Παράςταςη ςυμπλήρωμα ωσ προσ 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παράςταςη ςυμπλήρωμα ωσ προσ 1"

Transcript

1 Δρ. Χρήστος Ηλιούδης

2 Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2

3 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ' τζτοιον ϊςτε Χ + Χ' = R n -1 Για το δυαδικό ςφςτθμα το ςυμπλιρωμα αυτό ονομάηεται ςυμπλιρωμα ωσ προσ 1 ι Σ1(Χ) και ιςχφει Χ+Χϋ=2 n -1. O υπολογιςμόσ του Χ' γίνεται ωσ εξισ: Χ' = (2 θ -1) - Χ = ( ) - (Χ θ-1 Χ θ-2... Χ 0 ) θ όροι θ όροι και Χ' = (1-Χ θ-1 1-Χ θ Χ 0 ) 3

4 Κανόνασ κανόνασ για τον υπολογιςμό του ςυμπλθρϊματοσ ωσ προσ 1 ενόσ αρικμοφ Χ. Το ςυμπλιρωμα ωσ προσ 1 ενόσ μθ προςθμαςμζνου δυαδικοφ ακεραίου αρικμοφ Χ υπολογίηεται αν αντιςτρζψουμε ζνα προσ ζνα τα ψθφία του. 4

5 Aν θ=8 τότε: Χ = = Σ1(17) = X = = Σ1(119) = Χ = 0 10 = Σ1(0) = Χ = = Σ1(99) = Χ = = Σ1(127) =

6 Σφςτημα παράςταςησ ΣT1 Στο ςφςτθμα παράςταςθσ ΣΤ1 οι προςθμαςμζνοι αρικμοί που μποροφν να χωρζςουν ςε μία κζςθ μνιμθσ μικουσ n bits ορίηονται ωσ εξισ: 'Oλοι οι μθ αρνθτικοί αρικμοί (Θετικοί και μθδζν) που είναι μικρότεροι από το 2 θ-1-1 ςυμπεριλαμβανομζνου, παριςτάνονται όπωσ ακριβϊσ ςτο ςφςτθμα πρόςθμο-μζγεκοσ. Οι αρικμοί Χ από -(2 θ-1-1) μζχρι και 0 παριςτάνονται με το ςυμπλιρωμα ωσ προσ 1 τθσ απολφτου τιμισ του Χ. Eχουμε δφο παραςτάςεισ του μθδενόσ, τθν ( ) και τθν ( ). Όπωσ και ςτο ΣΤ2, το MSB κα είναι πάντοτε 1 για τουσ αρνθτικοφσ και 0 για του κετικοφσ 6

7 Σε μια κζςθ των n bits μποροφν να παραςτακοφν οι ακζραιοι που βρίςκονται μεταξφ των ορίων -(2 n-1-1) ωσ (2 n-1-1) ςυμπεριλαμβανομζνων και κωδικοποιεί τοφσ ίδιουσ ακριβϊσ αρικμοφσ με το ςφςτθμα πρόςθμο-μζγεκοσ, δθλαδι 2 n. Το κφριο πλεονζκτθμα του ΣΤ1 είναι θ ςυμμετρία του και θ ευκολία τθσ εφρεςθσ του ςυμπλθρϊματοσ ωσ προσ 1. Η πρόςκεςθ όμωσ ςτο ςφςτθμα αυτό είναι πιο πολφπλοκθ από αυτιν του ΣΤ2. 7

8

9 Πρόςθεςη ςτο ΣΤ1 Αρχίηοντασ από το (-7 10 ) και προχωρϊντασ προσ τα κάτω, κα παρατθριςουμε ότι κάκε αρικμόσ προκφπτει από τον προθγοφμενο αν προςκζςουμε τθ μονάδα, εκτόσ από τθ μεταφορά από το (-0) ςτο (+1 10 ). Και αυτό γιατί ενδιάμεςα παρεμβάλλεται το 0000 (+0). Για να καλφψουμε αυτιν τθν "ανωμαλία" προςκζτουμε το 2 αντί για το 1 όταν κζλουμε να μεταφερκοφμε από το ςτο «Για να διαςχίςουμε τον πίνακα αυξάνουμε κατά 1 εκτόσ από τθ μετάβαςθ μασ από 1111 ςτο 0001 όπου αυξάνουμε κατά 2». 9

10 Κανόνασ πρόςθεςησ ςτο ΣΤ1 Εκτελοφμε τθν δυαδικι πρόςκεςθ, αν υπάρχει κρατοφμενο πζρα από το MSB το προςκζτουμε ςτο αποτζλεςμα Η μζκοδοσ αυτι είναι γνωςτι και ςαν Endaround carry. 10

11 Παραδείγματα ΝΟ overflow NO overflow 11

12 NO overflow 0011 NO overflow 12

13 NO overflow overflow 13

14 Αφαίρεςη ςτο ΣΤ1 'Όπωσ και ςτθν περίπτωςθ του ΣΤ2, ο πιο εφκολοσ τρόποσ να κάνει κανείσ αφαίρεςθ, είναι να βρει το αντίςτροφο του αφαιρετζου και να το προςκζςει ςτον μειωτζο. Το τζχναςμα αυτό ζχει τα παρακάτω βιματα: Κανόνασ αφαίρεςησ ςτο ΣΤ1 Β0 : Β1 : Αντιςτρζφουμε τον αφαιρετζο Προςκζτουμε, (πρόςκεςθ ςτο ΣΤ1) ςτον αρικμό που κα προκφψει από το βιμα 0, τον μειωτζο. 14

15 Παραδείγματα αντιςτροφι NO overflow 15

16 αντιςτροφι NO overflow 16

17 αντιςτροφι overflow οι κανόνεσ για τθν υπερχείλιςθ είναι οι ίδιοι με αυτοφσ που περιγράψαμε ςτο ςφςτθμα ΣΤ2. 17

18 Προςθμαςμζνοι Ακζραιοι ςε Μορφι Συμπλθρϊματοσ ωσ προσ Ζνα Η διαδικαςία για τθν ερμθνεία μιασ δυαδικισ αναπαράςταςθσ ςυμπλθρϊματοσ ωσ προσ ζνα ςτο δεκαδικό ςφςτθμα είναι τα ακόλουκα: Αν το τελευταίο αριςτερά μπιτ είναι 0 (κετικόσ αρικμόσ), Μετατρζπουμε ολόκλθρο τον αρικμό από το δυαδικό ςτο δεκαδικό ςφςτθμα. Τοποκετοφμε κετικό πρόςθμο (+) μπροςτά από τον αρικμό. Αν το τελευταίο αριςτερά μπιτ είναι 1 (αρνθτικόσ αρικμόσ), Αντικακιςτοφμε τον αρικμό με το ςυμπλιρωμά του (αλλάηουμε όλα τα 0 ςε 1, και το αντίςτροφο). Μετατρζπουμε ολόκλθρο τον αρικμό από το δυαδικό ςτο δεκαδικό ςφςτθμα. Τοποκετοφμε μπροςτά από τον αρικμό αρνθτικό πρόςθμο ( ). 18

19 Προςθμαςμζνοι Ακζραιοι ςε Μορφι Συμπλθρϊματοσ ωσ προσ Ζνα Ερμθνεφςτε τον αρικμό ςτο δεκαδικό ςφςτθμα, ζχοντασ ωσ δεδομζνο ότι ο αρικμόσ ζχει αποκθκευτεί ωσ ακζραιοσ ςυμπλθρϊματοσ ωσ προσ ζνα Λφςθ Το τελευταίο αριςτερά μπιτ είναι το 1, άρα ο αρικμόσ είναι αρνθτικόσ. Πρϊτα βρίςκουμε το ςυμπλιρωμά του. Το αποτζλεςμα είναι , το οποίο ςτο δεκαδικό είναι ο αρικμόσ 9. Επομζνωσ ο αρχικόσ αρικμόσ είναι το 9. 19

20 Προςθμαςμζνοι Ακζραιοι ςε Μορφι Συμπλθρϊματοσ ωσ προσ Ζνα Εφαρμογζσ Επικοινωνία Δεδομζνων Ανίχνευςθ και διόρκωςθ ςφαλμάτων 20

21 Ερωτιςεισ - ςυηιτθςθ

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

Μετατροπεσ Παραςταςεων

Μετατροπεσ Παραςταςεων Δρ. Χρήζηος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ Αριθμητικά Συςτήματα Ζνασ αριθμόσ m-ψηφίων και βάςησ b, γράφεται ωσ μια ακολουθία m-ψηφίων. x = xm-1xm-2 x1x0 Όπου τα ψηφία xi ανήκουν ςτο διάςτημα 0 xi b-1 Ζτςι, η τιμή

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

Ακολουκιακά Λογικά Κυκλώματα

Ακολουκιακά Λογικά Κυκλώματα Ακολουκιακά Λογικά Κυκλώματα Τα ψθφιακά λογικά κυκλϊματα που μελετιςαμε μζχρι τϊρα ιταν ςυνδυαςτικά κυκλϊματα. Στα ςυνδυαςτικά κυκλϊματα οι ζξοδοι ςε κάκε χρονικι ςτιγμι εξαρτϊνται αποκλειςτικά και μόνο

Διαβάστε περισσότερα

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα, Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10 Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε

Διαβάστε περισσότερα

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) 3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου

Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ Θζμα Α Α1: γ, Α2: β, Α3: α, Α4: β, A5: β Θζμα Β Β1: Σ ι Λ (ελλιπισ διατφπωςθ), Λ, Σ, Σ, Σ Β2: α) Οι διαφορζσ μεταξφ ς και π δεςμοφ είναι: α. Στον ς

Διαβάστε περισσότερα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες 1 Πρωτεΐνες Πρωτεΐνεσ : Οι πρωτεΐνεσ είναι ουςίεσ «πρώτθσ» γραμμισ για τουσ οργανιςμοφσ (άρα και για τον άνκρωπο). Σα κφτταρα και οι ιςτοί αποτελοφνται κατά κφριο λόγο από πρωτεΐνεσ. Ο ςθμαντικότεροσ όμωσ

Διαβάστε περισσότερα

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά

Διαβάστε περισσότερα

Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W

Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W Ασ αναλυςουμε μερικεσ εννοιεσ που προκαλουν ςυγχυςθ ςε μερικουσ από εμασ ι δεν είναι τοςο ςαφεισ. Για λογουσ ευκολιασ ςτθν αναλυςθ των εννοιων κανουμε τθν παραδοχθ ότι ενα Δικτυο μπορει να φιλοξενθςει

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας 1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 11: Αντικειμενοςτραφήσ και αντικείμενοςχεςιακζσ βάςεισ Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Αςκιςεισ και παιχνίδια με ευρϊ

Αςκιςεισ και παιχνίδια με ευρϊ 1 ο Ειδικό Δ.Σ. Ρειραιά 2013 χολικό Βοικθμα Μζροσ Α Αςκιςεισ και παιχνίδια με ευρϊ Γεράςιμοσ Σπίνοσ Πλγα Σουρίδθ Αντί για πρόλογο Οι αςκιςεισ που κα ακολουκιςουν, αναφζρονται ςτθν εκμάκθςθ των χρθμάτων

Διαβάστε περισσότερα

Ανάλυςη κλειςτϊν δικτφων

Ανάλυςη κλειςτϊν δικτφων Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ

Διαβάστε περισσότερα

MySchool Πρακτικζσ οδθγίεσ χριςθσ

MySchool Πρακτικζσ οδθγίεσ χριςθσ MySchool Πρακτικζσ οδθγίεσ χριςθσ 1) Δθμιουργία τμθμάτων (ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ, Διαχείριςθ, Διαχείριςθ τμθμάτων) Το πρώτο που πρζπει να κάνουμε ςτο MySchool είναι να δθμιουργιςουμε τα τμιματα που υπάρχουν ςτο

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

3 Πλεοναςμόσ Πληροφορίασ

3 Πλεοναςμόσ Πληροφορίασ 3 Πλεοναςμόσ Πληροφορίασ Τα λάκθ ςτα δεδομζνα ςυμβαίνουν ενδεχομζνωσ όταν εκείνα μεταφζρονται από τθ μια μονάδα ςτθν άλλθ, από ζνα ςφςτθμα ςε ζνα άλλο, ι όταν αυτά αποκθκεφονται ςε μια μονάδα μνιμθσ. Για

Διαβάστε περισσότερα

Οδηγύεσ Εφαρμογόσ Ηλεκτρονικόσ Κοςτολόγηςησ

Οδηγύεσ Εφαρμογόσ Ηλεκτρονικόσ Κοςτολόγηςησ Οδηγύεσ Εφαρμογόσ Ηλεκτρονικόσ Κοςτολόγηςησ Η εφαρμογι κοςτολόγθςθσ δίνει ςτουσ διακζτεσ ςυγγραμμάτων τθ δυνατότθτα υποβολισ αίτθςθσ κοςτολόγθςθσ για βιβλία τα οποία ζχουν ςυμπεριλθφκεί ςε μία τουλάχιςτον

Διαβάστε περισσότερα

Εγχειρίδιο: Honeybee Small

Εγχειρίδιο: Honeybee Small ΚΟΚΚΙΝΟΣ ΔΗΜΗΤΡΗΣ Τηλ/Fax: 20 993677 Άγιος Δημήτριος, Αττικής 73 42 Ν. Ζέρβα 29 e-mail: Kokkinos@kokkinostoys.gr www.kokkinostoys.gr Εγχειρίδιο: Honeybee Small HEYBEE SMALL CRANE MACHINE DIP SW 2 3 4 5

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v )

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v ) Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών (v.1. 0.7) 1 Περίλθψθ Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ Εκτφπωςθσ

Διαβάστε περισσότερα

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα:

Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 ο Σετ Ασκήσεων Δομές Δεδομένων - Πίνακες Άςκθςθ 1θ: Να γραφεί αλγόρικμοσ που κα δθμιουργεί με τθ βοικεια διπλοφ επαναλθπτικοφ βρόχου, τον ακόλουκο διςδιάςτατο πίνακα: 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8

Διαβάστε περισσότερα

343 Ειςαγωγι ςτον Προγραμματιςμό

343 Ειςαγωγι ςτον Προγραμματιςμό 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Δίκτυα Επικοινωνιϊν ΙΙ Διδάςκων: Απόςτολοσ Γκάμασ (Διδάςκων ΠΔ 407/80) Βοθκόσ Εργαςτθρίου: Δθμιτριοσ Μακρισ Ενδεικτική Λύση 2

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι

Διαβάστε περισσότερα

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Διαδίκτυο: μια πόρτα ςτον κόςμο Πϊσ μπορεί κανείσ ςε λίγα λεπτά να μάκει ποιεσ ταινίεσ παίηονται ςτουσ κινθματογράφουσ, να ςτείλει

Διαβάστε περισσότερα

Ρομποτική. Η υγεία ςασ το αξίηει

Ρομποτική. Η υγεία ςασ το αξίηει Ρομποτική Μάκετε γριγορά και εφκολα ό τι χρειάηεται να ξζρετε για τισ λαπαροςκοπικζσ μεκόδουσ αντιμετϊπιςθσ γυναικολογικϊν πακιςεων Ενθμερωκείτε ςωςτά και υπεφκυνα Η υγεία ςασ το αξίηει Μζκοδοσ και πλεονεκτιματα

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Support

Εγχειρίδιο Χρήςησ Support Εγχειρίδιο Χρήςησ Support Περιεχόμενα 1) Αρχικι Σελίδα...2 2) Φόρμα Σφνδεςθσ...2 3) Μετά τθ ςφνδεςθ...2 4) Λίςτα Υποκζςεων...3 5) Δθμιουργία Νζασ Υπόκεςθσ...4 6) Σελίδα Υπόκεςθσ...7 7) Αλλαγι Κωδικοφ...9

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ «Πρόςθεςη και αφαίρεςη κλαςματικϊν αριθμϊν» Ειςηγητήσ: Χαράλαμποσ Λεμονίδησ

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ «Πρόςθεςη και αφαίρεςη κλαςματικϊν αριθμϊν» Ειςηγητήσ: Χαράλαμποσ Λεμονίδησ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ «Πρόςθεςη και αφαίρεςη κλαςματικϊν αριθμϊν» Ειςηγητήσ: Χαράλαμποσ Λεμονίδησ Ομάδα Εργαςίασ: Κελεςίδησ Ευάγγελοσ, δάςκαλοσ ΠΕ70 Μανάφη Ιωάννα, δαςκάλα ΠΕ70 Θεςςαλονίκη, επτζμβριοσ

Διαβάστε περισσότερα

ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013

ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013 ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013 ΘΕΜΑ Α Α1. γ Α2. β Α3. α Α4. δ Α5. α ΘΕΜΑ Β Β1. ελ. 123-124 «Η γονιδιακι κεραπεία εφαρμόςτθκε και ειςάγονται πάλι ς αυτόν.» Β2. ελ. 133 «Διαγονιδιακά ονομάηονται

Διαβάστε περισσότερα

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: 2008030075 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ

Διαβάστε περισσότερα

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων).

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_ (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). Βαςικοί παράμετροι @EDT@_ @CHK@_ @CXD@_ @CXDC@_ @CMB@_ @CHKLB@_ Παράμετροσ που

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 11: Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ

Διαβάστε περισσότερα

Πειραματικι Ψυχολογία (ΨΧ66)

Πειραματικι Ψυχολογία (ΨΧ66) Πειραματικι Ψυχολογία (ΨΧ66) Διδάςκουςα: Αλεξάνδρα Οικονόμου Παρουςίαςη διαλζξεων: Πζτροσ Ροφςςοσ Διάλεξη 1 Ειςαγωγι Αντικείμενο και τρόποσ λειτουργίασ του μακιματοσ Τι είναι επιςτιμθ; Καλωςορίςατε ςτο

Διαβάστε περισσότερα

Slide 1. Εισαγωγή στη ψυχρομετρία

Slide 1. Εισαγωγή στη ψυχρομετρία Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν

Διαβάστε περισσότερα

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και 25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και Γ) Τα ψυκτικά φορτία από είςοδο εξωτερικοφ αζρα. 26. Ποιζσ είναι οι

Διαβάστε περισσότερα

Πνομα Ρεριγραφι Σφμβολο. Θ διάρκεια μιασ δραςτθριότθτασ (αρχικό πρόγραμμα ζργου)

Πνομα Ρεριγραφι Σφμβολο. Θ διάρκεια μιασ δραςτθριότθτασ (αρχικό πρόγραμμα ζργου) Ονοματολογία Συπολόγιο Τπολογιςμοί - Παραδείγματα Πνομα Ρεριγραφι Σφμβολο Αρχικι διάρκεια Εναπομζνουςα διάρκεια Ροςοςτό ςυμπλιρωςθσ Νωρίτεροσ χρόνοσ ζναρξθσ Νωρίτεροσ χρόνοσ ςυμπλιρωςθσ Βραδφτεροσ χρόνοσ

Διαβάστε περισσότερα

ΣΙΜΟΛΟΓΗΗ ΤΝΣΑΓΩΝ ΜΕ ΥΑΡΜΑΚΑ ΠΟΤ ΕΦΟΤΝ ΣΙΜΗ ΑΝΑΥΟΡΑ ΜΕΓΑΛΤΣΕΡΗ ΑΠΟ ΣΗΝ ΣΙΜΗ ΛΙΑΝΙΚΗ

ΣΙΜΟΛΟΓΗΗ ΤΝΣΑΓΩΝ ΜΕ ΥΑΡΜΑΚΑ ΠΟΤ ΕΦΟΤΝ ΣΙΜΗ ΑΝΑΥΟΡΑ ΜΕΓΑΛΤΣΕΡΗ ΑΠΟ ΣΗΝ ΣΙΜΗ ΛΙΑΝΙΚΗ ΣΙΜΟΛΟΓΗΗ ΤΝΣΑΓΩΝ ΜΕ ΥΑΡΜΑΚΑ ΠΟΤ ΕΦΟΤΝ ΣΙΜΗ ΑΝΑΥΟΡΑ ΜΕΓΑΛΤΣΕΡΗ ΑΠΟ ΣΗΝ ΣΙΜΗ ΛΙΑΝΙΚΗ Μπορεί να ςυμβαίνει αυτό; Ναί. Απλά τϊρα εμφανίςτθκαν τζτοιεσ τιμζσ ςτον κατάλογο φαρμάκων. Μζχρι τϊρα πάντα οι τιμζσ

Διαβάστε περισσότερα

ΣΥΝΟΡΤΙΚΟΣ ΡΙΝΑΚΑΣ ΜΕ ΤΑ ΧΑΑΚΤΗΙΣΤΙΚΑ ΤΗΣ ΔΙΔΑΚΤΙΚΗΣ ΡΟΤΑΣΗΣ

ΣΥΝΟΡΤΙΚΟΣ ΡΙΝΑΚΑΣ ΜΕ ΤΑ ΧΑΑΚΤΗΙΣΤΙΚΑ ΤΗΣ ΔΙΔΑΚΤΙΚΗΣ ΡΟΤΑΣΗΣ Αφόρμθςθ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: ΖΩΝΤΑΝΟΙ ΟΓΑΝΙΣΜΟΙ/ΦΥΤΑ ΣΥΝΟΡΤΙΚΟΣ ΡΙΝΑΚΑΣ ΜΕ ΤΑ ΧΑΑΚΤΗΙΣΤΙΚΑ ΤΗΣ ΔΙΔΑΚΤΙΚΗΣ ΡΟΤΑΣΗΣ Δείκτθσ Επιτυχίασ: Να διατυπϊνουν παρατθριςεισ για διάφορεσ εμφανείσ ιδιότθτεσ των ηωντανϊν

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό

Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη σε συναρτήσεις Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

-Έλεγχοσ μπαταρίασ (χωρίσ φορτίο) Ο ζλεγχοσ αυτόσ μετράει τθν κατάςταςθ φόρτιςθ τθσ μπαταρίασ.

-Έλεγχοσ μπαταρίασ (χωρίσ φορτίο) Ο ζλεγχοσ αυτόσ μετράει τθν κατάςταςθ φόρτιςθ τθσ μπαταρίασ. 1 -Έλεγχοσ μπαταρίασ (έλεγχοσ επιφανείασ) Ο ζλεγχοσ αυτόσ γίνεται για τθν περίπτωςθ που υπάρχει χαμθλό ρεφμα εκφόρτιςθσ κατά μικοσ τθσ μπαταρίασ -Έλεγχοσ μπαταρίασ (χωρίσ φορτίο) Ο ζλεγχοσ αυτόσ μετράει

Διαβάστε περισσότερα

Ηλιακι Θζρμανςθ οικίασ

Ηλιακι Θζρμανςθ οικίασ Ηλιακι Θζρμανςθ οικίασ Δυνατότθτα κάλυψθσ κερμαντικϊν αναγκϊν ζωσ και 100% (εξαρτάται από τθν τοποκεςία, τθν ςυλλεκτικι επιφάνεια και τθν μάηα νεροφ αποκθκεφςεωσ) βελτιςτοποιθμζνο ςφςτθμα με εγγυθμζνθ

Διαβάστε περισσότερα

1. Να αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι τιλθ-ι. τιλθ-ιι Γενικοί μοριακοί τφποι. Ομόλογεσ ςειρζσ Α.

1. Να αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι τιλθ-ι. τιλθ-ιι Γενικοί μοριακοί τφποι. Ομόλογεσ ςειρζσ Α. 1 1. Να αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι τιλθ-ι τιλθ-ιι Γενικοί μοριακοί τφποι Ομόλογεσ ςειρζσ Α. C ν Η 2ν+2 1. Εςτζρεσ των κορεςμζνων μονοκαρβοξυλικϊν οξζων με τισ Β.

Διαβάστε περισσότερα

1 ο Διαγώνιςμα για το Α.Ε.Π.Π.

1 ο Διαγώνιςμα για το Α.Ε.Π.Π. 1 ο Διαγώνιςμα για το Α.Ε.Π.Π. Θ Ε Μ Α Α Α 1. Ν α γ ρ ά ψ ε τ ε ς τ ο τ ε τ ρ ά δ ι ό ς α σ τ ο ν α ρ ι κ μ ό κ α κ ε μ ι ά σ α π ό τ ι σ π α ρ α κ ά τ ω π ρ ο τ ά ς ε ι σ 1-8 κ α ι δ ί π λ α τ θ λ ζ ξ

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Κωδικοποίηση & Αποκωδικοποίηση

Διαβάστε περισσότερα

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών

Διαβάστε περισσότερα

Facebook Μία ειςαγωγι

Facebook Μία ειςαγωγι Facebook Μία ειςαγωγι Κοινωνικά δίκτυα Κοινωνικι δικτφωςθ ονομάηεται θ δθμιουργία ομάδων από ανκρϊπουσ με κοινά χαρακτθριςτικά (πχ γείτονεσ, ςυμμακθτζσ). Ενϊ τα κοινωνικά δίκτυα αναπτφςςονται μεταξφ προςϊπων

Διαβάστε περισσότερα

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά Τα νύλιμα! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά τα ξφλινα! 1. Γιατί τα λζμε ξφλινα πνευςτά; Πνευςτά ονομάηονται τα όργανα ςτα οποία ο ιχοσ παράγεται μζςα ςε ζνα ςωλινα απ όπου περνάει ο

Διαβάστε περισσότερα

ΕΝΔΕΙΚΣΙΚΑ ΘΕΜΑΣΑ ΜΑΘΗΜΑΣΙΚΩΝ ΕΞΕΣΑΕΙ ΤΠΟΣΡΟΦΙΩΝ 2014 [2 Ο ΦΤΛΛΑΔΙΟ]

ΕΝΔΕΙΚΣΙΚΑ ΘΕΜΑΣΑ ΜΑΘΗΜΑΣΙΚΩΝ ΕΞΕΣΑΕΙ ΤΠΟΣΡΟΦΙΩΝ 2014 [2 Ο ΦΤΛΛΑΔΙΟ] ΕΝΔΕΙΚΣΙΚΑ ΘΕΜΑΣΑ ΜΑΘΗΜΑΣΙΚΩΝ ΕΞΕΣΑΕΙ ΤΠΟΣΡΟΦΙΩΝ 2014 [2 Ο ΦΤΛΛΑΔΙΟ] ΘΕΜΑ 9ο Α. Να ςυγκρίνετε τουσ αρικμοφσ: i) και ii) και iii) 123,012 και 123,02 iv) 5 2 και 10 Β. Σο άκροιςμα των δφο διαδοχικϊν ακζραιων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ Φιλιοποφλου Ειρινθ Βάςθ Δεδομζνων Βάζη δεδομένων είναι μια οπγανωμένη ζςλλογή πληποθοπιών οι οποίερ πποζδιοπίζοςν ένα ζςγκεκπιμένο θέμα.χπηζιμεύοςν ζηην Σςλλογή

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Επιμελητήρια)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Επιμελητήρια) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Επιμελητήρια) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Επιμελητήριο... 3 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

eorder Eγχειρίδιο Χρήσης

eorder Eγχειρίδιο Χρήσης Eγχειρίδιο Χρήσης Περιεχόμενα Σχετικά.. 3 Ειςαγωγι ςτο ςφςτθμα. 4 Λιψθ Παραγγελιάσ.. 5 Διαχείριςθ τραπεηιϊν. 9 Μετακίνθςθ Τραπεηιοφ... 10 Λογαριαςμόσ Τραπεηιοφ 11 Παραγγελίεσ χωρίσ τραπζηι. 12 Σθμειϊματα

Διαβάστε περισσότερα

Στάδια υποβολισ ενδιάμεςθσ αναφοράσ Κφριου Συγγραφζα (1/2)

Στάδια υποβολισ ενδιάμεςθσ αναφοράσ Κφριου Συγγραφζα (1/2) Στάδια υποβολισ ενδιάμεςθσ αναφοράσ Κφριου Συγγραφζα (1/2) Διόρκωςθ δομισ ςυγγράμματοσ (προςκικθ, αφαίρεςθ, αναδιάταξθ κεφαλαίων) Μεταφόρτωςθ ςτο πλθροφοριακό ςφςτθμα των απαραίτθτων αρχείων (αποδεκτά

Διαβάστε περισσότερα

Ζρευνα ικανοποίθςθσ τουριςτϊν

Ζρευνα ικανοποίθςθσ τουριςτϊν Ζρευνα ικανοποίθςθσ τουριςτϊν Ammon Ovis_Ζρευνα ικανοποίθςθσ τουριςτϊν_ Ραδιοςτακμόσ Flash 96 1 ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ Σο δείγμα περιλαμβάνει 332 τουρίςτεσ από 5 διαφορετικζσ θπείρουσ. Οι περιςςότεροι εξ αυτϊν

Διαβάστε περισσότερα

ΝΕΟ ΜΙΘΟΛΟΓΙΟ: Σο νομοςχζδιο πρώτεσ παρατηρήςεισ

ΝΕΟ ΜΙΘΟΛΟΓΙΟ: Σο νομοςχζδιο πρώτεσ παρατηρήςεισ ΝΕΟ ΜΙΘΟΛΟΓΙΟ: Σο νομοςχζδιο πρώτεσ παρατηρήςεισ Σου Πάνου Ντοφλα, Καθηγητή Αγγλικήσ, pandou.paron@gmail.com Κόρινθοσ,14/12/2015 Ρροχτζσ βράδυ κατατζκθκε το τελικό ςχζδιο νόμου (εδϊ: http://tinyurl.com/jbnpsed

Διαβάστε περισσότερα

Προώθησε το site σου στις μηχανε ς αναζη τησης

Προώθησε το site σου στις μηχανε ς αναζη τησης Προώθησε το site σου στις μηχανε ς αναζη τησης ΠΡΟΟΧΘ! ΑΤΣΟ Ο ΟΔΘΓΟ ΕΙΝΑΙ ΙΔΑΝΙΚΟ ΓΙΑ ΝΕΕ ΙΣΟΕΛΙΔΕ ΑΛΛΑ Θ ΣΡΑΣΘΓΙΚΘ ΜΠΟΡΕΙ ΝΑ ΕΦΑΡΜΟΣΕΙ ΕΤΚΟΛΑ Ε ΠΑΛΙΕ ΙΣΟΕΛΙΔΕ ΚΑΙ ΝΑ ΣΙ ΩΦΕΛΘΕΙ... Μια προςφορά του http://nextnet.gr

Διαβάστε περισσότερα

ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL)

ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL) ΟΔΗΓΙΕ ΔΗΜΙΟΤΡΓΙΑ ΚΑΙ ΡΤΘΜΙΗ ΔΩΡΕΑΝ ΗΛΕΚΣΡΟΝΙΚΟΤ ΣΑΧΤΔΡΟΜΕΙΟΤ ΣΟ GOOGLE (G-MAIL) Ανοίγουμε το πρόγραμμα περιιγθςθσ ιςτοςελίδων (εδϊ Internet Explorer). Αν θ αρχικι ςελίδα του προγράμματοσ δεν είναι θ ςελίδα

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

ΗΜΕΙΩΕΙ ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΕΙΗΓΗΣΗ: ΚΑΡΑΒΕΛΗ ΓΡΗΓΟΡΗ

ΗΜΕΙΩΕΙ ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΕΙΗΓΗΣΗ: ΚΑΡΑΒΕΛΗ ΓΡΗΓΟΡΗ ΗΜΕΙΩΕΙ ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΕΙΗΓΗΣΗ: ΚΑΡΑΒΕΛΗ ΓΡΗΓΟΡΗ 1 ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΑΜΤΝΣΙΚΗ ΣΕΧΝΙΚΗ ΕΠΙΘΕΣΙΚΗ ΣΕΧΝΙΚΗ 2 ΑΜΤΝΣΙΚΗ ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΑΜΤΝΣΙΚΗ ΣΕΧΝΙΚΗ ΧΩΡΙ ΜΠΑΛΑ ΑΜΤΝΣΙΚΗ ΣΕΧΝΙΚΗ

Διαβάστε περισσότερα

DIOSCOURIDES VERSION

DIOSCOURIDES VERSION DIOSCOURIDES VERSION 2.15.29 ΑΛΛΑΓΗ ΥΠΑ ΚΑΙ & ΕΠΑΝΤΠΟΛΟΓΙΜΟ ΛΙΑΝΙΚΗ ΣΙΜΗ ΠΑΡΑΥΑΡΜΑΚΩΝ Για τθν τροποποίθςθ των παραπάνω ςτοιχείων ςτθ νζα ζκδοςθ ςασ δίνουμε τθ δυνατότθτα να αλλάξετε το ΦΠΑ και τθ λιανικι

Διαβάστε περισσότερα

Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010

Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010 Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010 Περιεχόμενα Μεγζκθ Κίνθςθσ: ελίδεσ 1-4 Μετατόπιςθ, Σαχφτθτα, Μζςθ Σαχφτθτα Ευκφγραμμεσ Κινιςεισ: ελίδεσ 5-20 Ευκφγραμμθ Ομαλι Ευκ. Ομαλά

Διαβάστε περισσότερα

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε)

Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Σεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνασ Ειδικζσ Ναυπηγικζσ Καταςκευζσ και Ιςτιοφόρα κάφη (Ε) Ενδεικτική επίλυςη άςκηςησ 1 Δρ. Θωμάσ Π. Μαηαράκοσ Τμιμα Ναυπθγϊν Μθχανικϊν ΤΕ Το

Διαβάστε περισσότερα

ΧΡΟΝΙΚΟ ΠΡΟΓΡΑΜΜΑΣΙΜΟ ΧΟΝΙΚΟΣ ΡΟΓΑΜΜΑΤΙΣΜΟΣ

ΧΡΟΝΙΚΟ ΠΡΟΓΡΑΜΜΑΣΙΜΟ ΧΟΝΙΚΟΣ ΡΟΓΑΜΜΑΤΙΣΜΟΣ ΧΡΟΝΙΚΟ ΠΡΟΓΡΑΜΜΑΣΙΜΟ ΧΟΝΙΚΟΣ ΡΟΓΑΜΜΑΤΙΣΜΟΣ 1 Συςτήματα Παραγωγήσ Θςμάζηε ηεν ηαξινόμεζε ηων ζςζηεμάηων παπαγωγήρ; Για κάκε κατθγορία ςυςτθμάτων, εκτόσ από το ςτρατθγικό πρόβλθμα του μακροπρόκεςμου ςχεδιαςμοφ

Διαβάστε περισσότερα

Πωσ δθμιουργώ φακζλουσ;

Πωσ δθμιουργώ φακζλουσ; Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΘΣ ΘΜΕ ΘΣΙΟΥ ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑ ΑΣΚΕΥΘ 6 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΗΟΜΕΝΟ ΜΑΘΘΜΑ: ΧΘΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΘΣ ΘΜΕ ΘΣΙΟΥ ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑ ΑΣΚΕΥΘ 6 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΗΟΜΕΝΟ ΜΑΘΘΜΑ: ΧΘΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΘΣ ΘΜΕ ΘΣΙΟΥ ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑ ΑΣΚΕΥΘ 6 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΗΟΜΕΝΟ ΜΑΘΘΜΑ: ΧΘΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ ΘΕΜΑ Α Α1. γ Α2. β Α3. α Α4. β Α5. β ΘΕΜΑ Β Β1. α. Λ β. Λ γ. Σ δ. Σ ε. Σ Β2.

Διαβάστε περισσότερα

Ειςαγωγή ςτο MS Project 2010. Κηρυττόπουλοσ Κωνςταντίνοσ PhD, Dipl. Eng., PMP Ρόκου Ζλενα PhD cand., M.Sc., B.Sc. Soft. Eng.

Ειςαγωγή ςτο MS Project 2010. Κηρυττόπουλοσ Κωνςταντίνοσ PhD, Dipl. Eng., PMP Ρόκου Ζλενα PhD cand., M.Sc., B.Sc. Soft. Eng. Ειςαγωγή ςτο MS Project 2010 Κηρυττόπουλοσ Κωνςταντίνοσ PhD, Dipl. Eng., PMP Ρόκου Ζλενα PhD cand., M.Sc., B.Sc. Soft. Eng. 1. τήςιμο του ζργου 2 Δημιουργία νζου αρχείου Ζναρξθ Microsoft Office Microsoft

Διαβάστε περισσότερα

The Weather Experts Team. Φεβρουάριοσ 2013

The Weather Experts Team. Φεβρουάριοσ 2013 1 Φεβρουάριοσ 2013 2 Οδηγίεσ για την ειδική πρόςβαςη ςτο WeatherExpert 1. Μζςω του browser του υπολογιςτι ςασ (π.χ. InternetExplorer, Mozilla Firefox κ.α.) ςυνδεκείτε ςτθν ιςτοςελίδα μασ : http://www.weatherexpert.gr

Διαβάστε περισσότερα

ΤΙΤΛΟΣ: "SWITCH-ΠΩ ΝΑ ΚΑΣΑΦΕΡΕΙ ΣΗΝ ΑΛΛΑΓΗ ΟΣΑΝ Η ΑΛΛΑΓΗ ΕΙΝΑΙ ΔΤΚΟΛΗ" Σσγγραφείς: Chip Heath & Dan Heath. Εκδόζεις: Κσριάκος Παπαδόποσλος/ΕΕΔΕ

ΤΙΤΛΟΣ: SWITCH-ΠΩ ΝΑ ΚΑΣΑΦΕΡΕΙ ΣΗΝ ΑΛΛΑΓΗ ΟΣΑΝ Η ΑΛΛΑΓΗ ΕΙΝΑΙ ΔΤΚΟΛΗ Σσγγραφείς: Chip Heath & Dan Heath. Εκδόζεις: Κσριάκος Παπαδόποσλος/ΕΕΔΕ ΤΙΤΛΟΣ: "SWITCH-ΠΩ ΝΑ ΚΑΣΑΦΕΡΕΙ ΣΗΝ ΑΛΛΑΓΗ ΟΣΑΝ Η ΑΛΛΑΓΗ ΕΙΝΑΙ ΔΤΚΟΛΗ" Σσγγραφείς: Chip Heath & Dan Heath Εκδόζεις: Κσριάκος Παπαδόποσλος/ΕΕΔΕ www.dimitrazervaki.com Περιεχόμενα ΣΡΕΙ ΑΝΑΠΑΝΣΕΧΕ ΔΙΑΠΙΣΩΕΙ

Διαβάστε περισσότερα

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Ειςαγωγή κοπόσ αυτοφ του κειμζνου είναι να δϊςει ςφντομεσ οδθγίεσ για τθν επεξεργαςία των ςελίδων του wiki τθσ ερευνθτικισ εργαςίασ. Πλιρθσ οδθγόσ για

Διαβάστε περισσότερα

ΣΑ ΔΑΘ ΣΘΝ ΕΛΛΑΔΑ. Θ παραγωγι δαςικϊν προϊόντων. H εκτίμθςθ των ποςοτιτων

ΣΑ ΔΑΘ ΣΘΝ ΕΛΛΑΔΑ. Θ παραγωγι δαςικϊν προϊόντων. H εκτίμθςθ των ποςοτιτων ΣΑ ΔΑΘ ΣΘΝ ΕΛΛΑΔΑ Θ παραγωγι δαςικϊν προϊόντων H εκτίμθςθ των ποςοτιτων «Θ αειφορία του δάςουσ είναι προχπόκεςθ για τθν ςωτθρία του περιβάλλοντοσ, του κλίματοσ και του ανκρϊπου.» Μεταφορά ξυλείασ από το

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 9: Διαδικαςία φνκεςθσ Φϊτιοσ

Διαβάστε περισσότερα

Ειδικά Θζματα Βάςεων Δεδομζνων

Ειδικά Θζματα Βάςεων Δεδομζνων Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 9: Κρυπτογράφηςη δεδομζνων Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικϊν Πλθροφορικισ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative

Διαβάστε περισσότερα

Εργαςτηριακό Εγχειρι διό. Μετρη ςεισ Πα χόυσ Λεπτών Υμενι ών

Εργαςτηριακό Εγχειρι διό. Μετρη ςεισ Πα χόυσ Λεπτών Υμενι ών Εργαςτηριακό Εγχειρι διό Μετρη ςεισ Πα χόυσ Λεπτών Υμενι ών ςτο πλαίςιο του εργαςτθρίου του μακιματοσ Η Εξαμινου «Νανοθλεκτρονικι Σεχνολογία» Δρ. Παναγιϊτθσ αράφθσ Ακινα, 11/2016 Περιεχόμενα 1 φντομθ Περιγραφι

Διαβάστε περισσότερα

Οδηγόσ εγκατάςταςησ και ενεργοποίηςησ

Οδηγόσ εγκατάςταςησ και ενεργοποίηςησ Οδηγόσ εγκατάςταςησ και ενεργοποίηςησ Ευχαριςτοφμε που επιλζξατε το memoq 4.5, το πρωτοκλαςάτο περιβάλλον μετάφραςθσ για ελεφκερουσ επαγγελματίεσ μεταφραςτζσ, μεταφραςτικά γραφεία και επιχειριςεισ. Αυτό

Διαβάστε περισσότερα

Η αυτεπαγωγή ενός δακτυλίου

Η αυτεπαγωγή ενός δακτυλίου Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε:

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: ΔΟΜΗ ΑΠΟΦΑΗ Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: Όταν το if που χρθςιμοποιοφμε παρζχει μόνο μία εναλλακτικι διαδρομι εκτζλεςθ, ο τφποσ δομισ

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Ειςαγωγή Τπάρχουν τρία επίπεδα ςτα οποία καλείςτε να αξιολογιςετε το εργαςτιριο D-ID: Νζα κζματα Σεχνολογία Διδακτικι Νέα θέματα Σο εργαςτιριο κα ειςαγάγουν τουσ ςυμμετζχοντεσ

Διαβάστε περισσότερα