ΚΕΦΑΛΑΙΟ 1. Εισαγωγή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 1. Εισαγωγή"

Transcript

1 ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΠΕΡΙΕΧΟΜΕΝΑ 1.1 Επίλυση προβλημάτων και λήψη αποφάσεων 1.2 Ποσοτική ανάλυση και λήψη αποφάσεων 1.3 Ποσοτική ανάλυση Ανάπτυξη μοντέλου Προετοιμασία δεδομένων Επίλυση μοντέλου Δημιουργία αναφοράς Επισήμανση ως προς την εφαρμογή 1.4 Μοντέλα κόστους, εσόδων και κέρδους Μοντέλα κόστους Μοντέλα εσόδων Μοντέλα κέρδους Προσδιορισμός νεκρού σημείου 1.5 Τεχνικές διοικητικής επιστήμης Συχνότερα χρησιμοποιούμενες μέθοδοι

2 24 ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Η διοικητική επιστήμη (Management Science) αποτελεί μια δομημένη προσέγγιση που εστιάζει στη λήψη επιχειρηματικών αποφάσεων. Επιπλέον, βασίζεται σε συγκεκριμένες επιστημονικές μεθόδους και χρησιμοποιεί σε μεγάλο βαθμό την ποσοτική ανάλυση. Στη βιβλιογραφία χρησιμοποιείται πλήθος όρων για την περιγραφή των επιστημονικών πεδίων που αναφέρονται στις ποσοτικές προσεγγίσεις που οδηγούν στη λήψη αποφάσεων. Εκτός από τον όρο διοικητική επιστήμη, δύο ευρέως χρησιμοποιούμενοι όροι είναι η επιχειρησιακή έρευνα (Operations Research) και η επιστήμη λήψης αποφάσεων (Decision Science). Πολύ συχνά οι παραπάνω όροι χρησιμοποιούνται για να περιγράψουν το ίδιο αντικείμενο. Η χρήση ποσοτικών μεθόδων στην οργάνωση και στη διοίκηση των επιχειρήσεων (Management) έχει τις ρίζες της στην επανάσταση της επιστημονικής διοίκησης, η οποία εκδηλώθηκε στις αρχές του 20ού αιώνα και στηρίχτηκε στο έργο του Frederick W. Taylor. Είναι όμως γενικά αποδεκτό ότι η σύγχρονη διοικητική επιστήμη αναπτύχθηκε κατά τη διάρκεια του Β Παγκοσμίου Πολέμου, από ομάδες που δημιουργήθηκαν για την επίλυση στρατηγικών προβλημάτων που αντιμετώπιζε ο στρατός. Οι ομάδες αυτές συχνά αποτελούνταν από άτομα διαφορετικών ειδικοτήτων (π.χ. μαθηματικών, μηχανικών, αλλά και επιστημόνων που μελετούν την ανθρώπινη συμπεριφορά), που εργάζονταν από κοινού για την επίλυση προβλημάτων με τη χρήση επιστημονικών μεθόδων. Κατά τη μεταπολεμική περίοδο, πολλά από τα μέλη των εν λόγω ομάδων συνέχισαν την εργασία τους ως ερευνητές στο πεδίο της διοικητικής επιστήμης. Η ανάπτυξη της διοικητικής επιστήμης και η εκτεταμένη χρήση της για μη στρατιωτικούς σκοπούς οφείλεται σε δύο λόγους. Πρώτον, η συνεχιζόμενη ερευνητική διαδικασία οδήγησε στην ανάπτυξη πολυάριθμων μεθοδολογικών προσεγγίσεων. Η πιο σημαντική από αυτές υπήρξε η μέθοδος Simplex, η οποία αναπτύχθηκε από τον George Dantzig το έτος 1947, για την επίλυση προβλημάτων γραμμικού προγραμματισμού. Παράλληλα, η χρήση ηλεκτρονικών υπολογιστών προσέφερε σημαντική υπολογιστική ισχύ και επέτρεψε στους επαγγελματίες να αξιοποιήσουν τις μεθοδολογικές εξελίξεις για την επίλυση πληθώρας προβλημάτων. Η συνεχιζόμενη ραγδαία εξέλιξη των υπολογιστικών συστημάτων επιτρέπει σήμερα στους χρήστες προσωπικών υπολογιστών την επίλυση προβλημάτων πιο περίπλοκων από τα προβλήματα που μπορούσαν να επιλυθούν με τη χρήση ενός κεντρικού υπολογιστή κατά τη δεκαετία του Σύμφωνα με τον Irv Lustig της ILOG Inc., οι μέθοδοι επίλυσης προβλημάτων που χρησιμοποιούνται σήμερα είναι φορές ταχύτερες από αυτές που χρησιμοποιούνταν πριν από 15 χρόνια. Σκοπός του ανά χείρας συγγράμματος είναι να γίνει αντιληπτός ο ρόλος της διοικητικής επιστήμης στη διαδικασία λήψης αποφάσεων. Το σύγγραμμα προσανατολίζεται στην ανάλυση εφαρμογών που προκύπτουν από τη θεωρία. Για την πληρέστερη κατανόηση του πλήθους των επιτυχημένων εφαρμογών της διοικητικής επιστήμης στην πραγματική οικονομία, παραθέτουμε άρθρα με τον τίτλο «Η διοικητική

3 ΕΙΣΑΓΩΓΗ 25 επιστήμη στην πράξη». Κάθε τέτοιο άρθρο περιγράφει μια πρακτική εφαρμογή της διοικητικής επιστήμης. Το πρώτο άρθρο σε αυτό το κεφάλαιο, «Διαχείριση εσόδων στην εταιρεία American Airlines», περιγράφει μία από τις σημαντικότερες εφαρμογές στον κλάδο των αερομεταφορών. Η ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΣΤΗΝ ΠΡΑΞΗ ΔΙΑΧΕΙΡΙΣΗ ΕΣΟΔΩΝ ΣΤΗΝ ΕΤΑΙΡΕΙΑ AMERICAN AIRLINES* Μία από τις πιο επιτυχημένες εφαρμογές της διοικητικής επιστήμης έχει να κάνει με το έργο της ομάδας επιχειρησιακής έρευνας (Operations Research) της American Airlines. Το 1982, ο Thomas M. Cook εντάχθηκε σε μια ομάδα 12 αναλυτών της American Airlines. Υπό την καθοδήγηση του Cook, η ομάδα επιχειρησιακής έρευνας (ομάδα OR) έφτασε γρήγορα να αποτελείται από 75 επαγγελματίες, οι οποίοι ανέπτυξαν μοντέλα και διεξήγαγαν έρευνες για την υποστήριξη της λήψης αποφάσεων σε επίπεδο ανώτερων διοικητικών στελεχών. Σήμερα, η ομάδα αυτή ονομάζεται Sabre και απασχολεί επαγγελματίες σε παγκόσμιο επίπεδο. Μία από τις σημαντικότερες εφαρμογές που ανέπτυξε η ομάδα OR προέκυψε λόγω της απελευθέρωσης του κλάδου των αερομεταφορών στα τέλη της δεκαετίας του 1970 (Αμερική). Ως αποτέλεσμα της απελευθέρωσης, ένας αριθμός νέων αεροπορικών εταιρειών χαμηλού κόστους εισήλθε στην αγορά, διαθέτοντας εισιτήρια σε πολύ χαμηλή τιμή σε σχέση με αυτή που χρέωναν οι καταξιωμένες αεροπορικές εταιρείες, όπως η American Airlines. Εξετάζοντας πώς μπορεί η American Airlines να γίνει ανταγωνιστική, η ομάδα OR πρότεινε τη δημιουργία διαφορετικών κατηγοριών εισιτηρίων (εισιτήρια με μειωμένο ναύλο και εισιτήρια με πλήρη ναύλο) και κατάφερε με τη διαδικασία αυτή να αναπτύξει έναν νέο τομέα της διοικητικής επιστήμης, που ονομάστηκε διαχείριση εσόδων (Revenue/Yield Management). Η ομάδα OR (ομάδα επιχειρησιακής έρευνας) χρησιμοποίησε τεχνικές πρόβλεψης και βελτιστοποίησης για να αποφασίσει πόσες θέσεις θα διαθέσει με έκπτωση και πόσες θέσεις θα διαθέσει σε πλήρη τιμή. Παρά το γεγονός ότι η αρχική εφαρμογή ήταν σχετικά ακατέργαστη, η ομάδα συνέχισε να βελτιώνει τα μοντέλα πρόβλεψης και βελτιστοποίησης του συστήματος εισάγοντας διαρκώς περισσότερα και ποιοτικότερα δεδομένα. Ο Tom Cook, κατά τη διάρκεια της θητείας του, διαμόρφωσε τέσσερις βασικές γενιές συστημάτων διαχείρισης εσόδων. Το καθένα απέφερε πλεονάζον κέρδος ύψους 100 εκατομμυρίων δολαρίων σε σύγκριση με τον προκάτοχό του. Το 1998 υπολογιζόταν ότι το σύστημα διαχείρισης εσόδων της American Airlines απέφερε ετησίως περίπου 1 δισ. δολάρια πρόσθετων εσόδων. Σήμερα, σχεδόν κάθε αεροπορική εταιρεία χρησιμοποιεί κάποιο σύστημα διαχείρισης εσόδων. Οι ξενοδοχειακές επιχειρήσεις και οι επιχειρήσεις διοργάνωσης κρουαζιέρων και ενοικίασης αυτοκινήτων εφαρμόζουν και αυτές μεθόδους διαχείρισης εσόδων, κάτι που αποτελεί περαιτέρω φόρο τιμής στις πρωτοποριακές προσπάθειες της ομάδας OR της American Airlines και του επικεφαλής της Thomas M. Cook. *Βασισμένο στο άρθρο του Peter Homer (2000), «The Sabre Story», OR/MS Today (Ιούνιος).

4 26 ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ 1.1 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ Η επίλυση προβλημάτων μπορεί να οριστεί ως η διαδικασία εντοπισμού διαφορών μεταξύ της πραγματικής και της επιθυμητής κατάστασης και, κατόπιν, της λήψης μέτρων για την εξάλειψη των διαφορών αυτών. Για προβλήματα τόσο σημαντικά ώστε να απαιτούν ενδελεχή ανάλυση, η διαδικασία επίλυσης προβλημάτων περιλαμβάνει τα εξής επτά βήματα: 1. Εντοπισμός και ορισμός του προβλήματος. 2. Προσδιορισμός των εναλλακτικών λύσεων. 3. Καθορισμός του κριτηρίου (ή των κριτηρίων) που θα χρησιμοποιηθεί για την αξιολόγηση των εναλλακτικών λύσεων (επιλογών). 4. Αξιολόγηση των εναλλακτικών λύσεων. 5. Επιλογή εναλλακτικής λύσης. 6. Εφαρμογή της επιλεγμένης εναλλακτικής λύσης. 7. Αξιολόγηση των αποτελεσμάτων, προκειμένου να αποφασιστεί αν επιτεύχθηκε ικανοποιητική λύση. Η λήψη αποφάσεων είναι ο όρος που συνδέεται γενικά με τα πρώτα πέντε βήματα της διαδικασίας επίλυσης προβλημάτων. Συνεπώς, το πρώτο βήμα της λήψης αποφάσεων είναι ο εντοπισμός και ο ορισμός του προβλήματος. Η λήψη αποφάσεων τελειώνει με την επιλογή εναλλακτικής λύσης. Ας εξετάσουμε το ακόλουθο παράδειγμα διαδικασίας λήψης αποφάσεων. Υποθέστε ότι είστε άνεργοι και ότι θα επιθυμούσατε μία θέση η οποία θα σας προσφέρει την προοπτική μιας ικανοποιητικής καριέρας. Υποθέστε ότι ύστερα από αναζήτηση εργασίας έχετε προτάσεις από εταιρείες που εδρεύουν στο Rochester (Νέα Υόρκη), στο Dallas (Τέξας), στο Greensboro (Βόρεια Καρολίνα) και στο Pittsburgh (Πενσυλβάνια). Συνεπώς, οι εναλλακτικές λύσεις για τη λήψη απόφασης στο πρόβλημά σας μπορούν να διατυπωθούν ως εξής: 1. Αποδοχή της θέσης στο Rochester. 2. Αποδοχή της θέσης στο Dallas. 3. Αποδοχή της θέσης στο Greensboro. 4. Αποδοχή της θέσης στο Pittsburgh. Το επόμενο βήμα της διαδικασίας επίλυσης του προβλήματος περιλαμβάνει τον καθορισμό των κριτηρίων που θα χρησιμοποιηθούν για την αξιολόγηση των εναλλακτικών λύσεων. Προφανώς, ο αρχικός μισθός είναι ένας παράγοντας αρκετά σημαντικός. Αν ο μισθός ήταν το μόνο σημαντικό κριτήριο για σας, τότε η εναλλακτική που θα επιλέγατε ως «καλύτερη» θα ήταν αυτή με τον υψηλότερο αρχικό μισθό. Τα προβλήματα στα οποία ο σκοπός είναι να βρεθεί η καλύτερη λύση, λαμβάνοντας υπόψη μόνο ένα κριτήριο, ονομάζονται προβλήματα ενός κριτηρίου (single-criterion decision problems). Αυτά τα προβλήματα είναι συνήθως και τα ευκολότερα. Έστω ότι αποφασίζετε πως οι δυνατότητες ανέλιξης και η τοποθεσία της εταιρείας είναι ακόμα δύο κριτήρια μείζονος σημασίας. Άρα, τα τρία κριτήρια για την απόφα

5 ΕΙΣΑΓΩΓΗ 27 σή σας είναι (α) ο αρχικός μισθός, (β) η δυνατότητα ανέλιξης και (γ) η τοποθεσία. Τα προβλήματα που περιλαμβάνουν περισσότερα από ένα κριτήρια ονομάζονται προβλήματα πολλαπλών κριτηρίων (multicriteria decision problems). Όπως είναι κατανοητό, αυτά τα προβλήματα ενσωματώνουν μεγαλύτερο βαθμό δυσκολίας. Το επόμενο βήμα στη διαδικασία λήψης αποφάσεων είναι η αξιολόγηση όλων των εναλλακτικών λύσεων σύμφωνα με κάθε κριτήριο. Για παράδειγμα, η αξιολόγηση κάθε εναλλακτικής λύσης βάσει του αρχικού μισθού γίνεται απλώς με την καταγραφή του αρχικού μισθού για κάθε λύση. Η αξιολόγηση κάθε εναλλακτικής λύσης, με βάση τη δυνατότητα ανέλιξης και την τοποθεσία της εργασίας, είναι πιο δύσκολη, διότι αυτές οι αξιολογήσεις βασίζονται κυρίως σε υποκειμενικούς παράγοντες, που είναι συχνά δύσκολο να ποσοτικοποιηθούν. Υποθέστε ότι αποφασίζετε να μετρήσετε τη δυνατότητα ανέλιξης και την τοποθεσία της εταιρείας χρησιμοποιώντας μια πενταβάθμια κλίμακα αξιολόγησης (κακή, αποδεκτή, μέτρια, καλή, εξαιρετική). Τα δεδομένα που συγκεντρώνετε παρουσιάζονται στον Πίνακα 1.1. ΠΙΝΑΚΑΣ 1.1 ΔΕΔΟΜΕΝΑ ΓΙΑ ΤΟ ΠΡΟΒΛΗΜΑ ΑΞΙΟΛΟΓΗΣΗΣ ΕΝΑΛΛΑΚΤΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΠΡΟΤΑΣΕΩΝ Εναλλακτικές προτάσεις Αρχικός μισθός ($) Δυνατότητα ανέλιξης Τοποθεσία εταιρείας 1. Rochester Μέτρια Μέτρια 2. Dallas Εξαιρετική Καλή 3. Greensboro Καλή Εξαιρετική 4. Pittsburgh Μέτρια Καλή Είστε τώρα έτοιμοι να επιλέξετε από τις διαθέσιμες εναλλακτικές λύσεις. Αυτό που δυσχεραίνει την επιλογή σας είναι ότι τα κριτήρια, κατά πάσα πιθανότητα, δεν είναι εξίσου σημαντικά και καμία λύση δεν θεωρείται «καλύτερη» σύμφωνα με όλα τα κριτήρια. Αν και θα παρουσιάσουμε παρακάτω μια μέθοδο για το χειρισμό τέτοιων καταστάσεων, προς το παρόν υποθέτουμε ότι, έπειτα από προσεκτική αξιολόγηση των δεδομένων του Πίνακα 1.1, αποφασίζετε να επιλέξετε τη λύση-πρόταση υπ αριθ. 3. Η εναλλακτική λύση 3 θεωρείται, λοιπόν, η απόφαση. Σε αυτό το σημείο, η διαδικασία λήψης αποφάσεων έχει ολοκληρωθεί. Συνοψίζοντας, βλέπουμε ότι αυτή η διαδικασία περιλαμβάνει πέντε βήματα: 1. Ορισμός του προβλήματος. 2. Προσδιορισμός των εναλλακτικών λύσεων. 3. Καθορισμός των κριτηρίων. 4. Αξιολόγηση των εναλλακτικών λύσεων. 5. Επιλογή εναλλακτικής λύσης. Σημειώνεται ότι στα ανωτέρω δεν περιλαμβάνονται τα δύο τελευταία βήματα που συναντήσαμε στη διαδικασία επίλυσης προβλημάτων: «Εφαρμογή της επιλεγμένης εναλλακτικής λύσης» και «Αξιολόγηση των αποτελεσμάτων, προκειμένου να αποφασιστεί αν επιτεύχθηκε ικανοποιητική λύση». Αυτή η παράλειψη δεν έχει σκοπό να

6 28 ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ μειώσει τη σημασία αυτών των ενεργειών (βημάτων), αλλά να τονίσει πόσο πιο περιορισμένο είναι το φάσμα του όρου «λήψη αποφάσεων» εν συγκρίσει με τον όρο «επίλυση προβλημάτων». Η Εικόνα 1.1 συνοψίζει τη σχέση των δύο αυτών εννοιών. ΕΙΚΟΝΑ 1.1 ΣΧΕΣΗ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ Ορισμός του προβλήματος Προσδιορισμός εναλλακτικών λύσεων Καθορισμός κριτηρίων Λήψη αποφάσεων Επίλυση προβλημάτων Αξιολόγηση εναλλακτικών λύσεων Επιλογή εναλλακτικής λύσης Εφαρμογή της απόφασης Απόφαση Αξιολόγηση αποτελεσμάτων 1.2 ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ Εξετάζοντας το διάγραμμα ροής που παρουσιάζεται παρακάτω (Εικόνα 1.2), παρατηρούμε ότι τα τρία πρώτα βήματα της διαδικασίας λήψης αποφάσεων τοποθετούνται κάτω από την επικεφαλίδα «Δομή του προβλήματος» και τα δύο τελευταία βήματα κάτω από την επικεφαλίδα «Ανάλυση του προβλήματος». Ας εξετάσουμε τώρα λεπτομερέστερα τη διαδικασία λήψης αποφάσεων. Η Εικόνα 1.3 δείχνει ότι η φάση της ανάλυσης του προβλήματος μπορεί να έχει δύο βασικές μορφές: ποιοτική και ποσοτική. Η ποιοτική ανάλυση βασίζεται πρωτίστως στην κρίση και στην εμπειρία του διοικητικού στελέχους (manager). Προσεγγί

7 ΕΙΣΑΓΩΓΗ 29 ζει διαισθητικά το θέμα και είναι περισσότερο τέχνη παρά επιστήμη. Στην περίπτωση που το διοικητικό στέλεχος (manager) έχει αντιμετωπίσει παρεμφερή προβλήματα στο παρελθόν ή αν το πρόβλημα είναι σχετικά απλό, τότε μπορεί να δοθεί έμφαση στην ποιοτική ανάλυση. Ωστόσο, αν το διοικητικό στέλεχος έχει πολύ μικρή εμπειρία σε ανάλογα προβλήματα ή αν το πρόβλημα είναι αρκετά περίπλοκο, για την τελική του απόφαση θα ληφθεί σοβαρά υπόψη η ποσοτική ανάλυση. ΕΙΚΟΝΑ 1.2 ΕΝΑΛΛΑΚΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΣΤΑΔΙΩΝ ΤΗΣ ΔΙΑΔΙΚΑΣΙΑΣ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ Δομή του προβλήματος Ανάλυση του προβλήματος Ορισμός προβλήματος Προσδιορισμός εναλλακτικών λύσεων Καθορισμός κριτηρίων Αξιολόγηση εναλλακτικών λύσεων Επιλογή εναλλακτικής λύσης ΕΙΚΟΝΑ 1.3 Ο ΡΟΛΟΣ ΤΗΣ ΠΟΙΟΤΙΚΗΣ ΚΑΙ ΠΟΣΟΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ανάλυση του προβλήματος Δομή του προβλήματος Ποιοτική ανάλυση Ορισμός προβλήματος Προσδιορισμός εναλλακτικών λύσεων Καθορισμός κριτηρίων Σύνοψη και αξιολόγηση Λήψη απόφασης Ποσοτική ανάλυση Χρησιμοποιώντας την ποσοτική προσέγγιση, ο αναλυτής θα επικεντρωθεί στα ποσοτικά στοιχεία ή δεδομένα που σχετίζονται με το πρόβλημα και θα αναπτύξει μαθηματικές εκφράσεις που περιγράφουν τους στόχους, τους περιορισμούς και άλλες παραμέτρους που περιλαμβάνονται στο πρόβλημα. Κατόπιν, χρησιμοποιώντας μία ή περισσότερες μεθόδους ποσοτικής ανάλυσης, ο αναλυτής θα ετοιμάσει μία πρόταση με βάση τις ποσοτικές πτυχές του προβλήματος. Οι ποσοτικές μέθοδοι είναι ιδιαίτερα χρήσιμες σε περίπλοκα και σημαντικού μεγέθους προβλήματα. Για παράδειγμα, στο συντονισμό των χιλιάδων καθηκόντων που σχετίζονταν με την ασφαλή προσγείωση του Apollo 11 στη Σελήνη, οι ποσοτικές τεχνικές βοήθησαν στο να εξασφαλιστεί η ομαλή εκτέλεση εργασιών, οι οποίες εκτελέστηκαν με ακρίβεια από άτομα.

8 30 ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Παρά το γεγονός ότι οι ικανότητες του διοικητικού στελέχους αναφορικά με την ποιοτική ανάλυση είναι έμφυτες και συνήθως αυξάνονται με την εμπειρία, οι ικανότητές του ως προς την ποσοτική προσέγγιση είναι επίκτητες και κατακτώνται μόνο με τη μελέτη των υποθέσεων και των μεθόδων της διοικητικής επιστήμης. Ένα διοικητικό στέλεχος (manager) μπορεί να αυξήσει την αποτελεσματικότητα της διαδικασίας λήψης αποφάσεων μαθαίνοντας περισσότερα για την ποσοτική μεθοδολογία και κατανοώντας καλύτερα τη συνεισφορά της στη διαδικασία λήψης αποφάσεων. Ένα διοικητικό στέλεχος που γνωρίζει καλά τις διαδικασίες που διέπουν την ποσοτική λήψη αποφάσεων είναι σε θέση να συγκρίνει και να αξιολογεί αποτελεσματικότερα τα ποιοτικά και ποσοτικά δεδομένα και τελικά να τα συνδυάζει, προκειμένου να λαμβάνει σε κάθε περίπτωση την καλύτερη δυνατή απόφαση. Το πλαίσιο «Ποσοτική ανάλυση» της Εικόνας 1.3 περικλείει σε μεγάλο βαθμό την ουσία των ανωτέρω. Στη συνέχεια του βιβλίου θα εξετάζουμε ένα διοικητικό πρόβλημα, θα παρουσιάζουμε την κατάλληλη ποσοτική μεθοδολογία και κατόπιν θα καταλήγουμε στη συνιστώμενη απόφαση. Κλείνοντας αυτή την ενότητα, ας διατυπώσουμε εν συντομία κάποιους από τους λόγους για τους οποίους μπορεί να χρησιμοποιηθεί η ποσοτική προσέγγιση στη διαδικασία λήψης αποφάσεων: 1. Το πρόβλημα είναι περίπλοκο και το διοικητικό στέλεχος (manager) δεν είναι σε θέση να αναπτύξει μια αποδοτική λύση χωρίς τη βοήθεια της ποσοτικής ανάλυσης. 2. Το πρόβλημα είναι ιδιαίτερα σημαντικό (π.χ. διακυβεύονται μεγάλα χρηματικά ποσά) και το διοικητικό στέλεχος επιθυμεί μια ενδελεχή ανάλυση, πριν επιχειρήσει να πάρει μια απόφαση. 3. Το πρόβλημα είναι πρωτόγνωρο και το διοικητικό στέλεχος δεν έχει προηγούμενη εμπειρία που θα το βοηθήσει στη λήψη μιας απόφασης. 4. Το πρόβλημα είναι επαναλαμβανόμενο και το διοικητικό στέλεχος εξοικονομεί χρόνο και κόπο, καταλήγοντας σε αποφάσεις ρουτίνας βασιζόμενο σε ποσοτικές διαδικασίες. Προσπαθήστε να απαντήσετε στην Άσκηση 4, για να διαπιστώσετε αν κατανοείτε την αναγκαιότητα χρήσης της ποσοτικής προσέγγισης για την επίλυση κάποιου προβλήματος. 1.3 ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ Στην Εικόνα 1.3 παρατηρούμε ότι η ποσοτική ανάλυση ξεκινάει μόλις δομηθεί το πρόβλημα. Συνήθως χρειάζεται φαντασία, ομαδική δουλειά και σημαντική προσπάθεια για να μετατραπεί ένα αόριστο πρόβλημα σε ένα σαφώς καθορισμένο πρόβλημα, το οποίο να μπορεί να προσεγγιστεί μέσω της ποσοτικής ανάλυσης. Όσο περισσότερο εμπλέκεται ο αναλυτής στη δόμηση του προβλήματος, τόσο πιο πιθανό είναι η ποσοτική ανάλυση που θα ακολουθήσει να συνεισφέρει σημαντικά στη διαδικασία λήψης αποφάσεων.

9 ΕΙΣΑΓΩΓΗ 31 Για να εφαρμόσει με επιτυχία την ποσοτική ανάλυση στη λήψη αποφάσεων, ο αναλυτής οφείλει να συνεργαστεί στενά με το διοικητικό στέλεχος (manager) ή το χρήστη των τελικών αποτελεσμάτων. Όταν και οι δύο συμφωνήσουν ότι το πρόβλημα έχει δομηθεί επαρκώς, τότε είναι σε θέση να αναπτύξουν το μοντέλο που θα αναπαριστά μαθηματικά το πρόβλημα. Σε αυτή τη φάση, μπορούν να χρησιμοποιηθούν μαθηματικές διαδικασίες επίλυσης, ούτως ώστε να βρεθεί η βέλτιστη λύση για το μοντέλο. Η βέλτιστη αυτή λύση μετατρέπεται τότε σε πρόταση προς αυτόν που θα λάβει την τελική απόφαση. Η διαδικασία ανάπτυξης και επίλυσης μοντέλων αποτελεί την ουσία της ποσοτικής ανάλυσης. Ανάπτυξη μοντέλου Τα μοντέλα είναι αναπαραστάσεις πραγματικών αντικειμένων ή καταστάσεων και μπορούν να παρουσιαστούν με διάφορες μορφές. Για παράδειγμα, ένα μοντέλο αεροπλάνου σε κλίμακα αποτελεί αναπαράσταση ενός πραγματικού αεροπλάνου. Ομοίως, ένα φορτηγό-παιχνίδι αποτελεί μοντέλο ενός πραγματικού φορτηγού. Οι μινιατούρες αεροπλάνου και φορτηγού αποτελούν παραδείγματα μοντέλων που είναι φυσικές ρεπλίκες πραγματικών αντικειμένων. Στην ορολογία του μοντελισμού, οι φυσικές ρεπλίκες ονομάζονται εικονικά μοντέλα. Μια δεύτερη κατηγορία περιλαμβάνει μοντέλα που έχουν φυσική υπόσταση, δεν έχουν όμως την ίδια μορφή με το αντικείμενο που αναπαρίσταται. Αυτά ονομάζονται αναλογικά μοντέλα. Το ταχύμετρο του αυτοκινήτου αποτελεί αναλογικό μοντέλο. Η θέση της βελόνας στο καντράν αντιπροσωπεύει την ταχύτητα του αυτοκινήτου. Το θερμόμετρο είναι ένα άλλο αναλογικό μοντέλο, που αντιπροσωπεύει τη θερμοκρασία. Μια τρίτη κατηγορία μοντέλων αυτή που θα μας απασχολήσει κυρίως περιλαμβάνει την αναπαράσταση ενός προβλήματος μέσω ενός συστήματος συμβόλων και μαθηματικών σχέσεων ή εκφράσεων. Αυτά τα μοντέλα ονομάζονται μαθηματικά μοντέλα και αποτελούν σημαντικότατο κομμάτι κάθε ποσοτικής προσέγγισης που σχετίζεται με τη λήψη αποφάσεων. Για παράδειγμα, τα συνολικά κέρδη από την πώληση ενός προϊόντος μπορούν να προσδιοριστούν αν πολλαπλασιάσουμε το κέρδος ανά μονάδα με την ποσότητα που πωλήθηκε. Έστω ότι το x είναι ο αριθμός των μονάδων που πωλήθηκαν και το P το συνολικό κέρδος. Τότε, με κέρδος 10 δολαρίων ανά μονάδα, ο ακόλουθος μαθηματικός τύπος ορίζει το συνολικό κέρδος από την πώληση x μονάδων: P = 10x (1.1) Ο σκοπός ή η αξία οποιουδήποτε μοντέλου είναι η βοήθεια που μας παρέχει στην εξαγωγή συμπερασμάτων για την εξεταζόμενη περίπτωση, μελετώντας και αναλύοντας το μοντέλο. Για παράδειγμα, ο σχεδιαστής ενός αεροπλάνου μπορεί να δοκιμάσει ένα εικονικό μοντέλο ενός καινούργιου αεροπλάνου μέσα σε μια αεροδυναμική σήραγγα, για να μελετήσει τις δυνατότητες και τα χαρακτηριστικά πτήσης του πραγματικού αεροπλάνου. Ομοίως, μπορούμε να χρησιμοποιήσουμε ένα μαθη

10 32 ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ματικό μοντέλο για να εξάγουμε συμπεράσματα για τα κέρδη που θα αποκομίσουμε αν πωληθεί μια ορισμένη ποσότητα ενός συγκεκριμένου προϊόντος. Σύμφωνα με το μαθηματικό μοντέλο της εξίσωσης (1.1), περιμένουμε η πώληση τριών μονάδων του προϊόντος (x=3) να αποφέρει κέρδος P = 10(3) = $30. Γενικά, ο πειραματισμός με μοντέλα απαιτεί λιγότερο χρόνο και είναι οικονομικότερος από τον πειραματισμό με πραγματικά αντικείμενα ή καταστάσεις. Η μελέτη και η κατασκευή ενός μοντέλου αεροπλάνου πραγματοποιείται σαφώς σε μικρότερο χρονικό διάστημα και με χαμηλότερο κόστος σε σχέση με ένα πραγματικό αεροπλάνο. Ομοίως, η μαθηματική εξίσωση (1.1) μας επιτρέπει μια γρήγορη εκτίμηση των αναμενόμενων κερδών, χωρίς να απαιτεί από το διοικητικό στέλεχος να παραγάγει και να πουλήσει x μονάδες. Τα μοντέλα έχουν επίσης το πλεονέκτημα ότι μειώνουν τον κίνδυνο που έχει ο πειραματισμός με πραγματικά αντικείμενα. Συγκεκριμένα, λάθη και παραλείψεις στο σχεδιασμό που οδηγούν το μοντέλο αεροπλάνου σε συντριβή ή το μαθηματικό μοντέλο σε ζημιά ύψους $ μπορούν να αποφευχθούν σε πραγματικές συνθήκες. Η αξία των συμπερασμάτων και των αποφάσεων που βασίζονται σε μοντέλα εξαρτάται από το πόσο καλά το μοντέλο αναπαριστά την πραγματική κατάσταση. Όσο πιο πιστά αναπαρίσταται το πραγματικό αεροπλάνο από το μοντέλο αεροπλάνο, τόσο πιο ακριβή θα είναι τα συμπεράσματα και οι επακόλουθες προβλέψεις. Παρομοίως, όσο πιο πιστά αναπαριστά ένα μαθηματικό μοντέλο την πραγματική σχέση κέρδους-όγκου πωλήσεων, τόσο πιο ακριβείς θα είναι και οι προβλέψεις για τα κέρδη. Εφόσον το παρόν σύγγραμμα διαπραγματεύεται την ποσοτική ανάλυση που βασίζεται σε μαθηματικά μοντέλα, ας επικεντρωθούμε στη διαδικασία ανάπτυξης μαθηματικών μοντέλων. Όταν συναντάμε ένα διοικητικό πρόβλημα, διαπιστώνουμε συνήθως ότι η φάση καθορισμού του προβλήματος οδηγεί σε έναν συγκεκριμένο στόχο, όπως η μεγιστοποίηση του κέρδους ή η ελαχιστοποίηση του κόστους, και πιθανόν σε μια ομάδα περιορισμών, όπως οι περιορισμοί παραγωγικής δυναμικότητας. Η επιτυχία του μαθηματικού μοντέλου και της ποσοτικής προσέγγισης θα εξαρτηθεί σε μεγάλο βαθμό από την ακρίβεια με την οποία θα εκφραστούν ο στόχος και οι περιορισμοί με μαθηματικές εξισώσεις ή σχέσεις. Ο Herbert A. Simon, κάτοχος του βραβείου Νόμπελ Οικονομικών Επιστημών και ειδικός στη λήψη αποφάσεων, διατύπωσε την άποψη ότι τα μαθηματικά μοντέλα δεν χρειάζεται να είναι ακριβή. Χρειάζεται απλώς να είναι τόσο κοντά στην πραγματικότητα, ώστε να προσφέρουν βελτιωμένα αποτελέσματα σε σχέση με αυτά που μπορούν να επιτευχθούν με την κοινή λογική. Η μαθηματική έκφραση που περιγράφει το στόχο του προβλήματος ονομάζεται αντικειμενική συνάρτηση. Για παράδειγμα, η εξίσωση κέρδους P = 10x θα αποτελούσε αντικειμενική συνάρτηση για μια εταιρεία που επιθυμεί να μεγιστοποιήσει τα κέρδη της. Θα ήταν απαραίτητος ένας περιορισμός παραγωγικής δυναμικότητας αν, για παράδειγμα, απαιτούνται 5 ώρες για να παραχθεί κάθε μονάδα, ενώ έχουμε στη διάθεσή μας μόνο 40 ώρες χρόνου παραγωγής την εβδομάδα. Έστω ότι το x είναι ο αριθμός των μονάδων που παράγονται κάθε εβδομάδα. Ο περιορισμός του χρόνου παραγωγής δίνεται από τον τύπο:

11 ΕΙΣΑΓΩΓΗ 33 5x 40 (1.2) Η τιμή 5x είναι ο συνολικός χρόνος που απαιτείται για την παραγωγή x μονάδων. Το σύμβολο δείχνει ότι ο απαιτούμενος χρόνος παραγωγής πρέπει να είναι μικρότερος ή ίσος με τις 40 διαθέσιμες ώρες. Το πρόβλημα που απαιτεί απόφαση είναι το εξής: Πόσες μονάδες προϊόντος πρέπει να παράγονται κάθε εβδομάδα για να μεγιστοποιήσουμε το κέρδος; Ένα πλήρες μαθηματικό μοντέλο για αυτό το απλό πρόβλημα παραγωγής είναι το ακόλουθο: Max P = 10x (μεγιστοποίηση της αντικειμενικής συνάρτησης) υ.π. (υπό τους περιορισμούς) 5x 40 x 0 } περιορισμοί Ο περιορισμός x 0 απαιτεί η παραγόμενη ποσότητα x να είναι μεγαλύτερη ή ίση με το μηδέν, κάτι το οποίο απλώς αποτυπώνει το γεγονός ότι δεν είναι δυνατό να παραχθεί αρνητικός αριθμός μονάδων. Η βέλτιστη λύση για αυτό το μοντέλο μπορεί να υπολογιστεί εύκολα και αντιστοιχεί σε παραγωγή x = 8 μονάδων, με κέρδος $80. Αυτό το μοντέλο αποτελεί παράδειγμα μοντέλου γραμμικού προγραμματισμού. Σε επόμενα κεφάλαια θα εξετάσουμε πιο σύνθετα μαθηματικά μοντέλα και θα διδαχθούμε μεθόδους επίλυσής τους σε περιπτώσεις που η βέλτιστη λύση δεν είναι τόσο προφανής. Στο παραπάνω μαθηματικό μοντέλο, το κέρδος ανά μονάδα ($10), ο χρόνος παραγωγής ανά μονάδα (5 ώρες) και οι διαθέσιμες εργατοώρες (40 ώρες) αποτελούν περιβαλλοντικούς παράγοντες, οι οποίοι δεν ελέγχονται από το διοικητικό στέλεχος ή το λήπτη της απόφασης. Τέτοιοι παράγοντες, που μπορούν να επηρεάσουν τόσο την αντικειμενική συνάρτηση όσο και τους διάφορους περιορισμούς, ονομάζονται μη ελεγχόμενες εισροές του μοντέλου (εξωγενείς παράμετροι). Τα στοιχεία που ελέγχονται ή καθορίζονται από το λήπτη της απόφασης ονομάζονται ελεγχόμενες εισροές του μοντέλου. Στο παράδειγμα που δόθηκε, η ποσότητα παραγωγής x είναι η ελεγχόμενη εισροή του μοντέλου. Οι ελεγχόμενες εισροές καθορίζουν τις εναλλακτικές λύσεις ως προς την απόφαση που καλείται να λάβει το διοικητικό στέλεχος (manager). Για το λόγο αυτόν ονομάζονται και μεταβλητές απόφασης (decision variables) του μοντέλου. Εφόσον οριστούν όλες οι ελεγχόμενες και μη ελεγχόμενες εισροές του μοντέλου, μπορούν να εκτιμηθούν η αντικειμενική συνάρτηση και οι περιορισμοί, καθώς και να καθοριστεί το αποτέλεσμα του μοντέλου. Υπό αυτή την έννοια, το αποτέλεσμα του μοντέλου είναι απλώς η προβολή του τι θα συνέβαινε αν αυτοί οι συγκεκριμένοι περιβαλλοντικοί παράγοντες και οι αποφάσεις ήταν πραγματικοί. Η Εικόνα 1.4 απεικονίζει ένα διάγραμμα ροής το οποίο δείχνει πώς οι ελεγχόμενες και μη ελεγχόμενες εισροές του μοντέλου μετατρέπονται σε αποτέλεσμα. Στην Εικόνα 1.5 παρουσιάζεται ένα παρόμοιο διάγραμμα ροής, το οποίο αναφέρεται λεπτομερώς στο εξεταζόμενο μοντέλο παραγωγής.

Κεφάλαιο 1 AΡΧΕΙΟ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ. Εισαγωγή ΠΕΡΙΕΧΟΜΕΝΑ

Κεφάλαιο 1 AΡΧΕΙΟ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ. Εισαγωγή ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγή ΠΕΡΙΕΧΟΜΕΝΑ 1.1 Επίλυση προβλημάτων και λήψη αποφάσεων 1.2 Ποσοτική ανάλυση και λήψη αποφάσεων 1.3 Ποσοτική ανάλυση Ανάπτυξη μοντέλου Προετοιμασία δεδομένων Επίλυση μοντέλου Δημιουργία

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

Εισαγωγή στην Επιχειρησιακή Έρευνα

Εισαγωγή στην Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Εισαγωγή στην Επιχειρησιακή Έρευνα Γκόγκος Χρήστος ΤΕΙ Ηπείρου τελευταία ενημέρωση: 7/10/2016 1 Τι είναι η Επιχειρησιακή Έρευνα; Η Επιχειρησιακή Έρευνα (Operations

Διαβάστε περισσότερα

Το µαθηµατικό µοντέλο του Υδρονοµέα

Το µαθηµατικό µοντέλο του Υδρονοµέα Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας

Διαβάστε περισσότερα

2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες 2.2.2 Ιστορική εξέλιξη τον µάνατζµεντ.

2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες 2.2.2 Ιστορική εξέλιξη τον µάνατζµεντ. 2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες Έχει παρατηρηθεί ότι δεν υπάρχει σαφής αντίληψη της σηµασίας του όρου "διοίκηση ή management επιχειρήσεων", ακόµη κι από άτοµα που

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ [1]

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ [1] ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ [1] Οικονοµικός Σχεδιασµός είναι η διαδικασία πρόβλεψης της γενικής απόδοσης της επιχείρησης και η παροχή της βάσης λήψης αποφάσεων για τις µελλοντικές οικονοµικές απαιτήσεις

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Αρχές Οργάνωσης και Διοίκησης Επιχειρήσεων και Υπηρεσιών ΝΙΚΟΛΑΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΓΩΝΙΣΜΑΤΩΝ 2.

Αρχές Οργάνωσης και Διοίκησης Επιχειρήσεων και Υπηρεσιών ΝΙΚΟΛΑΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΓΩΝΙΣΜΑΤΩΝ 2. Αρχές Οργάνωσης και Διοίκησης Επιχειρήσεων και Υπηρεσιών ΕΠΙΜΕΕΙΑ: ΝΙΚΟΑΟ Χ. ΤΖΟΥΜΑΚΑ ΟΙΚΟΝΟΜΟΟΓΟ ΠΡΟΟΜΟΙΩΗ ΔΙΑΓΩΝΙΜΑΤΩΝ 2 Κεφάλαιο 2 ο Η Επιστήμη της Διοίκησης των Επιχειρήσεων Ομάδα Α Ερωτήσεις ωστού

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. I. Μάνατζµεντ - Ορισµοί. H Εξέλιξη του Μάνατζµεντ Οι Λειτουργίες του Μάνατζµεντ

ΜΑΘΗΜΑ 3ο. I. Μάνατζµεντ - Ορισµοί. H Εξέλιξη του Μάνατζµεντ Οι Λειτουργίες του Μάνατζµεντ ΜΑΘΗΜΑ 3ο Μάνατζµεντ - Ορισµοί H Εξέλιξη του Μάνατζµεντ Οι Λειτουργίες του Μάνατζµεντ I. Μάνατζµεντ - Ορισµοί... η τέχνη να φέρνεις εις πέρας κάθε έργο µε τη στήριξη και την συµµετοχή ατόµων οργανωµένων

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 1 Τι είναι η Επιχειρησιακή Έρευνα; Η Επιχειρησιακή Έρευνα (Operations Research ή Operational Research) είναι ένας επιστημονικός

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα 1. Εισαγωγή

Επιχειρησιακή Έρευνα 1. Εισαγωγή Επιχειρησιακή Έρευνα 1. Εισαγωγή 1 Ορολογία Operational Research (British/Europeans) Operations Research (USA) Κοινός συμβολισμός: OR Άλλοι όροι: Management Science (MS), Industrial Engineering (IE) Decision

Διαβάστε περισσότερα

6. Διαχείριση Έργου. Έκδοση των φοιτητών

6. Διαχείριση Έργου. Έκδοση των φοιτητών 6. Διαχείριση Έργου Έκδοση των φοιτητών Εισαγωγή 1. Η διαδικασία της Διαχείρισης Έργου 2. Διαχείριση κινδύνων Επανεξέταση Ερωτήσεις Αυτοαξιολόγησης Διαχείριση του έργου είναι να βάζεις σαφείς στόχους,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΥΠΗΡΕΣΙΩΝ. Κεφάλαιο 2 ο

ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΥΠΗΡΕΣΙΩΝ. Κεφάλαιο 2 ο ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΥΠΗΡΕΣΙΩΝ ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΛΑΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Κεφάλαιο 2 ο Η Επιστήμη της Διοίκησης των Επιχειρήσεων 2.1. Εισαγωγικές έννοιες Ο επιστημονικός κλάδος

Διαβάστε περισσότερα

Οδηγίες για αξιολόγηση στο πλαίσιο ομότιμης συνεργατικής μάθησης

Οδηγίες για αξιολόγηση στο πλαίσιο ομότιμης συνεργατικής μάθησης Οδηγίες για αξιολόγηση στο πλαίσιο ομότιμης συνεργατικής μάθησης Τι είναι το PeLe; Το PeLe είναι ένα διαδικτυακό περιβάλλον που ενθαρρύνει την αξιολόγηση στο πλαίσιο της ομότιμης συνεργατικής μάθησης και

Διαβάστε περισσότερα

a) Frederick Taylor b) Henri Fayol c) Max Weber d) Gantt

a) Frederick Taylor b) Henri Fayol c) Max Weber d) Gantt ΚΕΦΑΛΑΙΟ 2 (Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) Να σηµειώσετε µε Σ (σωστό) ή Λ (λάθος) στο τέλος των προτάσεων: 1. Ο Gantt υποστήριξε την ανάγκη για ανάπτυξη της συνεργασίας και της κατανόησης µεταξύ

Διαβάστε περισσότερα

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων... Περιεχόμενα Ανάλυση προβλήματος 1. Η έννοια πρόβλημα...13 2. Επίλυση προβλημάτων...17 Δομή ακολουθίας 3. Βασικές έννοιες αλγορίθμων...27 4. Εισαγωγή στην ψευδογλώσσα...31 5. Οι πρώτοι μου αλγόριθμοι...54

Διαβάστε περισσότερα

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

Κεφ. 9 Ανάλυση αποφάσεων

Κεφ. 9 Ανάλυση αποφάσεων Κεφ. 9 Ανάλυση αποφάσεων Η θεωρία αποφάσεων έχει ως αντικείμενο την επιλογή της καλύτερης στρατηγικής. Τα αποτελέσματα κάθε στρατηγικής εξαρτώνται από παράγοντες, οι οποίοι μπορεί να είναι καταστάσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ ΜΑΡΚΕΤΙΝΓΚ

ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ ΜΑΡΚΕΤΙΝΓΚ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΟΥ ΜΑΡΚΕΤΙΝΓΚ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ Έρευνα μάρκετινγκ Τιμολόγηση Ανάπτυξη νέων προϊόντων ΜΑΡΚΕΤΙΝΓΚ Τμηματοποίηση της αγοράς Κανάλια

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Η Θεωρία της Νομισματικής Ενοποίησης

Η Θεωρία της Νομισματικής Ενοποίησης Η Θεωρία της Νομισματικής Ενοποίησης Περιεχόμενα Κεφαλαίου Έννοια και Στάδια Νομισματικής Ενοποίησης. Τα προσδοκώμενα αποτελέσματα της Νομισματικής Ενοποίησης. Η Διαδικασία της Μετάβασης προς τη Νομισματική

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

α) Υψηλές πωλήσεις σημαίνουν ανάπτυξη της παραγωγικής λειτουργίας, που είναι προϋπόθεση για να αναπτυχθούν και οι άλλες δύο βασικές λειτουργίες.

α) Υψηλές πωλήσεις σημαίνουν ανάπτυξη της παραγωγικής λειτουργίας, που είναι προϋπόθεση για να αναπτυχθούν και οι άλλες δύο βασικές λειτουργίες. ΟΜΑΔΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 16/04/2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams

ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams Αλέκα Σεληνιωτάκη Ηράκλειο, 26/06/12 aseliniotaki@csd.uoc.gr ΑΜ: 703 1. Περίληψη Συνεισφοράς

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

H Έννοια και η Φύση του Προγραμματισμού. Αθανασία Καρακίτσιου, PhD

H Έννοια και η Φύση του Προγραμματισμού. Αθανασία Καρακίτσιου, PhD H Έννοια και η Φύση του Προγραμματισμού Αθανασία Καρακίτσιου, PhD 1 Η Διαδικασία του προγραμματισμού Προγραμματισμός είναι η διαδικασία καθορισμού στόχων και η επιλογή μιας μελλοντικής πορείας για την

Διαβάστε περισσότερα

Λήψη αποφάσεων υπό αβεβαιότητα

Λήψη αποφάσεων υπό αβεβαιότητα Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση

Διαβάστε περισσότερα

Κεφάλαιο 2. Σημασία της Επιχείρησης. Ιστορία Διοίκησης. Αρχαία Ελλάδα. Σύγχρονη Διοίκηση 1 / Εισαγωγικές Έννοιες

Κεφάλαιο 2. Σημασία της Επιχείρησης. Ιστορία Διοίκησης. Αρχαία Ελλάδα. Σύγχρονη Διοίκηση 1 / Εισαγωγικές Έννοιες Κεφάλαιο 2 2.1 Εισαγωγικές Έννοιες Σημασία της Επιχείρησης Από τότε που οι άνθρωποι αναγκάστηκαν να σχηματίζουν ομάδες για να επιτύχουν στόχους, τους οποίους δε μπορούσαν να επιτύχουν ως άτομα, εμφανίστηκε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ 1.1 Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα

Διαβάστε περισσότερα

2 ο Κ Ε Φ Α Λ Α Ι Ο Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ

2 ο Κ Ε Φ Α Λ Α Ι Ο Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ 2 ο Κ Ε Φ Α Λ Α Ι Ο Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Ερωτήσεις της µορφής «σωστό λάθος» Να χαρακτηρίσετε µε Σ (σωστό) ή µε Λ (λάθος) καθεµιά από τις παρακάτω προτάσεις.

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ Ενημερωτικό Φυλλάδιο Αθήνα, Οκτώβριος 2016 Εργαστήριο

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο δεύτερο: << Η επιστήμη της διοίκησης των επιχειρήσεων>>. Μάθημα 8 0

ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο δεύτερο: << Η επιστήμη της διοίκησης των επιχειρήσεων>>. Μάθημα 8 0 ΑΡΧΕΣ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Κεφάλαιο δεύτερο: >. Μάθημα 8 0 2.1. Εισαγωγικές έννοιες. Ερ.1. Από πότε εμφανίζεται η ανάγκη της διοίκησης των

Διαβάστε περισσότερα

9. Κάθε στρατηγική επιχειρηματική μονάδα αποφασίζει για την εταιρική στρατηγική που θα εφαρμόσει. α. Λάθος. β. Σωστό.

9. Κάθε στρατηγική επιχειρηματική μονάδα αποφασίζει για την εταιρική στρατηγική που θα εφαρμόσει. α. Λάθος. β. Σωστό. 1. Με ποιους τρόπους επωφελούνται οι καταναλωτές από τις οικονομίες κλίμακας; (πολλαπλής επιλογής / δύο σωστές απαντήσεις) α. Αυξάνονται τα κέρδη των επιχειρήσεων. β. Οι τιμές, αρκετές φορές, μειώνονται.

Διαβάστε περισσότερα

Διοίκηση Λειτουργιών. τετράδιο 1

Διοίκηση Λειτουργιών. τετράδιο 1 Λορέντζος Χαζάπης Γιάννης Ζάραγκας Διοίκηση Λειτουργιών τα τετράδια μιας Οδύσσειας τετράδιο 1 Εισαγωγή στη διοίκηση των λειτουργιών Αθήνα 2012 τετράδιο 1 Εισαγωγή στη διοίκηση των λειτουργιών ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

Διοικητική των επιχειρήσεων

Διοικητική των επιχειρήσεων 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Διοικητική των επιχειρήσεων Ενότητα 6 : Τύποι και διαχέιριση αποφάσεων Καραμάνης Κωνσταντίνος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Μοντέλα Διανομής και Δικτύων

Μοντέλα Διανομής και Δικτύων Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ Όλοι παίρνουμε αποφάσεις συνεχώς σε διάφορα επίπεδα / περιβάλλοντα αποφάσεων: Προσωπικές

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

5.1. Χωροταξικός Σχεδιασμός Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού Δραστηριότητες Χωροταξικού Σχεδιασμού...

5.1. Χωροταξικός Σχεδιασμός Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού Δραστηριότητες Χωροταξικού Σχεδιασμού... ΚΕΦΑΛΑΙΟ 5. ΧΩΡΟΤΑΞΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Περιεχόμενα 5.1. Χωροταξικός Σχεδιασμός... 2 5.2. Κριτήρια αξιολόγησης Χωροταξικού Σχεδιασμού... 4 5.3. Δραστηριότητες Χωροταξικού Σχεδιασμού... 5 5.4. Τύποι Χωροταξίας...

Διαβάστε περισσότερα

Μεθοδική Ανάπτυξη Δικτυακής Υποδομής. Παρουσίαση στην ημερίδα για Σύγχρονες τάσεις στις Τηλεπικοινωνίες και Τεχνολογίες Αιχμής

Μεθοδική Ανάπτυξη Δικτυακής Υποδομής. Παρουσίαση στην ημερίδα για Σύγχρονες τάσεις στις Τηλεπικοινωνίες και Τεχνολογίες Αιχμής Μεθοδική Ανάπτυξη Δικτυακής Υποδομής Παρουσίαση στην ημερίδα για Σύγχρονες τάσεις στις Τηλεπικοινωνίες και Τεχνολογίες Αιχμής 14-01-2006 1 Περιεχόμενα Η ανάγκη για μεθοδικό σχεδιασμό δικτύων Μία δομημένη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο Η επιστήμη της Διοίκησης. Καζάκου Γεωργία, ΠΕ09 Οικονομολόγος

ΚΕΦΑΛΑΙΟ 2ο Η επιστήμη της Διοίκησης. Καζάκου Γεωργία, ΠΕ09 Οικονομολόγος ΚΕΦΑΛΑΙΟ 2ο Η επιστήμη της Διοίκησης 1 Η ανάγκη για Διοίκηση υπάρχει από τότε που οι άνθρωποι σχημάτισαν ομάδες, για να πετύχουν αυτά που δεν μπορούσαν να πετύχουν μόνοι τους. Η σημασία της Διοίκησης αναγνωρίζεται:

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 11-ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ 3 Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΟΙΤΗΤΗ ΑΜ.

ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 11-ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ 3 Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΟΙΤΗΤΗ ΑΜ. ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 11-ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ 3 Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΟΙΤΗΤΗ ΑΜ. ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή..σελ. 2 Μέτρηση εργασίας σελ. 2 Συστήματα διαχείρισης

Διαβάστε περισσότερα

Θέμα: ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΠΛΟΚΑ ΠΡΟΒΛΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ

Θέμα: ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΠΛΟΚΑ ΠΡΟΒΛΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, TECHNOLOGICAL EDUCATIONAL INSTITUTE

Διαβάστε περισσότερα

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu.

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu. Managing Information Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business e-mail: kyritsis@ist.edu.gr Διαχείριση Γνώσης Knowledge Management Learning Objectives Ποιοί

Διαβάστε περισσότερα

Πρότυπο Κόστος Μέρος ΙΙ

Πρότυπο Κόστος Μέρος ΙΙ Οργάνωση Παραγωγής & ιοίκηση Επιχειρήσεων ΙΙ Κοστολόγηση Επιχειρήσεων & Λήψη Αποφάσεων Κεφάλαιο 9 Πρότυπο Κόστος Μέρος ΙΙ Νικόλαος Α. Παναγιώτου 2007 ΕΜΠ Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής Έρευνας

Διαβάστε περισσότερα

Γ Γυμνασίου: Οδηγίες Γραπτής Εργασίας και Σεμιναρίων. Επιμέλεια Καραβλίδης Αλέξανδρος. Πίνακας περιεχομένων

Γ Γυμνασίου: Οδηγίες Γραπτής Εργασίας και Σεμιναρίων. Επιμέλεια Καραβλίδης Αλέξανδρος. Πίνακας περιεχομένων Γ Γυμνασίου: Οδηγίες Γραπτής Εργασίας και Σεμιναρίων. Πίνακας περιεχομένων Τίτλος της έρευνας (title)... 2 Περιγραφή του προβλήματος (Statement of the problem)... 2 Περιγραφή του σκοπού της έρευνας (statement

Διαβάστε περισσότερα

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Μαθηματικά για Οικονομολόγους Ι Εργασία - ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ - ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Παρακάτω δίνονται συνολικά ασκήσεις με πολλαπλά ερωτήματα τις οποίες θα επιλύσετε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 1ο ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1ο ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ Στέργιος Παλαμάς 2006- ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ: Πλήρης Κατανόηση του Προβλήματος Προσδιορισμός των Συστατικών Μερών του Προβλήματος Ανάλυση Προβλήματος σε απλούστερα Προσδιορισμός

Διαβάστε περισσότερα

Γενικοί Δείκτες για την Αξιολόγηση στη Συνεκπαίδευση

Γενικοί Δείκτες για την Αξιολόγηση στη Συνεκπαίδευση Η ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ EL Γενικοί Δείκτες για την Αξιολόγηση στη Συνεκπαίδευση Εισαγωγή Η αξιολόγηση στη συνεκπαίδευση αποτελεί μια προσέγγιση της αξιολόγησης στο πλαίσιο της γενικής

Διαβάστε περισσότερα

Διδακτικές Τεχνικές (Στρατηγικές)

Διδακτικές Τεχνικές (Στρατηγικές) Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ 1. Διαχείριση έργων Τις τελευταίες δεκαετίες παρατηρείται σημαντική αξιοποίηση της διαχείρισης έργων σαν ένα εργαλείο με το οποίο οι διάφορες επιχειρήσεις

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα

ΔΙΟΙΚΗΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Αναπλ. Καθηγητής Δ.Μ. Εμίρης Λέκτορας Ι. Γιαννατσής ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ

ΔΙΟΙΚΗΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ. Αναπλ. Καθηγητής Δ.Μ. Εμίρης Λέκτορας Ι. Γιαννατσής ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ ΔΙΟΙΚΗΤΙΚΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΑΝΑΛΥΣΗ ΑΠΟΦΑΣΕΩΝ Αναπλ. Καθηγητής Δ.Μ. Εμίρης Λέκτορας Ι. Γιαννατσής ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ Όλοι παίρνουμε αποφάσεις συνεχώς σε διάφορα επίπεδα/ περιβάλλοντα αποφάσεων:

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 2 η Διάλεξη Παίγνια ελλιπούς πληροφόρησης Πληροφοριακά σύνολα Κανονική μορφή παιγνίου Ισοδύναμες στρατηγικές Παίγνια συνεργασίας και μη συνεργασίας Πεπερασμένα και

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ Οικονομική Επιστήμη: Η κοινωνική επιστήμη που ερευνά την οικονομική δραστηριότητα

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση

Συνδυαστική Βελτιστοποίηση Διδάσκων: Ξενίδης Δημήτριος (xenides@uop.gr) Τόπος Διδασκαλίας: Αίθουσα Υ5 Ημέρα και Ώρα Διδασκαλίας: Παρασκευή 10:00-14:00 Βιβλίο Μαθήματος: Elementary Linear Programming with Applications Σελίδα στο

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Μοντέλα Διαχείρισης Αποθεμάτων

Μοντέλα Διαχείρισης Αποθεμάτων Μοντέλα Διαχείρισης Αποθεμάτων 2 Εισαγωγή (1) Ο όρος απόθεμα αναφέρεται σε προϊόντα και υλικά που αποθηκεύονται από την επιχείρηση για μελλοντική χρήση Τα αποθέματα μπορεί να περιλαμβάνουν Πρώτες ύλες

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ. Πρότυπη Προτεινόμενη Απάντηση 2 ης ΓΕ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ. Πρότυπη Προτεινόμενη Απάντηση 2 ης ΓΕ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΟΡΓΑΝΙΣΜΩΝ ΔΕΟ 42 ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ Επιμέλεια ύλης: Βίκυ Βάρδα Πρότυπη Προτεινόμενη Απάντηση 2 ης ΓΕ 2015-2016 Κ.Βάρναλη 54, 210 5711484 grammateia@eclass4u.gr

Διαβάστε περισσότερα

Γεώργιος Φίλιππας 23/8/2015

Γεώργιος Φίλιππας 23/8/2015 MACROWEB Προβλήματα Γεώργιος Φίλιππας 23/8/2015 Παραδείγματα Προβλημάτων. Πως ορίζεται η έννοια πρόβλημα; Από ποιους παράγοντες εξαρτάται η κατανόηση ενός προβλήματος; Τι εννοούμε λέγοντας χώρο ενός προβλήματος;

Διαβάστε περισσότερα

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft:

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: Specisoft ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: NPV & IRR: Αξιολόγηση & Ιεράρχηση Επενδυτικών Αποφάσεων Από Αβραάμ Σεκέρογλου, Οικονομολόγo, Συνεργάτη της Specisoft Επισκεφθείτε το Management

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MANAGEMENT ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ. Ορισμοί

ΕΙΣΑΓΩΓΗ ΣΤΟ MANAGEMENT ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ. Ορισμοί Ορισμοί Ηγεσία είναι η διαδικασία με την οποία ένα άτομο επηρεάζει άλλα άτομα για την επίτευξη επιθυμητών στόχων. Σε μια επιχείρηση, η διαδικασία της ηγεσίας υλοποιείται από ένα στέλεχος που κατευθύνει

Διαβάστε περισσότερα

Management. Νικόλαος Μυλωνίδης Μάθημα 3 1 24/2/2010

Management. Νικόλαος Μυλωνίδης Μάθημα 3 1 24/2/2010 Management Νικόλαος Μυλωνίδης Μάθημα 3 1 Εισαγωγή Έννοια και Περιεχόμενο του Μάνατζμεντ Ποια είναι τα διοικητικά στελέχη και ποιος ο ρόλος τους στα διάφορα επίπεδα της ιεραρχίας Βάσικες δραστηριότητες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Προτεινόμενα θέματα εξετάσεων Εργαστήριο. Μέρος 1 ό. ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής

Προγραμματισμός Η/Υ. Προτεινόμενα θέματα εξετάσεων Εργαστήριο. Μέρος 1 ό. ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής Προγραμματισμός Η/Υ Προτεινόμενα θέματα εξετάσεων Εργαστήριο Μέρος 1 ό ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής Ιανουάριος 2011 Καλογιάννης Γρηγόριος Επιστημονικός/ Εργαστηριακός

Διαβάστε περισσότερα

H Λήψη των Αποφάσεων. Αθανασία Καρακίτσιου, PhD

H Λήψη των Αποφάσεων. Αθανασία Καρακίτσιου, PhD H Λήψη των Αποφάσεων Αθανασία Καρακίτσιου, PhD 1 Πως λαμβάνονται οι αποφάσεις Η λήψη αποφάσεων είναι η επιλογή μίας λύσης μεταξύ εναλλακτικών προτάσεων που έχουμε στην διάθεση μας. Η άποψη αυτή παρουσιάζει

Διαβάστε περισσότερα