ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου"

Transcript

1 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ

2 ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών Συντονισμός έκδοσης: Χρίστος Παρπούνας, Συντονιστής Υπηρεσίας Ανάπτυξης Προγραμμάτων Έκδοση 2011 ISN ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΚΥΠΡΟΥ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ

3 ΕΝΟΤΗΤΑ 1 ΣΥΝΟΛΑ Ω Γ

4

5 Σύνολα Διερεύνηση Ένας τρόπος να παρουσιάσουμε κάποιες συλλογές ατόμων ή αντικειμένων και τις σχέσεις μεταξύ τους είναι τα διαγράμματα. Σε ένα μουσικό σχολείο οι μαθητές ρωτήθηκαν για το είδος της μουσικής που τους αρέσει. Οι απαντήσεις τους παρουσιάζονται στο διπλανό διάγραμμα. Έντεκα άτομα δήλωσαν ότι τους αρέσει η κλασική μουσική, ενώ δεκαοκτώ μαθητές δήλωσαν ότι τους αρέσει η Ρόκ μουσική. Σε πόσους μαθητές αρέσει η Πόπ μουσική; Ρόκ Σε πόσους από τους μαθητές αρέσει η Κλασική και η Ρόκ μουσική; Πόσοι είναι συνολικά οι μαθητές που τους αρέσει η Ρόκ ή η Πόπ μουσική; Σε πόσους μαθητές αρέσουν και τα τρία είδη μουσικής; Πόσοι είναι συνολικά οι μαθητές που πήραν μέρος στην έρευνα; Κλασική Πόπ Τι πρέπει να ξέρετε Σύνολο είναι μια καλώς ορισμένη συλλογή αντικειμένων. Το σύνολο πρέπει να είναι καλώς ορισμένο. Δηλαδή ένα αντικείμενο α (στοιχείο α) πρέπει να είναι ξεκάθαρο αν ανήκει ή όχι στο σύνολο. Τα αντικείμενα που αποτελούν ένα σύνολο λέγονται στοιχεία του συνόλου. Ένα σύνολο συμβολίζεται συνήθως με ένα κεφάλαιο γράμμα, π.χ. Α ή Β. Αν το στοιχείο ανήκει στο σύνολο γράφουμε. Αν ένα στοιχείο δεν ανήκει στο σύνολο Α τότε γράφουμε. Υπάρχει ένα σύνολο χωρίς καθόλου στοιχεία. Πρόκειται για το κενό σύνολο και συμβολίζεται με. Τα σύνολα των αριθμών συμβολίζονται ως εξής: : το σύνολο των φυσικών αριθμών, 1 Ενότητα 1 : Σύνολα.

6 : το σύνολο των ακεραίων αριθμών, : το σύνολο των ρητών αριθμών, : το σύνολο των πραγματικών αριθμών. Παράσταση συνόλου Για να παραστήσουμε ένα σύνολο, χρησιμοποιούμε έναν από τους παρακάτω τρόπους: Με αναγραφή των στοιχείων του. Τα σύνολα τα παριστάνουμε παραθέτοντας όλα τα στοιχεία τους μέσα σε άγκιστρα. π.χ.,, Με περιγραφή των στοιχείων του. Μέσα σε άγκιστρα βάζουμε μια μεταβλητή και περιγράφουμε τη χαρακτηριστική ιδιότητα της μεταβλητής ή χωρίς άγκιστρα περιγράφουμε την χαρακτηριστική ιδιότητα που έχουν τα στοιχεία του συνόλου. π.χ. το σύνολο των θετικών πραγματικών αριθμών: ή Με διάγραμμα Venn. Η εποπτική παρουσίαση ενός συνόλου Α γίνεται με το διάγραμμα Venn, όπου το σύνολο παριστάνεται με το εσωτερικό μιας καμπύλης Πληθικός αριθμός συνόλου Α είναι το πλήθος των στοιχείων του και συμβολίζεται με. π.χ. αν Α = {3, 5, 6, 8} τότε ν (Α) = 4 ή αν. Ίσα σύνολα λέγονται δύο σύνολα Α και Β τα οποία έχουν ακριβώς τα ίδια στοιχεία και γράφουμε για αυτά ή. π.χ. τα σύνολα Α = Τα φωνήεντα της λέξης οξύ και Β = Τα φωνήεντα της λέξης υδρογόνο είναι ίσα γιατί με αναγραφή των στοιχείων τους είναι: και, τα οποία έχουν τα ίδια ακριβώς στοιχεία. τότε 2 Ενότητα 1 : Σύνολα.

7 Ισοδύναμα λέγονται δύο σύνολα Α και Β τα οποία μπορούμε να αντιστοιχίσουμε τα στοιχεία τους ένα με ένα. Τα ισοδύναμα σύνολα έχουν ίσο πλήθος στοιχείων δηλαδή έχουν ίσους πληθικούς αριθμούς και συμβολίζεται με ή. π.χ. Τα σύνολα Ειδικά σύνολα και είναι ισοδύναμα, δηλαδή. Μονομελές είναι το σύνολο που έχει μόνο ένα στοιχείο, π.χ. Κενό σύνολο είναι το σύνολο που δεν έχει στοιχεία. Το κενό σύνολο συμβολίζεται με ή. π.χ. Απειροσύνολο είναι το σύνολο που έχει άπειρα στοιχεία, π.χ. Πεπερασμένο είναι το σύνολο το οποίο δεν είναι απειροσύνολο. π.χ. Παραδείγματα Δραστηριότητες Να γράψετε με αναγραφή των στοιχείων του το σύνολο. Λύση Το Α είναι σύνολο των διατεταγμένων ζευγαριών, όπου οι αριθμοί είναι φυσικοί αριθμοί και επιπλέον όταν τους προσθέσουμε έχουν άθροισμα 3. Τα ζευγάρια αυτά είναι τα. Άρα, 1. Να γράψετε με αναγραφή στοιχείων τα πιο κάτω σύνολα και να βρείτε τον πληθικό τους αριθμό. Α= Τα γράμματα της λέξης «ΜΑΘΗΜΑΤΙΚΑ». = Τα ψηφία του αριθμού Γ= Οι πόλεις της Κύπρου. 2. Να εξετάσετε κατά πόσο οι φράσεις ορίζουν κάποιο σύνολο: (α) Τα ψηλά βουνά τη Κύπρου. (β) Οι ψηλοί συμμαθητές μου. (γ) Οι μεγάλοι αριθμοί. (δ) Οι ημέρες της εβδομάδας. (ε) Οι μήνες του χρόνου που αρχίζουν από το γράμμα «Κ». 3 Ενότητα 1 : Σύνολα.

8 (στ) Οι μήνες του χρόνου που αρχίζουν από το γράμμα «Ι». 3. Να γράψετε μια λέξη που τα γράμματά της να είναι τα στοιχεία του συνόλου. 4. Να γράψετε με αναγραφή των στοιχείων τους το σύνολο (α) Των φωνηέντων. (β) Των συμφώνων. (γ) Των μηνών του Καλοκαιριού. 5. Θεωρούμε τα σύνολα,, Να χαρακτηρίσετε ορθή ή λανθασμένη καθεμία από τις πιο κάτω προτάσεις (α) (β) (γ) (δ) (ε) (στ) (ζ) 6. Να εξετάσετε κατά πόσο τα σύνολα είναι ισοδύναμα: Α = Oι ημέρες της εβδομάδας. Β = Tα φωνήεντα του Ελληνικού αλφαβήτου. 7. Μπορείτε να γράψετε τρία σύνολα που να είναι ισοδύναμα με το σύνολο. και να μην είναι ίσα μεταξύ τους; 8. Να γράψετε με περιγραφή των στοιχείων του τα σύνολα Γ = { Ιούνιος, Ιούλιος, Αύγουστος } και Δ = { α, η, ι }. 9. Θεωρούμε τα σύνολα 4 Ενότητα 1 : Σύνολα.

9 Να χαρακτηρίσετε τα πιο πάνω σύνολα ως πεπερασμένα σύνολα ή απειροσύνολα. 10. Να εξετάσετε ποια από τα παρακάτω σύνολα είναι ίσα και ποια είναι ισοδύναμα 11. Να συμπληρώσετε τα κενά έτσι ώστε τα σύνολα να είναι ίσα: (α) (β) (γ) } Σχέσεις συνόλων Διερεύνηση Ο Ανδρέας μαζί με 6 φίλους του, τον Κυριάκο, τον Κωνσταντίνο, το Γιάννη, το Σάββα, το Γρηγόρη και το Μάριο, θα συμμετάσχουν σε ένα τουρνουά καλαθόσφαιρας. Η κάθε ομάδα καλαθόσφαιρας αποτελείται από 5 παίκτες. Να γράψετε 3 διαφορετικές συνθέσεις της ομάδας που μπορούν να ξεκινήσουν ένα αγώνα. Πόσοι ακέραιοι από το 1 έως το 100 δεν είναι πολλαπλάσια του 10, του 4 και του 15; Τι πρέπει να ξέρετε Ένα σύνολο Β λέγεται υποσύνολο του συνόλου Α, αν όλα τα στοιχεία του Β είναι στοιχεία και του Α, δηλαδή για κάθε το και συμβολίζεται Ένα σύνολο Β θα λέμε ότι είναι γνήσιο υποσύνολο ενός άλλου συνόλου Α και γράφεται, αν το Α περιέχει όλα τα στοιχεία του Β και ένα τουλάχιστον παραπάνω. π.χ. για τα σύνολα και έχουμε ότι. Κάθε σύνολο έχει δύο τετριμμένα υποσύνολα, τον εαυτό του και το κενό. Το κενό σύνολο είναι υποσύνολο κάθε συνόλου Α, δηλαδή. Κάθε σύνολο Α είναι υποσύνολο του εαυτού του, δηλαδή Ενότητα 1 : Σύνολα.

10 Δύο σύνολα που δεν έχουν κοινά στοιχεία λέγονται ξένα μεταξύ τους, π.χ. τα σύνολα και είναι ξένα μεταξύ τους.. η. θ. ι. α. β. γ. δ Δραστηριότητες Παραδείγματα Αν, να γράψετε όλα τα υποσύνολα του συνόλου Α που έχουν πληθικό αριθμό 4. Λύση 1. Να εξετάσετε σε ποιες από πιο κάτω περιπτώσεις το σύνολο Α είναι υποσύνολο του συνόλου Β. (α),. (β),. (γ) (δ) 2. (α) Να βρείτε τα γνήσια υποσύνολα του συνόλου. (β) Να γράψετε τρία ζεύγη των υποσυνόλων του Α που να είναι ξένα μεταξύ τους. 3. Να βρείτε δύο υποσύνολα του συνόλου. 4. Να παραστήσετε τα σύνολα στο ίδιο Βέννειο διάγραμμα και να τα διατάξετε, χρησιμοποιώντας την έννοια του υποσυνόλου. 6 Ενότητα 1 : Σύνολα.

11 Πράξεις με σύνολα Διερεύνηση Τα παρακάτω σχήματα να χωριστούν σε δύο σύνολα Χ και Ψ. Το σύνολο Χ αποτελείται από τα σχήματα που έχουν ορθή γωνιά. Το σύνολο Ψ αποτελείται από τα σχήματα που έχουν τέσσερις πλευρές. Α Β Γ Δ Ε Ζ Η Θ Ι (α) Να τοποθετήσετε τα σχήματα στο παρακάτω διάγραμμα Venn. X Ψ (β) Ποια σχήματα ανήκουν και στα δύο σχήματα; (γ) Ποια σχήματα ανήκουν στο σύνολο Χ, αλλά δεν ανήκουν στο σύνολο Ψ. (δ) Ποια από τα σχήματα δεν ανήκουν ούτε στο Χ ούτε στο Ψ. Τι πρέπει να ξέρετε Ένωση δύο συνόλων Α και Β, που συμβολίζεται με,είναι ένα σύνολο που περιέχει όλα τα στοιχεία και των δύο συνόλων, π.χ. αν, και τότε Ισχύει ότι. Το (κενό σύνολο) είναι ουδέτερο στοιχείο της ένωσης συνόλων 7 Ενότητα 1 : Σύνολα.

12 Η ένωση δύο συνόλων αποτελείται από όλα τα στοιχεία τα οποία ανήκουν είτε στο σύνολο Α είτε στο Β. Τομή δύο συνόλων Α και Β είναι ένα νέο σύνολο που περιέχει μόνο τα κοινά στοιχεία των δύο συνόλων, π.χ. αν και, τότε Η τομή δύο συνόλων αποτελείται από οποιαδήποτε στοιχεία τα οποία ανήκουν και στα δύο σύνολα Α και Β. Συμπλήρωμα ή συμπληρωματικό του Α ως προς ένα άλλο σύνολο Ω ( ) είναι ένα σύνολο που περιέχει όλα τα στοιχεία του Ω που δεν ανήκουν στο Α. π.χ. και τότε Ω Α Ιδιότητες των υποσυνόλων για κάθε σύνολο Α. για κάθε σύνολο Α. και, τότε για κάθε Α, Β, Γ (μεταβατική ιδιότητα). Αν και, τότε για κάθε Α, Β. Δραστηριότητες Παραδείγματα Τα σύνολα Α και Β αποτελούνται από στοιχεία που παίρνονται από τους αριθμούς 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ώστε και. Να παρουσιάσετε αυτά τα σύνολα σε διαγραμματική μορφή (Διαγράμματα Venn). 8 Ενότητα 1 : Σύνολα.

13 Λύση Το διάγραμμα (Venn) φαίνεται δίπλα, με τα σύνολα Α και Β να σημειώνονται με κύκλους. Οι αριθμοί 4 και 6 ανήκουν και στα δύο σύνολα, έτσι πρέπει να τοποθετηθούν στο κοινό μέρος των δύο συνόλων Για να συμπληρώσουμε το σύνολο Α, πρέπει να τοποθετήσουμε τους αριθμούς 7 και 9 στο μέρος που δεν τέμνεται με το Β Όμοια για το Β, τοποθετούμε τους αριθμούς 1, 2, 3, 5στο μέρος που δεν τέμνεται με το Α Τελικά, επειδή οι αριθμοί 0 και 8 δεν έχουν χρησιμοποιηθεί στα σύνολα Α και Β, τα τοποθετούμε έξω από αυτά. Ω Δίνονται τα σύνολα, και,. (i) Να βρείτε τα σύνολα, (α) (β) (γ) (δ) (ii) Να εξετάσετε κατά πόσο ισχύει η σχέση. Λύση (i) Αρχικά τοποθετούμε τα στοιχεία των συνόλων σε ένα διάγραμμα Venn. 9 Ενότητα 1 : Σύνολα.

14 Ω (α) (γ) (β) (δ) (ii) Το σύνολο Β δεν είναι υποσύνολο του συνόλου Α, γιατί ο αριθμός 6 ανήκει στο Β και δεν ανήκει στο Α. Να κάνετε τα διάγραμμα των συνόλων, και. Λύση Γ Η εξέταση σε ένα διαγωνισμό των Μαθηματικών περιλάμβανε δύο θέματα τα οποία έπρεπε να απαντήσουν οι εξεταζόμενοι. Για να βαθμολογηθούν με άριστα έπρεπε να απαντήσουν και στα δύο θέματα, ενώ για να περάσουν την εξέταση έπρεπε να απαντήσουν σε ένα τουλάχιστον από τα δύο θέματα. Στο διαγωνισμό εξετάσθηκαν 100 μαθητές. Στο πρώτο θέμα απάντησαν σωστά 60 μαθητές. Στο δεύτερο θέμα απάντησαν σωστά 50 μαθητές, ενώ και στα δύο θέματα απάντησαν σωστά 30 μαθητές. Πόσοι μαθητές πέρασαν την εξέταση; Λύση Έστω το σύνολο των μαθητών που απάντησαν σωστά στο πρώτο θέμα και Β το σύνολο των μαθητών που απάντησαν σωστά στο δεύτερο θέμα. Τότε, είναι το σύνολο των μαθητών που απάντησαν σωστά στο πρώτο ή στο δεύτερο θέμα, δηλαδή οι μαθητές που πέρασαν την εξέταση. 10 Ενότητα 1 : Σύνολα.

15 Ω (100 μαθητές) Η τομή είναι οι μαθητές που έλυσαν και τα δύο θέματα που είναι 30. Άρα από τους 60 μαθητές που έλυσαν μόνο το Α, αλλά όχι το Β είναι. Από τους 50 μαθητές που έλυσαν το πρόβλημα Β, μόνο έλυσαν μόνο το Β, αλλά όχι το Α. Από τους 100 διαγωνιζόμενους μαθητές πέρασαν τη εξέταση μαθητές Οι ακέραιοι αριθμοί από το 1 μέχρι το 12 είναι τοποθετημένοι σε ένα διάγραμμα Venn (α) Να γράψετε το σύνολο Α με αναγραφή των στοιχείων του. (β) Να γράψετε το σύνολο Β με αναγραφή των στοιχείων του. (γ) Να περιγράψετε τα δύο σύνολα με λέξεις. (δ) Ποιο είναι το συμπληρωματικό σύνολο του Α; Από τους φυσικούς αριθμοί από το 1 μέχρι το 10 σχηματίζουμε δύο σύνολα Α και Β. Το σύνολο Α περιλαμβάνει όλους τους περιττούς αριθμούς. Το σύνολο περιλαμβάνει όλους τους αριθμούς που είναι μεγαλύτεροι από το 4. (α) Να συμπληρώσετε το παρακάτω διάγραμμα. 11 Ενότητα 1 : Σύνολα.

16 (β) Ποιά είναι η ένωση των συνόλων Α και Β; 3. Δίνονται τα σύνολα και (α) Να συμπληρώσετε το διάγραμμα Venn. Να συμπεριλάβετε όλους τους φυσικούς αριθμούς από το 1 μέχρι το 10. (β) Ποια είναι η τομή των συνόλων Α και Β; 4. Ποιο από τα διαγράμματα του Venn μπορούν να περιγράψουν τα παρακάτω. X X Ψ X Ψ Ψ Χ Ψ Β Γ Δ (α) (β) (γ) (δ) Χ είναι το σύνολο των τετραγώνων Ψ είναι το σύνολο των ορθογωνίων Χ είναι το σύνολο των τριγώνων Ψ είναι το σύνολο των τετραγώνων Χ είναι το σύνολο των τετραπλεύρων σχημάτων Ψ είναι το σύνολο των τριγώνων Χ είναι το σύνολο των επιπέδων σχημάτων που έχουν μια τουλάχιστον ορθή γωνία. Ψ είναι το σύνολο των τριγώνων. 5. Δίνονται τα σύνολα, και. Να βρείτε: (α) (β) (γ) (δ) (β) Να εξετάσετε αν ισχύει. 6. Να συμπληρώσετε τα κενά έτσι ώστε να ισχύουν οι ισότητες: (α) (β) (γ) (δ) 7. Να χρησιμοποιήσετε το συμβολισμό των πράξεων των συνόλων, για περιγράψετε τις σκιασμένες περιοχές των παρακάτω διαγραμμάτων. 12 Ενότητα 1 : Σύνολα.

17 (α) (β) (γ) (δ) 8. Δίνονται τα σύνολα:,,. Να εξετάσετε την ορθότητα των παρακάτω προτάσεων. (α) (β) (γ) (δ) (ε) (στ) (ζ) 9. Να βάλετε στα τετραγωνάκια τα κατάλληλα στοιχεία ώστε να ισχύουν οι ισότητες (α) { } { } { } (β) { } { } { } (γ) { } { } { } 10. Να βρείτε τα στοιχεία του συνόλου Δ, αν, και. 11. Δίνονται τα σύνολα, και. (α) Να βρείτε τα σύνολα. (β) Να βρείτε τα σύνολα. (γ) Να βρείτε τα σύνολα. (δ) Να παραστήσετε τα σύνολα Α, Β, Γ σε ένα διάγραμμα Venn. 12. Σε ένα διεθνές συνέδριο Μαθηματικών γνωρίζουμε ότι 150 σύνεδροι μιλούν αγγλικά, 48 γαλλικά και 82 ρώσικα, καθώς και ότι 23 σύνεδροι μιλούν αγγλικά 13 Ενότητα 1 : Σύνολα.

18 και γαλλικά, 22 αγγλικά και ρώσικα, 25 γαλλικά και ρώσικα, και ότι 225 σύνεδροι μιλούν τουλάχιστον µια από αυτές τις γλώσσες. Πόσοι από τους συνέδρους μιλούν και τις 3 γλώσσες; Δραστηριότητες Εμπλουτισμού 1. Να χαρακτηρίσετε ψευδείς ή αληθείς τις πιο κάτω προτάσεις,, [ 2. Δίνονται τα σύνολα: Α = Οι μαθητές της Α Γυμνασίου που έχουν βαθμό Άριστα στα Μαθηματικά. Β = Οι μαθητές της Α Γυμνασίου που παίζουν στην ομάδα πετόσφαιρας του σχολείου. Να εξηγήσετε τι καταλαβαίνετε για ένα μαθητή του ανήκει στο σύνολο: (α) (β) (γ) (δ) (ε) (στ) (ζ) (η) 3. Να κατασκευάσετε ένα Βέννειο διάγραμμα για καθένα από τα πιο κάτω σύνολα και να σκιάσετε το μέρος που αναπαριστούν:. (Να διερευνήσετε όλες τις πιθανές θέσεις των κύκλων που αναπαριστούν τα σύνολα και ). 4. Σε μια έρευνα που έγινε με δείγμα παιδιά ενός Λυκείου της Λευκωσίας με θέμα τα μέσα που χρησιμοποιούν για τη μετάβαση τους στο σχολείο, είχαμε τα ακόλουθα αποτελέσματα: παιδιά χρησιμοποιούν αστική συγκοινωνία, ταξί, ιδιωτικό αυτοκίνητο και άλλο μεταφορικό μέσο. Δεκαπέντε παιδιά χρησιμοποιούν αστική συγκοινωνία και ταξί, παιδιά ταξί και ιδιωτικό αυτοκίνητο και αστικό λεωφορείο και ιδιωτικό αυτοκίνητο. Να βρείτε πόσα παιδιά χρησιμοποιούν και τα τρία μέσα συγκοινωνίας. 14 Ενότητα 1 : Σύνολα.

19

20

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27 Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ. 6ο ΓΕΛ ΛΑΜΙΑΣ ΧΡΙΣΤΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ. 6ο ΓΕΛ ΛΑΜΙΑΣ ΧΡΙΣΤΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΜΑΘΗΜΑΤΙΚΟΣ ΣΥΝΟΛ 6ο ΓΕΛ ΛΜΙΣ ΧΡΙΣΤΟΣ ΤΡΙΝΤΦΥΛΛΟΥ ΜΘΗΜΤΙΚΟΣ ΣΥΝΟΛ Στοιχεία θεωρίας Σύνολο είναι μια συλλογή από αντικείμενα. Το σύνολο όλων των ελληνικών ποδοσφαιρικών ομάδων. Το σύνολο όλων των χωρών της Ευρώπης.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και»

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και» Η συνεπαγωγή ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Αν P και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε, όταν αληθεύει ο P να αληθεύει και ο Q, τότε λέμε ότι: «ο P συνεπάγεται τον Q» και γράφουμε P Q. Παράδειγμα: x=3 x 2 =9. Ο

Διαβάστε περισσότερα

5. 1 ΣΥΝΟΛΑ. Η έννοια του συνόλου

5. 1 ΣΥΝΟΛΑ. Η έννοια του συνόλου ΜΕΡΟΣ Α 5.1 ΣΥΝΟΛΑ 359 5. 1 ΣΥΝΟΛΑ Η έννοια του συνόλου Ονομάζουμε σύνολο στα Μαθηματικά κάθε ομάδα αντικειμένων τα οποία διακρίνονται μεταξύ τους με απόλυτη σαφήνεια Κάθε αντικείμενο που περιέχεται σε

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», «

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», « .1 Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη διατύπωση μαθηματικών εννοιών, προτάσεων

Διαβάστε περισσότερα

5.1 ΣΥΝΟΛΑ. 2. Παράσταση συνόλου. 3. Εποπτική παράσταση συνόλου : Γίνεται µε το διάγραµµα Venn, δηλαδή µε

5.1 ΣΥΝΟΛΑ. 2. Παράσταση συνόλου. 3. Εποπτική παράσταση συνόλου : Γίνεται µε το διάγραµµα Venn, δηλαδή µε 1 5.1 ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Σ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου.

Σ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου. Σ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου. Η προσέγγιση των εννοιών αυτών θα γίνει με τη βοήθεια απλών παραδειγμάτων,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ. x Σ και. x Σ και διαβάζουµε «το x δεν ανήκει στο Σ». ΕΙΣΑΓΩΓΗ :

ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ. x Σ και. x Σ και διαβάζουµε «το x δεν ανήκει στο Σ». ΕΙΣΑΓΩΓΗ : ΕΙΣΑΓΩΓΗ : ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ Η έννοια του συνόλου στα µαθηµατικά είναι έννοια πρωταρχική και έτσι δεν ορίζεται αυστηρά µαθηµατικά. Μπορούµε όµως επεξηγηµατικά αντί ορισµού να πούµε: Σύνολο, είναι µια συλλογή

Διαβάστε περισσότερα

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

Εισαγωγικά Παραδείγματα: Παρατηρήσεις: 1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το

Διαβάστε περισσότερα

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα:

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα: Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα: Κοντογιάννη Αριστούλα Σύνολα Σύνολο: Μία συλλογή διακριτών αντικειμένων

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις Συγγραφή: Ομάδα Υποστήριξης

Διαβάστε περισσότερα

Σημεία Προσοχής στην Παράγραφο Ε2.

Σημεία Προσοχής στην Παράγραφο Ε2. Σημεία Προσοχής στην Παράγραφο Ε2. 1. Ίσα Σύνολα Δεν αρκεί δύο σύνολα να έχουν τον ίδιο αριθμό στοιχέιων για να είναι ίσα. Πρέπει να έχουν ακριβώς τα ίδια στοιχεία. ΠΑΡΑΔΕΙΓΜΑ Έχουμε τα σύνολα Α={1,α,5}

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΛΟΓΙΚΗ - ΣΥΝΟΛΑ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΛΟΓΙΚΗ - ΣΥΝΟΛΑ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ ΛΟΓΙΚΗ - ΣΥΝΟΛ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Η συνεπαγωγή ν P και Q είναι δύο ισχυρισμοί τέτοιοι ώστε όταν αληθεύει ο P να αληθεύει και ο Q τότε λέμε ότι το P συνεπάγεται το Q και γράφουμε P Q Π.χ, όταν α=β

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4 Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: α) Δεν επιτρέπεται η χρήση υπολογιστικής μηχανής. β) Δεν επιτρέπεται η χρήση διορθωτικού. γ) Να γράφετε μόνο με μπλε μελάνι. (Για τα σχήματα μπορείτε να χρησιμοποιήσετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

Χρονογράμματα Τα χρονογράµµατα είναι διαγράµµατα, τα οποία χρησιµοποιούµε για να παραστήσουμε τη χρονική εξέλιξη ενός φαινόμενου.

Χρονογράμματα Τα χρονογράµµατα είναι διαγράµµατα, τα οποία χρησιµοποιούµε για να παραστήσουμε τη χρονική εξέλιξη ενός φαινόμενου. ΜΕΡΟΣ Α 4.2 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 153 4.2 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Εικονογράμματα Στα εικονογράµµατα χρησιµοποιούµε την εικόνα ενός αντικειμένου για να δείξουμε πόσες φορές παρουσιάζεται αυτό στην έρευνά µας.

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε

Διαβάστε περισσότερα

Ακολουθίες ΕΝΟΤΗΤΑ. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε την ακολουθία. Να ορίζουμε τι είναι όρος ακολουθίας.

Ακολουθίες ΕΝΟΤΗΤΑ. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε την ακολουθία. Να ορίζουμε τι είναι όρος ακολουθίας. ΕΝΟΤΗΤΑ Ακολουθίες Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε την ακολουθία. Να ορίζουμε τι είναι όρος ακολουθίας. Να αναπαριστούμε τις ακολουθίες με διάφορους τρόπους. Να βρίσκουμε τον επόμενο όρο ή τον

Διαβάστε περισσότερα

= { 3, 2, 1, 0,1, 2,3, }

= { 3, 2, 1, 0,1, 2,3, } ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΡΙ ΣΥΝΟΛΝ Η ΕΝΝΟΙ ΤΟΥ ΣΥΝΟΛΟΥ ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΡΙ ΣΥΝΟΛΝ «Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται

Διαβάστε περισσότερα

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με

Διαβάστε περισσότερα

ΕΡΓΑΣΊΑ ΠΡΟΌΔΟΥ #1 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, ΔΙΔΑΚΤΙΚΗΣ. και ΠΟΛΥΜΕΣΩΝ. "ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ και στις ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ των ΜΑΘΗΜΑΤΙΚΩΝ Ι"

ΕΡΓΑΣΊΑ ΠΡΟΌΔΟΥ #1 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, ΔΙΔΑΚΤΙΚΗΣ. και ΠΟΛΥΜΕΣΩΝ. ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ και στις ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ των ΜΑΘΗΜΑΤΙΚΩΝ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Χειμερινό Εξάμηνο Ρόδος, Σεπτέμβριος 2014 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, ΔΙΔΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθημ α: ΥΓ0000 3 "ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή

Φίλη μαθήτρια, φίλε μαθητή Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Το άθροισµα των σχετικών συχνοτήτων ισούται µε 100. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ

Το άθροισµα των σχετικών συχνοτήτων ισούται µε 100. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΜΕΡΟΣ Α 4.3 ΚΑΤΑΝΟΜΗ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ 161 4.3 ΚΑΤΑΝΟΜΗ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ Συχνότητες Σχετικές συχνότητες Για να βρούμε τη σχετική συχνότητα µιας τιµής, διαιρούµε τη συχνότητα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 3 η Σειρά Ασκήσεων Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω p(x) και q(x) κατηγορήματα με πεδίο ορισμού Ω με σύνολα αλήθειας Α και Β αντίστοιχα (Σύνολα αλήθειας:

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ : Μαθηματικά ΒΑΘΜΟΣ ΤΑΞΗ : Β ΑΡΙΘΜΗΤΙΚΩΣ : ΔΙΑΡΚΕΙΑ : 2 ώρες ΟΛΟΓΡΑΦΩΣ : ΗΜΕΡΟΜΗΝΙΑ : 15.06.2012 ΥΠ. ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ:

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn και να γράψετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Διάλεξη 1 - Σημειώσεις 1

Διάλεξη 1 - Σημειώσεις 1 Διάλεξη 1 - Σημειώσεις 1 Σύνολα Πως διαβάζουμε κάποιους συμβολισμούς: ανήκει και η άρνηση, δηλαδή δεν ανήκει υπάρχει για κάθε : τέτοιο ώστε. Επίσης το σύμβολο έχει την ερμηνεία «τέτοιο ώστε» και ή υπονοεί

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω

Διαβάστε περισσότερα

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι :

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι : ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 010 Χρόνος: 60 λεπτά Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Η τιμή της αριθμητικής παράστασης Α = 010 009 + 008 007 + 006 005 +...+ 4 3 + 1 είναι

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 8 Αυγούστου 2012 Η Αρχή του Dirichlet ή της περιστεροφωλιάς Aν γνωρίζουμε πως σε κάποια μέτρηση στις n ϕωλιές καταμετρήθηκαν συνολικά

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Α. Άλγεβρα 1. Τι ονομάζεται ακέραια αλγεβρική παράσταση και τι είναι μονώνυμο; Ποιες από τις παρακάτω παραστάσεις είναι μονώνυμα; 3xa,, 5, x 3, 5 x a (σελ.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:...ΤΜΗΜΑ:...ΑΡ.:... (α) Να ελέγξετε ότι το γραπτό αποτελείται από 11 σελίδες.

ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:...ΤΜΗΜΑ:...ΑΡ.:... (α) Να ελέγξετε ότι το γραπτό αποτελείται από 11 σελίδες. ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΠΡΟΑΓΩΓΙΚΕΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΒΑΘΜΟΣ Αρ.:..... Ολογρ.:..... ΥΠΟΓΡΑΦΗ:..... ΗΜΕΡΟΜΗΝΙΑ: 05.06.2012 ΔΙΑΡΚΕΙΑ:

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

Φύλλο εργασίας Νο1. Ορθοκανονικό Σύστημα Ημιαξόνων, Συντεταγμένες Σημείου. Το ορθοκανονικό σύστημα αποτελείται από δύο ημιευθείεςοχ και Οy ώστε:

Φύλλο εργασίας Νο1. Ορθοκανονικό Σύστημα Ημιαξόνων, Συντεταγμένες Σημείου. Το ορθοκανονικό σύστημα αποτελείται από δύο ημιευθείεςοχ και Οy ώστε: 9 ο Γυμνάσιο Αθηνών ΜΑΘΗΜΑΤΙΚΑΑ ΓΥΜΝΑΣΙΟΥ Κεφάλαιο 6: ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕΔΟ Φύλλο εργασίας Νο1 1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Ορθοκανονικό Σύστημα Ημιαξόνων,

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ Προαγωγικές εξετάσεις στα Μαθηματικά της Α Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 214-215 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑ 1 ο Α. ΘΕΩΡΙΑ Α. Να γράψετε με πιο σύντομο τρόπο τις επόμενες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου) Kangourou Sans Frontières αγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό έντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα αγκουρό 007 Επίπεδο: 4 (για

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού.

Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Ενότητα 3 Ρίζες Πραγματικών Αριθμών Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής Ρ x x ν α. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Τις ιδιότητες

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΤΑΞΗ : Α ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ: ΗΜΕΡΟΜΗΝΙΑ : 05/06/015 ΔΙΑΡΚΕΙΑ : ώρες ΒΑΘΜΟΣ ΟΛΟΓΡΑΦΩΣ:. ΩΡΑ : 07:45 09:45 ΥΠΟΓΡΑΦΗ

Διαβάστε περισσότερα

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε

Διαβάστε περισσότερα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii) ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.

Διαβάστε περισσότερα

1 ος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΜΑΘΗΤΕΣ Α ΓΥΜΝΑΣΙΟΥ ΧΑΝΙΑ, 12 Ιανουαρίου 2013

1 ος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΜΑΘΗΤΕΣ Α ΓΥΜΝΑΣΙΟΥ ΧΑΝΙΑ, 12 Ιανουαρίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΚΡΟΚΙΔΑ 32 73100 ΧΑΝΙΑ Τηλ: 697 6992542 ΦΑΞ: 28210 56692 http://www.mathchan.gr HELLENIC MATHEMATICAL SOCIETY CHANIA BRANCH KROKIDA 32 73100 CHANIA Tel : 697

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

2 ος. Γυμνασίου. ΘΕΜΑ 1 ο Με τα. αριθμός που μπορούμε να σχηματίσουμε ώστε. Απάντηση = β) Γνωρίζουμε ότι διψήφιο τμήμα

2 ος. Γυμνασίου. ΘΕΜΑ 1 ο Με τα. αριθμός που μπορούμε να σχηματίσουμε ώστε. Απάντηση = β) Γνωρίζουμε ότι διψήφιο τμήμα ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑ ΑΣ 2 ος Ημαθιώτικος Μαθητικός Διαγωνισμός στα Μαθηματικά. «Κ. ΚΑΡΑΘΕΟΔΩΡΗ» Σάββατο 23 Ιανουαρίου 2010 Α Γυμνασίου ΘΕΜΑ 1 ο Με τα ψηφία 0, 1, 2, 3, 4, 5 σχηματίζουμ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

1 ο Πρότυπο Πειραματικό Γυμνάσιο Σημειώσεις στη Γεωμετρία Α Γυμνασίου

1 ο Πρότυπο Πειραματικό Γυμνάσιο Σημειώσεις στη Γεωμετρία Α Γυμνασίου 1. Γωνία Ο Δημήτρης ζωγράφισε ένα δέντρο στο δωμάτιο του. Το δέντρο απλώνει τα κλαδιά του στα δυο επίπεδα των τοίχων του δωματίου και στο επίπεδο της οροφής. Στη γωνία αυτή θα τοποθετήσει όλα τα παιχνίδια

Διαβάστε περισσότερα

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών. ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΤΑΞΗ : Β ΧΡΟΝΟΣ : 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΤΜΗΜΑ

Διαβάστε περισσότερα