Λίγα ιστορικά στοιχεία για το Πυθαγόρειο Θεώρημα.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λίγα ιστορικά στοιχεία για το Πυθαγόρειο Θεώρημα."

Transcript

1 Λίγα ιστορικά στοιχεία για το Πυθαγόρειο Θεώρημα.. Είναι απαραίτητο να εξετάζουμε στην περίοδο που διανύουμε το ξεκίνημα των τεχνών και των επιστημών, έτσι διαπιστώνουμε, ότι πρώτα οι Αιγύπτιοι ανακάλυψαν αρκετά που έχουν σχέση με την γεωμετρία και αυτά χάρη στην καταμέτρηση των χωραφιών. Δεν αποτελεί κάτι το καταπληκτικό, το γεγονός ότι αυτές καθώς και άλλες επιστήμες, ανακαλύφθηκαν εξαιτίας κάποιας ανάγκης, εξάλλου όλες οι ιδέες προκύπτουν από τα βήματα που γίνονται ανάμεσα στο ατελές και το τέλειο. Υπάρχει ένα πέρασμα μεταξύ της ουσιαστικής κατανόησης και της σκεπτόμενης παρατήρησης που οδηγεί στην λογική γνώση Έτσι αρχίζει ένας αρχαιοελληνικός «μαθηματικός κατάλογος», γραμμένος από τον Εύδημο, ο οποίος συνεχίζει απαριθμώντας μοναδικούς Έλληνες μαθηματικούς, ξεκινώντας από τον Θαλή τον Μιλήσιο. Η προσφορά του καθενός περιγράφεται σ αυτόν τον κατάλογο με λίγα λόγια. Στον κατάλογο αυτό είπε για τον Πυθαγόρα (ελεύθερη μετάφραση): «Ο Πυθαγόρας μετέβαλε την ασχολία με τους κλάδους της γνώσης σε αληθινή επιστήμη. Ανακάλυψε τις βάσεις των κλάδων της γνώσης και έφτιαξε τις θεωρίες του με λογική σκέψη, ανεξάρτητα από υλική αφετηρία». Για το πότε έζησε ο Πυθαγόρας από τη Σάμο, δεν είναι σίγουρα γνωστό: Σύμφωνα με κάποιους γεννήθηκε το 569 π.χ. και το 470 π.χ. πέθανε, σύμφωνα δε με άλλους η γέννησή του υπολογίζεται το 580 π.χ., ενώ ο θάνατός του υπολογίζεται το 500 π.χ. Από την ζωή του Πυθαγόρα για μας είναι σημαντικό να ξέρουμε ότι πέρασε πολύ καιρό στην Αίγυπτο, ίσως και στην Βαβυλωνία, κάτι που φανερά τον επηρέασε καταλυτικά. Από τους μέχρι τώρα λίγους υπαινιγμούς για τη ζωή του Πυθαγόρα είναι φανερό ότι είναι πολύ δύσκολο να ξεχωρίσουμε τις ανακαλύψεις του Πυθαγόρα από αυτές των προκατόχων του και αυτές των μαθητών του. Το ίδιο συμβαίνει και με το γνωστό θεώρημα, το οποίο σχεδόν παντού πιστεύεται ότι ειπώθηκε από τον Πυθαγόρα : Σε ένα ορθογώνιο τρίγωνο, το τετράγωνο της υποτείνουσας είναι ίσο με το άθροισμα των τετραγώνων των καθέτων πλευρών( ως προς το εμβαδόν τους). Ότι αυτό το θεώρημα ανακαλύφθηκε από τον Πυθαγόρα είναι όλοι σύμφωνοι, αν και κάποιοι υποστηρίζουν ότι ο Πυθαγόρας ήταν απλά ο πρώτος που βρήκε μια ολοκληρωμένη απόδειξη για αυτό το θεώρημα, κάποιοι άλλοι του αφαιρούν ακόμα και αυτή την ανακάλυψη. Ρωτάμε ποια είναι αυτή η απόδειξη, πάλι κομπιάζουμε. Η απόδειξη, την οποία ο Ευκλείδης (περίπου το 300 π.χ. στην Αλεξάνδρεια) συμπεριλάμβανε στο πρώτο του βιβλίο, λέγεται από μερικούς ότι την έγραψε ο Πυθαγόρας, αντίθετα ο Έλληνας Μαθηματικός Πρόκλος (έζησε το 40 μ.χ. ή μ.Χ ) επιβεβαιώνει ότι αυτή η απόδειξη υπάρχει στα στοιχεία γραμμένη από τον Ευκλείδη. Βλέπουμε ότι η ιστορία των μαθηματικών, όσο αφορά τον Πυθαγόρα και την μαθηματική του δραστηριότητα, μας δίνει λίγα και όχι σίγουρα στοιχεία. Ποιος δεν ξέρει το σονέτο Chamissos : Η αλήθεια περνά στην αιωνιότητα

2 αν πρώτα ο χαζός κόσμος αναγνωρίσει το φως της. Το θεώρημα, που ονομάστηκε έτσι από τον Πυθαγόρα ισχύει σήμερα, όπως ίσχυε και στην εποχή του. Ένα θύμα άγιασε τον Πυθαγόρα στους θεούς που του έστειλαν την ακτίνα φωτός. Τον έκαναν γνωστό, σφάζοντας και καίγοντας εκατό μοσχάρια από ευγνωμοσύνη. Τα μοσχάρια από την ημέρα που θα μυριστούν ότι μια νέα αλήθεια θα ανακαλυφθεί, βγάζουν ένα μη ανθρώπινο μουγκρητό. Ο Πυθαγόρας τα απελευθερώνει και αυτά αδύναμα να αντισταθούν στο φως, κλείνουν τα μάτια και τρέμουν Την ιστορία αυτή της θυσίας την διηγείται ο Διογένης ο Λαέρτιος και ο Πλούταρχος. Δυστυχώς λείπουν εκείνες οι προϋποθέσεις για να εφαρμοστεί η διδαχή για την μετεμψύχωση, σύμφωνα με τον Heinrich Heine: «Ποιος ξέρει! Ποιος ξέρει! Η ψυχή του Πυθαγόρα μεταφέρθηκε μάλλον σε κάποιο δύστυχο υποψήφιο, που απέτυχε στις εξετάσεις, γιατί δεν μπορούσε να αποδείξει το πυθαγόρειο Θεώρημα, καθώς την ψυχή των εξεταστών του την είχαν καταλάβει μοσχάρια, τα οποία ο Πυθαγόρας, από χαρά για την ανακάλυψη του θεωρήματός του, τα θυσίασε στους αθάνατους θεούς». 2. Όταν στο τέλος του προηγουμένου αιώνα, με βάση κάποιες ανακαλύψεις του Schiaparelli και άλλων αστρονόμων έγινε μόδα να μιλούν για την ύπαρξη κατοίκων στον Άρη που έμοιαζαν με τους ανθρώπους, αναρωτήθηκε κανείς πως θα μπορούσε να συνεννοηθεί με τα υποθετικά αυτά πλάσματα μόνο με τη βοήθεια των φωτεινών σινιάλων;. Η Ακαδημία των Παρισίων καθιέρωσε το βραβείο Prix Pierre Guzmann των φράγκων για όποιο τυχερό έρθει σε επαφή με οποιοδήποτε κάτοικο άλλου ουρανίου σώματος ( εννοώντας προφανώς τον Άρη, σαν την εύκολη λύση). Για αστείο προτάθηκε να σταλεί το σχήμα του πυθαγορείου Θεωρήματος σαν σημείο φωτός στους κατοίκους του Άρη ή οποιουδήποτε άλλου πλανήτη. Οπωσδήποτε ξέρουμε ότι το μαθηματικό γεγονός που φανερώνει το Πυθαγόρειο Θεώρημα, εμφανίζεται στο πλανητικό μας σύστημα σε κάθε θέση. Ο ιταλός αστρονόμος Schiaparelli ανακάλυψε κανάλια στον Άρη, τα οποία υποστηριζόταν για καιρό, ότι ήταν τεχνητά φτιαγμένα.

3 Ας αρχίσουμε με τους Κινέζους. Εδώ λαμβάνουμε ιδιαίτερα υπ όψιν μας μια μαθηματική δημιουργία του Tscheou pei. Το πρώτο κεφάλαιο αυτού του βιβλίου ασχολείται με μια συζήτηση ανάμεσα σε δύο γνωστές προσωπικότητες που έζησαν περίπου το 00 π.χ. Δεν είναι όμως σίγουρο ότι οι αναφερόμενοι δάσκαλοι ήταν γνωστοί στην εποχή τους, όπως ισχυρίζεται κάποιο κείμενο του 23 π.χ. ενδεχομένως το θέμα το οποίο συζητιέται, γράφτηκε το χρόνο που αρχίσαμε να μετράμε Σ αυτό το σύγγραμμα υπάρχει ένα πυθαγόρειο τρίγωνο, που έχει πλευρές 3, 4 και 5 και αναφέρεται : «διαμερίζουμε μια ορθή γωνία στα επιμέρους μέρη της, έτσι σχηματίζεται από τα (τελικά) σημεία των σκελών της μία ευθεία 5, αν η βασική ευθεία ( βάση ) είναι 3 και το ύψος 4» και εδώ έχουμε ένα σχέδιο (σχήμα. ) που είναι ίδιο με ένα από τα σχέδια της ινδικής γεωμετρίας του Bhaskara. Σχήμα 3. Οι Cantor και Tropfke 2 λαμβάνουν υπ όψη τους, ότι και οι Αιγύπτιοι γνώριζαν την εξίσωση: ή με άλλα λόγια το ή ορθογώνιο τρίγωνο με τις πλευρές 3, 4,και 5, από την εποχή του βασιλιά Amenemhat μ Ι, γύρω στο 2300 π.χ. (σύμφωνα με τον πάπυρο 669 του μουσείου του Βερολίνου α ). Σύμφωνα με τη γνώμη τους κατασκεύασαν οι Αιγύπτιοι στη μέση του τριγώνου με τις πλευρές 3, 4,και 5 μια ορθή γωνία Αυτή την διαδικασία μπορούμε να την επαναλάβουμε πολύ εύκολα. Παίρνουμε ένα μακρύ σκοινί 2 μέτρων και κάμπτουμε από τη μια πλευρά 3 μέτρα και από την άλλη 4 μέτρα όπως φαίνεται στο διπλανό σχήμα. Έτσι κατασκευάζουμε ένα ορθογώνιο τρίγωνο που έχει υποτείνουσα 5 μέτρα και κάθετες πλευρές 3 και 4 μέτρα. Σ χ Σχήμα 2 Θα μπορούσε κανείς να αντιταχθεί σε αυτή την διαδικασία των αιγυπτίων, χρησιμοποιώντας μια ορθή γωνία από ξύλο όπως αυτές που βλέπουμε στα 2 M. Cantor ( ), σημαντικός μαθηματικός, ιστορικός, γνωστός από το μεγάλο τετράτομο έργο του «Πανεπιστημιακά συγγράμματα για την ιστορία των μαθηματικών». J. Tropfke ( ), σημαντικός μαθηματικός, ιστορικός, και καθηγητής μαθηματικών σε σχολεία.

4 κουφώματα από τις πόρτες, έτσι το λύγισμα του σκοινιού είναι περιττό. Στην πράξη υπάρχουν αιγυπτιακά σχέδια τα οποία αποδίδουν με αυτού του είδους τα εργαλεία, όπως έχουμε π.χ. στην παρουσίαση ενός ξυλουργείου. Οπωσδήποτε όμως υπάρχει μία μέθοδος που εξετάζει και κατασκευάζει αυτή την ορθή γωνία. Η μέθοδος του ταιριάσματος ( σχήματα 3 και 4) προκύπτει με μια δοκιμή. Δυστυχώς για υπόθεση του Cantor δεν υπάρχει μέχρι στιγμής καμία απόδειξη. Σχήμα 3 Σχήμα 4 Κάτι περισσότερο ξέρουμε ότι αφορά τις θέσεις των Βαβυλωνίων. Ένα κείμενο από την εποχή του Hammurabi, περίπου το 2000 π.χ., πλησιάζει τους υπολογισμούς σχετικά με τις διαγώνιες του ορθογωνίου. Καταλαβαίνει κανείς από αυτό, ότι οι υπολογισμοί που αφορούν το ορθογώνιο τρίγωνο ήταν γνωστοί στην Βαβυλώνα για ειδικές περιπτώσεις. Ακόμα και ο Neugebauer Είναι σίγουρος για διάφορους λόγους, ότι το γνωστό θεώρημα ήταν γνωστό και είχε χρησιμοποιηθεί στη Βαβυλώνα. Από αυτές τις γνώσεις μας, για τους προκατόχους των ελληνικών μαθηματικών, αποδεικνύεται ότι οι έλληνες δεν κατείχαν αποκλειστικά την προτεραιότητα. Σύμφωνα με το σημερινό επίπεδο των γνώσεών μας, σχετικά με τα μαθηματικά των αιγυπτίων και των βαβυλωνίων από την μια πλευρά και την κριτική ανάλυση των ελληνικών πηγών από την άλλη πλευρά, διατυπώνεται η σχέση όπως την διετύπωσε ο Van der Waerden : «Το έργο των πρώτων ελλήνων μαθηματικών, όπως Θαλής Πυθαγόρας, και των μετά το Πυθαγόρα, δεν είναι η ανακάλυψη των μαθηματικών, αλλά η συστηματοποίησή τους και η ακριβής επεξήγησή τους. Κατάφεραν και έφτιαξαν μια O.Neugebauer: γνωστός γερμανός ιστορικός, μαθηματικός, γνώστης των βαβυλωνίων μαθηματικών, ζει σήμερα (967) στις Η.Π.Α. γνωστός από το έργο του: «Αναγνώσματα από την ιστορία των αρχαίων μαθηματικών επιστημών». B.L. Van Der Waerden: Διαπρεπής Ολλανδός μαθηματικός, ασχολήθηκε πολύ με την ιστορία των μαθηματικών. Γνωστό είναι το έργο του «Αφυπνιζόμενη Επιστήμη», όπου ασχολείται με τα μαθηματικά της αρχαίας Αιγύπτου, Βαβυλωνίας, και Ελλάδος. Το κείμενο προέρχεται από την «Αριθμητική των Πυθαγορείων Ι, Μαθηματικά Χρονικά, 20 (948) σ. 27

5 επακριβή επιστήμη από διάφορες σκόρπιες και μπερδεμένες υπολογιστικές οδηγίες». 4. Όπως στους Αιγυπτίους και στους Βαβυλώνιους, έτσι και στους Ινδούς η Γεωμετρία είχε άμεση σχέση με την Θρησκεία. Υποθέτουμε ότι το θεώρημα του τετραγώνου της υποτείνουσας ήταν γνωστό στην Ινδία περίπου τον 8 ο αιώνα π.χ. Ο Cantor λέει : «η ινδική θρησκευτική λατρεία, που ακολουθούσε αυστηρά θρησκευτικές εντολές, δεν μπορούσε να στερηθεί γεωμετρικούς κανόνες. Αν ο βωμός δεν είχε ακριβώς το μέγεθος και τη μορφή που έπρεπε, αν μια άκρη δεν σχημάτιζε ορθή γωνία με τις υπόλοιπες, αν υπήρχε έστω ένα λάθος στον προσανατολισμό με τα σημεία του ορίζοντα, τότε η θεότητα δεν δεχόταν την θυσία». Έτσι τυπικές θρησκευτικές εντολές που περιλαμβανόταν στα λεγόμενα kalpasutras, οι ονομαζόμενες sulvasutras κείμενα με γεωμετρικό χαρακτήρα παραμερίστηκαν. Σ αυτά ανήκουν συγγράμματα του 4 ου και 5 ου αιώνα π.χ. όπου για να ορίσουμε την ορθή γωνία, έχουμε ένα τρίγωνο με τις πλευρές 5, 36 και 39. Ο Cantor περιγράφει την διαδικασία ως εξής: «Ορίζουμε ένα ευθύγραμμο τμήμα με πασσάλους, μήκους 36 padas (pada είναι η χρησιμοποιούμενη μονάδα μέτρησης), που κατευθύνεται από ανατολικά προς δυτικά, την λεγόμενη praci». Στους πασσάλους δένουμε τις άκρες ενός σχοινιού, μήκους 54 padas, στο οποίο έχουμε κάνει από πριν ένα κόμπο σε απόσταση 5 padas από τη μια άκρη. Με την βοήθεια ενός πασάλου τεντώνουμε το σχοινί στην θέση του κόμπου και έτσι έχουμε μια ορθή γωνία, στο ένα άκρο του praci. Για την γεωμετρική διεξαγωγή της τετραγωνικής ρίζας δίνονται οι ακόλουθοι κανόνες, οι οποίοι στηρίζονται στο Πυθαγόρειο Θεώρημα.. Το σχοινί το οποίο τεντώνουμε πάνω από το ισόπλευρο ορθογώνιο, δίνει ένα τετράγωνο με την διπλάσια επιφάνεια. 2. Το σκοινί, το οποίο τεντώνουμε πάνω από ένα επίμηκες ορθογώνιο, δίνει στις δυο επιφάνειες, οι οποίες δίνονται από το τέντωμα σχοινιών κατά μήκος της μεγάλης και της μικρής του πλευράς. Αυτή την δεύτερη περίπτωση την βλέπει κανείς στα ορθογώνια των οποίων οι πλευρές αποτελούνται από μονάδες μέτρησης από 3 και 4,από 2 και 5, από 5 και 8, από 7 και 24 από 2 και 35 και από 5 και 36. Ο πρώτος κανόνας εκφράζει το Πυθαγόρειο Θεώρημα για τα ισόπλευρα ορθογώνια τρίγωνα. Την ορθότητα του θεωρήματος την κατανοούμε αμέσως από το σχέδιο (σχήμα 5). Εδώ πρόκειται για μια γεωμετρική εξαγωγή της τετραγωνικής ρίζας και είναι εύκολο να το κατανοήσουμε. Η διαγώνιος δ του ορθογωνίου (σχήμα 6) είναι δηλαδή: 2 2 δ= α β

6 Αν α και β είναι οι πλευρές του ορθογωνίου: Σχήμα 5 Σχήμα 6 5. Για την περαιτέρω εξέλιξη των Μαθηματικών, οι ινδοί έκαναν λίγα πράγματα, οι δε Κινέζοι πράγματα καμίας σημασίας. Αυτοί οι λαοί απόκτησαν περαιτέρω μαθηματικές γνώσεις την νεώτερη εποχή. Ο δρόμος των Μαθηματικών από την αρχαιότητα προς τον μεσαίωνα οδηγείται από τους Έλληνες μέσω των Αράβων. Για τον Μεσαίωνα το Πυθαγόρειο Θεώρημα σήμαινε την magister matheseos, το όριο, όχι τόσο για την μέγιστη αλλά όσο για ένα μέσο μέτρο μαθηματικής γνώσης. Η τυπική φιγούρα του Πυθαγόρα γεμίζει τα σχολικά τετράδια με κάθε τρόπο (σχήματα.7,8,9) και χρησιμοποιείται συχνότατα σαν σχέδιο στα Μαθηματικά κάθε εποχής. Συχνά συναντούμε τον <<Πυθαγόρα>> σε πίνακες ζωγραφικής, μωσαϊκά και οικόσημα του Μεσαίωνα. Σχήμα 7 Σχήμα 8 Σχήμα 9 6 Στο τέλος αυτού του κεφαλαίου παραθέτουμε διάφορες απόψεις του Πυθαγορείου Θεωρήματος σε (αρχαία) ελληνική, λατινική γλώσσα,σύμφωνα με τον Heiberg και Tropfke. Ο Ευκλείδης λέει: Εν τοις ορθογωνίοις τριγωνοις το απο της την ορθή γωνία υποτεινούσης πλευράς τετράγωνον ίσον εστί τοις από των την ορθή γωνία περιεχουσών πλευρών τετραγώνοις.

7 Αυτό σημαίνει: Στα ορθογώνια τρίγωνα, το τετράγωνο της πλευράς της υποτείνουσας, από την ορθή γωνία, είναι ίσο με τα τετράγωνα των πλευρών που περιέχουν την γωνία. Μια λατινική μετάφραση του Gerhard από την Cremona (αρχές του 2 ου αιώνα), από το αραβικό κείμενο του an-nairtzt (γύρω στο 900 μ.χ) λέει: Omnis trianguli orthogoni quadratum factum ex latere subtenso angulo recto equale est conjunctioni duorum quadratorum, que fiunt ex duobus lateribus, que continent angulum rectum. Αυτό σημαίνει: Σε κάθε ορθογώνιο τρίγωνο σχηματιζόμενο από την πλευρά απέναντι από την ορθή γωνία δημιουργούμενο τετράγωνο είναι ίσο με το άθροισμα των δυο τετραγώνων που σχηματίζονται από τις δυο πλευρές που περιέχουν την ορθή γωνία. Σημείωση Το παραπάνω κείμενο είναι η εισαγωγή από το βιβλίο Der Pythagoreische Lehrsatz ( Η Πυθαγόρεια Πρόταση) του Καθηγητού W. Lietzmann. Εκδόσεις TEUBNER 9. Έγιναν προσθήκες, βελτιώσεις και προσαρμογές στα Ελληνικά από τον Μαθηματικό και Συγγραφέα Κώστα Γ Σάλαρη, ιδιοκτήτη της ιστοσελίδας

Λίγα ιστορικά στοιχεία για το Πυθαγόρειο Θεώρημα.

Λίγα ιστορικά στοιχεία για το Πυθαγόρειο Θεώρημα. Λίγα ιστορικά στοιχεία για το Πυθαγόρειο Θεώρημα. 1. Είναι απαραίτητο να εξετάζουμε στην περίοδο που διανύουμε το ξεκίνημα των τεχνών και των επιστημών, έτσι διαπιστώνουμε, ότι πρώτα οι Αιγύπτιοι ανακάλυψαν

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Αναστασία Πέτρου Κωνσταντίνος Χρήστου Β 3 ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Ο Πυθαγόρας ο Σάμιος, υπήρξε σημαντικός Έλληνας φιλόσοφος, μαθηματικός, γεω μέτρης και θεωρητικός της μουσικής. Είναι ο κατεξοχήν

Διαβάστε περισσότερα

Το Πυθαγόρειο Θεώρημα

Το Πυθαγόρειο Θεώρημα Το Πυθαγόρειο Θεώρημα «Εν τοις ορθογωνίοις τριγώνοις το από της την ορθήν γωνίαν υποτεινούσης πλευράς τετράγωνον ίσον εστί τοις από των την ορθήν γωνίαν περιεχουσών πλευρών τετραγώνοις». Δηλαδή: «Το τετράγωνο

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Το Θεώρημα γεννιέται πριν από 4000 χρόνια Οι ρίζες του Πυθαγορείου Θεωρήματος βρίσκονται στη Γεωμετρία. Το θεώρημα διαδραματίζει κεντρικό ρόλο σε πολυάριθμους επιστημονικούς κλάδους,

Διαβάστε περισσότερα

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήµατος ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρηµα έχουν δοθεί

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Παράγοντας τον Τύπο της Δευτεροβάθμιας Εξίσωσης

Παράγοντας τον Τύπο της Δευτεροβάθμιας Εξίσωσης Παράγοντας τον Τύπο της Δευτεροβάθμιας Εξίσωσης Οι τεχνικές επίλυσης δευτεροβάθμιων εξισώσεων εμφανίζονται τουλάχιστον πριν 4000 χρόνια, στην αρχαία Μεσοποταμία, σημερινό Ιράκ. Οι μέθοδοι πιθανόν προήλθαν

Διαβάστε περισσότερα

Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα:

Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα: Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα: Μαθηματικά Ο σκοπός της έρευνας είναι η αναζήτηση για

Διαβάστε περισσότερα

Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή:

Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή: Τουρναβίτης Στέργιος Eπαναληπτικές ασκήσεις Γεωμετρίας Β Γυμνασίου Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή: «Ένα καλό σχήμα σε άσκηση

Διαβάστε περισσότερα

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την Κεφάλαιο 11 Αναλογίες, Ομοιότητα Η έννοια του λόγου ορίζεται στο πέμπτο βιβλίο των Στοιχείων του Ευκλείδη ως εξής: Λόγος εστί δύο μεγεθών ομογενών η κατά πηλικότητά ποια σχέσις Λόγον έχειν προς άλληλα

Διαβάστε περισσότερα

1.Μετρώντας τις διαστάσεις του Θεάτρου

1.Μετρώντας τις διαστάσεις του Θεάτρου ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ 1 Ονοματεπώνυμο μαθητών: 1.... 2.... 1.Μετρώντας τις διαστάσεις του Θεάτρου 1)Σταθείτε σε ένα σημείο λίγο μακρυά απο το χώρο του θεάτρου. Κλείστε τα μάτια σας και φανταστείτε πως

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 6.03.14 Χ. Χαραλάμπους 1(και 60) 8 10 30 11 79883= (22*60 2 )+(11*60)+23 70 Δεν έχουν βρεθεί πίνακες για πρόσθεση. Έχουν βρεθεί πολλοί πίνακες για τον πολλαπλασιασμό: Έτσι ένας πίνακας

Διαβάστε περισσότερα

4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 6.Ανάλυση των παραμέτρων που θεωρήθηκε ότι δεν επηρεάζουν τα αποτελέσματα της έρευνας.

4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 6.Ανάλυση των παραμέτρων που θεωρήθηκε ότι δεν επηρεάζουν τα αποτελέσματα της έρευνας. Πρόλογος 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήματος. 3.Παρουσίαση του σκοπού της έρευνας. 4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 5.Διαμωρφωση της υπόθεσης της έρευνας. 6.Ανάλυση

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

A

A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΡΧΙΑΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΝΟΕΜΒΡΙΟΣ 017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 11/11/017 Ώρα Εξέτασης: 10:00-1:00 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις σας..

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις 15-0-16 Θέμα 1 ο : Α.i. Να διατυπώσετε το Πυθαγόρειο Θεώρημα. (5 μον.) ii. Πότε δύο ευθύγραμμα τμήματα

Διαβάστε περισσότερα

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους Ποια είναι τα χαρακτηριστικά των μαθηματικών των αρχαίων Αιγυπτίων? Υπάρχει διαχωρισμός ανάμεσα στις ακριβείς τιμές ποσοτήτων και στις προσεγγίσεις? Όλοι αυτοί

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΒΔΗΡΩΝ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΒΔΗΡΩΝ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΒΔΗΡΩΝ Τμήμα Α1 Ομάδα 1 Γούλα Χρυσούλα Δέλλιου Ευγενία Γκλατκίχ Γιάννης Μακράκης Παναγιώτης Εμίν Ογλού Εμίν ΑΡΧΑΙΟΙ ΕΛΛΗΝΕΣ ΜΑΘΗΜΑΤΙΚΟΙ Πυθαγόρας ο Σάμιος (580-500 π.χ.) Ιπποκράτης ο Χίος

Διαβάστε περισσότερα

Γεωµετρικές έννοιες και µετρήσεις µεγεθών. (ή, διαφορετικά, αντίληψη του χώρου)

Γεωµετρικές έννοιες και µετρήσεις µεγεθών. (ή, διαφορετικά, αντίληψη του χώρου) Γεωµετρικές έννοιες και µετρήσεις µεγεθών (ή, διαφορετικά, αντίληψη του χώρου) αντιλήψεις παιδιών (κι όχι µόνο) τι είναι γεωµετρία; Όταν αντιμετωπίζω προβλήματα γεωμετρίας νιώθω σαν να κάνω ένα είδος μεταγνωστικής

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ Εαρινό εξάμηνο 2011 23.02.11 Χ. Χαραλάμπους ΑΠΘ Υπολογισμός (ακρίβεια έως 5 δεκαδικά) Yale Babylonian collection, 1800 π.χ. 24 51 10 1+ + + = 1.41421296 2 3 60 60 60 Τετραγωνική ρίζα του 2 Ποια είναι η

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ. 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Πόσες λύσεις έχει το πρόβλημα;

ΓΕΩΜΕΤΡΙΑ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ. 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Πόσες λύσεις έχει το πρόβλημα; ΓΕΩΜΕΤΡΙΑ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Πόσες λύσεις έχει το πρόβλημα; Πρέπει να σχεδιάσουμε ένα τρίγωνο που τα μήκη των πλευρών του έχουν άθροισμα

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 13.03.14 Χ. Χαραλάμπους Εντονες πυθαγόρειες επιδράσεις. Η Γεωμετρία και τα Μαθηματικά έχουν μια ξεχωριστή ξχ θέση. Ουδείς αγεωμέτρητος εισί Στον κόσμο των ιδεών τα μαθηματικά αντικείμενα

Διαβάστε περισσότερα

ΜΕΡΟΣ Β 1.4 ΟΜΟΙΟΘΕΣΙΑ ΟΜΟΙΟΘΕΣΙΑ

ΜΕΡΟΣ Β 1.4 ΟΜΟΙΟΘΕΣΙΑ ΟΜΟΙΟΘΕΣΙΑ ΜΕΡΟΣ.4 ΟΜΟΙΟΘΕΣΙ 45. 4 ΟΜΟΙΟΘΕΣΙ Το ομοιόθετο σημείου ν πάρουμε δύο σημεία Ο, και στην ημιευθεία Ο πάρουμε ένα σημείο ', τέτοιο ώστε Ο = 2 O, τότε λέμε ότι το σημείο είναι ο- μοιόθετο του με κέντρο Ο

Διαβάστε περισσότερα

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό. Αρχιμήδης ο Συρακούσιος Ο μεγαλύτερος μαθηματικός της αρχαιότητας και από τους μεγαλύτερους όλων των εποχών. Λέγεται ότι υπήρξε μαθητής του Ευκλείδη, ότι ταξίδεψε στην Αίγυπτο, σπούδασε στην Αλεξάνδρεια

Διαβάστε περισσότερα

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ. Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.

Διαβάστε περισσότερα

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΤΑΞΗ : Β ΧΡΟΝΟΣ : 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΤΜΗΜΑ

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΠΥΘΑΓΟΡΑΣ Πέτρου Αναστασία Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΑΘΗΝΑ 2013 Ο Πυθαγόρας (586 500 π.χ.) του Μνησάρχου και της «ωραίας υπέρ φύσιν» Πυθαϊδος γεννήθηκε στη Σάμο. Μικρός επισκέφθηκε τους Δελφούς,

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι ΓΕΩΜΕΤΡΙΑ 90 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Ερωτήσεις πολλαπλής επιλογής 1. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ έχει Α = 90, β = 9 cm, γ = 1 cm και την ΑΜ διάµεσο. Το µήκος του ΑΜ ισούται µε: Α. 9. 9 Ε. 1 15 Β. 6 Γ..

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή. Τα Μαθηματικά των αρχαίων Αιγυπτίων και των Βαβυλωνίων. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,

Διαβάστε περισσότερα

ΜΑΡΙΝΑ ΛΥΚΟΚΑ Β 1 ρ. ΠΑΤΣΙΟΜΙΤΟΥ

ΜΑΡΙΝΑ ΛΥΚΟΚΑ Β 1 ρ. ΠΑΤΣΙΟΜΙΤΟΥ ΜΑΡΙΝΑ ΛΥΚΟΚΑ Β 1 ρ. ΠΑΤΣΙΟΜΙΤΟΥ 2013-2014 Ποιος ήταν, αλλά πάνω απ 'όλα, τι έκανε... Ο Πυθαγόρας ο Σάµιος, υπήρξε σηµαντικός Έλληνας φιλόσοφος, µαθηµατικός, γεωµέτρης και θεωρητικός της µουσικής. Είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων

Διαβάστε περισσότερα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή Δρ. Κυριακή Τσιλίκα Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Θεσσαλίας Η απαρχή της Γεωμετρίας Οι Βαβυλώνιοι, για πρώτη φορά,

Διαβάστε περισσότερα

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 26.02.14 Χ. Χαραλάμπους 14 ο πρόβλημα (βρίσκεται στο Μουσείο Καλών Τεχνών της Μόσχας από το 1893 μ.χ.) «μετάφραση των συμβόλων: Εάν σου πουν: μία κομμένη πυραμίδα με ύψος 6, με βάση

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

1. Γενικά για τα τετράπλευρα

1. Γενικά για τα τετράπλευρα 1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β Ημερήσιου και Γ Εσπερινού Γενικού Λυκείου II. Διαχείριση διδακτέας ύλης Κεφάλαιο 7 ο (Προτείνεται να διατεθούν 6 διδακτικές ώρες). 7.1-7.6 Στις παραγράφους αυτές γίνεται πρώτη

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ. Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος

Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ. Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος 0 λεπτά Βαθμολογία Το διαγώνισμα είναι βαθμολογημένο με άριστα

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

Πρόλογος. 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήµατος. 3.Παρουσίαση του σκοπού της έρευνας.

Πρόλογος. 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήµατος. 3.Παρουσίαση του σκοπού της έρευνας. Πρόλογος 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήµατος. 3.Παρουσίαση του σκοπού της έρευνας. 4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 5. ιαµωρφωση της υπόθεσης της έρευνας. 6.Ανάλυση

Διαβάστε περισσότερα

Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη

Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Φαινόμενα Εμπειρίες φαινομένων Οργάνωση φαινομένων Νοούμενα (πρώτες μαθηματικές έννοιες

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία

Ευκλείδεια Γεωμετρία Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου

Διαβάστε περισσότερα

Κάποιες εφαρμογές των Μαθηματικών. Μαθηματικά και Ρομποτική

Κάποιες εφαρμογές των Μαθηματικών. Μαθηματικά και Ρομποτική του Ν. Καστάνη Κάποιες εφαρμογές των Μαθηματικών Μαθηματικά και Ρομποτική ΕΝΑ ΓΕΓΟΝΟΣ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙ ΜΙΑ ΠΑΡΑΚΙΝΗΣΗ Σε μια συνέντευξη για πρόσληψη στην IBM έγινε η εξής ερώτηση: Τι είναι φρεάτιο; Διευκρίνιση

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.

Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ. Άλγεβρα Α ΕΠΑΛ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.2ο: Οι Πραγματικοί Αριθμοί 2.1 Οι Πράξεις και οι Ιδιότητές τους 2.2 Διάταξη Πραγματικών

Διαβάστε περισσότερα

1 Arq thc Majhmatik c Epagwg c

1 Arq thc Majhmatik c Epagwg c Μαθηματικός Λογισμός Ι Φθινόπωρο 0 Σημειώσεις 7-0- Μ. Ζαζάνης Arq thc Majhati c Epagwg c Θα συμβολίζουμε το σύνολο των ϕυσικών αριθμών, {,,,...} με το σύμβολο N. Το σύνολο των ϕυσικών αριθμών, συμπεριλαμβανομένου

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

VAN HIELE GEOMETRY TEST * (USISKIN) ΟΔΗΓΙΕΣ

VAN HIELE GEOMETRY TEST * (USISKIN) ΟΔΗΓΙΕΣ VAN HIELE GEOMETRY TEST * (USISKIN) ΟΔΗΓΙΕΣ Μην γυρίσετε την επόμενη σελίδα πριν σας το πουν. Για το test αυτό πρέπει να γνωρίζετε ότι: Δεν επηρεάζει τη βαθμολογία σου στο σχολείο. Χρησιμοποιείται αποκλειστικά

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 017-018 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ Γυμνασίου ΗΜΕΡΟΜΗΝΙΑ: Δευτέρα, 4 Ιουνίου 018 ΧΡΟΝΟΣ: ώρες ΒΑΘΜΟΣ:. ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν:

ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΑΞΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: : 11+ 15= 24 : 17+ 11= 16 : 11 13= 17 : 11 14= 26 i 7+

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα

Διαβάστε περισσότερα

Πρακτική άσκηση σε σχολεία της Δευτεροβάθμιας Εκπαίδευσης

Πρακτική άσκηση σε σχολεία της Δευτεροβάθμιας Εκπαίδευσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Πρακτική άσκηση σε σχολεία της Δευτεροβάθμιας Εκπαίδευσης Βασιλική Μάντζιου Α.Μ.: 1112201000125 1ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ ΔΙΔΑΣΚΑΛΙΑ

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.

Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση. Ενότητα 4 Τριγωνομετρία Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.

Διαβάστε περισσότερα

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα

Διαβάστε περισσότερα

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΑΡΧΑΙΑ ΑΙΓΥΠΤΟ H γενική τάση των κατοίκων της Αιγύπτου στις επιστήμες χαρακτηριζόταν από την προσπάθεια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του Ανδρέας Ιωάννου Κασσέτας ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του 1. Υπάρχει αριθµός τέτοιος ώστε εάν τον υψώσεις στο τετράγωνο να αυξηθεί

Διαβάστε περισσότερα

Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις /

Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις / Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις / Οι παρακάτω πίνακες καλύπτουν το μεγαλύτερο μέρος της ύλης του αναλυτικού προγράμματος σπουδών της Γεωμετρίας.

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ. Τριγωνομετρικοι αριθμοι οξειων γωνιων

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ. Τριγωνομετρικοι αριθμοι οξειων γωνιων Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Τριγωνομετρικοι αριθμοι οξειων γωνιων 9 ΑΥΓΟΥΣΤΟΥ 016 Κλίση ευθείας Όλοι έχουμε στο δρόμο τα παρακάτω σήματα, που από την εμπειρία μας καταλαβαίνουμε ότι πλησιάζουμε σε ανηφόρα.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f) = c f, Έστω F = c f Έχουμε

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 28.03.12 Χ. Χαραλάμπους Τι είναι αριθμητική? Τι είναι Άλγεβρα? Είναι Άλγεβρα η «Γεωμετρική Άλγεβρα»? Έκανε ο Διόφαντος Άλγεβρα? Ασχολήθηκαν με Άλγεβρα οι αρχαίοι Βαβυλώνιοι? Πολυωνυμικές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 29.02.12 Χ. Χαραλάμπους Ο πάπυρος του Rhind---Ahmes 81 από αυτά τα προβλήματα έχουν λύσεις που αναφέρονται σε κλασματικές ποσότητες Πρόβλημα 3, π. του Rhind: «να διαιρέσεις 6 φραντζόλες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν; ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια

Διαβάστε περισσότερα