Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:"

Transcript

1 Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί με τις διαστάσεις των πλακών και των προβόλων. Τα μόνιμα φορτία που δίνονται αντιστοιχούν στα δάπεδα και τις διάφορες επιστρώσει ενώ το ίδιο βάρος των πλακών δεν συμπεριλαμβάνεται σε αυτά. Ζητούνται: Ο υπολογισμός της επικάλυψης των πλακών Η εκλογή ενιαίου πάχους των πλακών Να υπολογιστεί ο απαιτούμενος οπλισμός των πλακών Ο σχεδιασμός του ξυλότυπου των οπλισμών (πάνω στην κάτοψη της εκφώνησης) Δεδομένα Περιβάλλον Διάμετρος Πρόσθετα μόνιμα Ωφέλιμα φορτία οπλισμών G δ (kn/m ) Q (kn/m ) Υλικά Παραθαλάσσιο Ø C0 S400

2 Λύση: Ο υπολογισμός της επικάλυψης των πλακών Η επικάλυψη των οπλισμών c nom υπολογίζεται σύμφωνα με την 4. (σχήμα 4.1) και από αυτήν προκύπτει το d 1 που χρησιμοποιείται για τον προσδιορισμό του στατικού ύψους d ως εξής: d 1 =c nom +Ø w +Ø L / Επικάλυψη c min για συνθήκες περιβάλλοντος 3 30 Διόρθωση για πλάκες -5 Πρόσθετα 5mm (διαφορά c min c nom ) 5 Συνδετήρας (Δεν υπάρχει συνδετήρας στην πλάκα) - Οπλισμός Φ8 (8/=4mm) 4 Σύνολο d 1 34mm Εκλογή ενιαίου πάχους πλακών Θα γίνει με βάση τον έλεγχο λειτουργικότητας (περιορισμός βελών κάμψης). Παρατηρώ ότι και οι δύο πλάκες είναι σταυροειδώς οπλισμένες (L max /L min <) Έλεγχος συνθηκών στήριξης πλάκας Π προβόλων: l 1.0m Διευθ. Χ: προβ άρα απλή έδραση l 4.00m πλ l 1.0m Διευθ. Υ: προβ άρα απλή έδραση l 5.0m πλ Οπότε μόνο οι στήριξη μεταξύ των δύο πλακών λειτουργεί ως πάκτωση και όλες οι υπόλοιπες ως απλές εδράσεις. Παρατηρώ δηλαδή ότι οι πλάκες Π 1 και Π είναι όμοιες και μου αρκεί να επιλύσω τη μία μόνο από αυτές. Αντίστοιχα, και οι δύο πρόβολοι έχουν το ίδιο μήκος (1.m). Πλακες Π1, Π διεύθυνση Χ Πρόβολοι Πρ1, Πρ α l= =3.0m διεύθυνση Υ α=1.00 α=.40 α l πρ d d 0.096m α l= =5.0m (α l) min d d 0.107m h= d+d 1 =0.107m+0.034m=> h=0.141m το συνολικό πάχος της πλάκας

3 Στρογγυλοποιώ στο αμέσως μεγαλύτερο cm οπότε τελικά επιλέγω h=15cm, οπότε και d=h-d 1 =15-3.4=> d =11.6cm (Παρατήρηση: Το πάχος της πλάκας h το οποίο θα κατασκευαστεί στην πράξη είναι αυτό που πρέπει να στρογγυλοποιείται. Το στατικό ύψος d που χρησιμοποιείται μόνο στους υπολογισμούς δεν είναι ανάγκη να στρογγυλοποιηθεί) Συνδυασμοί φόρτισης Παρατηρώ ότι τα μόνιμα και τα κινητά φορτία των πλακών και των προβόλων είναι κοινά Ίδιο βάρος πλακών: G I.B. =γ σκ h=5kn/m m=3.75kN/m Οπότε G ολ =G δ + G I.B. =5.45 kn/m Δυσμενής συνδυασμός φόρτισης πλακών και προβόλων KN KN KN P 1.35G 1.50Q Δ m m m Συνδυασμοί για μέθοδο πεσσοειδών φορτίσεων KN KN KN P 1.175G 0.75Q m m m KN KN KN P 0.175G 0.75Q m m m Στατική επίλυση Επίλυση των προβόλων (οι δύο πρόβολοι είναι όμοιοι) Η μέγιστη ροπή στους προβόλους αναπτύσσεται όταν εφαρμοστεί ο δυσμενής συνδυασμός φόρτισης p l (για λωρίδα πλάτους 1m) Δ Πρ1 M M 8.97kNm / m Πρ1 Πρ Επίλυση των πλακών (οι δύο πλάκες είναι όμοιες) Για την επίλυση των τετραέρειστων πλακών θα χρησιμοποιηθούν οι πίνακες Czerny. Ο πίνακας που μας ενδιαφέρει για τον υπολογισμό των ροπών των στηρίξεων είναι αυτός των πλακών τύπου α (πάκτωση στη μεγάλη πλευρά). Για l y /l x =5.0/4.00=1.30 έχουμε: m xerm =-pl x /9.7 m xm =pl x /.4 m ymax =pl x /51.8 Ροπές στις στηρίξεις Η στατική επίλυση γίνεται με καθολική δυσμενή φόρτιση (1.35G+1.50Q). m xerm =-p Δ l x /9.7= /9.7=-0.55kNm/m

4 Ροπές στο άνοιγμα: Με χρήση εναλλακτών φορτίσεων Καθολική φόρτιση με p 1 =1.175G+0.75Q (πλάκα τύπου α) m xm =p 1 l x /.4= /.4=6.40kNm/m m ymax =p 1 l x /51.8= /51.8=.77kNm/m Εναλλακτές φορτίσεις με p =±(0.175G+0.75Q) (πλάκα τύπου 1) ly mymax Για l y /l x =5.0/4.00=1.30 έχουμε: m xm =p l x /16.8= /16.8=3.34kNm/m m ymax = p l x /30.9= /30.9=1.81kNm/m mxm mymax lx Οπότε για τις πλάκες Π 1 και Π : max m x = =9.73kNm/m min mx= =3.06knm/m αμελείται max my= =4.58knm/m min my= =0.95knm/m αμελείται Στο σχήμα που ακολουθεί φαίνεται το διάγραμμα ροπών όλων των πλακών

5 Έλεγχος επάρκειας της διατομής (δεν πειράζει και να μη γίνει) Ο έλεγχος γίνεται με τη δυσμενέστερη ροπή πλάκας-προβόλου. Για S500 είναι μ lim 0.33 οπότε Μ 0.55 sd,max d 0.068m 6.8cm 11.6cm απ μ bf 0000 lim cd ΟΚ Υπολογισμός των οπλισμών Ελάχιστες απαιτήσεις οπλισμού Υπολογίζεται ο ελάχιστος οπλισμός για την πλάκα (για εξασφάλιση αντοχής) A =1.5 b d= =1.74cm 0.6 b d A = =1.74cm f 400 yk Ακόμη, υπολογίζεται ο ελάχιστος οπλισμός λόγω απαιτήσεων λειτουργικότητας A / A k f cm λειτ ct ctm σ s Οπλισμός ανοιγμάτων Ξεκινάμε τη διαστασιολόγηση με τη μεγαλύτερη ροπή ανοίγματος. Msd 9.73kNm μ sd b d f cd 0000 kn ω= m m 1.5 m Και f 0000 / 1.5 cd A ω b d cm s f / 1.15 yd λειτ Παρατηρώ ότι A A s. Επειδή ο οπλισμός στο άνοιγμα καθορίζεται από την απαίτηση λειτουργικότητας (η οποία παραμένει η ίδια σε όλα τα ανοίγματα) τοποθετούμε σε όλα τα ανοίγματα και προς τις δυο διευθύνσεις τον οπλισμό αυτό. Τοποθετώ Ø8/17cm (.96cm 1.5h ) είναι s=17cm 0cm Ο ίδιος οπλισμός τοποθετείται και στις δύο πλάκες (Π 1 και Π ) Οπλισμός στήριξης Π 1 -Π Msd 0.55 knm μ sd bd f cd 0000 kn 1.0m m 1.5 m ω=0.15 f 0000 / 1.5 A ω b d cm cd > λειτ s f / 1.15 yd Από την πλάκα Π 1 κάμπτονται Ø8/34=1.48cm Από την πλάκα Π κάμπτονται Ø8/34=1.48cm A.95cm

6 Τοποθετώ πρόσθετα Ø8/17=.96cm έτσι ώστε να μην υπάρχουν πυκνώσεις και αραιώσεις οπλισμού. Συνολικά 5.9cm >5.54cm Οπλισμός στηρίξεων Π -Πρ 1, Π -Πρ Msd 8.97 knm μ sd bd f cd 0000 kn 1.0m m 1.5 m ω=0.05 f 0000 / 1.5 A ω b d cm cd < A λειτ.95cm s f / 1.15 yd Από την πλάκα Π 1 κάμπονται Ø8/34=1.48cm Τοποθετώ πρόσθετα Ø8/34=1.48cm Συνολικά.96cm >{ A λειτ.95cm, Α s =.31cm } Oπλισμός διανομής προβόλου Το εμβαδόν του οπλισμού διανομής πρέπει να είναι τουλάχιστο ίσο με 0% του κύριου οπλισμού (ρ 0.0ρ) και τουλάχιστο Φ6/5. max 0% A,Φ6 / cm max 0% cm,Φ6 / cm s Άρα τοποθετώ Φ6/5 (1.13cm ). Oπλισμός τύπου «φουρκέτας» Τέλος απαιτείται οπλισμός τύπου «φουρκέτας» τουλάχιστον Φ6/5. Κάμπτεται κατάλληλα ο οπλισμός στήριξης των προβόλων, άρα τελικά υπάρχει Ø8/17>Ø6/5 (.96cm >1.13cm )

7 ΖΗΤΗΜΑ ο Στο σχήμα που ακολουθεί φαίνεται το στατικό σύστημα μιας κατασκευής από Ο/Σ. Η δοκός έχει διατομή αμφίπλευρης πλακοδοκού (υπάρχει πλάκα Ο/Σ πάχους h f και από στις δύο πλευρές της δοκού). Επιπλέον σε όλο το μήκος της δοκού (άνοιγμα και πρόβολοι) εδράζεται μπατική τοιχοποιία ύψους h τοιχ =3.5m (ίδιο βάρος μπατικής τοιχοποιίας: 3.6kN/m ) g, q Δεδομένα Φορτία (kn/m) Διαστάσεις φορέα (m) Διατομή δοκού g q L πρ1 L 1 L πρ (cm) / Επικάλυψη οπλισμού δοκών: 5.0cm - Κατηγορία σκυροδέματος C0. Κατηγορία χάλυβα S400 h f (cm) Στα παραπάνω φορτία συμπεριλαμβάνεται το ίδιο βάρος της δοκού Ζητούνται: Να υπολογιστεί το διάγραμμα ροπών του φορέα θεωρώντας καθολική φόρτιση σε όλο το μήκος Να υπολογιστεί ο διαμήκης οπλισμός στη στήριξη που εμφανίζει τη μεγαλύτερη ροπή και στο άνοιγμα. Να γίνουν τα αντίστοιχα σκαριφήματα με την τοποθέτησή του Λύση: Στατική επίλυση Ίδιο βάρος τοιχοποιίας: g τοιχ. = h τοιχ 3.6kΝ/ =3.5m 3.6kΝ/ =1.60kN/m Οπότε g ολ =g+ g τοιχ. = =30.60 kn/m Το δυσμενές φορτίο p Δ στην ΟΚΑ (καθολική φόρτιση με αυτό) είναι: p 1.35 g 1.50 q kN / m kN / m 75.81kN / m Δ ολ Ροπή προβόλου 1: M πρ1 = -p Δ L πρ1 /=-75.81*. / = kN/m Ροπή προβόλου : M πρ = -p Δ L πρ /=-75.81*.4 / = kN/m Ροπή στο μέσο του ανοίγματος L 1 (περίπου ίση με τη μέγιστη ροπή): Μ μέσο = M μέσο Μ Μ πρ1 πρ p L Δ kNm 8 8

8 Υπολογισμός οπλισμού Ελάχιστα και μέγιστα ποσοστά οπλισμού Οι τιμές των ρ min και ρ max λαμβάνονται απευθείας από τον πίνακα στη σελ.75 ρ min = 3. ρ min b w h=3. 5cm 70cm=> Α =5.60cm ρ max = 14 ρ max b w h=14.0 5cm 70cm=> Α s,max =4.50cm Οπλισμός στήριξης Β (αρνητική ροπή, λειτουργία ορθογωνικής διατομής) Η στήριξη που εμφανίζεται η μεγαλύτερη ροπή είναι η Β. Μ Β =-18.33kNm, οπότε Μ παρ Β =0.9 Μ Β = kNm και καθώς δεν υπάρχει αξονικό φορτίο είναι: Μ sd =196.50kNm μ sd = M sd b w d f cd = = < μ lim =0.33 (για S400, άρα δεν απαιτείται θλιβόμενος οπλισμός) μ sd = => ω= /1.5 Α s =ω b w d fcd = f yd /1.15 => Α s=9.60cm Παρατηρώ ότι Α < Α s < Α s,max Τοποθετώ 5Ø16 (10.05cm ) στην άνω ίνα καθώς η ροπή είναι αρνητική Οπλισμός ανοίγματος (αρνητική ροπή, λειτουργία ορθογωνικής διατομής) Καθώς δεν υπάρχει αξονικό φορτίο είναι: Μ sd =78.08kNm μ sd = M sd b w d f cd = = < μ lim =0.33 => ω= /1.5 Α s =ω b w d fcd = f yd /1.15 => Α s=3.61cm Παρατηρώ ότι Α s < Α s, min άρα ο οπλισμός προκύπτει από την ελάχιστη απαίτηση Τοποθετώ 3Ø16 (6.03cm ) στην άνω ίνα καθώς η ροπή είναι αρνητική

9 ΖΗΤΗΜΑ 3 ο x=d Η δοκός του σχήματος καταπονείται από τέμνουσα δύναμη V = 6.1k N σε sd απόσταση d από την παρειά του υποστυλώματος με το οποίο συνδέεται. Οι ποιότητες των υλικών είναι C0 και S400 και η συνολική επικάλυψη είναι τόση ώστε: d 1 =5cm. To ύψος της δοκού h=65cm. A. Να υπολογιστεί το ελάχιστο πλάτος της δοκού b w, έτσι ώστε να μην απαιτείται οπλισμός διάτμησης. B. Θα τοποθετηθεί τελικά κάποιος οπλισμός διάτμησης και αν ναι σε τι αποστάσεις (να θεωρηθεί ότι η διατομή βρίσκεται στο κρίσιμο μήκος της δοκού); 3Φ18 h Λύση: bw 3Φ18 Υπολογισμός b w Για να μην απαιτείται οπλισμός διάτμησης θα πρέπει να ισχύει VRd1 τrd k 1. 40ρl 0.15 σ cp bw d όπου: V xd sd V Rd1 (1 ος έλεγχος) τ Rd =0.6MPa k=1.60-d= =1.00 ρ A 7.63cm m 4 sl l b d b 60cm b 0.60m w w w σ cp =0 (δεν υπάρχει αξονική δύναμη) kn m (Α sl =7.63cm για 3Ø18) 4 3 V Rd b 0.60m w m b 0.60m w Οπότε ο μόνος άγνωστος στην ανίσωση του ελέγχου είναι το b w. Λύνω την ανίσωση (με προσοχή στις μονάδες) και προκύπτει: b w 0.89m=8.9cm. Οπότε επιλέγω b w =30cm Ελάχιστος οπλισμός διάτμησης Προφανώς θα τοποθετηθούν οι ελάχιστοι απαιτούμενοι συνδετήρες (μέγιστες αποστάσεις) s 1/3h 1/ mm b 10Φ mm 0Φ 0 8 (θεωρώντας συνδετήρες Φ8) 160mm 00mm 00mm 00mm L w Τοποθετώ εντός της κρίσιμης περιοχής Ø8/160mm

10 ΖΗΤΗΜΑ 4 ο Ένα ορθογωνικό υποστύλωμα διαστάσεων b/h καταπονείται από θλιπτικό αξονικό φορτίο Ν και ροπή Μ, σύμφωνα με το παραπάνω σχήμα. Δεδομένα Διαστάσεις (b/h) N (kn) Επικάλυψη (d 1 ) 40/ cm Υλικά C0 S400 Ζητούνται: Ο υπολογισμός του ελάχιστου και του μέγιστου επιτρεπόμενου οπλισμού Να γίνει στο σχήμα της εκφώνησης το σκαρίφημα με την τοποθέτηση του ελάχιστου οπλισμού, τοποθετώντας ενδεικτικά μια κατάλληλη διάταξη συνδετήρων Για την περίπτωση όπλισης με τον ελάχιστο επιτρεπόμενο οπλισμό, να υπολογιστεί η ροπή που μπορεί να αντέξει η διατομή, θεωρώντας το αξονικό φορτίο που δίνεται στα δεδομένα Λύση: Ελάχιστα και μέγιστα ποσοστά οπλισμού Χρησιμοποιώ βοηθητικά και τη διάταξη του παλαιότερου κανονισμού ρ παρ min ρ 0.01 A 0.01 b h cm 65cm 6cm min ρ 0.04 A 0.04 b h cm 65cm 104cm max s,max παρ παρ ρ A b h cm 65cm 10.4cm min Επιλέγω για κάθε μία από τις δύο κύριες παρειές (τις μικρές λόγω του διανύσματος της ροπής) 4Ø18(10.18cm παρ ). Είναι οριακά λιγότερο από το A αλλά επιτρέπεται να τοποθετηθεί, αρκεί ο συνολικός οπλισμός να μην είναι λιγότερος από το A. Στις δύο μεγάλες πλευρές θα τοποθετηθεί οπλισμός, έτσι ώστε οι αποστάσεις μεταξύ των ράβδων να είναι μεγαλύτερες από 0cm. Για να είναι δυνατό αυτό σε μια πλευρά 65cm θα πρέπει να τοποθετηθούν επιπλέον ράβδοι ανά παρειά (λαμβάνοντας υπόψη αυτές που τοποθετήθηκαν στις κύριες παρειές και την επικάλυψη των οπλισμών). Άρα, τοποθετώ σε κάθε μία παρειά επιπλέον Ø14.

11 Συνολικά δηλαδή υπάρχουν 8Ø18+4Ø16( =6.5cm )> A =6.00cm Σκαρίφημα με τον ελάχιστο οπλισμό Υπολογισμός ροπής αντοχής Στα υποστυλώματα που καταπονούνται από μονοαξονική κάμψη με αξονικό φορτίο ο κύριος οπλισμός τοποθετείται στις δύο απέναντι παρειές. Οπότε συνολικά για 8Ø18: A s,tot =0.36cm. Α s,tot =ω b h fcd => ω= Α s,tot f yd = 0.36cm (400/1.15)MPa f yd b h f cd 40cm 65cm (0/1.5)MPa =0.04 ν= Ν b h f cd = = Είναι d 1 /h=5/65= Για να μην κάνω τον υπολογισμό φορές και στη συνέχεια γραμμική παρεμβολή χρησιμοποιώ, προς την πλευρά της ασφάλειας (μικρότερο στατικό ύψος), το νομογράφημα για d 1 /h=0.10 (σελ. 103). Για ω=0.04 και ν=-0.48 προκύπτει: μ 0.17 μ= M b h f cd => Μ=μ b h f cd = m 0.65m kn/m => Μ=589.33kNm

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 29-1-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 6.0) Στο

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 11-9-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από

Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.2(σχήμα 4.1) και από Τ.Ε.Ι. Τμήμα Κατασκευές ΣΕΡΡΩΝ Πολιτικών Οπλισμένου Δομικών Σκυροδέματος Έργων ΥΠΟΛΟΓΙΣΜΟΣ Ι Η επικάλυψη των ΕΠΙΚΑΛΥΨΗΣ οπλισμών υπολογίζεται ΠΛΑΚΩΝ σύμφωνα με την 4.(σχήμα 4.1) και από Β προκύπτει d1cnom+øw+øl/

Διαβάστε περισσότερα

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η

25x30. 25x30. Π2 Πρ1. Π1 Πρ2. Άσκηση 3 η Πλάκες ο εργαστήριο 1 Άσκηση 3 η Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα: Η εκλογή

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

Κατασκευές Οπλισμένου Σκυροδέματος Ι

Κατασκευές Οπλισμένου Σκυροδέματος Ι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχ/κών και Μηχ/κών Τοπογραφίας και Γεωπληροφορικής Τ.Ε. Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις

Διαβάστε περισσότερα

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...

Ονοματεπώνυμο φοιτητή:... ΑΕΜ:... Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Χειμερινό Εξάμηνο 00-0 Διάρκεια εξέτασης: ώρες Εξέταση Θεωρίας: ΘΕΜΕΛΙΩΣΕΙΣ Διδάσκων: Κίρτας Εμμανουήλ

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Λειτουργία της πλάκας Επίδραση στο σχεδιασμό της δοκού. Φορτία Συνεργαζόμενο πλάτος. Προκατασκευή

Λειτουργία της πλάκας Επίδραση στο σχεδιασμό της δοκού. Φορτία Συνεργαζόμενο πλάτος. Προκατασκευή Λειτουργία της πλάκας Επίδραση στο σχεδιασμό της δοκού Φορτία Συνεργαζόμενο πλάτος Προκατασκευή 2 Δοκός Δοκός Δοκός Δοκός Δ1 25/50 Δοκός Μορφή Ολόσωμες Δοκός α) Αμφιέρειστη β) Τετραέρειστη Με νευρώσεις

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Πλάκες με νευρώσεις Πλάκες με νευρώσεις Οι πλάκες με νευρώσεις αποτελούνται από διαδοχικές πλακοδοκούς

Διαβάστε περισσότερα

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3.1 ΑΝΟΧΕΣ ΔΙΑΣΤΑΣΕΩΝ [ΕΚΟΣ 5.2] Ισχύουν μόνο για οικοδομικά έργα. Απαιτούνται ιδιαίτερες προδιαγραφές για μη οικοδομικά έργα l: Ονομαστική τιμή διάστασης Δl: Επιτρεπόμενη

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού

EN ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ. γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού EN 1998 - ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΔΟΚΟΥ Ο.Σ. ΓΙΑ ΣΕΙΣΜΙΚΑ ΦΟΡΤΊΑ σελ.1 γεωμετρία: b= 0,30 m h= 0,70 m L= 6,00 m L/h= 8,57 Εντατικά Μεγέθη Σχεδιασμού εφελκυσμός άνω ίνα {L} i=1 εφελκυσμός άνω ίνα {R} i=2 N sd.l

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα. CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων 1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου

Διαβάστε περισσότερα

= = = = N N. Σηµείωση:

= = = = N N. Σηµείωση: Ανάλογα ε τα φορτία που αναπτύσσονται σε ια διατοή ακολουθείται διαφορετική διαδικασία διαστασιολόγησης. 1 Φορτία ιατοής Καθαρή Κάψη Ροπή M σε ια διεύθυνση Προέχουσα Κάψη+Θλίψη Ροπή M σε ια διεύθυνση ε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8. Διαστασιολόγηση πλακών

ΚΕΦΑΛΑΙΟ 8. Διαστασιολόγηση πλακών ΚΕΦΑΛΑΙΟ 8 Διαστασιολόγηση πλακών 8.1 Γενικά Με τον όρο «πλάκες» αναφερόμαστε συνήθως σε επίπεδους φορείς σχετικά λεπτού πάχους που φορτίζονται κυρίως κάθετα στο επίπεδό τους και στηρίζονται γραμμικά (π.χ.

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr BETONe xpress ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : ΒΡ-ΠΡ.-001, Βραχύς π ρόβολος 1.1. Διαστάσεις, φορτία 1.2. Μοντέλο διαστασιολόγησης 1.3. Αντοχή λοξής θλίψης σκυροδέματος Vrd2 1.4. Δύναμη

Διαβάστε περισσότερα

Τεχνική Οδηγία 6 Όπλιση πλακών

Τεχνική Οδηγία 6 Όπλιση πλακών CSI Hella, εκέµβριος 2003 Τεχνική Οδηγία 6 Όπλιση πλακών Η τεχνική οδηγία 6 παρέχει βασικές πληροφορίες για την όπλιση πλακών. Κανονισµοί. Η όπλιση των πλακών πραγµατοποιείται σύµφωνα µε τις διατάξεις

Διαβάστε περισσότερα

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Ημερίδα: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΤΙΡΙΩΝ & ΓΕΩΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Σ.Π.Μ.Ε. ΗΡΑΚΛΕΙΟ 14.11.2008 ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π.

Διαβάστε περισσότερα

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7 Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια Κεφάλαιο 7 Διαφάνειες παρουσίασης εκπαιδευτικών σεμιναρίων Γεώργιος Πενέλης, ομότιμος καθηγητής Α.Π.Θ. Ανδρέας

Διαβάστε περισσότερα

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος v ΣΥΜΒΟΛΑ Λατινικά A b A g A e A f = εμβαδόν ράβδου οπλισμού = συνολικό εμβαδόν διατομής = εμβαδόν περισφιγμένου σκυροδέματος στη διατομή = εμβαδόν διατομής συνθέτων υλικών A f,tot = συνολικό εμβαδόν συνθέτων

Διαβάστε περισσότερα

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π Παρουσίαση Ευρωκώδικα 2 Επίκουρος Καθηγητής Ε.Μ.Π Εισαγωγή Ο Ευρωκώδικας 2 περιλαµβάνει τα ακόλουθα µέρη: Μέρος 1.1: Γενικοί κανόνες και κανόνες για κτίρια Μέρος 1.2: Σχεδιασµός για πυρασφάλεια Μέρος 2:

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr Πέδιλα ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : ΠΕΔΙΛΟ-001, Μεμονωμένο, κεντρικό πέδιλο, με ροπ ή και σεισμό 1.1. Διαστάσεις-Υλικά-Φορτία 1.2. Κανονισμοί 1.3. Ελεγχοι φέρουσας ικανότητας εδάφους

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Δεξαμενές Ο/Σ (Μέρος 2 ο ) -Σιλό Ορθογωνικές δεξαμενές Διάκριση ως προς την ύπαρξη ή μη επικάλυψης

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Δράσεις

Βασικές Αρχές Σχεδιασμού Δράσεις Βασικές Αρχές Σχεδιασμού Δράσεις Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Εξέλιξη των Κανονισμών 1959 Κανονισμός Έργων από Σκυρόδεμα και Αντισεισμικός Κανονισμός (ΒΔ 59) Επιτρεπόμενες

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα ADAPTOR Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα Version 1.0 Ιανουάριος 004 ΠΝΕΥΜΑΤΙΚΑ ΙΚΑΙΩΜΑΤΑ Το λογισµικό Adaptor και όλα τα

Διαβάστε περισσότερα

16.8 Υλικά Κεντρική θλίψη κεντρικός εφελκυσμός. Τριαξονική θλίψη

16.8 Υλικά Κεντρική θλίψη κεντρικός εφελκυσμός. Τριαξονική θλίψη 36 16.8 Υλικά Κεντρική θλίψη κεντρικός εφελκυσμός. Τριαξονική θλίψη Μονοαξονική θλίψη: Υπενθυμίζονται τα διαγράμματα τάσεων παραμορφώσεων των δύο υλικών: (συγκρίνατε τα διαγράμματα αυτά με τα συμβατικά

Διαβάστε περισσότερα

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο

Διαβάστε περισσότερα

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος.

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Προβλέπεται άρα Έλεγχος του φορέα: σχεδιασµός και όπλιση

Διαβάστε περισσότερα

5 Κυκλικό υποστύλωμα 6 Υποστύλωμα κοίλης κυκλικής διατομής 7 Υποστύλωμα κοίλης ορθογωνικής διατομής

5 Κυκλικό υποστύλωμα 6 Υποστύλωμα κοίλης κυκλικής διατομής 7 Υποστύλωμα κοίλης ορθογωνικής διατομής ΚΕΦΑΛΑΙΟ 7 Διαστασιολόγηση υποστυλωμάτων 7.1 Γενικά Τα υποστυλώματα, μαζί με τα τοιχώματα, αποτελούν τα κατακόρυφα στοιχεία των κατασκευών από Ο/Σ. Όπως είναι αυτονόητο, τα στοιχεία αυτά είναι ιδιαίτερα

Διαβάστε περισσότερα

2ο Mέρος: Αριθμητικά παραδείγματα

2ο Mέρος: Αριθμητικά παραδείγματα 5.5m 0.4m Y T1Y 300/25 X BY1 25/50 BY2 25/50 BY3 25/50 1.2m BX9 25/50 0.4m Τ3Χ 375/25 0.4m BX10 25/50 C7 40/40 C8 40/40 BY4 25/50 Π1Υ 25/270 BY5 25/50 BY6 25/50 BX6 25/50 BX7 25/50 BX8 25/50 BX4 25/50

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995

Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995 Τυπόγιο: ιαστασιόγηση μεμονωμένων πεδίλων 1 Γενικοί Κανόνες ιαμόρφωσης Μεμονωμένων Πεδίλων Βιβλιογραφία: Αναγνωστόπουλος (Πιτιλάκης κ.α. 1999) και Πενέλης κ.α. 1995 C C α 0.05m D D ' σκυρόδεμα καθαριότητας

Διαβάστε περισσότερα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα

Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα Συγκριτική µελέτη τυπικών κτιρίων οπλισµένου σκυροδέµατος µε το Ευρωκώδικα 2 και τον CYS 159 Comparative Study of typical reinforced concrete structures according το EC2 and CYS 159 Γιώργος ΒΑ ΑΛΟΥΚΑΣ

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Κεφάλαιο 3. Κανόνες διαμόρφωσης δομικών στοιχείων

Κεφάλαιο 3. Κανόνες διαμόρφωσης δομικών στοιχείων 3.4 ΥΠΟΣΤΥΛΩΜΑΤΑ 3.4.1 Γεωμετρικά στοιχεία [ΕΚΟΣ 18.4.2, 5] Ελάχιστες διαστάσεις διατομής (1) Σχήμα 3.12 Ελάχιστες διαστάσεις διατομής στύλων Περιορισμός θλιπτικής καταπόνησης υποστυλωμάτων υπό το σεισμικό

Διαβάστε περισσότερα

Προφανώς, λόγω των ίσων προβόλων, ο ανά μέτρο μήκους. 4 Ηδη από αυτό καταλαβαίνουμε ότι δεν έχει νόημα ο έλεγχος. σε διάτρηση.

Προφανώς, λόγω των ίσων προβόλων, ο ανά μέτρο μήκους. 4 Ηδη από αυτό καταλαβαίνουμε ότι δεν έχει νόημα ο έλεγχος. σε διάτρηση. ΠΕΡΙΕΧΟΜΕΝΑ 1. Δύσκαμπτο πέδιλο χωρίς ροπή. Δύσκαμπτο πέδιλο με ροπή 3. Εύκαμπτο πέδιλο χωρίς ροπή 3.Α Με οπλισμό διάτρησης 3.Β Χωρίς οπλισμό διάτρησης 1. Δύσκαμπτο κεντρικό πέδιλο (χωρίς ροπή) Ζητείται:

Διαβάστε περισσότερα

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση Fespa 10 EC For Windows Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή Αποτίμηση της φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση σύμφωνα με τον ΚΑΝ.ΕΠΕ 2012 Αθήνα, εκέμβριος 2012 Version

Διαβάστε περισσότερα

Παράρτημα Έκδοση Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών

Παράρτημα Έκδοση Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών Παράρτημα Έκδοση 2015 Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 2 2. Έδραση με κυκλικές κοιλοδοκούς...

Διαβάστε περισσότερα

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών

ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ. Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών ΕΙΔΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΟ ΣΚΥΡΟΔΕΜΑ Γ. Παναγόπουλος Καθηγητής Εφαρμογών, ΤΕΙ Σερρών Επικάλυψη οπλισμών Ανθεκτικότητα σε διάρκεια - Επικάλυψη οπλισμών Μια κατασκευή θεωρείται ανθεκτική

Διαβάστε περισσότερα

b w = 200 mm h = 600 mm d = 550 mm

b w = 200 mm h = 600 mm d = 550 mm εδοέν : ΠΑΡΑ ΕΙΓΜΑ Μονώροφος πλισικός φορές ε τετρπλή συετρί Μόνον νωδοή Υλικά : σκυρόδε C0/5 f ck 0 MPa γ c,50 χάλυβς B500C f yk 500 MPa γ,5 εδοέν νωδοής : Κάτοψη Ύψος ορόφου h 4,0 m Υποστυλώτ 50/50 mm

Διαβάστε περισσότερα

14. Θεµελιώσεις (Foundations)

14. Θεµελιώσεις (Foundations) 14. Θεµελιώσεις (Foundations) 14.1 Εισαγωγή Οι θεµελιώσεις είναι η υπόγεια βάση του δοµήµατος που µεταφέρει στο έδαφος τα φορτία της ανωδοµής. Για τον σεισµό σχεδιασµού το σύστηµα θεµελίωσης πρέπει να

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 3

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 3 Τεχνογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχή Τεχνογικών Εφαρμογών Τμήμα Πιτικών ομικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ Επιφανειακές θεμελιώσεις (αλλαγές για διαστασιόγηση βάσει EC) ιδάσκων: Κίρτας Εμμανουήλ

Διαβάστε περισσότερα

BETONexpress, www.runet.gr

BETONexpress, www.runet.gr Τοίχοι Αντιστήριξης ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπ ολογισμοί τμήματος κατασκευής : Τ. ΑΝΤ-001, Τοίχος αντιστήριξης ωπ λισμένου σκυροδέματος 1.1. Στοιχεία τοίχου-παράμετροι-κανονισμοί 1.. Επ ιμέρους συντελεστές για

Διαβάστε περισσότερα

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ

Κατασκευές Ωπλισμένου. Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ Δημοκρίτειο Πανεπιστήμιο Θράκης_ Τμήμα Πολιτικών Μηχανικών_ Τομέας Δομικών Έργων Κατασκευές Ωπλισμένου Σκυροδέματος ΙΙ: ΑΣΚΗΣΕΙΣ ΟΚΛ ΣΤΟΙΧΕΙΑ ΣΕ ΚΑΘΑΡΟ ΕΦΕΛΚΥΣΜΟ Εφελκυσμός από εξωτερική φόρτιση: 0.60

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ 7 ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών -01», Μάρτιος 2001. ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ Εργασία Νο B3 ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία μελετάται το πώς

Διαβάστε περισσότερα

O7 O6 O4 O3 O2 O1 K1 K2 K3 K4 K5 K6. Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων. Βήμα 1 ο Σχεδιασμός καννάβου

O7 O6 O4 O3 O2 O1 K1 K2 K3 K4 K5 K6. Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων. Βήμα 1 ο Σχεδιασμός καννάβου Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων Βήμα 1 ο Σχεδιασμός καννάβου Με βάση τις θέσεις των τοιχοπληρώσεων που εμφανίζονται στο αρχιτεκτονικό σχέδιο γίνεται ο κάναβος που φαίνεται

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ 89 Α. ΑΡΧΗ ΚΑΙ ΤΕΧΝΙΚΗ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΦΟΡΕΩΝ 1. Οι περιορισμοί των Συνήθων Φορέων από Ο.Σ 99 2. Η Λύση του Προεντεταμένου Σκυροδέματος- Οι τρεις Οπτικές 100 3. Η Τεχνική

Διαβάστε περισσότερα

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία :.09.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Μεταλλικές κατασκευές

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ

Διαβάστε περισσότερα

Κεφάλαιο 2. Κανόνες λεπτομερειών όπλισης

Κεφάλαιο 2. Κανόνες λεπτομερειών όπλισης 2.5 ΑΓΚΥΡΩΣΕΙΣ [ΕΚΟΣ 17.6] 2.5.1 Τύποι αγκυρώσεων [ΕΚΟΣ 17.6.1] Διακρίνονται 4 τύποι αγκυρώσεων κατ αύξουσα αποδοτικότητα υπό εφελκυσμό ή θλίψη: 1. Ευθύγραμμες αγκυρώσεις 2. Αγκυρώσεις καμπύλου άκρου (D

Διαβάστε περισσότερα

Χ. ΖΕΡΗΣ Απρίλιος

Χ. ΖΕΡΗΣ Απρίλιος Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα

Διαβάστε περισσότερα

Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ»

Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ» Σ Τ Α Τ Ι Κ Ε Σ Μ Ε Λ Ε Τ Ε Σ Κ Τ Η Ρ Ι Ω Ν Υ Π Ο Μ Ο Ν Α Δ Α «Κ Λ Ι Μ Α Κ Ε Σ» Ο Δ Η Γ Ο Σ Χ Ρ Η Σ Η Σ ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ www.tol.com.gr Οκτώβριος 2012 ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ Καρτερού 60, 71201

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ

ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ Διάμετρος διατομής υλικά: f (N/mm 2 ) 6 Χάλυβας 2 235 Σκυρόδεμα 2 2 Διατομή Χάλυβα: 12 Χάλυβας Ο/Σ 3 section 355,6x5, συντελεστές ασφαλείας: D (mm) 355,6 γ a = 1, t (mm) 5, γ c = 1,5 A a (cm 2 ) 55,1 γ

Διαβάστε περισσότερα

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ Ενότητα Β ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΡΑΣΕΩΝ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΙΑΚΡΙΣΗ ΦΟΡΤΙΩΝ-ΣΤΗΡΙΞΕΩΝ-ΕΠΙΠΟΝΗΣΕΩΝ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ

Διαβάστε περισσότερα

Μοντέλο Προσοµοίωσης οκού Οπλισµένου Σκυροδέµατος µε Πεπερασµένα Στοιχεία για έλεγχο αστοχίας από τέµνουσα.

Μοντέλο Προσοµοίωσης οκού Οπλισµένου Σκυροδέµατος µε Πεπερασµένα Στοιχεία για έλεγχο αστοχίας από τέµνουσα. Μοντέλο Προσοµοίωσης οκού Οπλισµένου Σκυροδέµατος µε Πεπερασµένα Στοιχεία για έλεγχο αστοχίας από τέµνουσα. Γ. Ν. ΒΑ ΑΛΟΥΚΑΣ Πολιτικός Μηχανικός, 4Μ-VK Προγράµµατα Πολιτικού Μηχανικού, Ε.Π.Ε. Α. Γ. ΠΑΠΑΧΡΗΣΤΙ

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,

Διαβάστε περισσότερα

Ασύνδετοι τοίχοι. Σύνδεση εγκάρσιων τοίχων. Σύνδεση εγκάρσιων τοίχων & διάφραγμα στη στέψη τοίχων

Ασύνδετοι τοίχοι. Σύνδεση εγκάρσιων τοίχων. Σύνδεση εγκάρσιων τοίχων & διάφραγμα στη στέψη τοίχων ΛΕΙΤΟΥΡΓΙΑ ΤΡΙΣΔΙΑΣΤΑΤΟΥ ΚΙΒΩΤΙΟΥ Οι σεισμικές δυνάμεις ασκούνται στο κτίριο κατά τις 2 οριζόντιες διευθύνσεις. Για ένα τοίχο η μία δύναμη είναι παράλληλη στο επίπεδό του (εντός επιπέδου) και η άλλη κάθετη

Διαβάστε περισσότερα

Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων

Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 8.0.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Aνάλυση τοίχου Υπολ ενεργητικών

Διαβάστε περισσότερα

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 0.08.006 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Ενισχυμένη

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΒΡΑΧΕΩΣ ΠΡΟΒΟΛΟΥ ΜΕ ΒΑΣΗ ΤΟΝ ΕΝ1992 [EC 2]

ΣΧΕΔΙΑΣΜΟΣ ΒΡΑΧΕΩΣ ΠΡΟΒΟΛΟΥ ΜΕ ΒΑΣΗ ΤΟΝ ΕΝ1992 [EC 2] ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΩΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΩΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΙΙ ΣΧΕΔΙΑΣΜΟΣ ΒΡΑΧΕΩΣ ΠΡΟΒΟΛΟΥ ΜΕ ΒΑΣΗ ΤΟΝ ΕΝ1992 [EC 2] Βραχύς πρόβολος

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφ. 4 ΥΠΟΣΤΥΛΩΜΑΤΑ

ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφ. 4 ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφάλαιο 4 ΥΠΟΣΤΥΛΩΜΑΤΑ Τα υποστυλώµατα έχουν συνήθως τη µορφή κατακόρυφου αµφίπακτου ραβδόµορφου φορέα όπως φαίνεται στο σχήµα 1.8. Τα τµήµατα του υποστυλώµατος µεταξύ πάκτωσης και σηµείου καµπής θα µπορούσαν

Διαβάστε περισσότερα

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ ΚΑΙ ΥΝΑΜΙΚΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης Α. Λεπτομέρειες Οπλισμών Δοκών

Εγχειρίδιο Χρήσης Α. Λεπτομέρειες Οπλισμών Δοκών Εγχειρίδιο Χρήσης Α. Λεπτομέρειες Οπλισμών Δοκών 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. ΛΕΠΤΟΜΕΡΕΙΕΣ ΟΠΛΙΣΜΩΝ ΔΟΚΩΝ 5 1. Γεωμετρία 8 2. Κύριος Οπλισμός Ανοίγματος 12 3. ισμός Στηρίξεων 14 4. Συνδετήρες 16 5. Πρόσθετα 17 6.

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση:

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143 9.2 ΔΙΣΚΟΙ 9.2.1 Μέθοδοι ανάλυσης Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ελαστική ανάλυση πλαστική ανάλυση

Διαβάστε περισσότερα

Fepla. Πρόγραμμα υπολογισμού επίπεδων φορέων με το πεπερασμένο στοιχείο TRIC

Fepla. Πρόγραμμα υπολογισμού επίπεδων φορέων με το πεπερασμένο στοιχείο TRIC Fepla Πρόγραμμα υπολογισμού επίπεδων φορέων με το πεπερασμένο στοιχείο TRIC Στατικό Παράδειγμα Μελέτη γενικής κοιτόστρωσης επί ελαστικού εδάφους εξαώροφου κτιρίου, με συνυπολογισμό τοιχωμάτων υπογείου

Διαβάστε περισσότερα

fk = K fb 0,70 fm 0,30 Κ=0,45 από Πίνακα 3.3 fb = 4,675 MPa fm= 5 MPa fk = 0,45 4,675 0,70 5,0 0,30 = 2,15 N/mm 2

fk = K fb 0,70 fm 0,30 Κ=0,45 από Πίνακα 3.3 fb = 4,675 MPa fm= 5 MPa fk = 0,45 4,675 0,70 5,0 0,30 = 2,15 N/mm 2 3. Υπολογισμός χαρακτηριστικών αντοχών 3.1. Αντοχή σε θλίψη της τοιχοποιίας, fk Για κονίαμα γενικής χρήσης η αντοχή σε θλίψη της τοιχοποιίας προσδιορίζεται από τη σχέση: fk = K fb 0,70 fm 0,30 Κ=0,45 από

Διαβάστε περισσότερα

Διαδικασίες διασφάλισης ποιότητας του Λογισμικού για Πολιτικούς Μηχανικούς. Structural analysis software verification

Διαδικασίες διασφάλισης ποιότητας του Λογισμικού για Πολιτικούς Μηχανικούς. Structural analysis software verification 3 o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής & Τεχνικής Σεισμολογίας 5 7 Νοεμβρίου, 2008 Άρθρο 1821 Διαδικασίες διασφάλισης ποιότητας του Λογισμικού για Πολιτικούς Μηχανικούς. Structural analysis software

Διαβάστε περισσότερα

Fespa 10 EC. For Windows. Στατικό παράδειγμα προσθήκης ορόφου σε υφιστάμενη κατασκευή. Αποτίμηση φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση

Fespa 10 EC. For Windows. Στατικό παράδειγμα προσθήκης ορόφου σε υφιστάμενη κατασκευή. Αποτίμηση φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση Fespa 10 EC For Windows Στατικό παράδειγμα προσθήκης ορόφου σε υφιστάμενη κατασκευή & Αποτίμηση φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση σύμφωνα με τον ΚΑΝ.ΕΠΕ 2012 Αθήνα, Οκτώβριος 2012 Version

Διαβάστε περισσότερα

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα

Διαβάστε περισσότερα

Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ

Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ 1. ΣΤΟΧΟΙ ΚΑΙ ΚΡΙΤΗΡΙΑ ΟΡΘΟΥ ΣΧΕΔΙΑΣΜΟΥ Ο στόχος του σχεδιασμού των φορέων σε κατάσταση αστοχίας είναι, όπως εντοπίστηκε στην ενότητα Α και Ζ διττός:

Διαβάστε περισσότερα

Ανελαστική ανάλυση υφιστάμενης κατασκευής και σύγκριση τρόπων ενίσχυσής της με βάση τον ΚΑΝ.ΕΠΕ.

Ανελαστική ανάλυση υφιστάμενης κατασκευής και σύγκριση τρόπων ενίσχυσής της με βάση τον ΚΑΝ.ΕΠΕ. Ανελαστική ανάλυση υφιστάμενης κατασκευής και σύγκριση τρόπων ενίσχυσής της με βάση τον ΚΑΝ.ΕΠΕ. ΑΝΕΛΑΣΤΙΚΗ ΑΝΑΛΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΚΑΙ ΣΥΓΚΡΙΣΗ ΤΡΟΠΩΝ ΕΝΙΣΧΥΣΗΣ ΤΗΣ ΜΕ ΒΑΣΗ ΤΟΝ ΚΑΝ.ΕΠΕ. ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΠΑΠΑΝΔΡΕΟΥ Σ ΝΙΚΟΛΑΟΥ Επιβλέπων:

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5 ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 010 1 Μάθηµα: Θεµελιώσεις

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΡΓΟ : ΝΟΜΙΜΟΠΟΙΗΣΗ ΒΑΣΕΙ ΑΡΘ.23 (ΝΟΚ) ΑΛΛΑΓΩΝ ΩΣ ΠΡΟΣ ΤΑ ΑΡΧΙΤΕΚΤΟΝΙΚΑ ΚΑΙ ΣΤΑΤΙΚΑ ΤΗΣ 529/03 ΟΙΚ. ΑΔΕΙΑΣ ΚΑΙ ΜΕΤΑΤΡΟΠΗΣ ΑΥΛΙΟΥ ΧΩΡΟΥ ΣΕ ΠΡΟΘΑΛΑΜΟ ΑΛΛΑΓΗ ΧΡΗΣΗΣ ΙΣΟΓΕΙΟΥ ΑΠΟ ΑΠΟΘΗΚΗ ΣΕ ΧΩΡΟ ΣΥΝΑΘΡΟΙΣΗΣ

Διαβάστε περισσότερα

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος

Διαβάστε περισσότερα

Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΕΦΑΡΜΟΓΕΣ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ

Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΕΦΑΡΜΟΓΕΣ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΕΦΑΡΜΟΓΕΣ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. ΒΑΣΙΚΕΣ

Διαβάστε περισσότερα

Υ Π Ο Μ Ο Ν Α Δ Α «Ε Ν Ι Σ Χ Υ Σ Ε Ι Σ»

Υ Π Ο Μ Ο Ν Α Δ Α «Ε Ν Ι Σ Χ Υ Σ Ε Ι Σ» Σ Τ Α Τ Ι Κ Ε Σ Μ Ε Λ Ε Τ Ε Σ Κ Τ Η Ρ Ι Ω Ν Υ Π Ο Μ Ο Ν Α Δ Α «Ε Ν Ι Σ Χ Υ Σ Ε Ι Σ» ΕΝΙΣΧΥΣΕΙΣ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΚ 8.3 ΚΑΙ ΚΑΝ.ΕΠΕ. Ε Γ Χ Ε Ι Ρ Ι Δ Ι Ο Θ Ε Ω Ρ Η Τ Ι Κ Η Σ Τ Ε Κ Μ Η

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΣΕ ΚΑΤΑΣΤΑΣΗ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ. Ενότητα Λ

ΣΧΕΔΙΑΣΜΟΣ ΣΕ ΚΑΤΑΣΤΑΣΗ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ. Ενότητα Λ ΣΧΕΔΙΑΣΜΟΣ ΣΕ ΚΑΤΑΣΤΑΣΗ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ Ενότητα Λ 1. ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ Ο ΣΧΕΔΙΑΣΜΟΣ ΩΣ ΕΝΑΡΜΟΝΙΣΗ ΑΝΤΙΤΙΘΕΜΕΝΩΝ ΚΡΙΤΗΡΙΩΝ 1.1 Στόχοι και Κριτήρια του Σχεδιασμού Με βάση τον σχεδιασμό σε κατάσταση αστοχίας

Διαβάστε περισσότερα