ΑΠΟΦΑΣΗ ΑΡΙΘ. 397 ΑΠΟ ΤΟ ΥΠ' ΑΡΙΘ. 23/2015 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΕΩΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΛΑΡΙΣΑΙΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΠΟΦΑΣΗ ΑΡΙΘ. 397 ΑΠΟ ΤΟ ΥΠ' ΑΡΙΘ. 23/2015 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΕΩΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΛΑΡΙΣΑΙΩΝ"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΛΑΡΙΣΑΙΩΝ Δ/ΝΣΗ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΑΠΟΦΑΣΗ ΑΡΙΘ. 397 ΑΠΟ ΤΟ ΥΠ' ΑΡΙΘ. 23/2015 ΠΡΑΚΤΙΚΟ ΣΥΝΕΔΡΙΑΣΕΩΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΥΜΒΟΥΛΙΟΥ ΛΑΡΙΣΑΙΩΝ ΘΕΜΑ: 17 η Αναμόρφωση του προϋπολογισμού του Δήμου Λαρισαίων οικονομικού έτους 2015 σύμφωνα με την 474/2015 Απόφαση Οικονομικής Επιτροπής. Στη Λάρισα, σήμερα 15 η του μηνός Οκτωβρίου, του έτους 2015, ημέρα Πέμπτη και ώρα μ.μ. το Δημοτικό Συμβούλιο του Δήμου Λαρισαίων συνήλθε σε συνεδρίαση, ύστερα από τη με αρ. πρωτ / πρόσκληση του Προέδρου αυτού, η οποία έγινε σύμφωνα με τους ορισμούς του άρθρου 67 του Ν. 3852/ Ήταν δε παρόντες από τα μέλη του οι κ.κ: 1) Τάχος Δημήτριος, ως Πρόεδρος, 2) Αδαμόπουλος Αθανάσιος, 3) Αναστασίου Μιχαήλ, 4) Αράπκουλε Δέσποινα, 5) Βαγενά Αγγελική, 6) Βλησαρούλης Αθανάσιος, 7) Γελαλή Πολυξένη, 8) Γεωργάκης Δημήτριος, 9) Δαούλας Θωμάς, 10) Δεληγιάννης Δημήτριος, 11) Διαμάντος Κωνσταντίνος, 12) Ζαούτσος Γεώργιος, 13) Καλαμπαλίκης Κων/νος, 14) Καλτσάς Νικόλαος, 15) Καμηλαράκη-Σαμαρά Μαρία, 16) Καραλαριώτου Ειρήνη, 17) Καφφές Θεόδωρος, 18) Κρίκης Πέτρος, 19) Κωσταρόπουλος Γεώργιος, 20) Μαβίδης Δημήτριος, 21) Μαμάκος Αθανάσιος, 22) Μπαμπαλής Δημήτριος, 23) Μπαράς Νικόλαος, 24) Μπατζανούλης Αλέξανδρος, 25) Μπουσμπούκης Ιωάννης, 26) Νταής Παναγιώτης, 27) Παζιάνας Γεώργιος, 28) Παναγιωτακοπούλου-Δαλαμπύρα Αγγελική, 29) Πράπας Αντώνιος, 30) Ρεβήσιος Κωνσταντίνος, 31) Σάπκας Παναγιώτης, 32) Σαρρής Ματθαίος, 33) Σουλούκου Ασπασία, 34) Σούλτης Γεώργιος, 35) Σουρλαντζής Απόστολος, 36) Τσακίρης Μιχαήλ, 37) Τσεκούρα Ζαχαρού Βάϊα, 38) Τσιαούσης Κωνσταντίνος και 39) Τσιλιμίγκας Χρήστος. και δεν προσήλθαν οι Δημοτικοί Σύμβουλοι κ.κ. 1) Αντωνίου Νέστωρ, 2) Γεωργούλης Αλέξανδρος, 3) Ζιαζιά Σουφλιά Αικατερίνη, 4) Κυριτσάκας Ν. Βάϊος, 5) Νασιώκας Έκτορας, 6) Ξηρομερίτης Μάριος, 7) Παπαδημητρίου Βασίλειος, 8) Τερζούδης Χρήστος, 9) Τζανακούλης Κων/νος και 10) Ψάρρα Περίφανου Άννα. Το Δημοτικό Συμβούλιο, αφού βρέθηκε σε νόμιμη απαρτία (σε σύνολο αριθμού συμβούλων 49 παρευρίσκονταν οι 39, αποτελούντες την απόλυτη πλειοψηφία αυτού, άρθρο 96 παράγραφος 2 του ΔΚΚ (Ν. 3463/ ), δηλαδή τον αμέσως μεγαλύτερο ακέραιο του μισού του νομίμου αριθμού των μελών του Συμβουλίου), εισέρχεται στη συζήτηση των θεμάτων παρόντος του Δημάρχου κ. Απόστολου Καλογιάννη. Σελίδα 1 από 8

2 Κατά τη συζήτηση του θέματος απουσίαζαν οι Δημοτικοί Σύμβουλοι κ.κ. Τσακίρης Μιχαήλ, Μαμάκος Αθανάσιος, Μπατζανούλης Αλέξανδρος, Τσιαούσης Κωνσταντίνος, Σουλούκου Ασπασία, Βαγενά Αγγελική, Αναστασίου Μιχαήλ και Ζαούτσος Γεώργιος. Το Δημοτικό Συμβούλιο του Δήμου Λαρισαίων μετά από συζήτηση σχετικά με την: 17 η Αναμόρφωση του προϋπολογισμού του Δήμου Λαρισαίων οικονομικού έτους 2015 σύμφωνα με την 474/2015 Απόφαση Οικονομικής Επιτροπής και αφού έλαβε υπόψη: 1. Το άρθρο 266 του Ν. 3852/ Τη με αριθμ. 474/2015 Απόφαση Οικονομικής Επιτροπής. 3. Τη διαφωνία των Δημοτικών Συμβούλων κ. Καλαμπαλίκη Κων/νου, Κρίκη Πέτρου και Παζιάνα Γεώργιου. ΑΠΟΦΑΣΙΣΕ ΚΑΤΑ ΠΛΕΙΟΨΗΦΙΑ Εγκρίνει την 17 η αναμόρφωση του προϋπολογισμού του Δήμου Λαρισαίων οικονομικού έτους 2015, όπως αναλυτικά παρουσιάζεται στον πίνακα που επισυνάπτεται και αποτελεί αναπόσπαστο μέρος της παρούσας σύμφωνα με τη με αριθμ. 474/2015 Απόφαση Οικονομικής Επιτροπής. Το παρόν συντάχθηκε αναγνώσθηκε και αφού βεβαιώθηκε υπογράφεται όπως παρακάτω. ΤΟ ΔΗΜΟΤΙΚΟ ΣΥΜΒΟΥΛΙΟ Ο ΠΡΟΕΔΡΟΣ Η ΓΡΑΜΜΑΤΕΑΣ ΤΑ ΜΕΛΗ ΤΑΧΟΣ ΔΗΜΗΤΡΙΟΣ ΠΑΝΑΓΙΩΤΑΚΟΠΟΥΛΟΥ-ΔΑΛΑΜΠΥΡΑ ΑΓΓΕΛΙΚΗ Σελίδα 2 από 8

3 ΔΗΜΟΣ ΛΑΡΙΣΑΙΩΝ ΔΙΕΥΘΥΝΣΗ ΟΙΚΟΝΟΜΙΚΩΝ ΤΜΗΜΑ ΠΡΟΥΠΟΛΟΓΙΣΜΟΥ/ΙΣΟΛΟΓΙΣΜΟΥ 17η ΤΑΚΤΟΠΟΙΗΤΙΚΗ ΑΝΑΜΟΡΦΩΣΗ ΠΡΟΫΠΟΛΟΓΙΣΜΟΥ ΕΤΟΥΣ 2015 ΕΣΟΔΑ 1. ή ΔΗΜΙΟΥΡΓΙΑ ΚΑ ΚΩΔΙΚΟΣ ΠΡΟΫΠ/ΣΜΟΣ ΑΠO ΑΡΙΘΜΟΣ ΠΕΡΙΓΡΑΦΗ ΕΞΟΔΟΥ ΠΟΣΟ Σ ΠΡΟΗΓ. ΑΝΑΜΟΡΦ. ΑΙΤΙΑ ΑΝΑΜΟΡΦΩΣΗΣ ΠΗΓΗ ΧΡΗΜ/ΣΗΣ ΦΠΑ , ,00 Κ.Α ΥΠΕΣΔΔΑ-ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ ΕΡΓΑΖΟΜΕΝΩΝ ΔΗΜΟΨΗΦΙΣΜΑ ,00 0,00 Κ.Α ΥΠΕΣ ΥΠΕΡ ΣΥΝΤΑΞΗΣ ΟΓΑ ΑΣΦΑΛΙΣΜΕΝΟΥ 1.000,00 0,00 Κ.Α ΥΠΕΡ ΤΡΙΤΩΝ ΥΠΕΡ ΣΥΝΤΑΞΗΣ ΟΓΑ ΕΡΓΟΔΟΤΗ 1.500,00 0,00 Κ.Α ΥΠΕΡ ΤΡΙΤΩΝ ΠΕΡΙΘΑΛΨΗ ΟΓΑ ΑΣΦΑΛΙΣΜΕΝΟΥ 100,00 0,00 Κ.Α ΥΠΕΡ ΤΡΙΤΩΝ ΠΕΡΙΘΑΛΨΗ ΟΓΑ ΕΡΓΟΔΟΤΗ 100,00 0,00 Κ.Α ΥΠΕΡ ΤΡΙΤΩΝ ΟΓΑ (ΕΟΠΠΥ) ΑΣΦΑΛΙΣΜΕΝΟΥ 400,00 0,00 Κ.Α ΥΠΕΡ ΤΡΙΤΩΝ ΟΓΑ (ΕΟΠΠΥ) ΕΡΓΟΔΟΤΗ 550,00 0,00 Κ.Α ΥΠΕΡ ΤΡΙΤΩΝ ΤΕΑΔΥ - ΤΕΑΠΟΚΑ ΕΡΓΟΔΟΤΗ 500,00 0,00 Κ.Α ΥΠΕΡ ΤΡΙΤΩΝ 2. ΕΣΟΔΩΝ ΣΥΝΟΛΟ ,00 ΚΩΔΙΚΟΣ ΑΡΙΘΜΟΣ ΠΕΡΙΓΡΑΦΗ ΕΣΟΔΟΥ ΕΣΟΔΑ ΑΠΟ ΠΟΛΙΤΙΣΤΙΚΕΣ ΕΚΔΗΛΩΣΕΙΣ-ΠΗΝΕΙΟΣ ΠΟΣΟ Σ ΠΡΟΫΠ/ΣΜΟΣ ΑΠΌ ΠΡΟΗΓ. ΑΝΑΜΟΡΦ , ,00 ΑΙΤΙΑ ΑΝΑΜΟΡΦΩΣΗΣ ΜΗ ΧΡΗΣΙΜΟΠΟΙΟΥΜΕΝΟΣ ΚΑ ΠΗΓΗ ΧΡΗΜ/ΣΗΣ ΦΟΡΟΣ ΖΥΘΟΥ ,00 ΣΥΝΟΛΟ ,00 ΕΞΟΔΑ ,00 ΕΓΓΡΑΦΟ ΥΠΕΣ 4/9/215 ΠΡΩΤ Σελίδα 3 από 8

4 1. / ΔΗΜΙΟΥΡΓΙΑ ΚΑ ΚΩΔΙΚΟΣ ΑΡΙΘΜΟΣ ΠΕΡΙΓΡΑΦΗ ΕΞΟΔΟΥ ΠΟΣΟ Σ ΠΡΟΫΠ/ΣΜΟΣ ΑΠΌ ΠΡΟΗΓ. ΑΝΑΜΟΡΦ. ΑΙΤΙΑ ΑΝΑΜΟΡΦΩΣΗΣ ΠΗΓΗ ΧΡΗΜ/ΣΗΣ ΥΠΑΛΛΗΛΩΝ (ΚΕΠ) , ,00 ΥΠΑΛΛΗΛΩΝ , ,72 ΥΠΑΛΛΗΛΩΝ , ,00 ΥΠΑΛΛΗΛΩΝ , ,00 ΥΠΑΛΛΗΛΩΝ , ,00 ΥΠΑΛΛΗΛΩΝ , ,12 ΥΠΑΛΛΗΛΩΝ (Δ/ΝΣΗ ΣΧΕΔ.) , ,00 ΥΠΑΛΛΗΛΩΝ ΑΟΡ.ΧΡΟΝΟΥ (ΟΙΚ.ΥΠ.) , ,92 ΑΠΟΔΟΧΕΣ ΕΚΤΑΚΤΩΝ ΧΡΟΝΟΥ , ,80 ΑΠΟΔΟΧΕΣ ΕΚΤΑΚΤΩΝ ΧΡΟΝΟΥ , ,40 ΑΠΟΔΟΧΕΣ ΕΚΤΑΚΤΩΝ ΧΡΟΝΟΥ , ,28 ΑΠΟΔΟΧΕΣ ΕΚΤΑΚΤΩΝ ΧΡΟΝΟΥ(ΠΡΟΝΟΙΑ) , , , ,04 Σελίδα 4 από 8

5 ΧΡΟΝΟΥ ΑΠΟΔΟΧΕΣ ΤΑΚΤ. ΥΠΑΛΛ. ΑΟΡ. ΧΡΟΝΟΥ (Δ/ΝΣΗ ΣΧΕΔ.) , ,36 Σελίδα 5 από ΧΡΟΝΟΥ 1.000, , ΜΟΝΙΜΩΝ (ΔΙΟΙΚ.ΥΠ.) 5.000, ,60 ΑΟΡΙΣΤΟΥ ΧΡΟΝΟΥ (ΟΙΚ.ΥΠ.) 5.000, , ΜΟΝΙΜΩΝ , , ΑΟΡΙΣΤΟΥ ΧΡΟΝΟΥ , , ΑΟΡΙΣΤΟΥ ΧΡΟΝΟΥ , ,36 ΑΟΡΙΣΤΟΥ ΧΡΟΝΟΥ(ΠΡΟΝΟΙΑ) 2.000, , ΑΟΡΙΣΤΟΥ ΧΡΟΝΟΥ 5.000, , ΜΟΝΙΜΩΝ (Δ/ΝΣΗ ΣΧΕΔ.) 5.000, , , ΜΟΝΙΜΩΝ , ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 1.895, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 1.500, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 2.300, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 800, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 300,00 520,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 200,00 260,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 100,00 260,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 200,00 260,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 700,00 520,00 ΥΠΕΣ

6 ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 4.000, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 1.300, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 1.300, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 1.800, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 300,00 390,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 1.600,00 0,00 ΔΗΜΙΟΥΡΓΙΑ Κ.Α. ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 1.400, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 700, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 400,00 390,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 700,00 910,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 1.900, ,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 100,00 390,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 1.600,00 0,00 ΔΗΜΙΟΥΡΓΙΑ Κ.Α. ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 700,00 910,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 400,00 390,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 100,00 130,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 300,00 390,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 600,00 910,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 200,00 520,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 300,00 260,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 400,00 520,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 200,00 130,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 200,00 130,00 ΥΠΕΣ ΕΚΛΟΓΙΚΗ ΑΠΟΖΗΜΙΩΣΗ 200,00 260,00 ΥΠΕΣ ΔΑΠΑΝΕΣ ΠΡΟΜΗΘΕΙΑΣ ΑΝΑΛΩΣΙΜΩΝ ΥΛΙΚΩΝ 1.653, ,89 ΑΝΤΙΤΙΜΟ ΓΙΑ ΦΩΤΙΣΜΟ ΟΔΩΝ, ΠΛΑΤΕΙΩΝ ΚΛΠ , ,00 ΠΡΟΜΗΘΕΙΑ ΑΝΤΛΙΩΝ ΑΡΔΕΥΣΗΣ 1.500,00 0,00 ΔΗΜΙΟΥΡΓΙΑ ΑΝΤΑΛΛΑΚΤΙΚΑ ΜΕΓΑΛΩΝ ΜΗΧΑΝΗΜΑΤΩΝ 1.000, ,00 ΑΝΕΠΑΡΚΕΙΣ ΠΙΣΤΩΣΕΙΣ ΦΠΑ , ,00 ΑΝΕΠΑΡΚΕΙΣ ΠΙΣΤΩΣΕΙΣ Σελίδα 6 από 8

7 ΥΠΕΡ ΣΥΝΤΑΞΗΣ ΟΓΑ ΑΣΦΑΛΙΣΜΕΝΟΥ 1.000,00 0,00 ΔΗΜΙΟΥΡΓΙΑ ΥΠΕΡ ΤΡΙΤΩΝ ΥΠΕΡ ΣΥΝΤΑΞΗΣ ΟΓΑ ΕΡΓΟΔΟΤΗ 1.500,00 0,00 ΔΗΜΙΟΥΡΓΙΑ ΥΠΕΡ ΤΡΙΤΩΝ ΠΕΡΙΘΑΛΨΗ ΟΓΑ ΑΣΦΑΛΙΣΜΕΝΟΥ 100,00 0,00 ΔΗΜΙΟΥΡΓΙΑ ΥΠΕΡ ΤΡΙΤΩΝ ΠΕΡΙΘΑΛΨΗ ΟΓΑ ΕΡΓΟΔΟΤΗ 100,00 0,00 ΔΗΜΙΟΥΡΓΙΑ ΥΠΕΡ ΤΡΙΤΩΝ ΟΓΑ (ΕΟΠΠΥ) ΑΣΦΑΛΙΣΜΕΝΟΥ 400,00 0,00 ΔΗΜΙΟΥΡΓΙΑ ΥΠΕΡ ΤΡΙΤΩΝ ΟΓΑ (ΕΟΠΠΥ) ΕΡΓΟΔΟΤΗ 550,00 0,00 ΔΗΜΙΟΥΡΓΙΑ ΥΠΕΡ ΤΡΙΤΩΝ ΤΕΑΔΥ - ΤΕΑΠΟΚΑ ΕΡΓΟΔΟΤΗ 500,00 0,00 ΔΗΜΙΟΥΡΓΙΑ ΕΞΟΔΑ ΥΠΟΧΡΕΩΤΙΚΗΣ ΔΗΜΟΣΙΕΥΣΗΣ ΑΝΑΚΟΙΝΩΣΕΩΝ ΓΙΑ ΔΙΑΓΩΝΙΣΜΟΥΣ 5.500, ,00 ΜΗ ΕΠΑΡΚΕΙΣ ΠΙΣΤΩΣΕΙΣ ΣΥΝΟΛΟ ,62 2. ΚΑ ΠΡΟΫΠ/ΣΜΟΣ ΑΠΌ ΚΩΔΙΚΟΣ ΑΡΙΘΜΟΣ ΠΕΡΙΓΡΑΦΗ ΕΞΟΔΟΥ ΠΟΣΟ Σ ΠΡΟΗΓ. ΑΝΑΜΟΡΦ. ΑΙΤΙΑ ΑΝΑΜΟΡΦΩΣΗΣ ΠΗΓΗ ΧΡΗΜ/ΣΗΣ ΥΠΑΛΛΗΛΩΝ (ΟΙΚ.ΥΠ.) , , ΥΠΑΛΛΗΛΩΝ (ΔΙΟΙΚ.ΥΠ.) , ,96 ΥΠΑΛΛΗΛΩΝ (Δ/ΝΣΗ ΤΟΠΙΚΗΣ-ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ) , , ΥΠΑΛΛΗΛΩΝ(ΠΡΟΝΟΙΑΣ) , , ΥΠΑΛΛΗΛΩΝ (Η/Μ) , , , ΥΠΑΛΛΗΛΩΝ , , ΥΠΑΛΛΗΛΩΝ ,00 Σελίδα 7 από 8

8 38.768, ΥΠΑΛΛΗΛΩΝ ,00 ΑΟΡΙΣΤΟΥ ΧΡΟΝΟΥ , , (ΔΙΟΙΚ.ΥΠ.) ΕΡΓΑ , ,35 ΑΜΟΙΒΕΣ ΚΑΙ ΕΞΟΔΑ ΤΡΙΤΩΝ-ΠΑΡΟΧΕΣ , , ΤΡΙΤΩΝ ΔΙΚΑΙΩΜΑΤΑ ΑΕΠΙ 1.500, , ΑΠΟΘΕΜΑΤΙΚΟ ,29 ΣΥΝ ΕΣΟΔΩΝ ,00 ΣΥΝ ΕΞΟΔΩΝ ,56 ΣΥΝΟΛΟ ,85 ΜΕΙΟΝ ΕΣΟΔΩΝ ,00 ΜΕΙΟΝ ΕΞΟΔΩΝ ,62 ΣΥΝΟΛΟ ,23 ΠΡΟΜΗΘΕΙΑ ΥΛΙΚΩΝ ΓΙΑ ΤΗ ΣΥΝΤΗΡΗΣΗ - ΕΠΙΣΚΕΥΗ ΘΕΡΙΝΟΥ ΚΙΝ/ΦΟΥ (Αποδέσμευση) 2.000, ,00 ΤΕΧΝΙΚΟΣ ΚΙΝΗΜΑΤΟΓΡΑΦΙΣΤΗΣ 2.000, , ,56 Σελίδα 8 από 8

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5. ! # % & ( # ) & % ( % +, %. +, / #0 & 2 3 4 5 5 6 7 7 8 9 7:5! ; 0< 5 = 8 > 4 4? 754 Α 4 < = Β Χ 3Δ?? 7 8 7 8? 7 8 7 8 7 8 4 5 7 8 7 8 > 4> > 7 8 7 8 7 8 4 : 5 5 : > < 8 6 8 4 5 : 8 4 5 : 9! >: 48 7 8

Διαβάστε περισσότερα

Β # # 6 Χ 7 Χ 3 6 Α 7 6 ; Δ Ε Φ +/ Φ Ε+Γ Δ /Η ; Ι/ ϑκ +Λ, 7 6 1Η Μ/ Φ; # 7 6? =# 7 6 1Η Μ/ Φ; # 7 6Χ Ν 7 6 Ο Μ / ϑγ +Γ 7 ) 6 7 Χ Π + Κ

Β # # 6 Χ 7 Χ 3 6 Α 7 6 ; Δ Ε Φ +/ Φ Ε+Γ Δ /Η ; Ι/ ϑκ +Λ, 7 6 1Η Μ/ Φ; # 7 6? =# 7 6 1Η Μ/ Φ; # 7 6Χ Ν 7 6 Ο Μ / ϑγ +Γ 7 ) 6 7 Χ Π + Κ 2 + 3 2 333 ( + # # & ( & ) +, + +. / 0 1 ( / ( + 5 # 6 7 6 7 8 8 9 : ); < 6 # 7 8 6 7 6 # = 7 # = # > 6? 7 > Α Α Α Α Α Α 6 # 7 > 67 # 8 Β # # 6 Χ 7 Χ 3 6 Α 7 6 ; Δ Ε Φ +/ Φ Ε+Γ 7 6 7 6 + Δ /Η ; Ι/ ϑκ

Διαβάστε περισσότερα

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 %

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 % ! # % # & ) + ),. / 0 1 2 ) 1 2 2 ) 3 4 5 6! 7 8 9&3 78 : & ; =? > > > 7 8 9&3 : = = = Α + =?! %? = Β 2Β 2 2

Διαβάστε περισσότερα

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

Διαβάστε περισσότερα

= 9 :!! 2 = 28 ; ; < 8 Χ < ΑΓ Η ΒΙ % ) ϑ4? Κ! < ) & Λ / Λ Η Β 1 ; 8,, Φ Ε, Ε ; 8 / Β < Μ Ν Ο Β1 Π ΒΘ 5 Ρ 1 Γ ΛΓ Ι2Λ 2Λ < Ε Ε Φ Ι Η 8!<!!< = 28 <

= 9 :!! 2 = 28 ; ; < 8 Χ < ΑΓ Η ΒΙ % ) ϑ4? Κ! < ) & Λ / Λ Η Β 1 ; 8,, Φ Ε, Ε ; 8 / Β < Μ Ν Ο Β1 Π ΒΘ 5 Ρ 1 Γ ΛΓ Ι2Λ 2Λ < Ε Ε Φ Ι Η 8!<!!< = 28 < 0 1 2 / 1! % & ( ), %. / %. 4 5! 6 7 8 7 8 9 : ;! < < < ? : 1! > ΑΒ Χ, %? :! 6 =! Ε Φ 28 = 9 :!! 2 = 28 ; ; < 8 Χ < ΑΓ Η ΒΙ % ) 7 2 8 ϑ4? Κ! < ) & Λ / Λ Η Β 1 ; 8,, Φ Ε, Ε ; 8 / Β < Μ

Διαβάστε περισσότερα

Ε? Φ ) ( % &! # +. 2 ( (,

Ε? Φ ) ( % &! # +. 2 ( (, 0 12 ( 1! # # % & ( ) % ( +, & ). % & /. 4 2! 5 # /6 78 7 7 9 9 / 6 7 7 7 9 9 : 7; 7 ; < =% >9>?!#! Α 2 1 9? Β / 6! #Χ Α 7 5 7 Δ 7 / 6 ; Χ < 7? Ε? Φ ) ( % &! # +. 2 (1 5 5 6 5 6 6 4 0 (, [ Β, Η / Β Γ 7

Διαβάστε περισσότερα

!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α

!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α !! # % & % ( ) ) + # %, #. /,. / 1 2 3 4 5! 6 /7! 7 8 7 /7 8 7! 7 /7 9 : ; < = ; >? 7 4 4 4 Α Β Χ 9 > 7 4 ΔΑΕ 6 4 Β Β!4 /7 9! 7? 87 ; !? > 7 > 7 > 7 Ε 4 8 5 8! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η

Διαβάστε περισσότερα

Ρ Ρ. / / Γ 9 < 3 2 Ν Α Β Χ Ν Γ Μ 9 ΚΚ 8 Ν 8 9 +? 9 ϑ, = Γ Ν 9 8 : = = Χ 6 ΚΚ 6 6 Γ : Π = Χ Ε 8 = Χ < Μ Π = Χ % < 8 8 : = < Κ <

Ρ Ρ. / / Γ 9 < 3 2 Ν Α Β Χ Ν Γ Μ 9 ΚΚ 8 Ν 8 9 +? 9 ϑ, = Γ Ν 9 8 : = = Χ 6 ΚΚ 6 6 Γ : Π = Χ Ε 8 = Χ < Μ Π = Χ % < 8 8 : = < Κ < ! # % & # ( )(! &! & +, +,. / 0. 1. +.,. / 2 + 3,.3 +, + 3, 3 2 3 5 / 3 6 + # 6 7, 30 3 3. 3 / / 0. 2 / 3 2 6 % 8 9 : ; 7 < 8 = 6 > 8 6? 6 8 8 8 Α Β 6 6 = 8 Χ 9 8 Δ = + 8 Ε 7 Α

Διαβάστε περισσότερα

第9章 排队论

第9章  排队论 9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,

Διαβάστε περισσότερα

< = = Β = :?? Β Χ? < = 3 = Β = :? 3? <? 3 =? & =3? & & 6 8 & = Δ =3?3 Ε Φ Γ? = 6Β8 &3 =3?? =? = Η = Φ Η = > Φ Η = Φ Η Φ Η? > Φ Η? Φ Η Η 68 &! # % & (%

< = = Β = :?? Β Χ? < = 3 = Β = :? 3? <? 3 =? & =3? & & 6 8 & = Δ =3?3 Ε Φ Γ? = 6Β8 &3 =3?? =? = Η = Φ Η = > Φ Η = Φ Η Φ Η? > Φ Η? Φ Η Η 68 &! # % & (% !! # % & ( ) ( + % & ( ) &, % &., / 0 # 2 34!! 5 6 7 7 7 8 9 6 8 :! 9! 7 :!!! 6 8 :! 9 6 8 7 ;7 < < = = > = :?? > 6 Α 8 < = = Β = :?? Β Χ? < = 3 = Β = :? 3?

Διαβάστε περισσότερα

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. & !! # % & ( ) +,.% /.0.% 1 2 3 / 5,,3 6 7 6 8 9 6!! : 3 ) ; < < = )> 2?6 8 Α8 > 6 2 Β 3Α9 Α 2 8 Χ Δ < < Ε! ; # < # )Φ 5 Γ Γ 2 96 Η Ι ϑ 0 Β 9 Α 2 8 Β 3 0 Β 9 Β ΦΚ Α 6 8 6 6 Λ 2 5 8 Η Β 9 Α 2 8 2 Μ 6 Ν Α

Διαβάστε περισσότερα

: # > = 7 8 (?% > < Α 6 < 7 # #! 9 = #= > > 5 # = # # # # = = # # > > =! > =! 5 # #! > # = = # > 5 > > 9 9 = = = # # #! = 5 = # #= #! = > 9 # #! = 5 =

: # > = 7 8 (?% > < Α 6 < 7 # #! 9 = #= > > 5 # = # # # # = = # # > > =! > =! 5 # #! > # = = # > 5 > > 9 9 = = = # # #! = 5 = # #= #! = > 9 # #! = 5 = 2,(,! # % & & (( +,./ 0.. / 1, 3! 5 # 6 7 8 5 9 5! 6 # 7 6 7 : ;! 5 9! 5 5 5 9 5! < 6 #! #! 7 6 9! 9 7 5= 6 5 7 8 < #> # 5 < = # 5= = 5= =. #= : # > = 7 8 (?% > < Α 6 < 7 # #! 9 = #= > > 5 # = # # # #

Διαβάστε περισσότερα

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

Διαβάστε περισσότερα

GJB128A.PDF

GJB128A.PDF ± ± ± ± ± ± ± ± ± ± ± ± ±± ±±5µ ± ± ± ± ± ± ± ± ± ± ± ± ± µ ± ± ± ± ± ± ± ± ± ± ± ±1 ± ± + ± ± ± ± ± ± ± ± ± ±1. ± ± ± µ ± ± ±5 ± ± ± ± ± ±30 ± ± ± ± ± ±0.5 ±0 ±

Διαβάστε περισσότερα

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε (! # # %& ) +,./ 0 & 0 1 2 / & %&( 3! # % & ( ) & +, ), %!,. / 0 1 2. 3 4 5 7 8 9 : 0 2; < 0 => 8?.. >: 7 2 Α 5 Β % Χ7 Δ.Ε8 0Φ2.Γ Φ 5 Η 8 0 Ι 2? : 9 ϑ 7 ϑ0 > 2? 0 7Ε 2?. 0. 2 : Ε 0 9?: 9 Κ. 9 7Λ /.8 720

Διαβάστε περισσότερα

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

Διαβάστε περισσότερα

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

Διαβάστε περισσότερα

MS E.ai

MS E.ai Spectrum Master MS2712E 8.4 : 273 mm x 199 mm x 91 mm, (10.7 in x 7.8 in x 3.6 in), : 3.45 kg, (7.6 lbs) Spectrum Master MS2712E MS2713E μ 2 Spectrum Master MS2712E MS2713E 3 Spectrum Master MS2712E MS2713E

Διαβάστε περισσότερα

# # ? 5 Α 4 Β Χ Β Δ 4 Ε Φ Χ Γ Β Χ ) Δ 4 Ε Φ Χ Γ Η Α Γ Ι Φ Ε ϑ Α Γ ΕΑ 5 Β 5 Φ Ι Α Ι 4 Γ Η Κ 5 Χ Ι Ι Φ Γ Η Δ Ι Ε 5 Φ 4 Χ Δ Ε ) Δ Ε Λ 4 Δ Α Χ Μ

# # ? 5 Α 4 Β Χ Β Δ 4 Ε Φ Χ Γ Β Χ ) Δ 4 Ε Φ Χ Γ Η Α Γ Ι Φ Ε ϑ Α Γ ΕΑ 5 Β 5 Φ Ι Α Ι 4 Γ Η Κ 5 Χ Ι Ι Φ Γ Η Δ Ι Ε 5 Φ 4 Χ Δ Ε ) Δ Ε Λ 4 Δ Α Χ Μ ! # % & % ( ) +#, + +#. + 0 1 2 3 4 5 6 7 8 7 8 2 9 2 9 2 0 : 7 8 0 0 12 0 2! 1! ; 2 ; 2 1 < 0! 1 < 20 2 ; 1 0 : ; 0 2 0 12 2!0 = 6 > # # 9 0 1 9 4? 5 Α 4 Β Χ Β Δ 4 Ε Φ Χ Γ Β Χ ) Δ 4 Ε Φ Χ Γ Η Α Γ Ι Φ

Διαβάστε περισσότερα

% & ( ) +, (

% & ( ) +, ( #! % & ( ) +, ( ) (! ( &!! ( % # 8 6 7 6 5 01234% 0 / /. # ! 6 5 6 ;:< : # 9 0 0 = / / 6 >2 % % 6 ; # ( ##+, + # 5 5%? 0 0 = 0 0 Α 0 Β 65 6 66! % 5 50% 5 5 ΗΙ 5 6 Φ Γ Ε) 5 % Χ Δ 5 55 5% ϑ 0 0 0 Κ,,Λ 5!Α

Διαβάστε περισσότερα

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

Διαβάστε περισσότερα

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ # % & ( ) +,& ( + &. / 0 1 2 3 ( 4 4 5 4 6 7 8 4 6 5 4 9 :.; 8 0/ ( 6 7 > 5?9 > 56 Α / Β Β 5 Χ 5.Δ5 9 Ε 8 Φ 64 4Γ Β / Α 3 Γ Β > 2 ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν 3 3 3 Α3 3

Διαβάστε περισσότερα

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; = ! 0 1 # & ( & ) +! &,. & /.#. & 2 3 4 5 6 7 8 9 : 9 ; < = : > < = 9< 4 ; < = 1 9 ; 3; : : ; : ;? < 5 51 ΑΒ Χ Δ Ε 51 Δ!! 1Φ > = Β Γ Η Α ΒΧ Δ Ε 5 11!! Ι ϑ 5 / Γ 5 Κ Δ Ε Γ Δ 4 Φ Δ Λ< 5 Ε 8 Μ9 6 8 7 9 Γ Ν

Διαβάστε περισσότερα

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Διαβάστε περισσότερα

4 4 4 4 4 4! # % & ( # ) )! ) & +!. # / 0! + 1 & % / 0 2 & #. 3 0 5. 6 7 8 0 4 0 0 # 9 : ; < 9 = >9? Α = Β Χ Δ6 Ε9 8 & 9 : # 7 6 Φ = Γ Η Ι 0 ϑ 9 7 Κ 1 Λ 7 Κ % ΓΗ Δ 9 Η ΕΔ 9 = ;

Διαβάστε περισσότερα

Ⅰ Ⅱ 1 2Ⅲ Ⅳ

Ⅰ Ⅱ 1 2Ⅲ Ⅳ Ⅰ Ⅱ 1 2Ⅲ Ⅳ 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 1 2 3 4 5 6 1 2 3 4 1 2 1 2 1 2 1 1 1 2 3 1 2 3 ~ 1 2 3 1 2 3 1 2 3 4 5 1 2 3 5 4 ~ 1 1 1 1 1 2 1 1 ~ 1 2 3 ~ 1 2 3

Διαβάστε περισσότερα

= + > 6 7? 0 3 ; 3 = 6 7

= + > 6 7? 0 3 ; 3 = 6 7 !! # % & & ( % ) + # %, + + # %. / 0 /, 2 ) 3! 4 5 6 7 8 9 : 8 9 9 9 9 ; ; 4< ;: 4 9 9 9 9; 9 9 94 6 7 9 9 < : 6 4 7! 6 7 6 7 : 6 9 7 7! ; : 9 7! ; : 7 = + > 6 7? 0 3 ; 3 = 6 7 = + > 6 7? 0 3 ; 3 = 6 7

Διαβάστε περισσότερα

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0 / 0 1 0 3!! # % & ( ) ( + % & ( ) &, % &., 45 6!! 7 4 8 4 8 9 : ;< 4 8 3!, 3 9!! 4 8 ; ; 7 3 = 4 8 = > 8? 6 10 1 4 8 = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0

Διαβάστε περισσότερα

! + + / > / + / + > > > +, + &+ 0.? Α Β Χ Β / Δ Δ Α Β Χ Β + & , + ΕΦ (?Γ Η.Δ. + Ι + 1 %+ : +, 5+ + ; +, + Ι + : + ; ϑ + ;! + + Ι & + & ϑ

! + + / > / + / + > > > +, + &+ 0.? Α Β Χ Β / Δ Δ Α Β Χ Β + & , + ΕΦ (?Γ Η.Δ. + Ι + 1 %+ : +, 5+ + ; +, + Ι + : + ; ϑ + ;! + + Ι & + & ϑ ! # % & () +, () (+. / & # % & () (+ () + 0 1 & ) + + + 2 2 2 1 / & 2 3 ( + (+ 41 ( + 15. / + 6 7 / 5 1 + 1 + 8 8 1/, 4 9 + : 6 ; < ; 6 ; = 9 04 ; 6 ; 49 / &+ > + > + >,+ & &+ / > ! + + / > / + / + > >

Διαβάστε περισσότερα

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6 ! # % # & ( ) +, #,. # / 0. 0 2 3 4! 5 6 5 6 7 8 5 6 5 6 8 9 : # ; 9 < = 8 = > 5 0? 0 Α 6 Β 7 5ΧΔ ΕΦ 9Γ 6 Η 5+3? 3Ι 3 ϑ 3 6 ΗΚ Η Λ!Κ Η7 Μ ΒΜ 7 Ν!! Ο 8 8 5 9 6 : Π 5 6 8 9 9 5 6 Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ

Διαβάστε περισσότερα

10-03.indd

10-03.indd 1 03 06 12 14 16 18 é 19 21 23 25 28 30 35 40 45 05 22 27 48 49 50 51 2 3 4 é é í 5 é 6 7 8 9 10 11 12 13 14 15 16 17 18 19 é 20 21 22 23 ü ü ü ü ü ü ü ü ü 24 ü 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Διαβάστε περισσότερα

! Φ Δ < Φ Δ 7 Δ 7 = 7 Δ ; > 7 5ΗΙ 2? Α Ι ϑ Κ ΙΒ Κ 6 ; Δ Δ Δ Δ Δ Λ = 7 Δ 5 2 Χ Β Χ ΙΜ Δ Ν Β Β % Β 3 Ε Κ Ο 2 Π Δ Β Χ Π %ΙΙ 6 > Δ 7 > Δ

! Φ Δ < Φ Δ 7 Δ 7 = 7 Δ ; > 7 5ΗΙ 2? Α Ι ϑ Κ ΙΒ Κ 6 ; Δ Δ Δ Δ Δ Λ = 7 Δ 5 2 Χ Β Χ ΙΜ Δ Ν Β Β % Β 3 Ε Κ Ο 2 Π Δ Β Χ Π %ΙΙ 6 > Δ 7 > Δ !! # % & ( ) & +, ( &. ) +, / 0 ( ) 1 / 0 2 3!! 5 6 7 8 9 ; 9 ; 5 6 7 7 7 > 7 7 ;= 7 5! =!! 6 5! = 7! = 6 5? Α Β %2 Χ Β%! =! = > 6! = 9! = = > Δ = > Ε Δ Φ Δ = ; Γ ! Φ Δ < Φ Δ 7 Δ 7 = 7 Δ

Διαβάστε περισσότερα

) ( ) ( ) ( # ) ( <> ) ( ) ( ) < ( #6 Α! Χ, % Δ Χ 8 % Χ < 8 > Χ 3 Β,Α Α, 8 Χ? 8 > 8 % > # # < > # # # < > 8 8 8, Χ? 8 Ε % <> Ε 8 Φ 4> ( < 8 Φ # Χ, Χ!

) ( ) ( ) ( # ) ( <> ) ( ) ( ) < ( #6 Α! Χ, % Δ Χ 8 % Χ < 8 > Χ 3 Β,Α Α, 8 Χ? 8 > 8 % > # # < > # # # < > 8 8 8, Χ? 8 Ε % <> Ε 8 Φ 4> ( < 8 Φ # Χ, Χ! !! 3! # % & ( ) +, ) + #. / 0 / 1 / 2 % 4 5 ) ( ) ( 6, 67 8 & ( + )4 9 ( : ; 2 ) ( ) < ( ) 8 ( 2 ) ( 5 2 = ( 2 # >? ) ( ) ( ) ( # ) ( ) ( ) ( ) < ( #6 Α! Χ, % Δ Χ 8 % Χ < 8 > Χ 3 Β,Α Α, 8 Χ? 8 > 8 %

Διαβάστε περισσότερα

> Ρ! :?? % Α Β 1 % Χ 4 Χ Δ Ε 70 Φ Γ Α 6 Η Ι Α 1 Ε Χ Δϑ7 0 ϑ Ε 3 6 Η 4 Φ Ε 7 Α 6 Η Δ 6 Κ Ε 0 ϑ 7Χ 4 4 Α Φ7 Χ Λ ; Λ Λ Μ1 Δ Λ 9

> Ρ! :?? % Α Β 1 % Χ 4 Χ Δ Ε 70 Φ Γ Α 6 Η Ι Α 1 Ε Χ Δϑ7 0 ϑ Ε 3 6 Η 4 Φ Ε 7 Α 6 Η Δ 6 Κ Ε 0 ϑ 7Χ 4 4 Α Φ7 Χ Λ ; Λ Λ Μ1 Δ Λ 9 ! # % # & ( & ) # +, #,., # / 0 1 3 1 4 5 4 6 7 8 4 4! 9 9 9 : ; < =9 > >? 9 : 9 9 9 9 9 9 1 ; >! > Ρ! :?? % Α Β 1 % Χ 4 Χ Δ Ε 70 Φ Γ Α 6 Η 4 0 6 Ι 4 7 3 Α 1 Ε Χ Δϑ7 0 ϑ 5 4 6 Ε 3 6 Η 4 Φ Ε 7 Α 6 Η Δ 6

Διαβάστε περισσότερα

非线性系统控制理论

非线性系统控制理论 AIsdo 985 5 6 Fobeus Albeo Isdo Nolea Cool Ssems Spe-Vela 989 He Njmeje Aja Va de Sca Nolea Damcal Cool Ssems Spe-Vela 99 988 4 99 5 99 6J-JESloe 99 7 988 4 6 5 8 6 8 7 8 9 4 9 9 9 4 5 6 7 Dsbuos 8 Fobeus

Διαβάστε περισσότερα

“上海证券交易所联合研究计划”第十二期研究课题之

“上海证券交易所联合研究计划”第十二期研究课题之 ...2...5...5...5...6...6...6...9...9...10...11...11...12...12...12...13...14...14...17...21...22...23...24...24...25...26...26...28...33...36...36...36...36...41...42...42...43...45...45...48...54 1 2

Διαβάστε περισσότερα

Δ 6 Ε Φ Φ 9 > : : Γ Γ Η : 8 Κ 9 : > % Α%Β Β 8 6 Β 8 6 Κ Ι > ϑ, ϑ Λ, 1ϑ (, Β ϑ 9 9 Μ = >+? Β = ; ΕΝ Ν1Ο Κ Λ 69 Α% 0 8

Δ 6 Ε Φ Φ 9 > : : Γ Γ Η : 8 Κ 9 : > % Α%Β Β 8 6 Β 8 6 Κ Ι > ϑ, ϑ Λ, 1ϑ (, Β ϑ 9 9 Μ = >+? Β = ; ΕΝ Ν1Ο Κ Λ 69 Α% 0 8 # % # & ( ) +, #,. # / 0 1. 0 3 4 15 6 7 8 9 6 : ; < ; = > + < : 10? 8 6 9 > Α 6;1? Β () % & & #,, # 3 Χ / 3. & / 0 1 4 + & & 5&, 6, 0 % & 1 ) 3, ) 7, 1 5 & %& 4 1 58 + 9 : + 9. ;.8 9< 5 1 9 Δ 6 Ε Φ 1

Διαβάστε περισσότερα

? 8 8 ( ( 3 : 8 ( 3 3 ( 2 2 ( > >( ) > > 2( > 2 > ( > ( ) 23 > ( Α 7 7 > ( 3 7 > ( 2 ( 7 : > ( 2 2 2> ( 27 > > : ( % ΒΧ

? 8 8 ( ( 3 : 8 ( 3 3 ( 2 2 ( > >( ) > > 2( > 2 > ( > ( ) 23 > ( Α 7 7 > ( 3 7 > ( 2 ( 7 : > ( 2 2 2> ( 27 > > : ( % ΒΧ # ( ) % +,! # % & #!,. +, + / 0 + 1 / 0 2 3 3 ( 4 5 6 7 38 ( ) : 2 ( 7 ( ( ( ;< :( = > > 7 ) 2( ( > ( )( ) 5 6 4 ? 8 8 ( ( 3 : 8 ( 3 3 ( 2 2 ( 5 2 6 7 > >( ) > > 2( > 2 > ( 8 2 8 > ( ) 23 > ( Α 7 7 > (

Διαβάστε περισσότερα

UDC

UDC CECS 102:2002 Technical specification for steed structure of light-eight Buildings ith gabled frames 2003 1 Technical specification for steed structure of light-eight Buildings ith gabled frames CECS102:2002

Διαβάστε περισσότερα

!!!!! 1!! ! 5

!!!!! 1!! ! 5 ! 3 ))) τ!! !!!!! 1!! 1998 2002! 5 ! 2 (%) )! )!!!!!!! )! ) 3 1 2000 ƒ ƒ 4 2 2001 ƒ ƒ!!!!!! # # 3 2 2001!!! ƒ ƒ!! 5 2000 2001!! 6 7 1 2000 7 2 2001 ! 8 1 2000 ƒ ƒ 8 2 2001 ƒ ƒ!!!!!!!!!!!!! ! 9!!!!!!! 9(1)!!!!!!!!!!!!!!!

Διαβάστε περισσότερα

UDC

UDC CECS 102:2002 Technical specification for steed structure of light-eight Buildings ith gabled frames 2003 1 Technical specification for steed structure of light-eight Buildings ith gabled frames CECS102:2002

Διαβάστε περισσότερα

! / 0!!!!!!!! 1 5 6!! / ƒ 2!

! / 0!!!!!!!! 1 5 6!! / ƒ 2! Ξ )))! )!!!! / 0! / 0 / 0 Ξ! ƒ!!!! ! / 0!!!!!!!! 1 5 6!! / ƒ 2! 0!! 5 65 6 / 0 / 0!! 5 65 6!!!!!!!! 1! / 0 / 0 / 0/ 0 ƒ 5 6 / 0!!!!!!!!!! / 0!!!! 1!!!!!!!! 1! ƒ! / 0!/ 0!! 1 5 6 / 0 / 0!!!!!!!!!!! !!!!!!

Διαβάστε περισσότερα

# < < <# <5 5 Χ Α ==! #! %!! & ( ) (+,, , 2 6, & 7 & 8 9 # 2 7 # 2 # 5 # 2 6 :,88 # 3 #: 6, : , & 7 23 & ; 7 : < & = 2, # 2 ( ( >

# < < <# <5 5 Χ Α ==! #! %!! & ( ) (+,, , 2 6, & 7 & 8 9 # 2 7 # 2 # 5 # 2 6 :,88 # 3 #: 6, : , & 7 23 & ; 7 : < & = 2, # 2 ( ( > 1 2 3 5 0 2! #!! % & % ( ) ( + %,.&.0.& 6 7 7 8! 9 : ; 8 # # 8< =!8 5 >? >! 8! 5? Β! : ; : ; # 3 5 Α < # < 8 < 8

Διαβάστε περισσότερα

Σ ; 6: 3 4 :9 49 4!4 ΒΧ Δ#Δ = Ε /> / ΦΜ Γ Δ Ν Ο Δ5 ; #Γ ϑ Π ( 3# 5 3 Θ 3( Α 5 ϑ 3; 5 < Π3 ( Α 5 3: 5 ( 5 Ν Δ Δ Θ3 ( 5 Π 3( 5 <3 ( 5 35 # # < 3

Σ ; 6: 3 4 :9 49 4!4 ΒΧ Δ#Δ = Ε /> / ΦΜ Γ Δ Ν Ο Δ5 ; #Γ ϑ Π ( 3# 5 3 Θ 3( Α 5 ϑ 3; 5 < Π3 ( Α 5 3: 5 ( 5 Ν Δ Δ Θ3 ( 5 Π 3( 5 <3 ( 5 35 # # < 3 ! # % & % ( ) ) +, %,. / # / 1 2 3 4 4! 5 64! 7 3 8 9! 7 5 :; 6 6!! 7 8 < 8! 6!!! 6!!!! 7 7!! #! ( = 5 9!! ; ;9 > (=? 9! 4! 7 Α Α Α Α / Φ# Γ ;!!, Η Ι 1 ϑκ; Ε Ε +! Λ Γ!7!6 ( 5 7 4 69 8

Διαβάστε περισσότερα

()! +! ), +. / %! ) (! ,4! 9 ) ) ) (! ) ) ) % & 0 ( % & 0 : % & 9 2! 7 : 1 % ; < ) ) 2 = >? ) : ) ), (), Α, Β,,!! ( ) )

()! +! ), +. / %! ) (! ,4! 9 ) ) ) (! ) ) ) % & 0 ( % & 0 : % & 9 2! 7 : 1 % ; < ) ) 2 = >? ) : ) ), (), Α, Β,,!! ( ) ) !! # % % #! & % ()! +! ), +. / %! ) 0 1 2 (! 3 4 5 5 5 7 5 8,4! 9 ) ) ) (! ) ) ) % & 0 ( 3 4 5 5 5 % & 0 : % & 9 2! 7 : 1 % ; < ) ) 2 = >? ) : ) ), (), Α, Β,,!! ( ) ) % ) ) ) ), 0 ) ) ), Χ % Δ! 2 ; ( #!

Διαβάστε περισσότερα

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

Διαβάστε περισσότερα

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

Διαβάστε περισσότερα

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

Διαβάστε περισσότερα

6 3 4 <#! : 5 = > 6? > 2 4 < #! 9 Α Β! < #! 9 Α Β! Α Β! Χ!! <#! 9 9 <#! 9 : < #!

6 3 4 <#! : 5 = > 6? > 2 4 < #! 9 Α Β! < #! 9 Α Β! Α Β! Χ!! <#! 9 9 <#! 9 : < #! . /0. % /! # # % & ( ) +, + 2! 3 4 5 5 5 6 3 7 8 4 5 9 6 : ; : 9 : 6 3 4 6? > 2 4 < #! 9 Α Β! < #! 9 Α Β! Α Β! Χ!!

Διαβάστε περισσότερα

untitled

untitled 1 1 3 1 1!!!!!!!!!!!!!!! 1 Γεογραπηιχαλ ιστριβυτιον ανδ Παττερνσ οφ Νατυραλ Ρεγενερατιον οφ Σορβυσ ποηυασηανενσισ 1 Ρεσεαρχη Ινστιτυτε οφ Φορεστρψ οφ ΧΑΦ Κεψ Λαβ οφ Τρεε Βρεεδινγ ανδ Χυλτιϖατιον οφ Στατε

Διαβάστε περισσότερα

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

Διαβάστε περισσότερα

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

Διαβάστε περισσότερα

½¼þ1 ( ÏîÀÛ¼Æ Û Ö²»³ ¹ý Ã±ê ¼ Ö) 1 lo # 1.1 1.1.1 IÏ ² 1.1.2 1.1.3 1.2 3fr Î ÁÐÈëÍ ¼ ²ÆÕþÔ Ëã Û0 5 Ö; 1.2.1 1.2.2 1.2.3 1.3 1.3.1 1Ï ² 1.3.2 1. 3. 3 1. 3.4 17 # 2.1 11^ 2.1.1 2.1. 2 2. 2 3 15^ 3.1 lo^

Διαβάστε περισσότερα

: p Previous Next First Last Back Forward 1

: p Previous Next First Last Back Forward 1 7-2: : 7.2......... 1 7.2.1....... 1 7.2.2......... 13 7.2.3................ 18 7.2.4 0-1 p.. 19 7.2.5.... 21 Previous Next First Last Back Forward 1 7.2 :, (0-1 ). 7.2.1, X N(µ, σ 2 ), < µ 0;

Διαβάστε περισσότερα

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

Διαβάστε περισσότερα

开关电容电路讲义附图

开关电容电路讲义附图 2006 ( ) 1 (CCD) 2 Swithed--Capaitor Ciruits(SC) 3 Swithed--Current Ciruits(SI) ( ) CCD IIR 1972 1977 NMOS 1978 INTEL PCM MOS - 1 - 2.1 2.1.1 2.1.1 q ( t) = C v ( t) ( n 1)T φ S1 S2 v t) = v [( n 1) T

Διαβάστε περισσότερα

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

Διαβάστε περισσότερα

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

Διαβάστε περισσότερα

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / ! ( ) # # % % ( % % %! % % & % # #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / 12 23 4 5 6 7 3.! (. ( / ( ) ). 1.12 ( 4 4 % & &!7 % (!!!!, (! % !!! % %!,! ( & (!! 8!!!,!!+!! & !!%! & 9 3 3 :;

Διαβάστε περισσότερα

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

Διαβάστε περισσότερα

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

Διαβάστε περισσότερα

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

Διαβάστε περισσότερα

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

Διαβάστε περισσότερα

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

Διαβάστε περισσότερα

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

Διαβάστε περισσότερα

: : 31 ( ),, ( Coun tpo in t [ ] Po in t ), : (16 ),,,,, ( ),,, P 20, ;, βκ,, 20, βλ, ( ) ( ), ( ) :?, ( ),,, : ( ) China Academic Journal E

: : 31 ( ),, ( Coun tpo in t [ ] Po in t ), : (16 ),,,,, ( ),,, P 20, ;, βκ,, 20, βλ, ( ) ( ), ( ) :?, ( ),,, : ( ) China Academic Journal E 30 ( ) 1999 3 :,, ( ),, :, ( ) :,, : : (1989),, : ( ),,,,,,,,, 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net : : 31 ( ),, ( Coun tpo in t [ ] Po

Διαβάστε περισσότερα

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

Διαβάστε περισσότερα

15-03.indd

15-03.indd 1 02 07 09 13 18 24 32 37 42 53 59 66 70 06 12 17 23 36 52 65 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 fl fi fi 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 σ σ σ α α 36 37 38 39 40 41 42 43 44

Διαβάστε περισσότερα

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

Διαβάστε περισσότερα

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

Διαβάστε περισσότερα

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

Διαβάστε περισσότερα

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

Διαβάστε περισσότερα

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

Διαβάστε περισσότερα

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

Διαβάστε περισσότερα

% + ) 8 / / 8 7 / 7 5 6,, (,.,,, / ) 9 + <3= :;. 4 4

% + ) 8 / / 8 7 / 7 5 6,, (,.,,, / ) 9 + <3= :;. 4 4 % & % + ) 8 / / 8 7 / 7 5 6,, + 4 1 0 23 1 (,.,,, / ) 9 + 6 9:5+ > / ΔΔ Β 9 + /,= ΔΓΔ Η Β 1 4 9ϑ:ϑ+9 + 3Κ ;5Η+0 4 Β = = : + Ι, ; 7 Χ > 8 8 8 3Σ : Μ Σ Β ΟΤ

Διαβάστε περισσότερα

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

Διαβάστε περισσότερα

: Previous Next First Last Back Forward 1

: Previous Next First Last Back Forward 1 7-3: : 7.3.................. 1 7.3.1.............. 2 7.3.2..... 8 7.3.3.............. 12 Previous Next First Last Back Forward 1 7.3,, (X 1,, X n )., H 0 : X F Karl Pearson χ 2. : F ˆF n, D( ˆF n, F ),

Διαβάστε περισσότερα

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

Διαβάστε περισσότερα

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

Διαβάστε περισσότερα

: p Previous Next First Last Back Forward 1

: p Previous Next First Last Back Forward 1 : zwp@ustc.edu.cn Office: 1006 Phone: 63600565 http://staff.ustc.edu.cn/~zwp/ http://fisher.stat.ustc.edu.cn : 7.2......... 1 7.2.1....... 1 7.2.2......... 13 7.2.3................ 18 7.2.4 0-1 p.. 19

Διαβάστε περισσότερα

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

Διαβάστε περισσότερα

3?! ΑΑΑΑ 7 ) 7 3

3?! ΑΑΑΑ 7 ) 7 3 ! # % & ( ) +, #. / 0 # 1 2 3 / 2 4 5 3! 6 ) 7 ) 7 ) 7 ) 7 )7 8 9 9 :5 ; 6< 3?! ΑΑΑΑ 7 ) 7 3 8! Β Χ! Δ!7 7 7 )!> ; =! > 6 > 7 ) 7 ) 7 )

Διαβάστε περισσότερα

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

Διαβάστε περισσότερα

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

Διαβάστε περισσότερα

1) να καταγράψει στο επισυναπτόμενο μητρώο (συν. αρχείο «2013 申请注册的乳品企业名单 1112.xls») το σύνολο των ενδιαφερόμενων παραγωγών γαλακτοκομικών προϊόντων κ

1) να καταγράψει στο επισυναπτόμενο μητρώο (συν. αρχείο «2013 申请注册的乳品企业名单 1112.xls») το σύνολο των ενδιαφερόμενων παραγωγών γαλακτοκομικών προϊόντων κ ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΣΤΟ ΠΕΚΙΝΟ ΓΡΑΦΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΕΜΠΟΡΙΚΩΝ ΥΠΟΘΕΣΕΩΝ ΑΔΙΑΒΑΘΜΗΤΟ ΕΠΕΙΓΟΝ ΠΡΟΘΕΣΜΙΑ ΕΩΣ 1.5.2014 Πεκίνο, 4 Δεκεμβρίου 2013 Α.Π.: Φ 1020/1205 Προς: ΥΠΑΑΤ Γενική Διεύθυνση Κτηνιατρικής

Διαβάστε περισσότερα

1 Evolution of analytical instrumentation: The PerkinElmer Story SDI Global 7th Edition 2002-AAS SDI Global 8th Edition 2004-AAS 2 - HAc-MIBK GFAAS ST

1 Evolution of analytical instrumentation: The PerkinElmer Story SDI Global 7th Edition 2002-AAS SDI Global 8th Edition 2004-AAS 2 - HAc-MIBK GFAAS ST PerkinElmer 45 AAnalyst AAnalyst AAnalyst AAnalyst AAnalyst 200 400 400+HGA 900 600 700/800 1 Evolution of analytical instrumentation: The PerkinElmer Story SDI Global 7th Edition 2002-AAS SDI Global 8th

Διαβάστε περισσότερα

SA2-109.PDF

SA2-109.PDF SA2-19 9 9 91 2 ( ) Part A () () () IR () Part B () () () () ph () () Part C () () 1 ( ) A. ( ) (5ml) ( ) ( 2 2mm 1 1mm) B. (1K5.1K27K1K) (12V) IC741 (2K2K) ( ) (16V 47µ47µ) IR(Spectrometer 55Nicolet)

Διαβάστε περισσότερα

= = P P = n 0 ( 1+ r) n P P = n 0 1 + r n 5000000 P 0 = 7 = 2565791( ) ( 1+ 10%) 5000000 P 0 = = 2941176. 4( ) ( 1+ 10% 7 ) M( 1+ i n ) P = 1+ r n n M( 1 + i) P = n ( 1 + r) n C C C M P = + + 2 + +

Διαβάστε περισσότερα

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

Διαβάστε περισσότερα

5 (Green) δ

5 (Green) δ 2.............................. 2.2............................. 3.3............................. 3.4........................... 3.5...................... 4.6............................. 4.7..............................

Διαβάστε περισσότερα

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ; ! # % & ( ) ( +, +. ( /0!) ( 1!2!) ( 3 4 5 2 4 7 8 9: ; 9 < : = ; ; 54 ; = ; ; 75 ; # ; 9 : ; 9 : ; ; 9: ; ; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; 54 9 9: ; ;

Διαβάστε περισσότερα

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

Διαβάστε περισσότερα

1#

1# ! # % & ( % + #,,. + /# + 0 1#. 2 2 3 4. 2 +! 5 + 6 0 7 #& 5 # 8 % 9 : ; < =# #% > 1?= # = Α 1# Β > Χ50 7 / Δ % # 50& 0 0= % 4 4 ; 2 Ε; %5 Β % &=Φ = % & = # Γ 0 0 Η = # 2 Ι Ι ; 9 Ι 2 2 2 ; 2 ;4 +, ϑ Α5#!

Διαβάστε περισσότερα

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

Διαβάστε περισσότερα

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

Διαβάστε περισσότερα