Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ"

Transcript

1 Ενότητα Β ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΡΑΣΕΩΝ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΙΑΚΡΙΣΗ ΦΟΡΤΙΩΝ-ΣΤΗΡΙΞΕΩΝ-ΕΠΙΠΟΝΗΣΕΩΝ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΑΝΤI ΡΑΣΕΩΝ ΚΑΙ ΑΝΤΟΧΩΝ ΑΝΤΟΧΕΣ ΟΜΟΓΕΝΩΝ ΦΟΡΕΩΝ

2 1. ΜΕΘΟΔΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΤΩΝ ΔΡΑΣΕΩΝ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ Στο κεφάλαιο αυτό δίνεται η μεθοδολογία για τον υπολογισμό των δράσεων προκειμένου για μεμονωμένους φορείς. Η μεθοδολογία για πλαισιακούς φορείς (περίπτωση δοκών μεγάλων ανοιγμάτων ή σχεδιασμού για πλευρικά φορτία) δίνεται στον Τόμο 3: «Σχεδιασμός Ειδικών Φορέων». 1.1 Εντοπισμός Στατικού Συστήματος Το μέγεθος των δράσεων ή εξωτερικών μεγεθών, εξαρτώμενο από το μέγεθος των μετακινήσεων του φορέα εξαρτάται από τον τύπο των φορτίων και των στηρίξεων, την απόσταση του φορτίου από τις στηρίξεις και το μήκος (άνοιγμα) του φορέα. Τα στοιχεία αυτά σημειούμενα στον κεντροβαρικό (ή ακριβέστερα στον στρεπτικό) άξονα του φορέα αποτελούν το στατικό σύστημα του φορέα, από τη στατική επίλυση του οποίου προκύπτουν οι τιμές των δράσεων. Για τον εντοπισμό του στατικού συστήματος ενός φορέα ακολουθούνται τα παρακάτω βήματα: Γίνεται κατά μήκος τομή του φορέα Στο Σχ. 2 φαίνεται η κατά μήκος τομή της δοκού Δ1-Δ2 και στο Σχ. 3 η κατά μήκος τομή της πλάκας Π 1 -Π 2 κτιρίου με ξυλότυπο που δίνεται στο Σχ. 1. Ο φορέας απομονώνεται από τα σώματα και τα στοιχεία με τα οποία έρχεται σ επαφή. Την παρουσία τους αντιπροσωπεύουν ισοδύναμα φορτία, αν τείνουν να τον μετακινήσουν, ή ισοδύναμες στηρίξεις, αν τείνουν να κρατήσουν το φορέα στη θέση του. Στο Σχ. 2 έχουν απομακρυνθεί τα υποστυλώματα της δοκού Δ1-Δ2 και στο Σχ. 3 οι δοκοί της πλάκας Π1-Π2 και στη θέση τους έχουν τεθεί τα σύμβολα των στηρίξεων. Τα φορτία συμβολίζονται με βέλη τα οποία εκτείνονται σ όλο το μήκος της επαφής του φορέα με τα σώματα που απομακρύνονται. Τα βέλη έχουν τη διεύθυνση και φορά της μετατόπισης που προκαλούν τα φορτία. Αν το μήκος της επαφής είναι μικρό (π.χ. μικρότερο του 1/20 του μήκους του φορέα), τα φορτία θεωρούνται σημειακά και συμβολίζονται μ ένα μόνον βέλος. Αν το φορτίο είναι κινούμενο κατά μήκος του φορέα, όπως π.χ. φορτίο γερανογέφυρας, προστίθεται στο βέλος και το σύμβολο της ρόδας, όπως φαίνεται στο σχήμα. Δ 1 Δ 2 Π 1 Π 2 Σχ. 1.1 Κάτοψη φέροντα οργανισμού Δ 1 Δ 2 Δ1 Δ2Π 1 q Σχ. 1.2 Κατά μήκος τομή και απομόνωση δοκού Δ 1 -Δ 2

3 Π 1 Π 2 Δ1 Σχ. 1.3 Κατά μήκος τομή και απομόνωση πλάκας Π 1 -Π 2 μικρής διεπιφάνειας επαφής φορέα και στήριξης, μπορούν να θεωρούνται στο μέσον της επιφάνειας επαφής (κάνοντας την παραδοχή ότι οι πιέσεις που θα αναπτυχθούν θα είναι ομοιόμορφες). Για στηρίξεις με μεγάλο μήκος, όπως είναι οι στηρίξεις σε τοιχώματα, η θέση των θεωρητικών στηρίξεων προσδιορίζεται στους κανονισμούς συναρτήσει του μήκους του φορέα και της διάστασης επαφής του τοιχώματος. Οι ενδιάμεσες στηρίξεις συμβολίζονται: Οι ακραίες στηρίξεις δηλώνονται και συμβολίζονται ανάλογα με τον τύπο τους ως εξής (βλέπε ενότητα Α, : Έδραση oo Άρθρωση Καμπτική πάκτωση Στρεπτική πάκτωση : Η θέση των (θεωρητικών) στηρίξεων είναι, όπως φαίνεται στο Σχ. 4, στις θέσεις της συνισταμένης των πιέσεων που αναπτύσσονται στη διεπιφάνεια φορέα και στήριξης: Στις Ενδιάμεσες Στηρίξεις: στο μέσον του μήκους επαφής. Οι πιέσεις είναι περίπου ομοιόμορφα κατανεμημένες σ όλο το μήκος επαφής. Στις Ακραίες Στηρίξεις: πλησιέστερα προς την εσωτερική παρειά της στήριξης. Οι πιέσεις είναι, όπως φαίνεται στο Σχ. 4, μεγαλύτερες προς την εσωτερική παρειά. Είναι τόσο πιο μεγάλες όσο πιο μεγάλο είναι το βέλος και, άρα, και το μήκος του φορέα και όσο πιο μεγάλη είναι η διεπιφάνεια στήριξης. Η απόσταση μεταξύ διαδοχικών (θεωρητικών) στηρίξεων, ορίζεται ως το θεωρητικό άνοιγμα του φορέα. Οι θεωρητικές στηρίξεις πλακών επί δοκών και δοκών επί υποστυλωμάτων, λόγω της Σχ. 1.4 Θέσεις θεωρητικών στηρίξεων Ο φορέας απομονώνεται κι από τον ίδιο και συμβολίζεται με τον κεντροβαρικό του άξονα. Η παρουσία του φορέα αντιπροσωπεύεται, όπως φαίνεται στο Σχ. 2 και 3, από φορτίο ίσο με το βάρος του. Έτσι, ο φορέας συμβολίζεται με τον κεντροβαρικο του άξονα, τα φορτία του και τις στηρίξεις, τα οποία αποτελούν το στατικό σύστημα του φορέα. l 1 = 5.0 m l 2 = 5.0 m Σχ. 1.5 Στατικό σύστημα πλάκας Π 1 -Π 2 και δοκού Δ 1 -Δ 2 Γίνεται Στατική επίλυση Από τη στατική επίλυση προκύπτουν οι τιμές των δράσεων στις κρίσιμες διατομές, όπως περιγράφεται στα κεφ 2 και 3.

4 2. ΥΠΟΛΟΓΙΣΜΟΣ ΔΡΑΣΕΩΝ ΓΙΑ ΚΑΜΠΤΟΔΙΑΤΜΗΤΙΚΗ ΕΠΙΠΟΝΗΣΗ Στο κεφάλαιο αυτό δίνεται η μεθοδολογία για τον υπολογισμό των δράσεων γραμμικών φορέων, δηλ. φορέων με μήκος πολύ μεγαλύτερο από το ύψος τους. Η μεθοδολογία για φορείς με μήκος περίπου όσο το ύψος τους, για υψίκορμους φορείς, δίνεται στον Τόμο 3: «Σχεδιασμός Ειδικών Φορέων». 2.1 Η Φύση της Καμπτοδιατμητικής Επιπόνησης Καμπτική είναι η επιπόνηση για την οποία η απόκριση του φορέα είναι στροφή του κατά μήκος του κεντροβαρικού του άξονα. Διατμητική είναι η επιπόνηση για την οποία η απόκριση του φορέα είναι βύθισή του εγκάρσια στον κεντοβαρικό του άξονα. Στους γραμμικούς φορείς η βύθιση αυτή θεωρείται αμελητέα. Καμπτοδιατμητική επιπόνηση διατμητική επιπόνηση συνυπάρχει πάντα με την καμπτική επιπόνηση 2.2 Οι Όροι Ανάπτυξης της Επιπόνησης- Καμπτοδιατμητικό Φορτίο και Στήριξη Για την ανάπτυξη καμπτοδιατμητικής επιπόνησης σ ένα φορέα απαιτούνται: 1. Η εφαρμογή καμπτοδιατμητικού φορτίου Καμπτοδιατμητικό είναι φορτίο το οποίο είναι κάθετο στον κεντροβαρικό άξονα του φορέα. 2. Στήριξη του φορέα αντιτιθέμενη στην βύθισή του εγκάρσια στον κεντροβαρικό του άξονα. Διακρίνονται τρεις τύποι στηρίξεων: σεις που αναφέρθηκαν στην Ενότητα Α, κεφ Για λόγους ευκολίας της στατικής επίλυσης οι ακραίες στηρίξεις ενός φορέα προσεγγίζονται με τον πλησιέστερο τύπο ως εξής: Στηρίξεις Δοκών Αρθρώσεις: όταν το στοιχείο στήριξης μπορεί εύκολα να καμφθεί προς την διεύθυνση του μήκους της δοκού, ώστε να μπορέί η δοκός να στραφεί κατά μήκος της. Αυτό συμβαίνει όταν η διάσταση του στοιχείου της στήριξης προς την διεύθυνση του μήκους της δοκού είναι σχετικά μικρή. Είναι μικρή η δυσκαμψία του και είναι μεγάλο το βέλος του προς τη διεύθυνση αυτή. Καμπτικές πακτώσεις: όταν το στοιχείο στήριξης δεν μπορεί εύκολα να καμφθεί προς την διεύθυνση του μήκους της δοκού και, γι αυτό, δεν μπορεί να στραφεί εύκολα η δοκός στις θέσεις αυτές. Δ1 Έδραση oo Άρθρωση Καμπτική πάκτωση 2.3 Εντοπισμός του Τύπου της Στήριξης Οι στηρίξεις όπως διαμορφώνονται στην πράξη απέχουν, εν γένει, από τις θεωρητικές ταξινομή- Δ4 Δ3 Σχ. 2.1 Διάκριση στηρίξεων δοκών και αντίστοιχα στατικά συστήματα Δ2

5 Αυτό συμβαίνει όταν η διάσταση του στοιχείου της στήριξης προς την διεύθυνση του μήκους της δοκού είναι σχετικά μεγάλη, όπως στο τοίχωμα Τ1 στο Σχ. 2. Είναι μεγάλη η δυσκαμψία του και, γιαυτό, μικρό το βέλος του προς τη διεύθυνση του μήκους της δοκού Δ1. Όταν μια δοκός στηρίζεται σε άλλη δοκό (και όχι σε κατακόρυφο στοιχείο, υποστύλωμα ή τοίχωμα), όπως η δοκός Δ1 στο Σχ. 3 η οποία στηρίζεται στη δοκό Δ2, η στήριξη δηλώνεται ως έμμεση στήριξη. Η δοκός Δ1 δηλώνεται ως δευτερεύουσα δοκός ή διαδοκίδα, ενώ η δοκός στήριξης Δ2 ως κύρια δοκός. Ο τύπος αυτός στήριξης (η οποία είναι υποχωρούσα στήριξη) πρέπει να αποφεύγεται. Στο σημείο συνάντησης των δύο δοκών απαιτείται πρόσθετη διάταξη οπλισμού ανάρτησης του φορτίου της διαδοκίδας (βλέπε Τόμο 3: «Σχεδιασμός Ειδικών Φορέων». Τ1 Δ1 Δ1 Κ1 Σχ. 2.2 Για τη δοκό Δ1 το Τ1 είναι καμπτική πάκτωση ενώ το Κ1 είναι άρθρωση Στηρίξεις Πλακών* Άρθρωση: όταν ακραίο στοιχείο είναι δοκός.* Πάκτωση: όταν ακραίο στοιχείο είναι τοίχωμα και η πλάκα οπλίζεται ως συνέχεια του τοιχώματος Φορείς με μία μόνο στήριξη, όπως οι δοκοί Δ1 και Δ2 στο Σχ. 3, διαμορφώνονται υποχρεωτικά, για λόγους ισορροπίας. με τη στήριξη αυτή ως πάκτωση. Σχ. 2.3 Η δοκός Δ 2 είναι έμμεση στήριξη για τη δοκό Δ 1 Το τοίχωμα Τ1 είναι καμπτική στήριξη για τη δοκό Δ2 * Για να θεωρηθεί μια θέση στήριξη της πλάκας θα πρέπει το βέλος στη θέση αυτή να είναι αμελητέο ή πολύ μικρό σε σχέση με το βέλος στο άνοιγμα της πλάκας. Το βέλος είναι αντίστροφα ανάλογο της δυσκαμψίας του στοιχείου η οποία είναι ανάλογη της ροπής αδρανείας του. Γιαυτό: το ύψος των δοκών h πρέπει να είναι τουλάχιστον τρεις φορές μεγαλύτερο απ αυτό της πλάκας, ώστε το βέλος τους, αντίστροφα ανάλογο της ροπής αδρανείας τους (που είναι ανάλογη του h 3 ), να είναι τουλάχιστον το 1/30 του βέλους των πλακών. Τοπική αύξηση του πάχους της πλάκας, όπως φαίνεται στο σχήμα, για παράδειγμα από 20 cm σε 30 cm δεν μπορεί να θεωρηθεί στήριξη για την πλάκα. Στην περίπτωση αυτή η πλάκα πρέπει υπέρ της ασφαλείας να σχεδιαστεί με τα δυσμενέστερα μεγέθη που προκύπτουν για δύο οριακές συνθήκες στήριξης θεωρώντας τη θέση της τοπικής αύξησης (α) ως ελεύθερο άκρο και (β) ως αρθρωτή στήριξη (δοκό). Τ 1 Δ 2 Δ 1

6 2.4 Στατική Επίλυση Τα μεγέθη των δράσεων προκύπτουν από την στατική επίλυση σε δύο βήματα: 1. Εύρεση των αντιδράσεων στις θέσεις των στηρίξεων 2. Εύρεση των στατικών μεγεθών σε οποιαδήποτε άλλη του φορέα ως εξής: Η Τέμνουσα V s σε μια θέση του φορέα αντιστοιχεί στο αλγεβρικό άθροισμα των κατακόρυφων (κάθετων στον κεντροβαρικό άξονα του φορέα) συνιστωσών των φορτίων στο τμήμα του φορέα από τη στήριξη μέχρι την υπόψη θέση και της κατακόρυφης συνιστώσας της αντίδρασης στη στήριξη. Η Καμπτική Ροπή M s σε μια θέση του φορέα αντιστοιχεί στο αλγεβρικό άθροισμα των γινομένων των κάθετων συνιστωσών των φορτίων στο τμήμα του φορέα από τη στήριξη μέχρι την υπόψη θέση επί την απόστασή τους από τη στήριξη και της αντίστοιχης αντίδρασης στη στήριξη Υπολογισμός Αντιδράσεων σε Ισοστατικούς Φορείς Σε αμφιέρειστους, πρόβολους, μονοπροέχοντες και αμφιπροέχοντες φορείςι η τιμή των αντιδράσεων προκύπτει από τις δύο σχέσεις ισορροπίας των συνιστωσών του φορέα κατά τη διεύθυνση του άξονά του και κάθετα σ αυτόν και τη σχέση ισορροπίας των ροπών ως προς μία από τις στηρίξεις του, όπως φαίνεται στο Σχ. 5(α). Στην περίπτωση συμμετρικής φόρτισης ο υπολογισμός των αντιδράσεων απλοποιείται καθώς οι κάθετες συνιστώσες των αντιδράσεων είναι ίδιες στις δύο στηρίξεις ίσες με το μισό του συνολικού φορτίου του φορέα,όπως φαίνεται στο Σχ. 5(β). Υπολογισμός Αντιδράσεων Υπερστατικών Φορέων Στην περίπτωση των υπερστατικών φορέων δεν επαρκούν οι παραπάνω τρεις σχέσεις ισορροπίας για την εύρεση των αντιδράσεων. Υιοθετούνται άλλες μέθοδοι με βάση τις οποίεςυπολογίζονται οι τιμές των ροπών στις στηρίξεις του φορέα. Με βάση τις τιμές αυτές, η ροπή και η τέμνουσα σε οποιαδήποτε θέση ενός ανοίγματος του φορέα προκύπτουν, όπως φαίνεται στο Σχ. 6 και στην ανακεφαλαίωση στο τέλος του κεφαλαίου. Η εντατική κατάσταση του φορέα προκύπτει από την επαλληλία των στατικών μεγεθών που προκύπτουν θεωρώντας το φορέα αμφιέρειστο επιπονούμενο (α) με τα φορτία στο άνοιγμα και (β) με τιςι ροπές στις εκατέρωθεν στηρίξεις, όπως φαίνεται στο Σχ.6. P y P P y R x Ρ x Τ β Μ α Ο Ο R y l α [N s ] [T s ] [v s ] [M s ] Παράδειγμα: Στατικά μεγέθη στη θέση Ο N s = R x P x V s = R y -P y Μ s = Μ P y. α Τ s = T - P y.β Σχ. 2.4 Υπολογισμός στατικών μεγεθών α P β l V 1 + V 2 = P V 1.l - P.β = 0 => V 1 = P.β / l, V 2 = Ρ.α / l (α) P l/2 l/2 V 1 = V 2 = P/2 Σχ. 2.5 (α) Υπολογισμός αντιδράσεων (β) Απλοποίηση για συμμετρικό φορέα (β)

7 l Σχ. 2.6 Αναγωγή υπερστατικού φορέα σε αμφιέρειστο 2.5 Αλληλοσυσχετίσεις M,V,q και Μέγιστη Τιμή της Μ σε Ανοιγμα Η τέμνουσα V αναπτύσσεται στις θέσεις μεταβλητής Μ για την εξισορρόπησή της. dx + M V M+dM A B + + V,dx = dm Η μέγιστη τιμή της ροπής είναι στη θέση που μηδενίζεται η τέμνουσα. Η διαφορά της ροπής σε δύο θέσεις Α και Β είναι ίση με το εμβαδόν του διαγράμματος τεμνουσών στο τμήμα ΑΒ. Από τη σχέση που δίνει την τέμνουσα προκύπτει: dv = q.dx (2) => V/q = x (2α) H μέγιστη, λοιπόν, ροπή στο άνοιγμα του φορέα, η οποία αναπτύσσεται στη θέση μηδενισμού της V και είναι ίση με το εμβαδόν του διαγράμματος των τεμνουσών μέχρι τη θέση αυτή θα είναι, όπως προκύπτει από τις σχέσεις (1) και (2): max M = 1/2.V 2 Α /q, όπου: V A : η τέμνουσα στη στήριξη του ανοίγματος στο οποίο υπολογίζεται η max M. V A x = V A / l q q Σχ. 2.7 Ο εξισορροπιστικός ρόλος της τέμνουσας Ο Εξισορροπιστικός Ρόλος της Τέμνουσας Αν Μ και Μ+dM είναι, όπως φαίνεται στο Σχ. 7, οι ροπές στις θέσεις Α και Β του φορέα σε απόσταση dx μεταξύ τους, για την ισορροπία του τμήματος ΑΒ αναπτύσσεται τέμνουσα V με τιμή τέτοια ώστε η ροπή V.dx να εξισορροπήσει τη διαφορά των ροπών και άρα θα είναι: Vdx = dm (1) => V = dm/dx (1α) Από τη σχέση (1) προκύπτει ότι: Σχ. 2.8 Συσχέτιση maxm, V και q 2.6 Προσεγγιστικές Επιλύσεις για Συνεχείς Φορείς Προσεγγιστικά μπορούν να υπολογιστούν οι ροπές ως εξής: Οι ροπές στις στηρίξεις ως ο μέσος όρος των ροπών που προκύπτουν αν τα ανοίγματα εκατέρωθεν της στήριξης θεωρηθούν αμφίπακτα. (Σε περίπτωση προβόλων κρατείται προφανώς η ακριβής) τιμή της ροπής του προβόλου).

8 Οι ροπές στα ανοίγματα ως η ροπή της αντίστοιχης αμφιερειστης μείον το ημιάθροισμα των ροπών των εκατέρωθεν στηρίξεων. Με γνωστές τις ροπές στις στηρίξεις υπολογίζονται οι τέμνουσες με τις σχέσεις της επόμενης σελίδας.

9 q 1 q 2 q 3 Μ Γ = - q 3.l 3 2 /2 2.7 ΥΠΟΜΝΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΣΥΝΕΧΩΝ ΦΟΡΕΩΝ Αν τα φορτία δεν περνούν από τον κεντροβαρικο άξονα τα ανάγουμε πρώτα ως προς τον κ,β άξονα και μετά κάνουμε επίλυση. Πάντα ξεκινάμε την επίλυση από το ελεύθερο άκρο,αν υπάρχει. Το διάγραμμα των τεμνουσών και στρεπτικών ροπών για συγκεντρωμένα φορτία σχηματίζεται από ορθογώνια ενώ το διάγραμμα καμπτικών ροπών από τρίγωνα. Για κατανεμημένα φορτία σχηματίζονται από τρίγωνα τα πρώτα και καμπύλες το δεύτερο. Διαδοχικά Βήματα για Συνεχείς Φορείς 1. Βρίσκουμε τις ροπές στις στηρίξεις και στα ελευθέρα άκρα προβόλων A B Γ M B = -(q 1.l 3 1 +q 2.l 3 2 ) - M Γ.l 2 Όταν J 1 =J 2 l 1 l 2 l 3 8( l 1 + l 2 ) 2(l 1 +l 2 ) (Oι M με αλγεβρικές τιμές) 2. Τις ενώνουμε με διακεκομμένα ευθύγραμμα τμήματα 3. Από τα διακεκομμένα τμήματα κρεμάμε με συνεχή γραμμή τα διαγράμματα ροπών των αντιστοιχών αμφιερειστων και διαγραμμίζουμε τις περιοχές μεταξύ άξονα αναφοράς (κ.β. άξονα) και συνεχούς γραμμής Τα διαγραμμισμένα τμήματα είναι το διάγραμμα των ροπών, Μ Β Μ Γ M AB = q 1.l 1 2 /8 +(M A +M B )/2 (Oι M με αλγεβρικές τιμές) M BΓ = q 2.l 2 2 /8 +(M Β +M Γ )/2 maxm AB = M A + V A 2 /(2q 1 ) max M AB M AB maxm BΓ M BΓ maxm ΒΓ = M Β + V Βδεξ 2 /(2q 2 ) Οι ροπές στο μέσον των ανοιγμάτων ισούνται με τη ροπή της αντίστοιχης αμφιερειστης στο μέσο συν το ημιάθροισμα (των αλγεβρικών τιμών) των ροπών των εκατέρωθεν στηρίξεων. Οι τέμνουσες στις στηρίξεις ισούνται με αυτές της αντίστοιχης αμφιέρειστης πλην το λόγο της διαφοράς των (αλγεβρικών τιμών) των ροπών των εκατέρωθεν στηρίξεων (πλησιέστερης μείον απομακρυσμένης) δια του ανοίγματος (στο οποίο ανήκουν οι υπόψη στηρίξεις) Οι μέγιστες ροπές σ ένα άνοιγμα αντιστοιχούν στη θέση που μηδενίζεται η τέμνουσα στο άνοιγμα αυτό και ισούνται με το αλγεβρικό άθροισμα του εμβαδού των τεμνουσών αριστερά της θέσης αυτής. Η κλίση του διαγράμματος των τεμνουσών είναι η τιμή του κατανεμημένου φορτίου q. Η θέση μηδενισμού του διαγράμματος είναι σ απόσταση V/q. Χ= V A /q 1 V B αρ V Γ αρ V A = 0,5 g 1.l 1 - ( M Α - M Β ) / l 1 V β αρ = 0,5 g 1.l 1 - (M Β - M Α ) / l 1 V β δεξ = 0,5 g 2.l 2 - (M B - M Γ ) / l 2 V A V B δεξ V Γ δεξ V Γ αρ = 0,5 g 2.l 2 - (M Γ - M Β ) / l 2 V Γ δεξ = g 3.l 3 (Oι M με αλγεβρικές τιμές)

10 3. ΥΠΟΛΟΓΙΣΜΟΣ ΔΡΑΣΕΩΝ ΓΙΑ ΣΤΡΕΠΤΙΚΗ ΕΠΙΠΟΝΗΣΗ 3.1 Η Φύση της Στρεπτικής Επιπόνησης Στρεπτική είναι η επιπόνηση για την οποία η απόκριση του φορέα είναι στροφή του γύρω από τον στρεπτικό άξονά του (ο οποίος για κλειστές διατομές ταυτίζεται με τον κεντροβαρικό άξονα). 3.2 Οι Όροι Ανάπτυξης της Επιπόνησης Για την ανάπτυξη στρεπτικής επιπόνησης σ ένα φορέα απαιτούνται: 3. Η εφαρμογή στρεπτικού φορτίου και 4. Στήριξη του φορέα αντιτιθέμενη στην στροφή του περί τον άξονά του, δηλ. στρεπτική πάκτωση. Εν γένει, το στρεπτικό φορτίο συνυπάρχει με το καμπτοδιατμητικό φορτίο και, ως εκ τούτου, η στρεπτική επιπόνηση συνυπάρχει με την καμπτοδιατμητική επιπόνηση. Όταν διασταυρώνονται κάθετα δυο οριζόντια δομικά στοιχεία, όπως φαίνεται στο Σχ. 1 και 2, η καμπτική ροπή του ενός στη θέση διασταύρωσης (κόμβο) είναι στρεπτικό φορτίο για το άλλο. Η καμπτική ροπή Μ s της δοκού Δ 1 στη θέση του κόμβου ίση με G.α είναι στρεπτικό φορτίο Μ T για τη δοκό Δ 2. 1 G Στρεπτικό Φορτίο Στρεπτικό φορτίο προκύπτει από φορτίο κάθετο στον κ.β. άξονα αλλά ασκούμενο έκκεντρα ως προς αυτόν, όπως το φορτίο G για τη δοκό Δ2 στο Σχ. 1. Μεταφερόμενο στον κ.β. άξονα του φορέα ανάγεται σε καμπτοδιατμητικό φορτίο και στρεπτικό φορτίο με τιμή ίση με το γινόμενο του φορτίου επί την απόστασή του από το κ.β. του φορέα. Συμβολίζεται ως Μ Τ, όταν είναι συγκεντρωμένο και m T, όταν είναι κατανεμημένο. Για παράδειγμα το φορτίο G στο Σχ. 2 είναι για τη δοκό Δ1 καμπτοδιατμητικό ίσο με G, για τη δοκό Δ2 καμπτοδιατμητικό ίσο με G και στρεπτικό ίσο με Μ τ = G.α, ενώ για το τοιχείο Τ1 δίνει αξονικό φορτίο ίσο με G και καμπτική ροπή ίση με Μ s = G.β. Καθαρά στρεπτικό φορτίο προκύπτει από δύο αντίθετης φοράς και αντίθετης εκκεντρότητας καμπτοδιατμητικά φορτία ίσης τιμής, όπως φαίνεται στο Σχ. 3. (α) (β) G Δ1 M T = G.α Σχ. 3.1 (α) καμπτοδιατμητικό φορτίο G (β) Στρεπτικό φορτίο M T Τ1 Δ1 Δ2 G Δ1 α Στρεπτική στήριξη G 2-2 α G Σχ. 3.2 Παράδειγμα διάκρισης φορτίων

11 Στρεπτική Στήριξη Μια στήριξη είναι στρεπτική πάκτωση όταν: (α) Το στοιχείο στήριξης έχει μεγάλη διάσταση κάθετα προς τον άξονα του φορέα και γι, αυτό η δυσκαμψία του είναι μεγάλη και, άρα, η στροφή του μικρή προς την διεύθυνση αυτή, όπως το τοιχείο Τ1 για τη δοκό Δ2 στο Σχ. 2 Για την ισορροπία των ροπών στην τομή α-α απαιτείται ανάπτυξη στρεπτικού φορτίου m T ίσου με την καμπτική ροπή Μ s του προβόλου. Για την ισορροπία των ροπών στην τομή β-β απαιτείται ανάπτυξη στρεπτικού φορτίου m T ίσου με την διαφορά των καμπτικών ροπών των δύο προβόλων. G Δ1 α β Τ1 G A Δ Δ 2 α Δ 1 Δ 2 Σχ. 3.3 H δοκός Δ 1 στη θέση Α (κόμβο) επιπονείται μόνο με στρεπτικό φορτίο β (β) Υπάρχει εγκάρσια δοκός καμπτόμενη κατ αντίθετη φορά απ αυτήν του στρεπτικού φορτίου, όπως φαίνεται στο Σχ. 4. [Μ] [Μ] G 1 Δ 1 G 2 Δ 3 Δ 3 Δ2 α-α β-β Σχ. 3.5 Δοκοί Δ 1 και Δ 2 επιπονούμενες σε άμεση στρέψη Σχ. 3.4 Η δοκός Δ3 είναι στρεπτική στήριξη για τη δοκό Δ2 3.3 Οι Δύο Τύποι της Επιπόνησης: Άμεση και Έμμεση Στρέψη Διακρίνονται δύο τύποι στρεπτικής επιπόνησης: Άμεση στρέψη όταν το στρεπτικό φορτίο M T είναι απαραίτητο για την ισορροπία των ροπών κάθετα στο φορέα, όπως φαίνεται στο Σχ. 5. Έμμεση στρέψη, όταν αναπτύσσεται σ έναν φορέα στρεπτική παραμόρφωση (στροφή γύρω από τον άξονα του φορέα) αλλά το στρεπτικό φορτίο δεν είναι αναγκαίο για την ισορροπία κάθετα στο φορέα, όπως φαίνεται στο Σχ. 6 (τομή β-β). Ενώ η δοκός Δ1 υπόκειται σε άμεση στρέψη, η δοκός Δ2 υπόκειται σε έμμεση στρέψη καθώς η στρεπτική στροφή στη δοκό που προκαλείται από την κάμψη της πλάκας Π2 είναι μεγαλύτερη απ αυτήν που προκαλείται από την κάμψη της πλάκας Π1.

12 β Δ α Δ 1 Δ 2 β [Μ] Δ 2 [Μ] ανοίγματα. (π.χ. παρουσία κινητού φορτίου μόνο στον ένα πρόβολο). 3.4 Στατική Επίλυση για Στρεπτική Ροπή Το στατικό μέγεθος της στρεπτικής ροπής είναι, όπως και στην περίπτωση της τέμνουσας, το ίδιο με το φορτίο (ροπή). Το διάγραμμα των στρεπτικών ροπών είναι, όπως φαίνεται στο Σχ. 7, σε μορφή και τιμή με το διάγραμμα των τεμνουσών αλλά σε μονάδες ροπής. α-α β-β M T Σχ. 3.6 Δοκός Δ 1 σε άμεση στρέψη και δοκός Δ 2 σε έμμεση στρέψη Συμπερασματικά: Άμεση στρέψη αναπτύσσεται σε φορείς στους οποίους οι ροπές κάμψης των εγκάρσιων φορέων τους στη θέση του κόμβου είναι άνισες. Η διαφορά των καμπτικών αυτών ροπών οφείλει για την ισορροπία του κόμβου να εξισορροπηθεί με πρόσθετη ροπή η οποία αποτελεί το στρεπτικό φορτίο του φορέα. m T M T [Τ s ] [Τ s ] Πρακτικά, ένας φορέας υπόκειται σε άμεση στρέψη όταν το στατικό σύστημα των εγκάρσιων φορέων είναι μονόπλευρος πρόβολος, ή αμφίπλευρος πρόβολος με άνισα ανοίγματα ή φορτία στα δύο [Τ s ] Σχ. 3.7 Διαγράμματα στρεπτικών ροπών

13 4. ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΕΣΩΤΕΡΙΚΩΝ ΜΕΓΕΘΩΝ ΚΑΙ ΤΩΝ ΑΝΤΟΧΩΝ Oι αντιδράσεις, ή τα εσωτερικά μεγέθη του φορέα προκύπτουν ως αποτέλεσμα εσωτερικών δυνάμεων. Οι εσωτερικές δυνάμεις προκύπτουν ως οι συνισταμένες τάσεων του φορέα. Οι τάσεις του φορέα είναι αποτέλεσμα των παραμορφώσεων των διατομών του. Για τον υπολογισμό των αντιδράσεων ακολουθείται η παρακάτω διαδικασία. Αναλυτικά η μεθοδολογία υπολογισμού των εσωτερικών μεγεθών και των αντοχών φορέων από οπλισμένο για κάθε τύπο επιπόνησης δίνεται στην Ενότητα Θ. 4.1 Πρώτο Βήμα: Παραμορφώσεις-Τάσεις Για τον υπολογισμό των εσωτερικών μεγεθών σε μια θέση του φορέα γίνεται εγκάρσια τομή του φορέα στη θέση αυτή και σημειώνεται η νέα θέση της τομής μετά την επιβολή των φορτίων. Οι δύο θέσεις της τομής δίνουν τη μορφή του διαγράμματος παραμορφώσεων του φορέα στην υπόψη θέση. Α Γ Γ Γ Α Δ Δ Δ M sd B B Β M sd M sd [ε] [σ] Σχ. 4.1 Παραμορφώσεις και τάσεις για καμπτική επιπόνηση Γ Γ Γ Α Α Β Α Β Β Δ Δ Δ [γ] [τ] Σχ. 4.2 Παραμορφώσεις και τάσεις για στρεπτική επιπόνηση Με την παραδοχή ότι η διατομή θα στραφεί μόνον και θα παραμείνει επίπεδη το διάγραμμα των παραμορφώσεων θεωρείται ευθύγραμμο, όπως φαίνεται στο Σχ. 1) και 2 στην περίπτωση καμπτικής και στρεπτικής επιπόνησης, αντίστοιχα. Όπως σχολιάζεται στην Ενότητα Α, κεφ. 3, στην πρώτη περίπτωση η παραμόρφωση είναι ορθή [ε] και στη δεύτερη είναι διατμητική [γ]. Όπως φαίνεται στο Σχ. 1 και 2, η παραμόρφωση είναι μεγαλύτερη στα ακρότατα σημεία των διατομών του φορέα και μηδενίζεται σε κάποια ενδιάμεσα σημεία του. Τα σημεία αυτά αποτελούν τον ουδέτερο άξονα στην περίπτωση της καμπτικής επιπόνησης και τον στρεπτικό άξονα στην περίπτωση της στρεπτικής επιπόνησης. Για ομογενείς (αρηγμάτωτους) φορείς υπό καθαρή κάμψη (δηλ. χωρίς συνύπαρξη αξονικής δύναμης) ο ουδέτερος άξονας συμπίπτει με τον κεντροβαρικό άξονα και για κλειστές διατομές ο στρεπτικός άξονας συμπίπτει με τον κεντροβαρικό άξονα. Με βάση τα διαγράμματα των παραμορφώσεων προκύπτουν τα διαγράμματα των τάσεων, όρθών [σ] στην περίπτωση της καμπτικής επιπόνησης και διατμητικών [τ] στην περίπτωση της στρεπτικής επιπόνησης. Η μορφή και οι τιμές των διαγραμμάτων αυτών αντιστοιχούν στη μορφή και τις τιμές του διαγράμματος συμπεριφοράς [σ-ε] και [τ-γ] του υλικού του φορέα, βλέπε Ενότητα Α. Για μικρές επιπονήσεις και, γιαυτό, μικρές τιμές των παραμορφώσεων [ε] ή [γ].το διάγραμμα τάσεων θεωρείται γραμμικό, καθώς τα διαγράμματα συμπεριφοράς όλων των υλικών στην περιοχή αυτή είναι γραμμικά.

14 σ ε {ε] [σ] [ε] [σ] (α) (β) (γ) Σχ. 4 3 (α) Διάγραμμα συμπεριφοράς [σ-ε] του σκυροδέματος, (β) και (γ) διαγράμματα [ε] και [σ] καθύψος διατομής καμπτόμενου φορέα Για μεγαλύτερες επιπονήσεις και κοντά στη στάθμη αστοχίας του υλικού, το διάγραμμα των τάσεων [σ] διαφοροποιείται. Για παράδειγμα, σε φορείς από οπλισμένο σκυρόδεμα είναι, όπως φαίνεται στο Σχ. 3(γ), καμπύλο, καθώς το διάγραμμα συμπεριφοράς [σ-ε] του σκυροδέματος είναι, όπως φαίνεται στο Σχ. 3(α), καμπύλο στην περιοχή μεγάλων παραμορφώσεων. 4.2 Δεύτερο Βήμα: Τιμή και Θέση Συνισταμένων Δυνάμεων Ανάλογα με τη μορφή του διαγράμματος των τάσεων προκύπτει η θέση των συνισταμένων των τάσεων, οι δυνάμεις F c και F t (F: Force, c: compression, t: tension) στην περίπτωση της καμπτικής επιπόνησης, όπως φαίνεται στο Σχ. 4. ενώ η συνισταμένη των ροπών ως προς τον κ.β. άξονα του φορέα αποτελεί την εσωτερική καμπτική ροπή M R. Αν η ακραία τάση τεθεί ίση με την αντοχή f (festigkeit) του υλικού του φορέα, το αντίστοιχο εσωτερικό μέγεθος αποτελεί την αντίστοιχη αντοχή ή μέγεθος αστοχίας του φορέα. 4.4 Παράδειγμα Υπολογισμού της Ν R Ομογενούς Φορέα Αν ΑΒΓΔ είναι η θέση τμήματος μήκους Δl του φορέα στο Σχ. 5 πριν την επιπόνησή του, η νέα του θέση μετά την επιβολή θλιπτικής δύναμης Νs θα είναι η ΑΒ Γ Δ. Όλα τα σημεία της εγκάρσιας διατομής ΒΓ θα έχουν μετακινηθεί στη θέση Β Γ και θα έχουν υποστεί ισόποση μετακίνηση κατά Δl. Το διάγραμμα των παραμορφώσεων και το διάγραμμα των θλιπτικών τάσεων είναι, λοιπόν, ορθογώνια καθ ύψος της διατομής. Α Β Β Δl ε=δl/l σ=ν/α Ν s Δ Γ Γ [ε] [σ] N R =σ.α [ε] [σ] Σχ. 4.4 Διάγραμμα [ε], [σ] και εσωτερικών δυνάμεων F καθύψος διατομής καμπτόμενου φορέα 4.3 Τρίτο Βήμα: Εσωτερικό Μέγεθος και Αντοχή. Η συνισταμένη των δυνάμεων F c και F t αποτελεί την εσωτερική αξονική N R του φορέα, z F t F c Σχ. 4.5 Παραμορφώσεις, τάσεις και εσωτερική δύναμη στην περίπτωση αξονικής επιπόνησης Η συνισταμένη των θλιπτικών δυνάμεων αποτελεί την N R. Είναι: N R = b.h.σ c 4.5 Παράδειγμα Υπολογισμού της M R ομογενούς φορέα Αν ΑΒΓΔ είναι η θέση στοιχειώδους τμήματος μήκους Δλ ενός φορέα πριν την επιπόνησή του,

15 η νέα του θέση μετά την επιβολή καμπτικής ροπής Μ s θα είναι η Α Β ΓΔ, όπως φαίνεται στο Σχ. 6. Το μήκος ΑΒ θα έχει βραχυνθεί κατά Δl 2 και το μήκος ΓΔ θα έχει εφελκυστεί κατά Δl 1 (ίνα 1 ορίζεται η εφελκυόμενη). μια εφελκυστική δύναμη F t σ απόσταση μεταξύ τους z και, ως εκ τούτου την ανάπτυξη μιας εσωτερικής ροπής Μ R = F t.z. Για (ομογενή) φορέα με ορθογωνική διατομή είναι: F t = 0,5b.(h/2).σ t z = 2/3.h Δ ε 2.dl r x Δ Α Α ε 1.dl dl Σχ. 4.6 Β h Ανάπτυξη θλιπτικών και εφελκυστικών παραμορφώσεων ε 1 και ε. dl M R = 0,5b.(h/2).σ t.2/3.h = (b.h 2 /6). σ t = W. σ t (W η ροπή αντίστασης) 4.6 Παράδειγμα Υπολογισμού της Ν Ru και Μ Ru Ομογενούς Φορέα H αξονική δύναμη αστοχίας του φορέα στο κεφ. 4.4 προκύπτει όταν στην έκφραση της N R αντικατασταθεί η τάση σ c με την μέγιστη τιμή της f c. Ο φορέας αναπτύσσει θλιπτική παραμόρφωση ε 2 = Δl/Δx στην ίνα 2 και εφελκυστική παραμόρφωση ε 1 =Δl 2 /Δx στην ίνα 1 με αποτέλεσμα θλιπτική τάση σ 2 στην ίνα 2 και εφελκυστική τάση σ 1 στην ίνα 1 και περαιτέρω, όπως φαίνεται στο Σχ.4, μια θλιπτική δύναμη F c και Θα είναι: N Ru = b.h.f c H καμπτική ροπή αστοχίας του φορέα στο κεφ. 4.5 προκύπτει όταν στην έκφραση της M R αντικατασταθεί η τάση σ t με την μέγιστη τιμή της f t. Θα είναι: M R = W. f t

16 5. ΕΦΑΡΜΟΓΕΣ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ 5.1 Παράδειγμα 1 Ζητείται το στατικό σύστημα προκατασκευασμένου στρωτήρα ο οποίος αναρτάται από γερανό με συρματόσχοινα όπως φαίνεται στο σχήμα. Εντοπισμός Στατικού Συστήματος Α Β Γ Α: Απομόνωση στρωτήρα από τα συρματόσχοινα Β: Απομόνωση στρωτήρα από τον εαυτό του Γ: Στατικό σύστημα 5.2 Παράδειγμα 2 Ζητείται το στατικό σύστημα προκατασκευασμένου στρωτήρα στον οποίο στηρίζονται οι ράγες αμαξοστοιχίας, όπως φαίνεται στο σχήμα. Εντοπισμός Στατικού Συστήματος Α Β Γ Δ Α: Απομόνωση στρωτήρα από τις ρόδες της αμαξοστοιχίας. Β: Απομόνωση στρωτήρα από το έδαφος. Γ: Απομόνωση στρωτήρα από τον εαυτό του. Δεν προστίθεται στο φορτίο του στρωτήρα το ίδιο βάρος του, γιατί, όπως φαίνεται στο σχήμα, αναιρείται από τις ίσες και αντίθετες τάσεις του εδάφους που αναπτύσσονται. Δ: Στατικό σύστημα Ο φορέας, αν στραφεί 180 ο, είναι αμφιπροέχοντας με ομοιόμορφο φορτίο (το οποίο αποτελεί η τάση του εδάφους. Η τιμή της προκύπτει από την ισορροπία του φορέα κατά y).

17 5.3 Παράδειγμα 3 Ζητούνται τα στατικά συστήματα δοκών και πλακών των στεγάστρων Α, Β και Γ στο σχήμα. Διαστάσεις υποστυλωμάτων: 40/40 cm. ΣΤΕΓΑΣΤΡΟ Α ΣΤΕΓΑΣΤΡΟ Β ΣΤΕΓΑΣΤΡΟ Γ ,0 Π Δ1 30/60 30/6025/50 3,,0 Π1 20 Δ1 30/60 2 3,0 Π1 20 3,0 Δ1 30/60 Π1 20 4,0 2,0 4,0 Π1 20 Δ1 30/60 30/6025/50 2,0 Π2 20 3,15 3,15 6,6 6, Εντοπισμός Στατικού Συστήματος Στέγαστρο Α Στέγαστρο Β Στέγαστρο Γ Π1 Π2 Π1 Π2 Π1 Π2 Τομή 1-1 κατά μήκος του ανοίγματος των πλακών (κάθετα στις στηρίξεις τους): Στατικό Σύστημα Πλακών Δ1 Δ2 Δ1 Δ1 Τομή 2-2 κατά μήκος των δοκών Δ1-Δ2 Στατικό Σύστημα Δοκών

18 5.4 Αριθμητικό Παράδειγμα Στατικής Επίλυσης Ζητείται η στατική επίλυση του φορέα στο σχήμα. G d =100 kn M T =20 knm G d =50 kn G d =50 kn/m Στατική Επίλυση 2,0 5,0 2,0 Καμπτικές Ροπές M sd M A = 100.2, ,0 2 /2 M B = 50.2, ,0 2 /2 = 300 knm = 200 knm M AB = 50 x 8,0 2 /8 - ( )/2 = 150 knm Τ;eμνουσες V sd V Ααρ.= ,0 = 200 kn V Aδεξ.= 0,5.50.8,0 +( )/8,0 = 212,5 kn V Bαρ. = 0,5.50.8,0 +( )/8,0 = 187,5 kn V Bδεξ.= ,0 = 150 kn Μεγιστη ροπη στο ανοιγμα στη θεση μηδενισμου της τεμνουσας σ αποσταση: x = 212,5/50 = 4,25m => max M AB = ( )/2. 2, ,5.4,25/2 =152,5 knm Στρεπτικές Ροπές Τ sd ΤΑ =ΤΒ = 20/2 =10 knm

19 Διαγράμματα Στατικών Μεγεθών G d =100 kn M T =20 knm G d =50 kn G d =50 kn/m 2,0 5,0 2, [M] [V] 10 [T]

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ι

ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ι Ενότητα Α ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ι Ο ΙΠΛΟΣ ΡΟΛΟΣ ΤΗΣ ΚΑΤΑΣΚΕΥΗΣ ΚΑΙ ΟΙ ΥΟ ΟΡΓΑΝΙΣΜΟΙ ΟΙ ΥΟ ΟΡΟΙ ΤΗΣ ΕΠΙΠΟΝΗΣΗΣ: ΦΟΡΤΙΟ ΚΑΙ ΣΤΗΡΙΞΗ Η ΙΠΛΗ ΡΟΗ ΚΑΙ ΟΠΤΙΚΗ ΤΗΣ ΚΑΤΑΣΚΕΥΗΣ ΡΑΣΕΙΣ ΚΑΙ ΑΝΤΙ ΡΑΣΕΙΣ ΑΝΤΟΧΕΣ

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 11-9-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας

Άσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Άσκηση. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

Ε ΠΡΟΣΟΜΟΙΩΜΑΤΑ, ΟΠΛΙΣΗ ΚΑΙ ΡΗΓΜΑΓΜΑΤΩΣΗ ΓΡΑΜΜΙΚΩΝ ΦΟΡΕΩΝ

Ε ΠΡΟΣΟΜΟΙΩΜΑΤΑ, ΟΠΛΙΣΗ ΚΑΙ ΡΗΓΜΑΓΜΑΤΩΣΗ ΓΡΑΜΜΙΚΩΝ ΦΟΡΕΩΝ Ενότητα Ε ΠΡΟΣΟΜΟΙΩΜΑΤΑ, ΟΠΛΙΣΗ ΚΑΙ ΡΗΓΜΑΓΜΑΤΩΣΗ ΓΡΑΜΜΙΚΩΝ ΦΟΡΕΩΝ ΠΡΟΣΟΜΟΙΩΜΑ ΓΙΑ ΚΑΜΠΤΟΔΙΑΤΜΗΤΙΚΗ ΕΠΙΠΟΝΗΣΗ OΠΛΙΣΗ ΓΙΑ ΚΑΜΠΤΟΔΙΑΤΜΗΤΙΚΗ ΕΠΙΠΟΝΗΣΗ ΔΙΑΦΟΡΟΠΟΙΗΣΕΙ ΣΤΗΝ ΟΠΛΙΣΗ ΤΩΝ ΠΛΑΚΩΝ ΜΟΡΦΟΛΟΓΙΑ ΚΑΜΠΤΟΔΙΑΤΜΗΤΙΚΩΝ

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

Μόρφωση χωρικών κατασκευών από χάλυβα

Μόρφωση χωρικών κατασκευών από χάλυβα Εθνικό Μετσόβιο Πολυτεχνείο Χάρης Ι. Γαντές Επίκουρος Καθηγητής Μόρφωση χωρικών κατασκευών από χάλυβα Επιστημονική Ημερίδα στα Πλαίσια της 4ης Διεθνούς Ειδικής Έκθεσης για τις Κατασκευές Αθήνα, 16 Μαίου

Διαβάστε περισσότερα

1 η Επανάληψη ιαλέξεων

1 η Επανάληψη ιαλέξεων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Ημερίδα: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΤΙΡΙΩΝ & ΓΕΩΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Σ.Π.Μ.Ε. ΗΡΑΚΛΕΙΟ 14.11.2008 ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π.

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

12 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΡΙΘΜΗΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

12 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΡΙΘΜΗΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 12 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΡΙΘΜΗΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 1. Ζητείται ο σχεδιασμός της πλάκας Π1 πάχους 15 cm και της δοκού Δ1 διαστάσεων 25/55 στον ξυλότυπο στο Σχ. 1 και 2. Φορτία πλάκας: q k = 2 kn/m 2, g k,επ = 1,0

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 2. Δικτυώματα/ Μηχανική Υλικών 1 Σκοποί ενότητας Να είναι σε θέση ο φοιτητής να μπορεί να ελέγχει την ισο-στατικότητα

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 26-6-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Μέθοδοι των Μετακινήσεων

Μέθοδοι των Μετακινήσεων Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Πρόβλημα Ε.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η

Διαβάστε περισσότερα

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΕΥΤΙΚΟ ΙΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική Ι 15 Φεβρουαρίου 1 ιδάσκων:, Ph.D. ιάρκεια εξέτασης : ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ (1 η περίοδος χειμερινού

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις. Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΣΕ ΚΑΤΑΣΤΑΣΗ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ. Ενότητα Λ

ΣΧΕΔΙΑΣΜΟΣ ΣΕ ΚΑΤΑΣΤΑΣΗ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ. Ενότητα Λ ΣΧΕΔΙΑΣΜΟΣ ΣΕ ΚΑΤΑΣΤΑΣΗ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ Ενότητα Λ 1. ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ Ο ΣΧΕΔΙΑΣΜΟΣ ΩΣ ΕΝΑΡΜΟΝΙΣΗ ΑΝΤΙΤΙΘΕΜΕΝΩΝ ΚΡΙΤΗΡΙΩΝ 1.1 Στόχοι και Κριτήρια του Σχεδιασμού Με βάση τον σχεδιασμό σε κατάσταση αστοχίας

Διαβάστε περισσότερα

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα. CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΝΤΟΜΗ ΠΑΡΟΥΣΙΑΣΗ 89 Α. ΑΡΧΗ ΚΑΙ ΤΕΧΝΙΚΗ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΦΟΡΕΩΝ 1. Οι περιορισμοί των Συνήθων Φορέων από Ο.Σ 99 2. Η Λύση του Προεντεταμένου Σκυροδέματος- Οι τρεις Οπτικές 100 3. Η Τεχνική

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΕΙΔΙΚΩΝ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΦΟΡΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΕΙΔΙΚΩΝ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΦΟΡΕΩΝ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΣΚΥΡΟΔΕΜΑ ΣΧΕΔΙΑΣΜΟΣ ΕΙΔΙΚΩΝ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΦΟΡΕΩΝ ΕΜΠ ΤΟΜΟΣ 2 Α ΣΧΕΔΙΑΣΜΟΣ ΕΙΔΙΚΩΝ ΚΑΙ ΠΡΟΕΝΤΕΤΑΜΕΝΩΝ ΦΟΡΕΩΝ 1 η έκδοση: Απρίλιος 2004 2 η έκδοση: Σεπτέμβριος 2008 (Αναθεωρημένη) 3

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Παράδειγμα Π4-1 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ04-2 Χρησιμοποιώντας την ΑΔΕ, να υπολογιστούν οι μετακινήσεις δ x και δ y του κόμβου

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 29-1-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 6.0) Στο

Διαβάστε περισσότερα

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ ΚΑΙ ΥΝΑΜΙΚΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

6. Χρήσης Λογισμικού Ανάλυσης Κατασκευών

6. Χρήσης Λογισμικού Ανάλυσης Κατασκευών 6. Χρήσης Λογισμικού Ανάλυσης Κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής Κατανομή φορτίων πλακών

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Χ. ΖΕΡΗΣ Απρίλιος

Χ. ΖΕΡΗΣ Απρίλιος Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα

Διαβάστε περισσότερα

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7 Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια Κεφάλαιο 7 Διαφάνειες παρουσίασης εκπαιδευτικών σεμιναρίων Γεώργιος Πενέλης, ομότιμος καθηγητής Α.Π.Θ. Ανδρέας

Διαβάστε περισσότερα

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων. ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΔΕΥΤΙΚΟ ΙΔΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 8 Φεβρουαρίου Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ ( η περίοδος χειμερινού

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η

Διαβάστε περισσότερα

Κατασκευές Οπλισμένου Σκυροδέματος Ι

Κατασκευές Οπλισμένου Σκυροδέματος Ι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχ/κών και Μηχ/κών Τοπογραφίας και Γεωπληροφορικής Τ.Ε. Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

Περίληψη μαθήματος Ι

Περίληψη μαθήματος Ι ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΥΛΙΚΩΝ, ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΓΕΝΙΚΟ ΤΜΗΜΑ, ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ, ΑΠΘ Περίληψη μαθήματος Ι Τυπολόγιο μεθοδολογία στατικής Περίληψη Ι: Ισορροπία υλικού σημείου & στερεού σώματος, δικτυώματα,

Διαβάστε περισσότερα

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Διδάσκων: Γιάννης Χουλιάρας Διάφοροι τύποι ολόσωμων ισοστατικών πλαισίων Ισορροπία κόμβων ΣF x = 0 N 1 + N 2 cosθ + Q 2 sinθ N 3

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση:

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143 9.2 ΔΙΣΚΟΙ 9.2.1 Μέθοδοι ανάλυσης Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ελαστική ανάλυση πλαστική ανάλυση

Διαβάστε περισσότερα

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των υνάμεων (συνέχεια) Παράδειγμα Π8-1 Μέθοδος των υνάμεων: 08-2 Να υπολογιστούν οι αντιδράσεις και να σχεδιαστεί το διάγραμμα ροπών κάθε μέλους του πλαισίου. [ΕΙ σταθερό] Το πλαίσιο στο σχήμα

Διαβάστε περισσότερα

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος

Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΠΑΠΑΝΔΡΕΟΥ Σ ΝΙΚΟΛΑΟΥ Επιβλέπων:

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουνίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ (1

Διαβάστε περισσότερα

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3.1 ΑΝΟΧΕΣ ΔΙΑΣΤΑΣΕΩΝ [ΕΚΟΣ 5.2] Ισχύουν μόνο για οικοδομικά έργα. Απαιτούνται ιδιαίτερες προδιαγραφές για μη οικοδομικά έργα l: Ονομαστική τιμή διάστασης Δl: Επιτρεπόμενη

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Η σεισμική συμπεριφορά κτιρίων από φέρουσα τοιχοποιία εξαρτάται κυρίως από την ύπαρξη ή όχι οριζόντιου διαφράγματος. Σε κτίρια από φέρουσα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

ΔΟΚΟΙ ΚΕΦΑΛΑΙΟ Εισαγωγή. 3.2 Δοκοί υπό φορτία βαρύτητος E G P Q Q

ΔΟΚΟΙ ΚΕΦΑΛΑΙΟ Εισαγωγή. 3.2 Δοκοί υπό φορτία βαρύτητος E G P Q Q ΚΕΦΑΛΑΙΟ 3 ΔΟΚΟΙ 3.1 Εισαγωγή Στις κατασκευές οι δοκοί, όπως και όλα τα άλλα δομικά στοιχεία, αποτελούν ένα τμήμα του γενικότερου δομικού συνόλου στο οποίο συνυπάρχουν τα υποστυλώματα, οι δοκοί, οι πλάκες,

Διαβάστε περισσότερα

Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ

Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ Ενότητα Ι ΣΧΕΔΙΑΣΜΟΣ ΔΙΕΡΕΙΣΤΩΝ ΚΑΙ ΤΕΤΡΑΕΡΕΙΣΤΩΝ ΠΛΑΚΩΝ 1. ΣΤΟΧΟΙ ΚΑΙ ΚΡΙΤΗΡΙΑ ΟΡΘΟΥ ΣΧΕΔΙΑΣΜΟΥ Ο στόχος του σχεδιασμού των φορέων σε κατάσταση αστοχίας είναι, όπως εντοπίστηκε στην ενότητα Α και Ζ διττός:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφ. 4 ΥΠΟΣΤΥΛΩΜΑΤΑ

ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφ. 4 ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφάλαιο 4 ΥΠΟΣΤΥΛΩΜΑΤΑ Τα υποστυλώµατα έχουν συνήθως τη µορφή κατακόρυφου αµφίπακτου ραβδόµορφου φορέα όπως φαίνεται στο σχήµα 1.8. Τα τµήµατα του υποστυλώµατος µεταξύ πάκτωσης και σηµείου καµπής θα µπορούσαν

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία. Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία. Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια Φ. Καραντώνη Τεχνική Μηχανική 1 φορείς Κάθε κατασκευή που μπορεί

Διαβάστε περισσότερα

O7 O6 O4 O3 O2 O1 K1 K2 K3 K4 K5 K6. Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων. Βήμα 1 ο Σχεδιασμός καννάβου

O7 O6 O4 O3 O2 O1 K1 K2 K3 K4 K5 K6. Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων. Βήμα 1 ο Σχεδιασμός καννάβου Μέρος 1 ο Επιλογή θέσης και διαστάσεων κατακόρυφων στοιχείων Βήμα 1 ο Σχεδιασμός καννάβου Με βάση τις θέσεις των τοιχοπληρώσεων που εμφανίζονται στο αρχιτεκτονικό σχέδιο γίνεται ο κάναβος που φαίνεται

Διαβάστε περισσότερα

ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΕΝΙΣΧΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ.

ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΕΝΙΣΧΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΕΝΙΣΧΥΣΗ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΑΝΕΛΑΣΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΑΡΑΛΑΜΠΟΣ ΚΑΡΑΧΑΛΙΟΥ ΜΑΡΙΑ Περίληψη Αντικείμενο της παρούσας εργασίας είναι η εκτίμηση της φέρουσας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8. Διαστασιολόγηση πλακών

ΚΕΦΑΛΑΙΟ 8. Διαστασιολόγηση πλακών ΚΕΦΑΛΑΙΟ 8 Διαστασιολόγηση πλακών 8.1 Γενικά Με τον όρο «πλάκες» αναφερόμαστε συνήθως σε επίπεδους φορείς σχετικά λεπτού πάχους που φορτίζονται κυρίως κάθετα στο επίπεδό τους και στηρίζονται γραμμικά (π.χ.

Διαβάστε περισσότερα

. ΟΑΣΠ καθηγητών του ΑΠΘ. Εμπεριέχει 22 παραδείγματα κτηρίων..τον Φεβρουάριο του 2011, έγινε η δεύτερη διευρωπαϊκή Slide με κτήριο

. ΟΑΣΠ καθηγητών του ΑΠΘ. Εμπεριέχει 22 παραδείγματα κτηρίων..τον Φεβρουάριο του 2011, έγινε η δεύτερη διευρωπαϊκή Slide με κτήριο Κατά την αντισεισμική μελέτη ενός κτηρίου, ένας δομοστατικός μηχανικός οφείλει να γνωρίζει τις παραδοχές που κάνει το τεχνικό λογισμικό που χρησιμοποιεί Συγχρόνως, πρέπει να επιλέξει τις κατάλληλες μεθόδους

Διαβάστε περισσότερα

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,, ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα