Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης."

Transcript

1 ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη συµπλήρωµα ως προς 2 (2 s complement) ιεύρυνση σε συµπλήρωµα ως προς r Αφαίρεση µε συµπλήρωµα υαδικοί Προσθετέοι/Αφαιρετέοι Προσηµασµένοι (signed) αριθµοί Προσηµασµένη Πρόσθεση/Αφαίρεση Πρόβληµα Υπερχείλισης (overflow) υαδικοί Πολλαπλασιαστές MKM - 2 υαδική Αφαίρεση Μη-προσηµασµένοι αριθµοί: το σήµα του πλην δεν αναπαρίσταται σαφώς (explicitly). εδοµένου των δυαδικών αριθµών M και N, βρες M-N: Περίπτωση I: M N, άρα, το MSB του Borrow είναι το 0 B M N Το αποτέλεσµα είναι ορθό! Dif Περίπτωση II: N > M, άρα, το MSB του Borrow είναι το 1 B M N Το αποτέλεσµα χρειάζεται Dif διόρθωση! υαδική Αφαίρεση (συν.) Γενικά, εάν N > M, Dif = M-N+2 n, όπου το n = # bits. Στην περίπτωση II του προηγούµενου παραδείγµατος, Dif= = 21. Για να διορθώσουµε τον µέτρο (magnitude) του Dif, που έπρεπε να ήταν be N-M, υπολογίστε 2 n -(M-N+2 n ). Αυτό είναι γνωστό ως το συµπλήρωµα ως προς 2 του Dif. MKM - 3 MKM - 4 Γενική ιαδικασία Για να αφαιρέσω 2 n-bit αριθµούς, M-N, στην βάση του 2: Βρέστε M-N. Εάν το MSB του Borrow είναι 0, τότε M N. Το αποτέλεσµα είναι θετικό και ορθό. Εάν το MSB του Borrow είναι 1, τότε N > M. Το αποτέλεσµα είναι αρνητικό και ο βαθµός του πρέπει να διορθωθεί µε την αφαίρεση του αριθµού από το 2 n (βρέστε το συµπλήρωµα ως προς 2). Ακόµη ένα παράδειγµα Αφαίρεσης εδοµένου M = και N = , M-N= B M N Dif n Dif MKM - 5 MKM - 6 Κεφάλαιο 5-ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα 1

2 Μπλοκ ιάγραµµα για τον αφαιρέτη Μπλοκ ιάγραµµα για υαδικό Αθροιστής-Αφαιρέτη B M 0 M 1 M 2 M 3 N 0 N 1 N 2 N 3 4-bit αφαιρέτης (επιλεκτική) µηχανή συµπληρώµατος του 2 Ενεργοποιείται όταν B=1; αλλιώς, διατήρησε το αποτέλεσµα του αφαιρέτη. εν είναι ο καλύτερος τρόπος υλοποίησης κυκλώµατος αφαιρέτη! M 0 M 1 M 2 M 3 υαδικός Αθροιστής Αφαίρεση/Πρόσθεση (Sub/Add) B Quadruple 2-to-1 MUX N 0 N 1 N 2 N 3 4-bit Αφαιρέτης (επιλεκτική) µηχανή συµπληρώµατος του 2 Αποτέλεσµα Sub/Add=1 αποτέλεσµα= M-N Sub/Add=0 αποτέλεσµα =M+N MKM - 7 MKM - 8 Συµπληρώµατα Υπάρχουν 2 τύποι συµπληρωµάτων για κάθε σύστηµα βάσης-r : Συµπλήρωµα βάσης (r s), πχ. συµπλήρωµα ως προς 2 και συµπλήρωµα ως προς 10. Μειωµένο (Diminished) Συµπλήρωµα βάσης (r-1 s), πχ. το συµπλήρωµα ως προς 1 και το συµπλήρωµα ως προς 9. Εξετάζουµε µόνο συµπληρώµατα του 2 και του 1 για την βάση του 2. Ίδια λογική ισχύει και για άλλες βάσεις (πχ. δεκαδική). Συµπλήρωµα ως προς 2 Για ένα θετικό δυαδικό αριθµό µε n ψηφία N 2, το συµπλήρωµα ως προς 2, 2C(N 2 ), δίνεται από: { 2C(N 2 ) = 2 n -N 2, εάν n > 0 0, εάν n = 0 Παράδειγµα: N 2 =1010 2C(N 2 ) = 2 4 -N 2 = = Παράδειγµα : N 2 = C(N 2 ) = 2 5 -N 2 = = MKM - 9 MKM - 10 Συµπλήρωµα ως προς 2 (συν.) Ένας πιο εύκολος τρόπος για να υπολογίσουµε το συµπλήρωµα του 2: 1. Αφήστε τα λιγότερο σηµαντικά (least significant) 0 και πρώτο 1 χωρίς αλλαγές 2. Αντικαταστήστε 0 µε 1 και 1 µε 0 στα υπόλοιπα περισσότερο σηµαντικά (higher significant) bits. Παραδείγµατα: complement χωρίς αλλαγές complement χωρίς αλλαγές N = 1010 N = συµπλήρωµα ως προς 2 συµπλήρωµα ως προς 2 Συµπλήρωµα ως προς 1 Για ένα θετικό δυαδικό αριθµό n ψηφίων N 2, το συµπλήρωµα ως προς 1, 1C(N 2 ), δίνεται από: 1C(N 2 ) = (2 n -1) - N 2 Παράδειγµα: N 2 =011 1C(N 2 ) = (2 3-1)-N 2 = = Παράδειγµα : N 2 =1010 1C(N 2 ) = (2 4-1) - N 2 = = Παρατήρηση: το συµπλήρωµα ως προς 1 µπορεί να παραχθεί µε το να βρούµε το συµπλήρωµα όλων των ψηφίων (bits) στον αριθµό. MKM - 11 MKM - 12 Κεφάλαιο 5-ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα 2

3 Παρατήρηση Συγκρίνετε το συµπλήρωµα ως προς 1 µε το συµπλήρωµα ως προς 2: 2 n -N= [(2 n -1) - N] + 1 Άρα το, συµπλήρωµα ως προς 2 µπορεί να βρεθεί βρίσκοντας το συµπλήρωµα ως προς 1 και προσθέτοντας 1. Παράδειγµα: N = C(N) = 2 4 N = = C(N) = N = = C(N) = 1C(N) + 1 = = 0111 Αφαίρεση µε συµπληρώµατα Για να βρούµε το M-N = M+(-N), µπορούµε να χρησιµοποιήσουµε µια συµπληρωµατική µορφή για την αναπαράσταση ενός αρνητικού αριθµού -N, και να κάνουµε µια απλή πρόσθεση. Πρέπει να µπορούµε να µετατρέψουµε το αποτέλεσµα. MKM - 13 MKM - 14 Αφαίρεση µε συµπλήρωµα ως προς 2 Εάν χρησιµοποιήσουµε συµπλήρωµα ως προς 2 για την αναπαράσταση αρνητικών αριθµών: 1. R I = M + 2C(N 2 ) = M + (2 n -N) = M N + 2 n 2. Εάν υπάρχει ένα µη-µηδενικό carry out στην πρόσθεση, M N, αγνόησε αυτό το carry και τα υπόλοιπα ψηφία είναι ίσα µε R = M-N. 3. Εάν, M < N, βρέστε το συµπλήρωµα ως προς 2 του R I (=2 n -R I = 2 n -(M N + 2 n ) = N M), και προσθέστε ένα αρνητικό πρόσηµο στην αρχή, πχ., το αποτέλεσµα του R είναι -2C([R I ] 2 ) = -(N-M). Παράδειγµα A = (84 10 ), B = (67 10 ) Βρέστε R = A-B: 2C(B) = (61 10 ) A+B = = Απορρίπτω το carry, R = (17 10 ) Βρέστε R = B-A: 2C(A) = (44 10 ) B+A = = R = -2C(B+A) = (-17) MKM - 15 MKM - 16 Αφαίρεση µε συµπλήρωµα ως προς 1 Εάν χρησιµοποιήσουµε συµπλήρωµα ως προς 1 για την αναπαράσταση αρνητικών αριθµών: 1. Σχηµάτισε R I = M + 1C(N 2 ) = M + (2 n -1-N) = M N + 2 n Εάν υπάρχει ένα µη-µηδενικό carry out στην πρόσθεση, M N, απόρριψε το και πρόσθεσε 1 στα υπόλοιπα ψηφία. Το αποτέλεσµα είναι R = M-N. 3. Εάν, M < N, υπολογίστε το συµπλήρωµα ως προς1 του R I (=2 n -1 -R I = 2 n -1 -(M N + 2 n -1) = N M ), και προσθέστε το πρόσηµο πλην µπροστά, πχ., το αποτέλεσµα του R είναι -1C([R I ] 2 ) = -(N-M). Παράδειγµα A = (84 10 ), B = (67 10 ) Βρέστε R = A-B: 1C(B) = (60 10 ) A+B = = Απορρίψτε το carry and προσθέστε 1, R = = (17 10 ) Βρέστε R = B-A: 1C(A) = B+A = = R = -1C(B+A) = (-17) MKM - 17 MKM - 18 Κεφάλαιο 5-ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα 3

4 υαδικοί Αθροιστές/Αφαιρέτης Εάν κάνετε αφαίρεση χρησιµοποιώντας συµπληρώµατα, εξαλείφουµε την λειτουργία της αφαίρεσης, και µπορούµε να χρησιµοποιήσουµε ένα αθροιστή µε κατάλληλα συµπληρώµατα για αφαίρεση. Μπορούµε να χρησιµοποιήσουµε προσθετέο και για πρόσθεση και για αφαίρεση: Πάρε το συµπλήρωµα του αφαιρετέου (subtrahend) για αφαίρεση Μην πάρεις το συµπλήρωµα του αφαιρετέου για πρόσθεση Για να υλοποιήσουµε ένα κύκλωµα πρόσθεσηςαφαίρεσης, χρειαζόµαστε µόνο ένα επιλεκτικό συµπληρωτή (complementer) και ένα αθροιστή. υαδικοί Αθροιστές/Αφαιρέτες (συν.) Ηαφαίρεση A-B µπορεί να γίνει παίρνοντας το συµπλήρωµα ως προς 2 του B και προσθέτοντας A. Το συµπλήρωµα ως προς 2 του B το παίρνουµε µε τo συµπλήρωση ως προς 1 του B και προσθέτοντας 1 σε αυτό. A-B = A + 2C(B) = A + 1C(B) + 1 = A + B + 1 MKM - 19 MKM bit υαδικός Αθροιστής/Αφαιρέτης Οι πύλες XOR ενεργούν σαν προγραµµατιζόµενοι αντιστροφείς MKM - 21 Όταν S=0, το κύκλωµα εκτελεί A + B. Το carry in είναι 0, και οι πύλες XOR περνούν το B χωρίς αλλαγές. Όταν S=1, το carry στο LSB είναι 1, και παίρνετε το συµπλήρωµα του Β (συµπλήρωµα ως προς 1) πριν την πρόσθεση; Άρα το κύκλωµα προσθέτει στο A το συµπλήρωµα ως προς 1 του B συν 1 (από το carry στο LSB). MKM - 22 S=0 S=1 B 3 B 2 B 1 B 0 B 3 B 2 B 1 B Όταν S=0 διαλέγει πρόσθεση Όταν S=1 διαλέγει αφαίρεση MKM - 23 MKM - 24 Κεφάλαιο 5-ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα 4

5 Όταν C 4 = 0 και S=1 σηµαίνει ότι το A < B και πρέπει να διορθωθεί το αποτέλεσµα R 3 R 0 (διαφάνεια 15). Άρα, πρέπει να υπολογίσουµε το συµπλήρωµα ως προς 2 του R 3 R 0 : Χρησιµοποιείστε ένα ειδικό κύκλωµα για το συµπλήρωµα ως προς 2 ή Χρησιµοποιείστε τον 4-bit αθροιστή/ αφαιρέτη ξανά, µε A 3 A 0 =0000, B 3 B 0 =R 3 R 0, και S=1. Προσηµασµένοι υαδικοί Αριθµοί Σύστηµα Προσηµασµένου-µέτρου (magnitude): Οι προσηµασµένοι αριθµοί αναπαριστούνται χρησιµοποιώντας το MSB του δυαδικού αριθµού για την εύρεση του πρόσηµου του αριθµού: Εάν MSB = 0 θετικός αριθµός Εάν MSB = 1 αρνητικός αριθµός Μην το συγχύσετε µε µη- προσηµασµένους αριθµούς! MKM - 25 MKM - 26 Προσηµασµένοι υαδικοί Αριθµοί (συν.) Για παράδειγµα: σε µη-προσηµασµένο (- το πρόσηµο καθορίζεται σαφώς) σε προσηµασµένο (- το πρόσηµο καθορίζεται έµµεσα αφού MSB=1) Άλλο παράδειγµα: σε µη-προσηµασµένο σε προσηµασµένο Προσηµασµένοι υαδικοί Αριθµοί (συν.) Για την υλοποίηση πρόσθεσης προσηµασµένου- µέτρου και αφαίρεση χρειαζόµαστε να ξεχωρίσουµε το ψηφίο πρόσηµου από τα ψηφία µέτρου, και να βλέπουµε τα magnitude bits σαν ένα µη-προσηµασµένο αριθµό (κάντε την διόρθωση όπου χρειάζεται). Για την αποφυγή της διόρθωσης, χρησιµοποιείται το σύστηµα προσηµασµένουσυµπληρώµατος. MKM - 27 MKM - 28 Σύστηµα Προσηµασµένου- Συµπληρώµατος Το µέτρο ενός αρνητικού αριθµού αναπαρίσταται στην συµπληρωµατική του µορφή (το συµπλήρωµα του 2 ή του 1). Πχ.: Χρησιµοποιούµε 8-bits στην αναπαράσταση and : σε προσηµασµένο-µέτρο σε προσηµασµένο συµπλήρωµα ως προς σε προσηµασµένο συµπλήρωµα ως προς = σε όλα τα πιο πάνω συστήµατα Προσηµασµένη-Magnitude Πρόσθεση-Αφαίρεση Για την εκτέλεση πρόσθεσης ή αφαίρεσης 2 αριθµών M και N σε προσηµασµένο-µέτρου, ακολουθήστε τους κανόνες αριθµητικής: Ίδιο πρόσηµο: προσθέστε και κρατήστε το ίδιο πρόσηµο. ιαφορετικά πρόσηµα: Αφαιρέστε το N από το M; εάν το Borrow == 1, διορθώστε το αποτέλεσµα παίρνοντας το συµπλήρωµα του 2. Το πρόσηµο είναι αρνητικό. Παράδειγµα: M: , N: το N είναι αρνητικό, άρα βρέστε M-N = = , µε end borrow 1. Αυτό υπονοεί ότι το M-N είναι αρνητικός αριθµός, και για την διόρθωση του βρίσκουµε το συµπλήρωµα ως προς άρα MKM - 29 MKM - 30 Κεφάλαιο 5-ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα 5

6 Πρόσθεση Προσηµασµένου- Συµπληρώµατος Η πρόσθεση 2 προσηµασµένων αριθµών, µε αρνητικούς που αναπαριστούνται σε προσηµασµένο συµπλήρωµα ως προς 2, παράγεται προσθέτοντας τους 2 αριθµούς (συµπεριλαµβανοµένων των sing bits). Το Carry out αγνοείται. Παραδείγµατα: (Υποθέστε αναπαραστάσεις 5-ψηφίων) (+10) (+10) (-10) (-10) (+5) (-5) (+5) (-5) (+15) (+5) (-5) (-15) Πρόσθεση Προσηµασµένου- Συµπληρώµατος (συν.) Είναι διαφορετικό αυτό µε την αναπαράσταση αρνητικών αριθµών σε προσηµασµένο συµπλήρωµα του 2! Να θυµάστε ότι όταν MSB = 1 ο αριθµός είναι αρνητικός και χρειάζεται η εύρεση του συµπληρώµατος ως προς 2 του µέτρου. Παράδειγµα: Πιο είναι το δεκαδικό αντίστοιχο του ? Είναι αρνητικός αριθµός αφού το MSB=1 Magnitude = το συµπλήρωµα του 2 του magnitude = Ο αριθµός είναι το MKM - 31 MKM - 32 Αφαίρεση Προσηµασµένου- Συµπληρώµατος Η αφαίρεση 2 προσηµασµένων αριθµών, µε αρνητικούς στην προσηµασµένη µορφή συµπληρώµατος του 2, µπορεί να βρεθεί µε το συµπλήρωµα του 2 του αφαιρετέου (subtrahend) (µαζί µε το ψηφίο πρόσηµου) και την πρόσθεση του αφαιρέτης (minuend). Αγνοείται το carry out. Παραδείγµατα: (5-bit αναπαραστάσεις) (+10) (+10) (-10) (-10) (+5) (-5) (+5) (-5) (+10) (+10) (-10) (-10) (-5) (+5) (-5) (+5) (+5) (+15) (-15) (-5) Το πρόβληµα της Υπερχείλισης Εάν η πρόσθεση 2 n-bit αριθµών είναι ένας αριθµός µε n+1 bits, τότε εµφανίζεται η κατάσταση υπερχείλισης. Η εύρεση υπερχείλισης µπορεί να υλοποιηθεί είτε µε υλικό(h/w) ή λογισµικό. Η εύρεση εξαρτάται από το αριθµητικό σύστηµα που χρησιµοποιείται: προσηµασµένο ή µη-προσηµασµένο. MKM - 33 MKM - 34 Το πρόβληµα της Υπερχείλισης στο Μη-Προσηµασµένο Σύστηµα Πρόσθεση: Όταν το Carry out == 1. Αφαίρεση: εν µπορεί να γίνει ποτέ. Το µέτρο του αποτελέσµατος είναι πάντα ίσο ή µικρότερο από τον πιο µεγάλο των 2 αριθµών. ΕΝ είναι πρόβληµα! Το πρόβληµα της Υπερχείλισης στο Προσηµασµένου Σύστηµα συµπληρώµατος του 2 Να θυµάστε ότι το MSB είναι το πρόσηµο. Αλλά προστίθεται και το πρόσηµο! Άρα ένα carry out == 1 δεν σηµαίνει πάντα υπερχείλιση. Υπερχείλιση παρατηρείται ΜΟΝΟ όταν και οι 2 αριθµοί έχουν το ίδιο πρόσηµο. Αυτή η κατάσταση µπορεί να βρεθεί όταν το carry out (C n ) είναι διαφορετικό από το carry της προηγούµενης θέσης (C n-1 ). MKM - 35 MKM - 36 Κεφάλαιο 5-ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα 6

7 Το πρόβληµα της Υπερχείλισης στο Προσηµασµένου Σύστηµα συµπληρώµατος του 2(συν.) Παράδειγµα 1: M=65 10 και N=65 10 σε ένα 8-bit προσηµασµένο σύστηµα συµπληρώµατος του 2. M = N = M+N = µε C n =0. Αυτό είναι λάθος! Βάλτε το C n σαν το MSB για να πάρετε ( ) που είναι ορθό, αλλά χρειάζεται 9-bits υπερχείλιση Παράδειγµα 2: M= και N= σε ένα 8-bit προσηµασµένο σύστηµα συµπληρώµατος του 2. M = N = M+N = µε C n =1. Αυτό είναι πάλι λάθος! Βάλτε το C n σαν το MSB για να πάρετε ( ) που είναι ορθό, αλλά χρειάζεται 9-bits υπερχείλιση MKM - 37 Εύρεση Υπερχείλισης στο Προσηµασµένο Σύστηµα συµπληρώµατος του 2 Οι καταστάσεις υπερχείλισης εντοπίζονται συγκρίνοντας τις τιµές στο carry έξω και µέσα του sign bit (C n και C n-1 ). n-bit αθροιστής/αφαιρέτης µε λογική εύρεσης υπερχείλισης V C C n+1 C n n-bit αθροιστής/ αφαιρέτης το C =1 δείχνει υπερχείλιση όταν προσθέτουµε/αφαιρούµε µη-προσηµασµένους αριθµούς. το V=1 δείχνει υπερχείλιση όταν προσθέτουµε/αφαιρούµε προσηµασµένους αριθµούς οι οποίοι είναι συµπλήρωµα ως προς 2 MKM - 38 υαδικός Πολ/στης Οδυαδικός πολ/σµός µοιάζει µε τηον δεκαδικό πολ/σµό: ο n-bit multiplicand πολ/ζεται µε κάθε bit του m-bit multiplier, αρχίζοντας από το LSB, για την εύρεση n µερικών γινοµένων. Κάθε διαδοχικό σύνολο των µερικών γινοµένων γίνεται µετατόπιση 1 bit από αριστερά. Το αποτέλεσµα παράγεται µε την πρόσθεση m γραµµών των µερικών γινοµένων. υαδικός Πολ/στης (συν.) Παράδειγµα: Πολ/στης A=A 1 A 0 και πολ/στέος B=B 1 B 0 Βρέστε το C = AxB: B 1 B 0 x A 1 A A 0 B 1 A 0 B 0 + A 1 B 1 A 1 B C 3 C 2 C 2 C 0 MKM - 39 MKM - 40 Κύκλωµα υαδικού Πολ/στή πολ/στης 2 Χ 2 ψηφία Κύκλωµα υαδικού Πολ/στή πολ/στης 4 Χ 3 ψηφία Το 4 χ 3 ψηφία βγάζει αποτέλεσµα 7 ψηφίων Οι ηµι-αθροιστές είναι αρκετοί αφού δεν υπάρχει Carry-in Μαζί µε τις δύο εισόδους στην πρόσθεση MKM - 41 MKM - 42 Κεφάλαιο 5-ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα 7

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση υαδική Πρόσθεση

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 9: Σχεδιασµός Συνδυαστικών Κυκλωµάτων ΙΙ (Κεφάλαιο 5) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Άθροιση + + + + a +b 2c+s + Κρατούµενο προηγούµενης βαθµίδας κρατούµενο άθροισµα Μεταφέρεται στην επόµενη βαθµίδα σηµαντικότητας

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

Υπολογιστές και Πληροφορία 1

Υπολογιστές και Πληροφορία 1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί Ημιαθροιστής - Ημιαφαιρέτης Πλήρης Αθροιστής - Πλήρης Αφαιρέτης Αθροιστής Διάδοσης Κρατούμενου Επαναληπτικές

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3 ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών πράξεων

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

Σ ή. : υαδικά. Ε ό. ή Ενότητα

Σ ή. : υαδικά. Ε ό. ή Ενότητα 1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,

Διαβάστε περισσότερα

ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ

ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ Τίτλος: «Σχεδίαση και προσοµοίωση παράλληλης αριθµητικής λογικής µονάδας (ALU) για την επεξεργασία δυαδικών αριθµών εύρους 4-bit, µε το πρόγραµµα Multisim» ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Αριθμητική Υπολογιστών (Κεφάλαιο 3)

Αριθμητική Υπολογιστών (Κεφάλαιο 3) ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 9 Αριθμητική Υπολογιστών (Κεφάλαιο 3) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Αριθμητική για υπολογιστές

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης αριθμητικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB.. Αθροιστές. Σχεδίαση

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Κωδικοποίηση & Αποκωδικοποίηση

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2 ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Ο κύκλος της πληροφορίας Η σηµασία της πληροφορίας Ο υπολογιστής (επεξεργασία-αποθήκευση) 2 Παράσταση δεδοµένων Αριθµητικά συστήµατα εκαδικό σύστηµα 3 υαδικό

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005 ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 2-ii: Συνδυαστικά Λογικά Κυκλώµατα (2.6 2.8, ) Περίληψη Υλοποίηση κυκλωµάτων πολλαπλών επιπέδων (µετασχηµατισµοί)

Διαβάστε περισσότερα

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ

Εισαγωγή στην Επιστήµη των Υπολογιστών Εξάµηνο 4ο-ΣΗΜΜΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Ενδιάμεση Β205. Κεφ. 1-2, Παράρτημα Α Εργαστήρια Εργασίες Ενδιάμεση του 2014 Όχι διάλεξη την Τρίτη (Προετοιμασία)

Ενδιάμεση Β205. Κεφ. 1-2, Παράρτημα Α Εργαστήρια Εργασίες Ενδιάμεση του 2014 Όχι διάλεξη την Τρίτη (Προετοιμασία) Ενδιάμεση 19.10 Β205 Κεφ. 1-2, Παράρτημα Α Εργαστήρια Εργασίες Ενδιάμεση του 2014 Όχι διάλεξη την Τρίτη (Προετοιμασία) 1 Παράρτημα Β και Κεφάλαιο 3 Αριθμητική Υπολογιστών Review signed numbers, 2 s complement,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

Πολλαπλασιασμός και Διαίρεση Ακεραίων

Πολλαπλασιασμός και Διαίρεση Ακεραίων ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 1 Πολλαπλασιασμός και Διαίρεση Ακεραίων Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Πολλαπλασιασμός Ακεραίων

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΟΜΑ Α Α Αριθµητική Λογική Μονάδα των 8-bit 1. Εισαγωγή Γενικά µια αριθµητική λογική µονάδα (ALU, Arithmetic Logic Unit)

Διαβάστε περισσότερα

Προγραμματισμός Υπολογιστών

Προγραμματισμός Υπολογιστών Προγραμματισμός Υπολογιστών Αναπαράσταση Πληροφορίας Κ. Βασιλάκης, ΣΤΕΦ, ΤΕΙ Κρήτης Δεδομένα και πληροφορία Δεδομένα είναι ένα σύνολο διακριτών στοιχείων σχετικά με ένα συμβάν ή μια διαδικασία χωρίς κάποια

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Μετρητής Ριπής q Σύγχρονος

Διαβάστε περισσότερα

Κεφάλαιο 3 Αριθμητική Υπολογιστών (Arithmetic for Computers)

Κεφάλαιο 3 Αριθμητική Υπολογιστών (Arithmetic for Computers) Κεφάλαιο 3 Αριθμητική Υπολογιστών (Arithmetic for Computers) 1 Αριθμοί και Υπολογιστές Μια λέξη μηχανής (computer word) αποτελείται από ένα αριθμό δυαδικών ψηφίων (bits) η λέξη αναπαρίσταται ως ένας δυαδικός

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ Αριθμητικά Συςτήματα Ζνασ αριθμόσ m-ψηφίων και βάςησ b, γράφεται ωσ μια ακολουθία m-ψηφίων. x = xm-1xm-2 x1x0 Όπου τα ψηφία xi ανήκουν ςτο διάςτημα 0 xi b-1 Ζτςι, η τιμή

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου Ψηφιακή Σχεδίαση Εργαστηριο 1 Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΕΡΓΑΛΕΙΑ ΕΡΓΑΣΤΗΡΙΟ Το εργαλείο που θα χρησιμοποιηθεί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης

Διαβάστε περισσότερα

3. Πρόσθεση Πολλαπλασιασμός 4. Πρόσθεση στο πρότυπο ΙΕΕΕ Πολλαπλασιασμός στο πρότυπο ΙΕΕΕ

3. Πρόσθεση Πολλαπλασιασμός 4. Πρόσθεση στο πρότυπο ΙΕΕΕ Πολλαπλασιασμός στο πρότυπο ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΙΠΕ Ο ΨΗΦΙΑΚΗΣ ΛΟΓΙΚΗΣ - ΙΙ Γ. Τσιατούχας 3 ο Κεφάλαιο 1. Γενική δομή CPU ιάρθρωση 2. Αριθμητική και λογική μονάδα 3. Πρόσθεση Πολλαπλασιασμός

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπορουτίνες Μαθηµατικών Πράξεων 1.1. Προσηµασµένοι και απροσήµαστοι αριθµοί 1.2. Μετατροπές προσηµασµένων και απροσήµαστων αριθµών

ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπορουτίνες Μαθηµατικών Πράξεων 1.1. Προσηµασµένοι και απροσήµαστοι αριθµοί 1.2. Μετατροπές προσηµασµένων και απροσήµαστων αριθµών ΠΕΡΙΕΧΟΜΕΝΑ 1. Υπορουτίνες Μαθηµατικών Πράξεων 1.1. Προσηµασµένοι και απροσήµαστοι αριθµοί 1.2. Μετατροπές προσηµασµένων και απροσήµαστων αριθµών Cr0 Μετατροπή αριθµού 8 Bits από µορφή προσηµασµένου µε

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα

Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα 2 κεφάλαιο Aριθμητικά συστήματα και κώδικες Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα τα οποία επεξεργάζονται δυαδικά ψηφία 0 και 1, όμως στην πράξη πολύ λίγα πραγματικά προβλήματα βασίζονται

Διαβάστε περισσότερα

Πρόσθεση/Αφαίρεση. Εφαρµογές της πράξης, υλοποίηση και βελτιστοποιήσεις. Γκέκας Γεώργιος: 2423 Μαραγκός Παναγιώτης: 2472

Πρόσθεση/Αφαίρεση. Εφαρµογές της πράξης, υλοποίηση και βελτιστοποιήσεις. Γκέκας Γεώργιος: 2423 Μαραγκός Παναγιώτης: 2472 Πρόσθεση/Αφαίρεση Γκέκας Γεώργιος: 2423 Μαραγκός Παναγιώτης: 2472 Εφαρµογές της πράξης, υλοποίηση και βελτιστοποιήσεις Που χρησιµοποιείται Όχι µόνο στις αµιγείς αριθµητικές πράξεις της πρόσθεσης και αφαίρεσης

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα

Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα Πηγές σφαλμάτων ανακριβής θεωρία ανακριβείς μετρήσεις παραμέτρων μεταβλητότητα παραμέτρων ανακριβής μέθοδος υπολογισμού (σφάλματα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέρος Β (Οργάνωση Υπολογιστών)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέρος Β (Οργάνωση Υπολογιστών) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΥΠΟΛΟΓΙΣΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέρος Β (Οργάνωση Υπολογιστών)

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 21: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 2009 2010 Γραπτή Εργασία #3 Παράδοση: 28 Μαρτίου 2010 Άσκηση 1 (15 µονάδες) Ένας επεξεργαστής υποστηρίζει τόσο

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Περίληψη. Συναρτησιακές Μονάδες: Αθροιστής (Functional Blocks: Addition) ιάγραµµαενός1d επαναληπτικού πίνακα

Περίληψη. Συναρτησιακές Μονάδες: Αθροιστής (Functional Blocks: Addition) ιάγραµµαενός1d επαναληπτικού πίνακα Περίληψη Κεφάλαιο 5 Αριθµητικές Συναρτήσεις και Κυκλώµατα Επαναληπτικά συνδυαστικά κυκλώµατα υαδικός Αθροιστής Μισός και Πλήρης Αθροιστής Κυµατικό κρατούµενο και Προ-υπολογιτέο κρατούµενο υαδική Αφαίρεση

Διαβάστε περισσότερα

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops

Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2003 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 6: Προσηµασµένοι Ακέραιοι, Προσθαφαιρέτες, Flip-Flops 24-27 Νοεµβρίου 2003 ιαγωνισµός Προόδου: Σάββατο 29 Νοεµβρίου,

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης

Διαβάστε περισσότερα

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΟΙ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ (ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ) Γ Τσιατούχας Παράρτηµα Β ιάρθρωση 1 Το σύστημα κινητής υποδιαστολής 2 Αναπαράσταση πραγματικών δυαδικών αριθμών 3 Το πρότυπο

Διαβάστε περισσότερα

Introduction to IP Cores

Introduction to IP Cores Introduction to IP Cores Part 1: Digital Design -- Using IP Cores to Simplify Design Στον κόσµο του ψηφιακού σχεδίου, µπορούµε να χρησιµοποιήσουµε τις γλώσσες περιγραφής υλικού για να περιγράψουµε σύνθετες

Διαβάστε περισσότερα

Κεφάλαιο 1. B για κάθε 0 Ψ i (1-1)

Κεφάλαιο 1. B για κάθε 0 Ψ i (1-1) Κεφάλαιο 1 Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν τα κύρια αριθμητικά συστήματα, οι αλγόριθμοι μετατροπής μεταξύ των συστημάτων για την κάθε μια περίπτωση, ο τρόπος εκτέλεσης των τεσσάρων βασικών πράξεων

Διαβάστε περισσότερα

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Βοηθητικές Σημειώσεις στη ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΠΜΣ στις Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών Διδάσκων : Παρασκευάς Κίτσος Επίκουρος Καθηγητής pkitsos@teimes.gr 1 Τμήμα των διαλέξεων

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά

Διαβάστε περισσότερα

Αναπαράσταση εδοµένων σε Επεξεργαστές Ψ.Ε.Σ

Αναπαράσταση εδοµένων σε Επεξεργαστές Ψ.Ε.Σ ΕΣ 8 Επεξεργαστές Ψηφιακών Σηµάτων Αναπαράσταση εδοµένων σε Επεξεργαστές Ψ.Ε.Σ Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Οι Συνέπειας του Πεπερασµένου Βιβλιογραφία Ενότητας

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

Ύλη Λογικού Σχεδιασµού Ι

Ύλη Λογικού Σχεδιασµού Ι 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

2.5. υαδικοί αριθµοί µε πρόσηµο

2.5. υαδικοί αριθµοί µε πρόσηµο 2.5. υαδικοί αριθµοί µε πρόσηµο Το αποτέλεσµα της αφαίρεσης δύο θετικών δυαδικών αριθµών θα µπορούσε να ήταν αρνητικό αν ο µειωτέος ήταν µικρότερος από τον αφαιρετέο. Συνεπώς υπάρχει η ανάγκη ορισµού θετικών

Διαβάστε περισσότερα