Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
|
|
- Ολυμπία Παπαντωνίου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 9. Δυναμικά Δεδομένα Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras This work is made available under the terms of the Creative Commons Attribution-Noncommercial- NoDerivs 3.0 license,
2 Γιατί, στο κάτω κάτω, πως το ξέρουμε ότι δύο και δύο κάνουν τέσσερα, ή ότι ισχύει ο νόμος της βαρύτητας, ή ότι το παρελθόν είναι αμετάβλητο; Αν το παρελθόν και ο εξωτερικός κόσμος υπάρχουν μόνο στο νου, κι' αν ο νους μπορεί να ελέγχεται και να καθοδηγείται, τότε τι γίνεται; 1984, Τζωρτζ Όργουελ
3 Δυναμικά δεδομένα Δεδομένα που μπορούν να αλλάζουν χαρακτηριστικά και τιμή κατά τη διάρκεια της εκτέλεσης του προγράμματος: 1. Δυναμικοί Πίνακες allocatable 2. Δυναμικοί Πίνακες Διαδικασιών: a. Εικονικοί Πίνακες Υποθετικής Μορφής b. Εικονικοί Πίνακες Υποθετικού Μεγέθους c. Αυτόματοι Πίνακες d. Functions που επιστρέφουν Πίνακα e. Εικονικοί allocatable Πίνακες F 03 f. Allocatable Functions F Δείκτες (pointers): a. Πίνακες Δεικτών b. Λίστες Δεικτών c. Δυαδικά Δένδρα d. Διαδικασίες Δείκτες F 03
4 1. Δυναμικοί Πίνακες allocatable τύπος, ALLOCATABLE::όνομα πίνακα1(:[::..:]) & [,όνομα πίνακα2(:[::..:]),..]!στην παρένθεση χρησιμοποιούμε ένα ':'!για κάθε διάσταση του πίνακα... ALLOCATE(όνομα πίvακα1(ενδείκτης1[,ενδείκτης2,..:]),& [STAT = όνομα ελέγχου])! δίνoυμε τις ακριβείς διαστάσεις του πίνακα... DEALLOCATE (όvoμα πίvακα1) integer, allocatable::a(:) allocate (a(3)); print'(3i8)',a a = [1,2,3]; print'(3i8)',a deallocate (a) allocate (a(5)); print'(5i8)',a a = [2,4,6,8,10]; print'(5i8)',a end
5 Αυτόματη δέσμευση στην F 03 program autoallocation implicit none the array has 5 elements integer :: i real,allocatable:: a(:) the array has 3 elements real :: c(5) = [(i, i = 1,5)] real :: d(2,3) = reshape([(i, i = 1,6)],[2,3])!allocation F03 a = c; print'(5f5.2)', a print'(a15,i2,a9)',' the array has',size(a),'elements' a = d(1,:); print'(3f5.2)',a print'(a15,i2,a9)',' the array has',size(a),'elements' end program autoallocation $ Η fortran 2003 επιτρέπει την αυτόματη δέσμευση και επαναδέσμευση allocatable πινάκων με εκφράσεις ανάθεσης αρκεί να πρόκειται για πίνακες της ίδιας τάξης.
6 Γεννήτρια n τυχαίων στο διάστημα [a,b] σωστά program randomizer!n τυχαίοι αριθμοί στο διάστημα [a,b] implicit none! δηλώσεις: integer :: n real :: a, b real,allocatable:: harvest(:) 1! αρχή: print*,'how many numbers' read *, n; allocate(harvest(n))!allocation (δέσμευση μνήμης) print*, 'give the range of numbers: [a,b]' read *, a, b call init_random_seed()!αρχικοποίηση της γεννήτριας call random_number(harvest) harvest = a + harvest * (b - a)!ανάπτυξη στο [a,b] print '(4g15.8)',harvest!τυπώνει 4 τιμές σε κάθε σειρά contains
7 Γεννήτρια n τυχαίων στο διάστημα [a,b] σωστά subroutine init_random_seed!αρχικοποίηση γεννήτριας integer :: i, n, clock integer, allocatable :: seed(:) 2 call random_seed(size = n)!προσδιορισμός μεγέθους σπόρου allocate(seed(n))!allocation (δέσμευση μνήμης) call system_clock(count = clock) seed = clock + 37 * [(i-1, i = 1, n)] call random_seed(put = seed)!χρήση τυχαίου σπόρου deallocate(seed)!αποδέσμευση μνήμης end subroutine init_random_seed end program randomizer
8 Πίνακες & Διαδικασίες 1. Εικονικοί Πίνακες Ρητής Μορφής 2. Δυναμικοί Πίνακες Διαδικασιών a. Εικονικοί Πίνακες Υποθετικής Μορφής b. Εικονικοί Πίνακες Υποθετικού Μεγέθους F 77 c. Αυτόματοι Πίνακες d. Συναρτήσεις με αποτέλεσμα πίνακα e. Εικονικοί allocatable πίνακες F 03 f. allocatable functions F 03
9 1. Εικονικοί Πίνακες Ρητής Μορφής program explicit_shape_arrays implicit none integer :: i real :: y(-4:5) = [(i, i = 1, 10)] print '(5f5.2)', f(y, size(y)) contains pure real function f(x,n) Δήλωση εικονικού πίνακα integer, intent(in) :: n ρητής μορφής real, intent(in) :: x(n) integer :: i f = 0.0 do i = 1, size(x), 2 f = f + x(i) end do end function f end program explicit_shape_arrays!τυπώνει: 25.00
10 2.a. Εικονικοί Πίνακες Υποθετικής Μορφής program assumed_shape_arrays implicit none integer ::i real ::y(10) = [(i, i = 1, 10)] print '(5f5.2)', f(y) contains pure real function f(x) $ real,intent(in) :: x(:) integer :: i f = 0.0 do i = 1, size(x), 2 f = f + x(i) end do end function f end program assumed_shape_arrays!τυπώνει: Δήλωση εικονικού πίνακα υποθετικής μορφής
11 2.c. Τοπικοί Αυτόματοι Πίνακες program automatic_arrays implicit none integer :: i, n real, allocatable :: y(:) print*,'how many'; read *, n allocate(y(n)); y = [(i, i = 1, n)] print '(5f5.2)', f(y) contains pure real function f(x) real, intent(in)::x(:) real ::z(size(x)/2) $ Δήλωση τοπικού αυτόματου πίνακα z = x(::2) f = sum(z) end function f end program automatic_arrays!για n=10 τυπώνει: 25.00
12 2.d. Function με αποτέλεσμα Πίνακα program array_valued_function implicit none integer, allocatable, dimension(:):: x, y integer :: i, n call execute_command_line('chcp 1253') print *,'πλήθος ακεραίων;'; read *, n x = [(i, i = 1, n)]!allocation F03 y = f(x)!allocation F03 print '(a35)', 'Υπάρχουν οι εξής πρώτοι αριθμοί:' do i = 2, n if(y(i) /= 0) print *, y(i) end do contains
13 2.d. Functions με αποτέλεσμα Πίνακα pure function f(x) integer, intent(in) :: x(:)!υποθετικός integer :: f(size(x))!αυτόματος integer :: i $ f = x f(1) = 0 do i = 2, size(f) if(f(i) /= 0) then! Αν ο i είναι πρώτος... f(2*i:size(f):i) = 0! μηδενίζω τα πολλαπλάσιά του endif enddo πλήθος ακεραίων; end function f 10 Υπάρχουν οι εξής πρώτοι αριθμοί: end program array_valued_function
14 2.e. Εικονικοί Allocatable πίνακες F 03 program Eratosthenes implicit none! δηλώσεις: integer :: i, n integer, allocatable :: x(:), y(:)! αρχή: call execute_command_line('chcp 1253') print *, 'πλήθος ακεραίων;'; read *, n allocate(x(n)); x = [(i, i = 1, n)] print '(a35)', 'Υπάρχουν οι εξής πρώτοι αριθμοί:' call primes(x, y); print '(5i7)', y contains
15 2.e. Εικονικοί Allocatable πίνακες F 03 pure subroutine primes(x, y) integer, intent(in) :: x(:)!υποθετικός integer, allocatable, intent(out) :: y(:)!allocatable integer::i, nr_primes y = x!first allocation F03 y(1) = 0 do i = 2, size(y) if(y(i) /= 0) y(2*i:size(y):i) = 0 enddo nr_primes = count(y /= 0) y(1:nr_primes) = pack(y, y /= 0) y = y(1:nr_primes)!second allocation F03 end subroutine primes end program Eratosthenes πλήθος ακεραίων; 10 Υπάρχουν οι εξής πρώτοι αριθμοί:
16 2.f. Allocatable Functions F 03 program Eratosthenes implicit none integer integer,allocatable :: i, n :: y(:) call execute_command_line('chcp 1253') print *,'πλήθος ακεραίων;'; read *,n y = [(i, i = 1, n)] print '(a35)', 'Υπάρχουν οι εξής πρώτοι αριθμοί:' print '(5i7)', f(y) contains pure function f(x) integer, intent(in) :: x(:)!υποθετικός $ integer, allocatable :: f(:)!allocatable integer :: i, primes
17 2.f. Allocatable Functions F 03 f = x! first allocation F03; f(1) = 0 do i = 2, size(f) if(f(i) /= 0) then!αν ο i είναι πρώτος f(2*i:size(f):i) = 0 end if end do primes = count(f /= 0); f(1:primes) = pack(f, f /= 0) f = f(1:primes)!second allocation F03!ή αλλιώς allocate(f(primes))!f = z(1:primes) end function f end program Eratosthenes πλήθος ακεραίων; 100 Υπάρχουν οι εξής πρώτοι αριθμοί:
18 Η μέθοδος του τραπεζίου f(x) f(b) I = a b f a + f b f a b a (x a) dx I = (b a) f a + f(b) 2 f(a) a b x h = b a n I = h f x 0 + f(x 1 ) 2 + h f x 1 + f(x 2 ) h f x n 1 + f(x n ) 2 n 1 I = h 2 f x f x i i=1 + f x n
19 Η μέθοδος του τραπεζίου program integrator implicit none interface real(kind=8)function f(x) real(kind=8),intent(in)::x end function f end interface real(kind=8)::area Ρητή Διεπιφάνεια Εξωτερικής Διαδικασίας Ο όρος του ορίσματος είναι διαδικασία!! area = integrate(f, a = 1.0_8, b = 5.0_8, n = 10000_8) print '(a35,f10.6)', 'the integral of the function is:', area contains Keyword Argument real(kind=8)function integrate(f, a, b, n) interface real(kind=8) function f(x) real(kind=8),intent(in)::x end function f end interface Ρητή Διεπιφάνεια Εξωτερικής Διαδικασίας
20 Η μέθοδος του τραπεζίου real(kind=8), intent(in) :: a, b integer(kind=8), intent(in) :: n real(kind=8) :: h, s integer(kind=8) :: i h = (b - a)/real(n, kind=8) s = (f(a) + f(b)) / 2 do i = 1, n - 1 s = s + f(a + i * h) end do integrate = h * s end function integrate end program integrator real(kind=8) function f(x) real(kind=8),intent(in)::x!f=exp(-x) f = x**2 + 3 * x + 1!f=cos(x)/x end function f Εξωτερική Διαδικασία
21 Η μέθοδος του τραπεζίου the integral of the function is: the integral of the function is: the integral of the function is:
22 Συνοψίζουμε τα είδη πινάκων integer, parameter real real, allocatable :: n = 5; integer :: i :: a(n)!στατικός πίνακας :: b(:)!δυναμικός πίνακας (allocatable) a = [(i * i, i = 1, n)]; b = a! allocation F03 a = f(a, b, n); print '(5f8.2)', a contains function f(x, y, m)! allocatable array valued function integer :: m! εικονική μεταβλητή real :: x(m)! ρητός εικονικός real :: y(:)! υποθετικός εικονικός real :: z(m)! αυτόματος real, allocatable :: f(:)! allocatable y = sqrt(x); z = x * y f = z! allocation F03 end function f end
23 Αναδρομικές Διαδικασίες program factorial implicit none! δηλώσεις: integer(8):: f, n, i α) το παραγοντικό n! = n n 1! n 1 1 n = 0! αρχή:! επικεφαλίδα print '(t3, a1, t32, a2)', 'n', 'n!' write (*,'(t2, 32a1)')('=', i = 1, 32) do n = 1, 20 f = fact(n)! με function call fn(n,f)! ή με subroutine print '(x, i2, i30)', n, f enddo contains
24 Αναδρομικές Διαδικασίες α 1 ) το παραγοντικό με function recursive function fact(n) result(factor) integer(8),intent(in)::n υποχρεωτικό στις recursive functions integer(8) ::factor if(n >= 1) then factor = n * fact(n-1) else αναδρομική κλήση factor = 1 end if τελική έκφραση end function fact
25 Αναδρομικές Διαδικασίες n n! α 1 ) το παραγοντικό με function ================================ recursive function fact(n) result(factor) 1 1 integer(8),intent(in)::n 2 2 integer(8) ::factor if(n >= 1) then factor = n * fact(n-1)!αναδρομική 6 κλήση 720 else factor = end if end function fact
26 Αναδρομικές Διαδικασίες Π.χ. Το παραγοντικό του 5: α 1 ) το παραγοντικό με function n=5, factor = 5 * fact(4) if(n >= 1) then factor = n * fact(n-1) else factor = 1 end if n=4, factor = 4 * fact(3) n=3, factor = 3 * fact(2) n=2, factor = 2 * fact(1) n=1, factor = 1 * fact(0) n=0, factor = 1 Kλήση: Επιστροφή:
27 Αναδρομικές Διαδικασίες recursive subroutine fn(n, factor) integer(8),intent(in) :: n integer(8),intent(out):: factor integer(8) :: temp if(n >= 1) then call fn(n-1, temp) factor = temp * n αναδρομική κλήση else factor = 1 end if τελική έκφραση end subroutine fn end program factorial α 2 ) το παραγοντικό με subroutine
28 Αναδρομικές Διαδικασίες program fibonacci implicit none! δηλώσεις: integer :: f, n real :: ratio! αρχή:!επικεφαλίδα print '(t3,a1,t8,a1,t13,a5)', 'n', 'f', 'ratio' print '(a19)', ' ==================' open (1,file='fibs.txt') do n = 1, 20 call fibs(n, f, ratio) print '(x,i2,i5,2x,f9.7)', n, f, ratio write (1, *) n, f, ratio end do close (1) contains β) Η ακολουθία Fibonacci F(n) = a + b a F n 1 + F(n 2) n > 2 1 n = 1 1 n = 2 a b = a b = φ φ =
29 Αναδρομικές Διαδικασίες β) Η ακολουθία Fibonacci recursive subroutine fibs(n,f,r) integer,intent(in) :: n integer,intent(out) :: f real, intent(out) :: r integer :: t1, t2 if(n > 2) then call fibs(n-1, t1, r) call fibs(n-2, t2, r) f = t1 + t2 r = real(t1) / real(f) else f = 1 r = 1. end if end subroutine fibs!αναδρομική κλήση!αναδρομική κλήση end program fibonacci
30 Αναδρομικές Διαδικασίες n f ratio ================== γ) Η ακολουθία Fibonacci
31 Συνεργασία με το excel
32 Αναδρομικές Διαδικασίες γ) αναδρομικός Ευκλείδης program recursive_gcd implicit none integer :: a, b, c call execute_command_line('chcp 1253') do print *, 'Δώσε δύο ακέραιους'; read *, a, b if(a == 0.or. b == 0) exit print '(a18,i4)','ο ΜΚΔ τους είναι=', gcd(abs(a),abs(b)) end do contains recursive function gcd(x, y) result(z) integer:: x, y, z if(y == 0)then z = x else z = gcd(y, mod(x,y)) end if end function gcd end program recursive_gcd
33 Αναδρομικές Διαδικασίες program integrator implicit none interface real(8) function f(x) real(8),intent(in)::x end function f end interface real(8)::area δ) αναδρομική ολοκλήρωση area = integrate(f, a = 1.0_8, b = 5.0_8, tol = 1e-7_8) print '(*(g0.6,:," "))', & &'the integral of the function is:', area contains το format που τυπώνει τα πάντα!!! the integral of the function is: recursive function integrate(f, a, b, tol)result(area) interface real(8) function f(x) real(8),intent(in)::x end function f end interface
34 Αναδρομικές Διαδικασίες real(8),intent(in)::a, b, tol real(8):: area, h, mid, one_trap, two_traps, & left_area, right_area h = b - a; mid = (a + b) / 2 one_trap = h * (f(a) + f(b)) / 2 two_traps = h * ((f(a) + f(mid)) + (f(mid) + f(b))) / 4 if (abs(one_trap - two_traps) < 3 * tol) then area = two_traps else left_area = integrate(f, a, mid, tol / 2) right_area = integrate(f, mid, b, tol / 2) area = left_area + right_area end if end function integrate end program integrator real(8) function f(x) real(8),intent(in)::x f = x**2 + 3 * x + 1 end function f δ) αναδρομική ολοκλήρωση
35 Χρονομετρώντας program matrix_timer implicit none integer, parameter :: n = 1000 real, dimension(n,n) :: a, b, c character(len=8) :: cdate, ctime real :: start_time, stop_time integer :: i, j, k character(len=*), parameter :: form = "(t2, a, f0.3, a)"! Αρχή: call execute_command_line('chcp 1253') call date_and_time(date = cdate, time = ctime) print *, "Ημερομηνία: " // & & cdate(7:) // "-" // cdate(5:6) // "-" // cdate(:4),& & ", Ώρα: " // & & ctime(:2) // ":" // ctime(3:4) // ":" // ctime(5:) 1
36 Χρονομετρώντας call random_seed() call random_number(a) call random_number(b) 2 call cpu_time(start_time) c = 0 do k = 1, n do j = 1, n do i = 1, n c(i, j) = c(i, j) + a(i, k) * b(k, j) end do; end do; end do call cpu_time(stop_time) print * print form, "Time of 1st DO loop version is: ", & &stop_time - start_time, " seconds."
37 Χρονομετρώντας call cpu_time(start_time) c = 0 do i=1,size(c,1) do j=1,size(c,2) c(i,j)=sum(a(i,:)*b(:,j)) enddo; enddo 3 call cpu_time(stop_time) print * print form, "Time of 2nd DO loop version is: ", & &stop_time - start_time, " seconds."
38 Χρονομετρώντας call cpu_time(start_time) c = 0 forall (i = 1:size(c,1), j = 1:size(c,2)) c(i,j) = sum(a(i,:) * b(:,j)) end forall call cpu_time(stop_time) print * print form, "Time of 3rd DO loop version is: ", & & stop_time - start_time, " seconds." 4 call cpu_time(start_time) c = matmul(a, b) call cpu_time(stop_time) print * print form, " Time of matmul version is: ", & & stop_time - start_time, " seconds." end program matrix_timer
39 Χρονομετρώντας DEBUG Ημερομηνία: , Ώρα: 19:10: Time of 1st DO loop version is: seconds. Time of 2nd DO loop version is: seconds. Time of 3rd DO loop version is: seconds. Time of matmul version is:.609 seconds. RELEASE Ημερομηνία: , Ώρα: 19:10:26.8 Time of 1st DO loop version is:.234 seconds. Time of 2nd DO loop version is: seconds. Time of 3rd DO loop version is:.812 seconds. Time of matmul version is:.641 seconds.
40 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Όνομα μέλους ή μελών ΔΕΠ 2014: Δημήτριος Ματαράς.. Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση:
41 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
42 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 8. Διαδικασίες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative
Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 7. Τμήματα Πινάκων Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the
Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 6. Πίνακες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών
Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών Ενότητα 7: Υπορουτίνες Καθ. Γιάννης Γαροφαλάκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Ορισμός Αφαίρεση με χρήση υπορουτινών (subroutine abstraction)
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 4. Επανάληψη Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #5: Δομές επιλογής Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Δομές επιλογής MATLAB Programming Α. Καλαμπούνιας Η δομή επιλογής if Η δομή if στο
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 10. Αντικείμενα Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 6: Όριο και συνέχεια συναρτήσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο
Ευφυής Προγραμματισμός
Ευφυής Προγραμματισμός Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Συναρτήσεις-Δομές Ελέγχου : 1. Συναρτήσεις Χρήστη 2. Έλεγχος Ροής Προγράμματος 3.
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος)
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) 1 Περιεχόμενα 1 η Άσκηση Λειτουργίες του βιβλίου διευθύνσεων σε ένα πρόγραμμα ηλεκτρονικού ταχυδρομείου... 4 2 η Άσκηση Λειτουργίες
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Κβαντική Φυσική Ι. Ενότητα 12: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 12: Ασκήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Άσκηση 12.1 Να υπολογιστεί η μέση ενέργεια σωματιδίου που περιγράφεται από την κυματοσυνάρτηση ψ x = 1 3 ψ 1
ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 10: Πρότυπα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Ευφυής Προγραμματισμός
Ευφυής Προγραμματισμός Ενότητα 3: Ειδικές Παράμετροι-Είσοδος & Έξοδος Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Ειδικές Παράμετροι-Είσοδος & Έξοδος
Μάρκετινγκ Αγροτικών Προϊόντων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου
Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Μεθοδολογία εφαρμογής προγράμματος Ολικής Ποιότητας
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Ψωμάς Ευάγγελος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Υποενότητα
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 2: Θερμοδυναμικές συναρτήσεις Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή νέων θερμοδυναμικών συναρτήσεων
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 9: Μνήμη Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Να ενημερωθούν οι
Βάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 7: ΑΝΑΔΡΟΜΗ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 7: ΑΝΑΔΡΟΜΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών ΠΕΡΙΕΧΟΜΕΝΟ Ορισμός
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
Προγραμματισμός Η/Υ. Ενότητα 2β: Εισαγωγή στη C (Μέρος Δεύτερο)
Προγραμματισμός Η/Υ Ενότητα 2β: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση της έννοιας του Τελεστή
6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
6 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 4 4 η Άσκηση... 4 5 η Άσκηση... 5 6 η Άσκηση... 5 7 η Άσκηση... 5 8 η Άσκηση... 6 Χρηματοδότηση... 7
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 9: Αναδρομή
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 9: Αναδρομή Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αναδροµή 24 Αναδροµή Πληροφορική Ι Μ. ρακόπουλος 24 Αναδροµικές µέθοδοι Μια µέθοδος καλεί τον εαυτό της
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 11. Διεπιφάνειες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Προσχολική Παιδαγωγική Ενότητα 2: Οργάνωση χρόνου και χώρου στα νηπιαγωγεία
Προσχολική Παιδαγωγική Ενότητα 2: Οργάνωση χρόνου και χώρου στα νηπιαγωγεία Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Περιγραφή των
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.02: Βασικά Θεωρήματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.02: Βασικά
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ. Ενότητα 9: Σχέση Ηθικής και Δικαιοσύνης. Παρούσης Μιχαήλ. Τμήμα Φιλοσοφίας
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 9: Σχέση Ηθικής και Δικαιοσύνης Παρούσης Μιχαήλ Τμήμα Φιλοσοφίας 1 Σκοποί ενότητας Το σημερινό μάθημα αφορά την έννοια της δικαιοσύνης ως ηθικής αρχής. Κατά πόσο αυτή η αρχή μπορεί
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Μάρκετινγκ. Ενότητα 2: Αξία για τους Πελάτες
Μάρκετινγκ Ενότητα 2: Αξία για τους Πελάτες Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Σκοποί 2 ης Ενότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.2: Παραδοσιακή VS νέα προσέγγιση της ΔΟΠ
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.2: Ψωμάς Ευάγγελος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Παραδοσιακή
Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ () Ενότητα 7: Πολυδιάστατοι Πίνακες Νίκος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.6.1: Το οργανόγραμμα της ποιότητας
Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.6.1: Το οργανόγραμμα της ποιότητας Ψωμάς Ευάγγελος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Ευφυής Προγραμματισμός
Ευφυής Προγραμματισμός Ενότητα 1: Εισαγωγή στη Γλώσσα Lisp Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Εισαγωγή στη Lisp : 1. Εισαγωγή 2. Θεμελιώδεις
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Προγραμματισμός H/Y Ενότητα 5: Συναρτήσεις. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Προγραμματισμός H/Y Ενότητα 5: Συναρτήσεις Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Τίτλος Μαθήματος. Ενότητα 1η: Εισαγωγή. Δημήτριος Σκούρας Σχολή Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών
Τίτλος Μαθήματος Ενότητα 1η: Εισαγωγή Δημήτριος Σκούρας Σχολή Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών 1 Σκοποί ενότητας Κατανόηση του πλαισίου όπου κινούνται οι φυσικοί πόροι και η διαχείριση
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 2: Η ΓΛΩΣΣΑ JAVA Σύγκριση JAVA-C ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής ΣΥΓΚΡΙΣΗ JAVA - C ΤΥΠΟΙ
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
Εισαγωγή στους Αλγόριθμους
Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα6: Εμφωλυευμένες δομές κώδικα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Προγραμματισμός Η/Υ. 8 η ενότητα: Περιβαλλοντικά και μαθηματικά προβλήματα. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 8 η ενότητα: Περιβαλλοντικά και μαθηματικά προβλήματα Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται
Τεχνικό Σχέδιο - CAD
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνικό Σχέδιο - CAD Ενότητα 7: SketchUp Αντικείμενα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αλγόριθµοι γραµµικής άλγεβρας 1 Ο συµβολισµός µεγάλο O Εστω συναρτήσεις f(n), g(n)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι)
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Πίνακες [2/2] (Δισδιάστατοι) Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 6 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
Προγραμματισμός H/Y Ενότητα 4: Δείκτες. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Προγραμματισμός H/Y Ενότητα 4: Δείκτες Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής
Αερισμός Ενότητα 1: Αερισμός και αιμάτωση Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Ολικός και κυψελιδικός αερισμός Η κύρια λειτουργία του αναπνευστικού συστήματος είναι
Ενότητα. Εισαγωγή στις βάσεις δεδομένων
Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.
Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.
Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας)
Διαχείριση Έργων Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 8: Δείκτες Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ Ενότητα 8: ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΙ ΚΑΤΑΤΜΗΣΗΣ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons