύκλο κέντρου Ο(0, 0) και ακτίνας ρ 1 = 1 και γ. αν ο z είναι πραγµατικός αριθµός, τότε η εικόνα του w ανήκει σε κύκλο κέντρου Ο(0, 0) και ακτίνας ρ = 1. Μονάδες 9 Ο ΗΓΙΕΣ (για τους υποψηφίους) 1. Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, κατεύθυνση, εξεταζόµενο µάθηµα). Τα θέµατα δεν θα τα αντιγράψετε στο τετράδιο.. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καµιά άλλη σηµείωση. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε λύση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: Μία (1) ώρα µετά τη διανοµή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

48 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 5 ΜΑΪΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ 1ο Α. α) Αν z 1 = ρ 1 (συν θ 1 + i ηµθ 1 ) και z = ρ (συν θ + i ηµθ ) είναι δύο µιγαδικοί αριθµοί σε τριγωνοµετρική µορφή, να αποδείξετε ότι: z 1 z = ρ 1 ρ [συν (θ 1 +θ )+i ηµ (θ 1 +θ )] Μονάδες 6,5 β) Αν z = α + β i µε α, β R, είναι ένας µιγαδικός αριθµός, να γράψετε στο τετράδιό σας τα γράµµατα της Στήλης Ι του επόµενου πίνακα, και δίπλα σε κάθε γράµµα τον αριθµό της Στήλης ΙΙ που αντιστοιχεί στη σωστή απάντηση. Στήλη Ι Στήλη ΙΙ A. Re(z) Β. Im(z) Γ. -z. z Ε. z ΣΤ. z z 1. -α - βi. α - βi 3. α + β 4. α + 5. α β 6. α + β 7. β Μονάδες 6 ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ

49 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Β. ίνονται οι µιγαδικοί αριθµοί z 1 = 1 + i και z = i. α) Να γράψετε τους z 1 και z σε τριγωνοµετρική µορφή. β) Να βρείτε την τριγωνοµετρική µορφή του γινοµένου z 1 z. Μονάδες 4,5 ΘΕΜΑ ο ίνεται η συνάρτηση f(x) = x - 4x + 3, x R. α) Να βρείτε τα σηµεία τοµής της γραφικής παράστασης της f µε τους άξονες x x και y y. Μονάδες 7 β) Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της f στο σηµείο Α (3, f(3)). Μονάδες 9 γ) Να βρείτε τα διαστήµατα µονοτονίας της συνάρτησης f. Μονάδες 9 ΘΕΜΑ 3ο ίνεται η συνάρτηση f: R R, για την οποία ισχύει - x 4 f(x) + x 4, για κάθε x R. Να αποδείξετε ότι: α) f(0) = Μονάδες 6 β) H συνάρτηση f είναι συνεχής στο σηµείο x 0 = 0. Μονάδες 9 γ) Η συνάρτηση f είναι παραγωγίσιµη στο σηµείο x 0 = 0. Μονάδες 10 ΤΕΛΟΣ ΗΣ ΣΕΛΙ ΑΣ

50 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 4ο Ένα τουριστικό λεωφορείο έχει να διανύσει απόσταση 65 km µε σταθερή ταχύτητα x km την ώρα. Σύµφωνα µε τον Κώδικα Οδικής Κυκλοφορίας το µέγιστο όριο ταχύτητας είναι 90 km την ώρα. Τα καύσιµα κοστίζουν 160 δραχµές το λίτρο, η ωριαία κατανάλωση είναι x 5,5 + λίτρα 00 και η αµοιβή του οδηγού είναι 000 δραχµές την ώρα. α) Να αποδείξετε ότι το συνολικό κόστος Κ (x) της διαδροµής είναι: K (x) = x, x 0 < x 90. Μονάδες 1 β) Να βρείτε την ταχύτητα του λεωφορείου για την οποία το κόστος της διαδροµής γίνεται ελάχιστο. Μονάδες 13 Ο ΗΓΙΕΣ (για τους υποψηφίους) 1. Στο τετράδιο να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, κατεύθυνση, εξεταζόµενο µάθηµα). Τα θέµατα δεν θα τα αντιγράψετε στο τετράδιο.. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καµιά άλλη σηµείωση. Κατά την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Κάθε λύση επιστηµονικά τεκµηριωµένη είναι αποδεκτή. 5. ιάρκεια εξέτασης: Τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης : Μία (1) ώρα µετά τη διανοµή των φωτοαντιγράφων. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Να

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ σελ. από 0 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 7 ΙΟΥΛΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 )

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 ) ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( & ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( Επιμέλεια Συρραφή Θεμάτων Ζαχαριάδης Λάζαρος - Μαθηματικός ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΑΠΟ ΕΩΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό. ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΝΕΟ

Διαβάστε περισσότερα

= 1-3 i, να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα σε κάθε αριθμό το γράμμα της Στήλης Β έτσι, ώστε να προκύπτει ισότητα.

= 1-3 i, να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα σε κάθε αριθμό το γράμμα της Στήλης Β έτσι, ώστε να προκύπτει ισότητα. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1o A.1. Δίνονται

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

A ένα σημείο της C. Τι

A ένα σημείο της C. Τι ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΤΕΤΑΡΤΗ, 5 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 18 MAΪΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

= 1-3 i, να γράψετε στο τετράδιό

= 1-3 i, να γράψετε στο τετράδιό ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1o A.1. ίνονται

Διαβάστε περισσότερα

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 23 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 211 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 ΜΑΪΟΥ 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 ΠΑΡΑΣΚΕΥΗ, 6 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

c f(x) = c f (x), για κάθε x R

c f(x) = c f (x), για κάθε x R ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 19 ΜΑΪOY 16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α1. Να αποδείξετε

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, 4 ΜΑΡΤΙΟΥ 206 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 4 ΠΑΡΑΣΚΕΥΗ, 22 ΑΠΡΙΛΙΟΥ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Στήλη ΙΙ Παράγωγος f (x) 1. -ημx. 2. x ρ-1 3. συνx 4. 1 Γ. x ρ, x > 0 και ρ ρητός. Β. x, x > ρ x ρ-1. Δ. ημx. Ε. συνx. 8.

ΘΕΜΑ 1ο. Στήλη ΙΙ Παράγωγος f (x) 1. -ημx. 2. x ρ-1 3. συνx 4. 1 Γ. x ρ, x > 0 και ρ ρητός. Β. x, x > ρ x ρ-1. Δ. ημx. Ε. συνx. 8. ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ(4)

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ) ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ) ΘΕΜΑ 1ο Α. Ας υποθέσουμε ότι x 1, x 2,..., x κ είναι οι

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

(f(x) + g(x)) = f (x) + g (x).

(f(x) + g(x)) = f (x) + g (x). ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ TEXΝΟΛΟΓ. 5... ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 19 ΜΑΪOY 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α1. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» ΕΠΑ.Λ.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» ΕΠΑ.Λ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» ΕΠΑ.Λ. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό. ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY Αν μια συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Αν μια συνάρτηση f είναι συνεχής σ ένα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 20 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά) 9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 20 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Σχετική Συχνότητα (f i ) v i x i

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Σχετική Συχνότητα (f i ) v i x i ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 5 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα [α, β]. Αν η f είναι

Διαβάστε περισσότερα

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 24 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων 9 Θεολόγης Καρκαλέτσης Μαθηματικός teomail@schgr Πρόλογος Στο βιβλίο αυτό περιέχονται όλα τα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 1 ΜΑΪOY 015 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 21 ΜΑΪOY 2015 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

Α2. Να αποδείξετε ότι, αν μια συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x 0 του πεδίου ορισμού της,τότε είναι και συνεχής στο σημείο αυτό.

Α2. Να αποδείξετε ότι, αν μια συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x 0 του πεδίου ορισμού της,τότε είναι και συνεχής στο σημείο αυτό. ΘΕΜΑΤΑ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑo ΑAν η συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο του πεδίου ορισμού της, να γραφεί η εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο Α

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 12 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ

Διαβάστε περισσότερα

Για παραγγελίες των βιβλίων 2310610920

Για παραγγελίες των βιβλίων 2310610920 Για παραγγελίες των βιβλίων 369 Θέματα Προσομοίωσης Πανελλαδικών D.A.T. ΘΕΜΑ o ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 3 ΑΠΡΙΛΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x ΕΞΕΤΑΣΕΩΝ 05 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα. Αν η F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α. A1. Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο x ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο, στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι αν () 0 στο, ) και ()

Διαβάστε περισσότερα

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής 2000-2015

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής 2000-2015 Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής 000-015 Περιεχόμενα Θέματα Επαναληπτικών 015.................................................. 3 Θέματα 015............................................................

Διαβάστε περισσότερα

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)()=- για κάθε χє R. Να δείξετε ότι: α) f()=, β) η f αντιστρέφεται, γ) f - ()=-f(), є R., δ ) να λύσετε

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. Σχετική Συχνότητα (f i ) v i x

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. Σχετική Συχνότητα (f i ) v i x ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΙΔΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙΔΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΘΕΜΑ 1ο Δίνεται ο πίνακας συχνοτήτων

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. f i % v i. x i. α) Να µεταφέρετε τον παραπάνω πίνακα στο τετράδιό σας και να τον συµπληρώσετε. Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. f i % v i. x i. α) Να µεταφέρετε τον παραπάνω πίνακα στο τετράδιό σας και να τον συµπληρώσετε. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΤΕΤΑΡΤΗ 09 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Α2 Α3 Α2. α. β. Μονάδες 5 Α3. α. β. γ. δ. Μονάδες 5 ΟΜΑ Α Β Μονάδες 25

Α2 Α3 Α2. α. β. Μονάδες 5 Α3. α. β. γ. δ. Μονάδες 5 ΟΜΑ Α Β Μονάδες 25 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ (ΟΜΑ ΑΣ Β ) ΣΑΒΒΑΤΟ 29 ΜΑΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - Γ ΛΥΚΕΙΟΥ. 1. Μιγαδικοί αριθμοί

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - Γ ΛΥΚΕΙΟΥ. 1. Μιγαδικοί αριθμοί Σελίδα από 4 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - Γ ΛΥΚΕΙΟΥ Θετική & Τεχνολογική κατεύθυνση Το παρόν κείμενο αποτελεί μια μορφοποιημένη έκδοση του αρχείου που μας έστειλε ο συνάδελφος Σπύρος Κούρτης.(Επιμέλεια : Μπάμπης

Διαβάστε περισσότερα