Με διεθνή σύμβαση το 1961, καθιερώθηκε ότι 1 amu (atomic mass unit) είναι το 1/12 της μάζας του ουδέτερου ατόμου του άνθρακα 12 C, επομένως:

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Με διεθνή σύμβαση το 1961, καθιερώθηκε ότι 1 amu (atomic mass unit) είναι το 1/12 της μάζας του ουδέτερου ατόμου του άνθρακα 12 C, επομένως:"

Transcript

1 ΚΕΦΑΛΑΙΟ : ΑΤΟΜΙΚΟΣ ΠΥΡΗΝΑΣ-ΙΔΙΟΤΗΤΕΣ Ο πυρήνας του ατόμου αποτελείται από πρωτόνια και νετρόνια, τα νουκλεόνια που είναι φερμιόνια με σπιν ½, όπως και τα λεπτόνια. Η μάζα του νετρονίου είναι 0.14% μεγαλύτερη αυτής του πρωτονίου : M n = MeV/c = amu M p = MeV/c = amu Διαφορά μαζών είναι M n M p = 1.9 MeV/c (~ μάζες ηλεκτρονίου) Με διεθνή σύμβαση το 1961, καθιερώθηκε ότι 1 amu (atomic mass unit) είναι το 1/1 της μάζας του ουδέτερου ατόμου του άνθρακα 1 C, επομένως: Μ(1, 6) = amu Επομένως 1 Mole (0.01 kg) του 1 C θα είναι: 0.01 kg = N A x 1 amu, N A = αριθμός Avogadro 1 amu = (0.001/N A ) kg = x 10-7 kg = MeV/c. Ελαφροί πυρήνες περιέχουν σχεδόν ίδιο αριθμό πρωτονίων με τον αριθμό των νετρονίων. Σε βαρείς πυρήνες τα νετρόνια υπερέχουν των πρωτονίων, με αποτέλεσμα να μην έχουν εντελώς σφαιρικό σχήμα, όπως φαίνεται στο σχήμα 5. Σχήμα 5 : Μέγεθος και σχήμα πυρήνων 16 Ο και 38 U, ανάλογα με τον αριθμό των νουκλεονίων _Atomikos_Pyrhnas.doc 14

2 Όλα τα άτομα με τον ίδιο ατομικό αριθμό, δηλ. ίδιο πυρηνικό φορτίο, ανήκουν στο ίδιο στοιχείο. Άτομα του ίδιου ατομικού αριθμού αλλά διαφορετικού μαζικού αριθμού καλούνται ισότοπα ενός στοιχείου. Προφανώς τα ισότοπα ενός στοιχείου διαφέρουν μεταξύ τους ως προς τον αριθμό νετρονίων που έχουν στον πυρήνα. Για να προσδιορίσουμε τη μάζα ενός πυρήνα, χρησιμοποιούμε τη σχέση: B = + + (.0) M ZM p NMn Zme c Όπου Β = πυρηνική ενέργεια σύνδεσης Ακριβείς τιμές των ατομικών μαζών μετρούνται με τον φασματογράφο μάζας, σχήμα 6 Σχήμα 6 : Αρχή φασματογράφου μάζας Ιονισμένα άτομα επιταχύνονται ηλεκτρικά μέσω γνωστής διαφοράς δυναμικού και αποκλίνουν σε ένα κυκλικό τόξο εξ αιτίας γνωστού μαγνητικού πεδίου. Η ακτίνα καμπυλότητας του μαγνητικού πεδίου καθορίζει τον λόγο e/m, ακριβώς με τον ίδιο τρόπο που στο πείραμα του Thomson μετρείται ο λόγος e/m για ηλεκτρόνια. Εφόσον το φορτίο e είναι γνωστό, βρίσκεται η μάζα Μ του ιόντος που εύκολα διορθώνεται σε μάζα Μ του ουδέτερου ατόμου. Μια μέση τιμή της ενέργειας σύνδεσης σε ένα πλαίσιο 10% για τους περισσότερους πυρήνες είναι: Β (8 MeV) A B/c = (0.008 amu) A _Atomikos_Pyrhnas.doc 15

3 Παράδειγμα : Ποιά είναι η ενέργεια σύνδεσης του 1 C ; B Από M = ZM p + NMn + Zme c B/c = 6( ) + 6( ) + 6( ) B/c = amu = 9.17 MeV. Μέγεθος και Σχήμα του πυρήνα Για να «δούμε» τον πυρήνα τον «φωτίζουμε» με φωτόνια και ανιχνεύουμε τα σκεδαζόμενα φωτόνια για περιγράψουμε το σχήμα του και ενδεχομένως τη δομή του, όπως στο σχήμα 7, όπου μεταβάλλουμε τη γωνία ανίχνευσης/σκέδασης Θ γύρω από το σημείο βομβαρδισμού και να έχουμε μια πλήρη «εικόνα» του πυρήνα από όλες τις διευθύνσεις : Σχήμα 7 : Βομβαρδισμός σωματιδίων σε σταθερό στόχο με ανίχνευτή των προϊόντων Ο βομβαρδισμός του πυρήνα μπορεί να γίνει και με δέσμη φορτισμένων σωματιδίων κινητικής ενέργειας Ε και αντίστοιχου ισοδύναμου μήκους κύματος λ πάνω σε λεπτό υμένιο ομογενούς υλικού του πυρήνα που θελουμε να μελετήσουμε. Το σχήμα του πυρήνα προσδιορίζεται από τη χαρακτηριστική κατανομή ως προς τη γωνία απόκλισης των σωματίων που σκεδάζονται. Η απαραίτητη κινητική ενέργεια των φορτισμένων σωματιδίων που απαιτείται, δίδεται από τη σχέση De Broglie : h h h λ = = = (.1) p mv Em _Atomikos_Pyrhnas.doc 16

4 Επομένως τα φορτισμένα σωματίδια με ενέργεια μέσω επιταχυντικών διατάξεων ή νετρόνια από πυρηνικό αντιδραστήρα με κατάλληλη ενέργεια, του πίνακα Ι μπορούν να χρησιμοποιηθούν σαν «εργαλεία φωτισμού» για τον προσδιορισμό του σχήματος του πυρήνα. ΠΙΝΑΚΑΣ Ι ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ (MeV) ΣΩΜΑΤΙΟ λ = 1 fm λ = 5 fm E p, n 60 3 Α Οι δέσμες των ηλεκτρονίων έχουν το πλεονέκτημα ότι είναι γνωστή με μεγάλη ακρίβεια η διαδικασία αλληλεπίδρασης με τον πυρήνα (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ) και δίδουν καλύτερα αποτελέσματα. Δεν έχουμε την πολυπλοκότητα των ισχυρών αλληλεπιδράσεων, ενώ η ασθενής αλληλεπίδραση στις διαδικασίες σκέδασης είναι αμελητέα. Αν ο πυρήνας έχει μαγνητική ροπή, τότε συνεισφέρει σημαντικά σε μεγάλες γωνίες σκέδασης, αλλά μπορεί να υπολογιστεί. Στις ανωτέρω ενέργειες τα ηλεκτρόνια περιγράφονται με τη σχετικιστική κυματική εξίσωση Dirac και όχι από την εξίσωση Schrödinger. p m m Schrodinger : = E... =... Ενώ η σχετικιστική κυματική εξίσωση : t (.) { } i { } = ( + ){...} = {...} (.3) pc mc E c mc Η οποία ονομάζεται εξίσωση Klein-Gordon Ακτίνα του Πυρήνα Τα νουκλεόνια περιγράφονται μέσα στον πυρήνα σε μια σφαιρική, κατά προσέγγιση, συμμετρία, οπότε αναφερόμαστε αντίστοιχα στην πυρηνική ακτίνα. Σημειώνεται ότι στις μικροσκοπικές διαστάσεις που μελετάμε, η πυρηνική ακτίνα δεν συνεπάγεται με κανένα τρόπο, ότι προσδιορίζεται η μάζα του πυρήνα που φτάνει επακριβώς μέχρι τα όρια του σφαιρικού φλοιού της πυρηνικής ακτίνας και εξω από την επιφάνεια του φλοιού η μάζα μηδενίζεται. t _Atomikos_Pyrhnas.doc 17

5 Συνεπώς η κατανομή της πυκνότητας της πυρηνικής μάζας περιγράφεται από το σχήμα 8, και η σχέση που συνδέει την πυρηνική ακτίνα με τον μαζικό αροθμό είναι: R 1 = ra 3 0 (.4) r o = σταθερά ~ 1. fm Σχήμα 8 : Πυκνότητα πυρηνικής μάζας Σχήμα 9 : Πυρηνική ακτίνα Θεωρούμε το Δυναμικό (φράγμα) Coulomb με ύψος BBc : B c = Z1Ze 4πε R o c (.5) Παράδειγμα : για ηλεκτρόνια πάνω σε πυρήνες 38 9 U, Ζ 1 = 1, Ζ = 9, Α = 38 δίδουν R c = 7.6 fm B c = 17.4 MeV του σχήματος 9 με το πηγάδι δυναμικού του πυρήνα ακτίνας R c και Δυναμικό (φράγμα) Coulomb με ύψος B c (σκιασμένο), έχοντας πάντα την υπόθεση της σφαιρικής συμμετρίας. Σκέδαση Ηλεκτρονίων Αν το προσπίπτον σωματίδιο στον πυρήνα είναι ηλεκτρόνιο ΔΕΝ ΥΠΑΡΧΕΙ πυρηνική δύναμη αλληλεπίδρασης, αλλά μόνο η ελκτική δύναμη Coulomb. Η _Atomikos_Pyrhnas.doc 18

6 σκέδαση αποκαλύπτει λεπτομέρειες της κατανομής φορτίου του πυρήνα, αν το ισοδύναμο μήκος κύματος De Broglie είναι λ/π ~ 1 fm, E ~ 00 MeV. Το ηλεκτρόνιο θεωρείται σωματίδιο-σημείο χωρίς εσωτερική δομή και το φαινόμενο του πεπερασμένου μεγέθους του πυρήνα αποκαλύπτεται ευθέως από την ελαττωμένη σκέδαση σε δεδομένη γωνία μικρότερη από την αναμενόμενη, όπως υπολογίστηκε από τον Mott. Τα πρωτοποριακά πειράματα του Hofstadter στο Stanford, που χρησιμοποίησε τον γραμμικό επιταχυντή ηλεκτρονίων με ενέργεια μέχρι 550 MeV, έδωσαν τον λόγο των παρατηρηθέντων προς τις υπολογισθείσες εντάσεις για δεδομένη γωνία ίσο με το τετράγωνο του παράγοντα σχηματισμού (form factor) F. Έχοντας απολύτως κατανοητή την ηλεκτρομαγνητική αλληλεπίδραση, ο παράγων σχηματισμού F μπορεί να γραφεί συναρτήσει της πυκνότητας του πυρηνικού φορτίου ρ(r), με τη βασική προϋπόθεση της περιγραφής της σκέδασης με την προσέγγιση κατά Born της κβαντομηχανικής, λόγω της σχετικιστικής ενέργειας των ηλεκτρονίων. Σαν συνάρτηση της μεταφερόμενης ορμής q στον πυρήνα από το προσπίπτον σωματίδιο που είδαμε στη σκέδαση Rutherford, ο παράγων σχηματισμού F μπορεί να γραφεί : 4π sin qr = qze 0 rdr (.6) ( ) ρ ( r) F q Όπου q = q (E/c)sin(θ/), Ε = ολική ενέργεια του ηλεκτρονίου και θ = γωνία σκέδασης (και τα δύο μεγέθη στο κέντρο μάζας του συστήματος) Αν αντί q, ορίσουμε ως διάνυσμα μεταφερόμενης ενέργειας το ђq, τότε το q καθίσταται ένα ισοδύναμο μήκος και η σχέση.6 απλοποιείται : 4π F ( q) = ρ ( r) sin ( qr) rdr qze 0 (.7) _Atomikos_Pyrhnas.doc 19

7 Σχήμα 10 : Σκέδαση ηλεκτρονίων ενέργειας 153 MeV σε Χρυσό με θεωρητικές προσεγγίσεις κατά Bohr (A) και Mottelson (B). Στο σχήμα 10 εμφανίζονται τα πειραματικά αποτελέσματα του Hofstadter με σκέδαση ηλεκτρονίων ενέργειας 153 MeV σε πυρήνες Χρυσού, από τα οποία μπορεί να υπολογιστεί ο παράγων F(q). Στην περίπτωση που έχουμε, πειραματικά, καλύψει μια ιδιαίτερα μεγάλη περιοχή τιμών του q τότε μπορεί να υπολογιστεί η πυκνότητα του πυρηνικού φορτίου ρ(r) με μετασχηματισμό Fourier του F(q) ως προς το q. Γενικά αυτό δεν είναι εύκολο και καταφεύγουμε σε προσεγγιστική έκφραση της πυκνότητας του πυρηνικού φορτίου ρ(r), π.χ. κατά τη συνάρτηση Fermi : ρ0 ρ ( r) = 1+ exp r R / a ( ) 1 (.8) Σύγκριση (fit) με τα πειραματικά αποτελέσματα δίδουν τιμές της ακτίνας-ημίσεως R ½ και της παραμέτρου του επιφανειακού πάχους α. Ενώ ρ ο είναι η σταθερά κανονικοποίησης, ώστε : ( ) = ρ( ) 3 ρ r d r r r dr = Z (.9) 0 Η μέση τιμή του τετραγώνου της πυρηνικής ακτίνας για δεδομένη πυκνότητα του πυρηνικού φορτίου ρ(r) ορίζεται : _Atomikos_Pyrhnas.doc 0

8 1 = Ze ρ ( ) π r r r 4 r dr (.10) Για την πυκνότητα του πυρηνικού φορτίου ρ(r) από τη σχέση.8 έχουμε : 1 r < R 1 < R c (.11) Για μεγάλη περιοχή πυρήνων με Α > 0, βρέθηκε ισχυρή εξάρτηση του R ½ και R c από την ποσότητα 1/3 Α. Υπάρχουν και άλλες μέθοδοι προσδιορισμού της μέσης πυρηνικής ακτίνας κατανομής του φορτίου. Τα αποτελέσματα όλων των μεθόδων είναι συμβατά μεταξύ τους, ο συνδυασμός των οποίων δίδει : 13 R1 = 1.1A fm R ( ) 13 c = A fm (.1) Η επιφανειακή πυκνότητα ή η απόσταση της περιοχής μεταξύ του 90% και του 10% από το κέντρο (κεντρική πυκνότητα) είναι.5 fm για ΟΛΟΥΣ τους πυρήνες οι πολύ ελαφροί πυρήνες είναι σχεδόν επιφανειακοί. Μέγεθος του Πρωτονίου Αν βομβαρδίσουμε πρωτόνια με ηλεκτρόνια υψηλής ενέργειας και μελετήσουμε τα γεγονότα εκείνα με την πιο σημαντική απόκλιση, τότε μπορούμε να πάρουμε τη διαφορική ενεργό διατομή σκέδασης που παρέχει πληροφορίες για το πρωτόνιο. Στο σχήμα 11 παρατηρούμε το διάγραμμα της διαφορικής ενεργού διατομής σκέδασης ηλεκτρονίου-πρωτονίου του R Hofstadter στο Stanford, όπου φαίνεται ότι η πραγματική σκέδαση είναι μικρότερη από την αναμενόμενη ως σκέδαση σημειακού φορτίου, ιδιαίτερα στις μεγάλες γωνίες. Αυτό σημαίνει ότι το πρωτόνιο είναι «μαλακός» πυρήνας, δηλ. το φορτίου του δεν είναι συγκεντρωμένο σε ένα σημείο αλλά απλώνεται σε μια περιοχή διαστάσεων m. _Atomikos_Pyrhnas.doc 1

9 Σχήμα 11 : (α)σκέδαση ηλεκτρονίων ενέργειας 400 MeV σε πρωτόνια, η πάνω συνεχής γραμμή θεωρεί τον πυρήνα ως σημείο, (β) Η πυκνότητα φορτίου συναρτήσει της πυρηνικής ακτίνας. H πυκνότητα του φορτίου, ρ παρίσταται στο ίδιο σχήμα σαν συνάρτηση της ακτίνας r. Αυτή η πειραματική απόδειξη της δομής του πρωτονίου μαζί με αντίστοιχη του νετρονίου μέσω σκέδασης ηλεκτρονίων με δευτέρια ήταν τόσο σημαντική, ώστε απενεμήθη στον R Hofstadter το βραβείο Nobel του Σχήμα 1 : Επίδραση της κατανομής φορτίου στη σκέδαση ηλεκτρονίων σε μικρές και μεγάλες γωνίες απόκλισης Ο λόγος του μικρότερου αριθμού γεγονότων με μεγάλη γωνία σκέδασης αποδίδεται με κλασσική προσέγγιση από το το σχήμα 1, όπου οι μεγάλες γωνίες σκέδασης υφίστανται όταν οι τροχιές περνούν πολύ κοντά από σημειακό φορτίο αντί να _Atomikos_Pyrhnas.doc

10 διασχίζουν τη μάζα το πρωτονίου με το κατανεμημένο φορτίο, όπου τα ηλεκτρόνια «αισθάνονται» ασθενέστερες δυνάμεις και υφίστανται μικρή απόκλιση. Κλασσικά, θα πρέπει να υπάρχει κάποια γωνία πέραν της οποίας κανένα σωματίδιο δεν υφίσταται σκέδαση. Τέτοια απότομα όρια δεν υφίστανται στα κβαντικά φαινόμενα. Η κυματική φύση των σωματιδίων επιτρέπει να σκεδάζονται και λίγα σωματίδια στις μεγάλες γωνίες μέσω του μηχανισμού περίθλασης των σωματιδίων. Μέγεθος και Σχήμα των πυρήνων Θεωρούμε τους περισσότερους πυρήνες ή σχεδόν σφαιρικούς με ακτίνα πυρήνα να κυμαίνεται από m μέχρι m και να υπολογίζεται γι ακάθε πυρήνα η ακτίνα από τη σχέση: R ( ) = m A (.13) Εκτιμάται ότι το επιφανειακό πάχος του πυρήνα είναι περίπου fm. Σχήμα 13 : Πυκνότητα πυρηνικής μάζας τεσσάρων πυρήνων. Η διακεκομένη γραμμή είναι οι ακτίνες που δίδει η σχέση.13 Η πειραματική πληροφόρηση σχετικά με την πυρηνική ακτίνα έρχεται από σκεδάσεις πολύ ενεργών ηλεκτρονίων, που πιστοποιούν την κατανομή του θετικού φορτίου των πρωτονίων στον πυρήνα. ΑΝ θεωρήσουμε ότι και η πυκνότητα της κατανομής των νετρονίων είναι μέσα στον πυρήνα ανάλογη με την πυκνότητα των πρωτονίων, τότε μπορούμε να έχουμε κατανομή πυρηνικού υλικού, όπως στο σχήμα 13. Παρατηρείται ότι η πυκνότητα στο κεντρικό μέρος του πυρήνα εξαρτάται πολύ λίγο από τον μαζικό αριθμό του πυρήνα. Η σχετική σταθερότητα της πυκνότητας 4 3 R 3 είναι συνεπής με την έκφραση της σχέσης.13, όπου ο πυρηνικός όγκος π είναι ανάλογος του μαζικού αριθμού Α. _Atomikos_Pyrhnas.doc 3

11 Συμπεραίνουμε ότι κάθε νουκλεόνιο αποτελεί ένα ακόμη δομικό λίθο στη δομή του πυρήνα, σε αντίθεση με τον ατομικό όγκο που παραμένει σχεδόν σταθερός, εκτός μερικών περιοδικών διακυμάνσεων, και ανεξάρτητος του αριθμού των ηλεκτρονίων. Άσκηση Υπολογίστε την πυκνότητα της πυρηνικής ύλης και συγκρίνετέ την με την πυκνότητα ενός κανονικού υλικού στερεάς κατάστασης: ρ m 7 ( Kg ) A 15 π ( ) M = = =.3 10 Kg / m =.3 10 g / cm ογκος Kg A Βρίσκουμε περίπου φορές μεγαλύτερη πυκνότητα του πυρηνικού υλικού από την πυκνότητα ενός τυπικού στερεού, το οποίο κυρίως είναι κενό. Μια μπάλλα μεγέθους του πινγκ-πονγκ θα ζύγιζε δισεκατομύρια τόνους!!. Τα ιστορικά πειράματα σκέδασης του Rutherford και των συνεργατών του ( ) με σωματίδια-α ενέργειας 9 MeV επάνω σε πυρήνες Χρυσού, ερμηνεύονται σήμερα ως πειράματα με τα σωματίδια-α να έχουν ΜΗ ικανή ενέργεια για να πλησιάσουν την άκρη του πυρήνα ακόμα και σε μετωπική σύγκρουση. Επομένως τα ευρήματα αυτών των σκεδάσεων «σημειακού φορτίου» είναι πυρηνική ακτίνα μικρότερη από ένα ανώτατο όριο. Πειράματα που έγιναν αργότερα με μεγαλύτερες ενέργειες έδειξαν αποκλίσεις από τα ευρήματα με την υπόθεση του σημειακού φορτίου και συνεπώς έδωσαν πληροφορίες για την ακτίνα του πυρήνα. Σχήμα 14 : (α) Λόγος ενεργών σκέδασης σωματιδίων-α ενέργειας 5.5 και 7.7 MeV ως προς πυρήνα και πυρήνα-σημείο, (β) ίδιος λόγος ενεργών διατομών για σωματίδια-α με ενέργεια 48 MeV επάνω σε μόλυβδο. _Atomikos_Pyrhnas.doc 4

12 Στο σχήμα 14α έχουμε σκέδαση σωματιδίων-α ενέργειας 5.5 και 7.7 MeV επάνω σε στόχο Mg (194). Στο σχήμα 14β σωματίδια-α ενέργειας 48 MeV σκεδάζονται επάνω σε Pb, δείχνοντας ότι σε μεγάλες γωνίες η διαφορική ενεργός διατομή είναι μέχρι φορές μικρότερη από ότι με «σημειακό» πυρήνα (1956). Πυρηνική Παραμόρφωση Από πολλά πειραματικά αποτελέσματα είναι γνωστό ότι οι περισσότεροι πυρήνες δεν είναι σφαιρικοί. Ένας ΜΗ σφαιρικός πυρήνας χαρακτηρίζεται από τον παράγοντα παραμόρφωσης Α μέσω της σχέσης: 3 1 = + R Ro 1 A cos θ (.14) Ro = ακτίνα σφαίρας αναφοράς 3 1 Η συνάρτηση cos θ είναι πολυώνυμο Legendre Στους πόλους, ο πυρήνας επιμηκύνεται: R = R ( 1+ A) Στον ισημερινό, ο πυρήνας συμπιέζεται: R= R ( 1 1 o A) Η συγκεκριμένη γωνιακή συνάρτηση επελέγη ώστε για μικρές τιμές του Α οι όγκοι των παραμορφωμένων πυρήνων και της σφαίρας αναφοράς να είναι ΙΔΙΟΙ. o Σχήμα 15 : Πυρηνική παραμόρφωση σαν συνάρτηση του μαζικού αριθμού. Στο σχήμα 15 παρουσιάζεται η πυρηνική παραμόρφωση συναρτήσει του μαζικού αριθμού. Για Α = 0 έχουμε σφαιρικό πυρήνα. Για Α > 0 ο πυρήνας είναι επιμήκηςσφαιρικός και για Α < 0 είναι διαμήκης-σφαιρικός. _Atomikos_Pyrhnas.doc 5

13 Άσκηση Ένα σωματίδιο-α ενέργειας 9 MeV προσεγγίζει μετωπικά ένα πυρήνα Χρυσού (Ζ=79). Σε ποιά απόσταση από το κέντρο του πυρήνα το σωματίδιο-α οπισθογυρίζει; Στο σημείο οπισθοσκέδασης, η κινητική ενέργεια του σωματιδίου-α μηδενίζεται, άρα Ε = U. Αν το σημείο οπισθοσκέδασης είναι έξω από το πυρηνικό δυναμικό, η δυναμική ενέργεια είναι: 1 Ze U = 4πε 0 r Άρα το σημείο της πλησιέστερης προσέγγισης του σωματιδίου-α προσδιορίζεται: 1 Ze rmin = 4πε E r min 0 1 e mc e = Z 4πε c m c E 0 e Ο πρώτος όρος είναι η σταθερά λεπτής υφής, ο δεύτερος όρος είναι το μήκος κύματος Compton και ο τρίτος είναι ο αδιάστατος λόγος των ενεργειών. Άρα: r min ( )( )( V) 70 / Cm fm Me ec Z = = E = 5.3 fm 9MeV Για σύγκριση, η πυρηνική ακτίνα R = 1.(197) 1/3 fm = 7.0 fm. Η πιο «έξω» περιοχή του πυρήνα είναι περίπου 1.4(197) 1/3 fm = 8.1 fm. Άρα το σωματίδιο-α δεν μπορεί να φτάσει τον πυρήνα. _Atomikos_Pyrhnas.doc 6

14 ΠΑΡΑΡΤΗΜΑ Α Σκέδαση Mott Η σύγχρονη μεθοδολογία για τη μελέτη της δομής των αδρονίων βασίζεται στην πρωτοποριακή εργασία του Hofstadter και των συνεργατών του στο Stanford στη δεκαετία του Επιχειρείται η μελέτη του θέματος αυτού για να δημιουργηθεί ένα θεωρητικό πλαίσιο και να ερμηνευτούν τα αποτελέσματα πιο σύγχρονων πειραμάτων. Σχήμα Α1 : Σκέδαση ηλεκτρονίου σε πρωτόνιο Θεωρούμε τη σκέδαση Coulomb ενός ηλεκτρονίου από ένα «στατικό» σημειακό πρωτόνιο, σχήμα Α1. Η διαδικασία σκέδασης «υλοποιείται» από την εκπομπή από το πρωτόνιο ενός δυνητικού φωτονίου που απορροφάται από το ηλεκτρόνιο αρχικής ορμής p i και προκύπτει ηλεκτρόνιο τελικής κατάστασης με ορμή p f. Η διαφορική ενεργός διατομή αυτής της διαδικασίας είναι η γνωστή σχέση της σκέδασης Rutherford, αλλά τροποποιημένης για σχετικιστικά σωματίδια, γραφοντας όπου μυ 1 = p i c, οπότε : dσ = d a ( θ ) Ω (Α.1) 4 4pi sin Η αλλαγή της ορμής του ηλεκτρονίου ή η μεταφερόμενη ορμή είναι ίση με την ορμή q του δυνητικού φωτονίου : q = p p q = p + p p p i f i f i Για ένα στατικό πρωτόνιο p i = p f και _Atomikos_Pyrhnas.doc 7 f (Α.)

15 i i ( ) q = p (1 cos θ) = 4p sin θ (Α.3) Αλλά dω= pd(cos θ) = πdq / pi (Α.4) Και η σχέση της σκέδασης Rutherford γράφεται : dσ = dq 4π a q 4 i (Α.5) Στην πραγματικότητα το φορτίο του πρωτονίου δεν εντοπίζεται ως σημειακό. Για να προσδιοριστεί η κατανομή φορτίου, θα πρέπει η πειραματικώς μετρούμενη διαφορική ενεργός διατομή σκέδασης των ηλεκτρονίων να συγκριθεί με την διαφορική ενεργό διατομή σκέδασης από σημειακό φορτίο (σκέδαση Rutherford) επί κάποιον παράγοντα : dσ dσ = F( q) dω dω Measured Rutherford (Α.6) F(q) = παράγων σχηματισμού (form factor), είναι ο μετασχηματισμός Fourier της κατανομής της πυκνότητας του ηλεκτρικού φορτίου F q = ρ r iq r d τ ( ) ( ) exp( ) i (Α.7) Καλύτερη προσέγγιση θα μπορούσε να υπολογιστεί, αν θεωρήσουμε τη σκέδαση Rutherford με σημειακό φορτίο, αλλά δεχόμενοι το ηλεκτρόνιο με σπιν ½ ως σωματίδιο Dirac και επιτρέποντας το πρωτόνιο να υποστεί ανάδραση. Σε αυτή την περίπτωση έχουμε τη σχέση της σκέδασης Mott : cos ( θ ) ( ) ( θ ) dσ dσ = dω dω 1+ E/ M sin Mott Rutherford (Α.8) _Atomikos_Pyrhnas.doc 8

ΚΕΦΑΛΑΙΟ 1 : AΤΟΜΙΚΟ ΠΡΟΤΥΠΟ

ΚΕΦΑΛΑΙΟ 1 : AΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΚΕΦΑΛΑΙΟ 1 : AΤΟΜΙΚΟ ΠΡΟΤΥΠΟ Ο J.J. Thomson πρότεινε στο ομώνυμο πρότυπο του πυρήνα ότι τα ηλεκτρόνια κινούνται μηχανικά σε σταθερές τροχιές με ισοδύναμο θετικό φορτίο κατανεμημένο ομογενώς στη μάζα του

Διαβάστε περισσότερα

Μέγεθος, πυκνότητα και σχήμα των πυρήνων. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Μέγεθος, πυκνότητα και σχήμα των πυρήνων. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Μέγεθος, πυκνότητα και σχήμα των πυρήνων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής ΕΡΩΤΗΜΑΤΑ Ποιο είναι το μέγεθος των πυρήνων; Τι πυκνότητα έχουν οι πυρήνες; Πως κατανέμεται η πυρηνική ύλη στον πυρήνα; Πώς

Διαβάστε περισσότερα

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2013-14 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ

Διαβάστε περισσότερα

Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα

Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα Θεωρία Yukawa Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα έφτασε στο συμπέρασμα ότι η εμβέλεια της δύναμης εξαρτάται από τη μάζα, m, του κβάντου. t /mc R c t /mc Η εξίσωση Klein-Gordon

Διαβάστε περισσότερα

Νουκλεόνια και ισχυρή αλληλεπίδραση

Νουκλεόνια και ισχυρή αλληλεπίδραση Νουκλεόνια και ισχυρή αλληλεπίδραση Πρωτόνια και νετρόνια. Το πρότυπο των κουάρκ για τα νουκλεόνια. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Κουάρκ: τα δομικά στοιχεία των αδρονίων ΑΣΚΗΣΗ Διασπάσεις σωματιδίων

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Διάλεξη 6: Φυσική Ραδιενέργεια και πυρηνικές αντιδράσεις

Διάλεξη 6: Φυσική Ραδιενέργεια και πυρηνικές αντιδράσεις Διάλεξη 6: Φυσική Ραδιενέργεια και πυρηνικές αντιδράσεις Φυσική Ραδιενέργεια Οι ραδιενεργοί πυρήνες ταξινομούνται σε δύο βασικές κατηγορίες. Αυτούς που υπήρχαν και υπάρχουν στην φύση πριν από την πρώτη

Διαβάστε περισσότερα

δ-ray με κινητική ενέργεια T e και ορμή p e παράγεται σε μια γωνία Θ q, p

δ-ray με κινητική ενέργεια T e και ορμή p e παράγεται σε μια γωνία Θ q, p δ rays Κατά τον ιονισμό το εκπεμπόμενο θα έχει κινητική ενέργεια : 0 T T max q, p δ-ray με κινητική ενέργεια T και ορμή p παράγεται σε μια γωνία Θ T p cosθ = p T max max όπου p max η ορμή ενός με τη μέγιστη

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Hideki Yukawa and the Nuclear Force Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής πυρηνική δύναμη Η πυρηνική δύναμη (ή αλληλεπίδραση νουκλεονίουνουκλεονίου, ή NN forces,

Διαβάστε περισσότερα

Μάζα των πυρήνων. Α. Λιόλιος Μάθημα Πυρηνικής Φυσικής

Μάζα των πυρήνων. Α. Λιόλιος Μάθημα Πυρηνικής Φυσικής Μάζα των πυρήνων Α. Λιόλιος Μάθημα Πυρηνικής Φυσικής Μονάδα για τη μέτρηση των πυρηνικών μαζών u : είναι η μονάδα ατομικής μάζας (atomic mass unit) εν συντομία amu. Ορίζεται ότι η μάζα του ατόμου 1 C (μαζί

Διαβάστε περισσότερα

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:

Διαβάστε περισσότερα

Μ.Ζαµάνη

Μ.Ζαµάνη Μ.Ζαµάνη 1-10-2010 1 ΥΛΗ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ 2 ΛΙΓΗ ΙΣΤΟΡΙΑ 1807 J. Dalton στην Αγγλία ανακάλυψε τον νόµο των αναλογιών και πρότεινε την ατοµική θεωρία: Ηλεκτρόλυση-Χηµεία-καθοδικές ακτίνες. 1811 Α. Avogadro

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A Ένα ισότοπο, το οποίο συµβολίζουµε µε Z X, έχει ατοµικό αριθµό Ζ και µαζικό αριθµό Α. Ο πυρήνας του ισοτόπου

Διαβάστε περισσότερα

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15 Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενός ισοπλεύρου τριγώνου ΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σημειακά ηλεκτρικά φορτία 1 =2μC και 2 αντίστοιχα.

Διαβάστε περισσότερα

Διάσπαση σωµατιδίων. = m C 2 + p 2 = m C 2 + E B 2! m B E C = (E B = (E C. p B. , p), p C. ,- p) = (m A , 0) p A = E B. + m C 2 + E B 2! m B.

Διάσπαση σωµατιδίων. = m C 2 + p 2 = m C 2 + E B 2! m B E C = (E B = (E C. p B. , p), p C. ,- p) = (m A , 0) p A = E B. + m C 2 + E B 2! m B. πριν: µετά: Διάσπαση σωµατιδίων p A = (m A, 0) p B = (E B, p), p C = (E C,- p) E C = m C + p = m C + E B! m B m A = E B + m C + E B! m B " ( m A! E ) B = m C + E B! m B " m A! m A E B = m C! m B " E B

Διαβάστε περισσότερα

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Q3-1 Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Σε αυτό το πρόβλημα θα ασχοληθείτε με τη Φυσική

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Σύγχρονη Φυσική ΙΙ. Κεφάλαιο 1 Τα Μοντέλα των J.J. Thompson και E. Rutherford Σκέδαση Rutherford

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Σύγχρονη Φυσική ΙΙ. Κεφάλαιο 1 Τα Μοντέλα των J.J. Thompson και E. Rutherford Σκέδαση Rutherford Τα Μοντέλα των J.J. Thompson και E. Rutherford Σκέδαση Rutherford Σκοποί της πρώτης διάλεξης: I. Να εισάγει τους φοιτητές στα ατομικά μοντέλα των J.J. Thompson και E. Rutherford. 03/06/ II. III. IV. Την

Διαβάστε περισσότερα

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας

Διαβάστε περισσότερα

Ανακλώμενο ηλεκτρόνιο KE = E γ - E γ = E mc 2

Ανακλώμενο ηλεκτρόνιο KE = E γ - E γ = E mc 2 Σκέδαση Compton Το φαινόμενο Compton περιγράφει τη σκέδαση ενός φωτονίου από ένα ελεύθερο ατομικό ηλεκτρόνιο: γ + γ +. To φωτόνιο δεν εξαφανίζεται μετά τη σκέδαση αλλά αλλάζει κατεύθυνση και ενέργεια.

Διαβάστε περισσότερα

ΔΟΜΗ ΤΗΣ ΥΛΗΣ ΚΕΦΑΛΑΙΟ 1

ΔΟΜΗ ΤΗΣ ΥΛΗΣ ΚΕΦΑΛΑΙΟ 1 ΔΟΜΗ ΤΗΣ ΥΛΗΣ ΚΕΦΑΛΑΙΟ 1 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Διαίρεση ύλης με διατήρηση της χημικής ιδιοσύστασης της : μόρια. Τεμαχισμός μορίων καταστροφή της χημικής ιδιοσυγκρασίας : άτομα. Χημικές ενώσεις : συνδυασμός

Διαβάστε περισσότερα

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,

Διαβάστε περισσότερα

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Q3-1 Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Σε αυτό το πρόβλημα θα ασχοληθείτε με τη Φυσική

Διαβάστε περισσότερα

Theory Greek (Cyprus) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 μονάδες)

Theory Greek (Cyprus) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 μονάδες) Q3-1 Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 μονάδες) Σας παρακαλούμε να διαβάσετε προσεκτικά τις Γενικές Οδηγίες που υπάρχουν στον ξεχωριστό φάκελο πριν ξεκινήσετε την επίλυση του προβλήματος. Σε αυτό

Διαβάστε περισσότερα

p T cosθ B Γ. Τσιπολίτης K - + p K - + p p slow high ionisation Κατά τον ιονισμό το εκπεμπόμενο μ e θα έχει κινητική ενέργεια : 0 T T max

p T cosθ B Γ. Τσιπολίτης K - + p K - + p p slow high ionisation Κατά τον ιονισμό το εκπεμπόμενο μ e θα έχει κινητική ενέργεια : 0 T T max δ rays Κατά τον ιονισμό το εκπεμπόμενο μ e θα έχει κινητική ενέργεια : 0TT max q, p -ray με κινητική ενέργεια T e και ορμή p e παράγεται σε μια γωνία cosθ Te p p T e max max όπου p max η ορμή ενός e με

Διαβάστε περισσότερα

Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής REF: ezphysics.nchu.edu.tw Αλληλεπίδραση νουκλεονίου-νουκλεονίου Οι πυρήνες αποτελούνται από

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

P = E /c. p γ = E /c. (p) 2 = (p γ ) 2 + (p ) 2-2 p γ p cosθ E γ. (pc) (E γ ) (E ) 2E γ E cosθ E m c Eγ

P = E /c. p γ = E /c. (p) 2 = (p γ ) 2 + (p ) 2-2 p γ p cosθ E γ. (pc) (E γ ) (E ) 2E γ E cosθ E m c Eγ Σκέδαση Compton Το φαινόμενο Compton περιγράφει ργρ τη σκέδαση ενός φωτονίου από ένα ελεύθερο ατομικό ηλεκτρόνιο: γ + e γ + e. To φωτόνιο δεν εξαφανίζεται μετά τη σκέδαση αλλά αλλάζει κατεύθυνση και ενέργεια.

Διαβάστε περισσότερα

Σχάση. X (x, y i ) Y 1, Y 2 1.1

Σχάση. X (x, y i ) Y 1, Y 2 1.1 Σχάση Το 1934 ο Fermi βομβάρδισε Θόριο και Ουράνιο με νετρόνια και βρήκε ότι οι παραγόμενοι πυρήνες ήταν ραδιενεργοί. Οι χρόνοι ημισείας ζωής αυτών των νουκλιδίων δεν μπορούσε να αποδοθούν σε κανένα ραδιενεργό

Διαβάστε περισσότερα

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,

Διαβάστε περισσότερα

Ασκήσεις #1 επιστροφή 15/10/2012

Ασκήσεις #1 επιστροφή 15/10/2012 Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Ασκήσεις #1 επιστροφή 15/10/2012 Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Eπανάληψη μέσω ασκήσεων #1 μέγεθος πυρήνα, ενέργεια σύνδεσης, η μάζα ως μορφή ενέργειας

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Eπανάληψη μέσω ασκήσεων #1 μέγεθος πυρήνα, ενέργεια σύνδεσης, η μάζα ως μορφή ενέργειας Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Eπανάληψη μέσω ασκήσεων #1 μέγεθος πυρήνα, ενέργεια σύνδεσης, η μάζα ως μορφή ενέργειας Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική &

Διαβάστε περισσότερα

Niels Bohr ( ) ΘΕΜΑ Α

Niels Bohr ( ) ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Niels Bohr (885-962) ΘΕΜΑ Α Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα το γράμμα που

Διαβάστε περισσότερα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16 Διάλεξη 13: Στοιχειώδη σωμάτια Φυσική στοιχειωδών σωματίων Η φυσική στοιχειωδών σωματιδίων είναι ο τομέας της φυσικής ο οποίος προσπαθεί να απαντήσει στο βασικότατο ερώτημα: Ποια είναι τα στοιχειώδη δομικά

Διαβάστε περισσότερα

# αλλ/σεων με e # αλλ/σεων με πυρήνες

# αλλ/σεων με e # αλλ/σεων με πυρήνες Απώλεια ενέργειας φορτισμένων σωματιδίων Όταν ένα φορτισμένο σωματίδιο κινείται μέσα στην ύλη αλληλεπιδρά ΗΜ με τα αρνητικά e και τους θετικούς πυρήνες ανταλλάσσοντας φωτόνια. Το αποτέλεσμα αυτών των αλλ/σεων

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. O επιταχυντής

Διαβάστε περισσότερα

Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων

Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων Στοιχειώδη Σωμάτια ΙΙ (8ου εξαμήνου, εαρινό 2011-12) Χ. Πετρίδου Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 6 Μαρτίου 2014 Μαθηµα

Διαβάστε περισσότερα

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου Επταχθντές - Ανιχνευτές Δ. Σαμψωνίδης & Κ.Κορδάς Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p University of Ioannina Deartment of Materials Science & Engineering Comutational Materials Science τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, elidorik@cc.uoi.gr cmsl.materials.uoi.gr/elidorik

Διαβάστε περισσότερα

Μάθημα 7 Διαγράμματα Feynman

Μάθημα 7 Διαγράμματα Feynman Στοιχειώδη Σωμάτια (M.Sc Υπολογιστικής Φυσικής) Μάθημα 7 Διαγράμματα Feynman Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη M.Sc. Υπολ. Φυσ., AΠΘ, 2 Δεκεμβρίου 2013 Κουάρκ και Λεπτόνια

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής REF: Σ. Δεδούσης, Μ.Ζαμάνη, Δ.Σαμψωνίδης Σημειώσεις Πυρηνικής Φυσικής Πυρηνικά μοντέλα Βασικός σκοπός της Πυρηνικής Φυσικής είναι η περιγραφή των

Διαβάστε περισσότερα

Διάλεξη 5: Αποδιέγερσεις α και β

Διάλεξη 5: Αποδιέγερσεις α και β Σύγχρονη Φυσική - 206: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 05/04/6 Διάλεξη 5: Αποδιέγερσεις α και β Αποδιέγερση α Όπως ειπώθηκε και προηγουμένως κατά την αποδιέγερση α ένας πυρήνας μεταπίπτει

Διαβάστε περισσότερα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Ενέργεια σύνδεσης Η συνολική μάζα ενός σταθερού πυρήνα είναι πάντοτε μικρότερη από αυτή των συστατικών του. Ως παράδειγμα μπορούμε να θεωρήσουμε έναν πυρήνα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή φράση η οποία συμπληρώνει σωστά την ημιτελή

Διαβάστε περισσότερα

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2-1 Ένας φύλακας του ατομικού ρολογιού καισίου στο Γραφείο Μέτρων και Σταθμών της Ουάσιγκτον. 2-2 Άτομα στην επιφάνεια μιας μύτης βελόνας όπως φαίνονται μεηλεκτρονικόμικροσκό 2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ

Διαβάστε περισσότερα

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Κώστας Κορδάς Αριστοτέλειο

Διαβάστε περισσότερα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 13 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ 1. ύο µονοχρωµατικές ακτινοβολίες Α και Β µε µήκη κύµατος στο κενό

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014 ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 214 Ασκηση συνολικό φορτίο λεκτρικό φορτίο Q είναι κατανεμημένο σε σφαιρικό όγκο ακτίνας R με πυκνότητα ορτίου ανάλογη του

Διαβάστε περισσότερα

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια Περιεχόµενα Διαγράµµατα Feynman Δυνητικά σωµάτια Οι τρείς αλληλεπιδράσεις Ηλεκτροµαγνητισµός Ισχυρή Ασθενής Περίληψη Κ. Παπανικόλας, Ε. Στυλιάρης, Π. Σφήκας

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ

Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ Μέρος πρώτο ΣΚΟΠΟΣ ΜΑΘΗΜΑΤΟΣ Να εξηγηθούν βασικές έννοιες της φυσικής, που θα βοηθήσουν τον φοιτητή να μάθει: Τι είναι οι ακτίνες Χ Πως παράγονται Ποιες είναι

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Συζευγμένα ηλεκτρικά και μαγνητικά πεδία τα οποία κινούνται με την ταχύτητα του φωτός και παρουσιάζουν τυπική κυματική συμπεριφορά Αν τα φορτία ταλαντώνονται περιοδικά οι διαταραχές

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ Θέµα 1 ο 1. Σύµφωνα µε το πρότυπο του Bohr για το άτοµο του υδρογόνου: α) το ηλεκτρόνιο εκπέµπει

Διαβάστε περισσότερα

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα D3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ)

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΒΒ ΛΥΥΚΚΕΕΙΙΟΥΥ 1133 33 001111 ΘΕΜΑ 1 ο 1. β. γ 3. α 4. β 5. α ΘΕΜΑ ο 1. α. Σωστό Η δυναμική ενέργεια του συστήματος των δύο φορτίων δίνεται από

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή φράση, η οποία

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΘΕΜΑ A ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Παρασκευή, 0 Μαΐου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 1: Η δομή του ατόμου. Τόλης Ευάγγελος

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 1: Η δομή του ατόμου. Τόλης Ευάγγελος Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 1: Η δομή του ατόμου Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Φερμιόνια & Μποζόνια

Φερμιόνια & Μποζόνια Φερμιόνια & Μποζόνια Φερμιόνια Στατιστική Fermi-Dirac spin ημιακέραιο 1 3 5,, 2 2 2 Μποζόνια Στατιστική Bose-Einstein 0,1, 2 spin ακέραιο δύο ταυτόσημα φερμιόνια, 1 & 2 δύο ταυτόσημα μποζόνια, 1 & 2 έχουν

Διαβάστε περισσότερα

Κεφάλαιο 22 Νόµος του Gauss. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 22 Νόµος του Gauss. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 22 Νόµος του Gauss Περιεχόµενα Κεφαλαίου 22 Ηλεκτρική Ροή Ο Νόµος του Gauss Εφαρµογές του Νόµου του Gauss Πειραµατικές επιβεβαιώσεις για τους Νόµους των Gauss και Coulomb 22-1 Ηλεκτρική Ροή Ηλεκτρική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

i. 3 ii. 4 iii. 16 Ε 1 = -13,6 ev. 1MeV= 1, J.

i. 3 ii. 4 iii. 16 Ε 1 = -13,6 ev. 1MeV= 1, J. ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέµα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την ηµιτελή πρόταση.

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ - ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δυναμική ενέργεια δυο φορτίων Δυναμική ενέργεια τριών ή περισσοτέρων

Διαβάστε περισσότερα

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 2-1 Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης Εδάφια: 2.a. Η σύσταση των ατόμων 2.b. Ατομικά φάσματα 2.c. Η Θεωρία του Bohr 2.d. Η κυματική συμπεριφορά των σωμάτων: Υλικά

Διαβάστε περισσότερα

ΕΜΒΕΛΕΙΑ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΕΜΒΕΛΕΙΑ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΒΛΙΑ ΦΟΡΤΙΣΜΝΩΝ ΣΩΜΑΤΙΔΙΩΝ μβέλεια είδος (φορτίο, μάζα) & ενέρεια Φ.Σ. μβέλεια πυκνότητα, Ζ & Α του Α.Μ. μβέλεια σωματιδίων-α 1. Κινούνται σε ευθεία ραμμή μέσα στο Α.Μ.. Στα στερεά και υρά μικρότερη εμβέλεια

Διαβάστε περισσότερα

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό

Διαβάστε περισσότερα

ΤΟ ΜΟΝΤΕΛΟ ΤΩΝ ΠΑΡΤΟΝΙΩΝ

ΤΟ ΜΟΝΤΕΛΟ ΤΩΝ ΠΑΡΤΟΝΙΩΝ ΤΟ ΜΟΝΤΕΛΟ ΤΩΝ ΠΑΡΤΟΝΙΩΝ Παρουσίαση στα πλαίσια του Μεταπτυχιακού Μαθήματος: Στοιχειώδη Σωμάτια Υπεύθ. Καθηγήτρια: Μ. Σπυροπούλου - Στασινάκη 05.0.008 Σύνοψη Παρουσίασης Εισαγωγή Ελαστική σκέδαση e-μ-->e-μ

Διαβάστε περισσότερα

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 10η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Σωμάτια & Αντισωμάτια Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2011 Πετρίδου Χαρά Στοιχειώδη Σωμάτια

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 11 Εισαγωγή στην Ηλεκτροδυναμική Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο ΦΥΣ102 1 Στατικός

Διαβάστε περισσότερα

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων 1) Ποιες από τις πιο κάτω αντιδράσεις επιτρέπονται και ποιες όχι βάσει των αρχών διατήρησης που ισχύουν για τις ασθενείς αλληλεπιδράσεις ν μ + p μ + +n ν e +

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ B Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ B Λυκείου Θεωρητικό Μέρος B Λυκείου 21 Απριλίου 2007 Θέμα 1 ο 1. Στο παρακάτω σχήμα φαίνονται οι δυναμικές γραμμές του ηλεκτρικού πεδίου το οποίο δημιουργείται μεταξύ δύο αντίθετων ηλεκτρικών φορτίων. Ένα ηλεκτρόνιο

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ

ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Μάθηµα 1 ο, 30 Σεπτεµβρίου 2008 (9:00-11:00). ΣΩΜΑΤΙ ΙΑΚΗ ΦΥΣΗ ΦΩΤΟΣ Ακτινοβολία µέλανος σώµατος (1900) Plank: έδωσε εξήγηση του φάσµατος (κβαντική ερµηνεία*) ΠΑΡΑ ΟΧΗ Το φως δεν είναι µόνο κύµα. Είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΑΤΟΜΙΚΑ ΦΑΙΝΟΜΕΝΑ. 1 η Ατομική θεωρία 2.1. ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ. 2 η Ατομική θεωρία (Thomson)

ΚΕΦΑΛΑΙΟ 2 Ο ΑΤΟΜΙΚΑ ΦΑΙΝΟΜΕΝΑ. 1 η Ατομική θεωρία 2.1. ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ. 2 η Ατομική θεωρία (Thomson) 1 ΚΕΦΑΛΑΙΟ 2 Ο ΑΤΟΜΙΚΑ ΦΑΙΝΟΜΕΝΑ 2.1. ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2 η Ατομική θεωρία (Thomson) Tο άτομο αποτελείται από μία σφαίρα ομοιόμορφα κατανεμημένου θετικού φορτίου μέσα στην

Διαβάστε περισσότερα

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ Αποδείξαμε πειραματικά, με τη βοήθεια του φαινομένου της περίθλασης, ότι τα ηλεκτρόνια έχουν εκτός από τη σωματιδιακή και κυματική φύση. Υπολογίσαμε τις σταθερές πλέγματος του γραφίτη

Διαβάστε περισσότερα

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Θέμα Α Στις ερωτήσεις Α-Α4

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 6 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Στις ερωτήσεις 1- να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε την

Διαβάστε περισσότερα

ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ

ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ Πολλά πυρηνικά φαινόµενα δεν µπορούν να εξηγηθούν µε το µοντέλο της υγρής σταγόνας, ούτε το µοντέλο των ανεξαρτήτων σωµατίων. Η εξήγησή τους απαιτεί την συλλογική

Διαβάστε περισσότερα

ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΤΗΝ ΥΛΗ

ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΤΗΝ ΥΛΗ ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΤΗΝ ΥΛΗ Η σχέση της σ κάθε τρόπου απορρόφησης φωτονίων-γ από το νερό συναρτήσει της ενέργειας των φωτονίων φαίνεται στο σχήμα: ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ

Διαβάστε περισσότερα

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Πυρηνική Σταθερότητα Ο πυρήνας αποτελείται από πρωτόνια και νετρόνια τα οποία βρίσκονται συγκεντρωμένα σε έναν πάρα πολύ μικρό χώρο. Εύκολα καταλαβαίνουμε

Διαβάστε περισσότερα

Το άτομο και η δομή του Ανακάλυψη του πυρήνα

Το άτομο και η δομή του Ανακάλυψη του πυρήνα Το άτομο και η δομή του Ανακάλυψη του πυρήνα Δημόκριτος Schrödinger J.J. Thomson Rutherford Bohr De Broglie Dalton Heisenberg Born και άλλοι 1 Πόσο μεγάλα είναι τα άτομα? Πόσο μεγάλοι είναι οι πυρήνες?

Διαβάστε περισσότερα

Το µοντέλο της υγρής σταγόνας

Το µοντέλο της υγρής σταγόνας Μ.Ζαµάνη 4-11-2010 Το µοντέλο της υγρής σταγόνας Για την ερµηνεία του φαινοµένου της σχάσης θεωρήθηκε ότι ένας πυρήνας που σχάζεται µοιάζει µε σταγόνα υγρού, ασυµπίεστη και οµοιόµορφα φορτισµένη. Η παροµοίωση

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ Γ.Ο.Ι. ΧΩΡΟΥΣ

Διαβάστε περισσότερα

Πεδία δυνάμεων. Ηλεκτρισμός και μαγνητισμός διαφορετικές όψεις του ίδιου φαινομένου του ηλεκτρομαγνητισμού. Ενοποίηση των δύο πεδίων μετά το 1819.

Πεδία δυνάμεων. Ηλεκτρισμός και μαγνητισμός διαφορετικές όψεις του ίδιου φαινομένου του ηλεκτρομαγνητισμού. Ενοποίηση των δύο πεδίων μετά το 1819. Πεδία δυνάμεων Πεδίο βαρύτητας, ηλεκτρικό πεδίο, μαγνητικό πεδίο: χώροι που ασκούνται δυνάμεις σε κατάλληλους φορείς. Κατάλληλος φορέας για το πεδίο βαρύτητας: μάζα Για το ηλεκτρικό πεδίο: ηλεκτρικό φορτίο.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση. Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Στις παρακάτω ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο λαµπτήρας φθορισµού:

Διαβάστε περισσότερα

Προλογοσ. Σε κάθε κεφάλαιο περιέχονται: Θεωρία με μορφή ερωτήσεων, ώστε ο μαθητής να επικεντρώνεται στο συγκεκριμένο

Προλογοσ. Σε κάθε κεφάλαιο περιέχονται: Θεωρία με μορφή ερωτήσεων, ώστε ο μαθητής να επικεντρώνεται στο συγκεκριμένο Προλογοσ Στο βιβλίο αυτό παρουσιάζονται με αναλυτικό τρόπο οι δύο τελευταίες ενότητες («Το φως» και «Ατομικά φαινόμενα») της διδακτέας ύλης της Φυσικής γενικής παιδείας της B Λυκείου. Σε κάθε κεφάλαιο

Διαβάστε περισσότερα

Ανιχνευτές σωματιδίων

Ανιχνευτές σωματιδίων Ανιχνευτές σωματιδίων Προκειμένου να κατανοήσουμε την φύση του πυρήνα αλλά και να καταγράψουμε τις ιδιότητες των στοιχειωδών σωματιδίων εκτός των επιταχυντικών συστημάτων και υποδομών εξίσου απαραίτητη

Διαβάστε περισσότερα

Τα Άτομα των στοιχείων Ισότοπα. Εισαγωγική Χημεία

Τα Άτομα των στοιχείων Ισότοπα. Εισαγωγική Χημεία Τα Άτομα των στοιχείων Ισότοπα Lavoisier: Διατήρηση της μάζας (στις χημικές αντιδράσεις η μάζα των αντιδρώντων είναι ίση με την μάζα των προϊόντων Νόμος Σταθερών Αναλογιών Proust 1754-1826 Διαφορετικά

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 11η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική 2 Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και

Διαβάστε περισσότερα