ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ"

Transcript

1 ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ

2 ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές ιδιότητες της τελικής κατάστασης Αναζητείται ένα στιγµιότυπο της τελικής κατάστασης Παραδείγµατα προβληµάτων: Χρονοπρογραµµατισµός ενεργειών Σχεδίαση ενεργειών παραγωγής ιαχείριση πόρων

3 ΑΝΑΠΑΡΑΣΤΑΣΗ ΠΡΟΒΛΗΜΑΤΟΣ Ένα πρόβληµα ικανοποίησης περιορισµών (constraint satisfaction problem) ορίζεται από: Ένα σύνολο n µεταβλητών V 1, V 2,...,V n, Ένα σύνολο n πεδίων τιµών D 1,...D n, που αντιστοιχούν σε κάθε µεταβλητή έτσι ώστε V i D i, και Ένα σύνολο σχέσεων (περιορισµών) C 1, C 2,...C m όπου C i (V k,...,v n ) µια σχέση µεταξύ των µεταβλητών του προβλήµατος. Ανάλογα µε το πόσες µεταβλητές περιλαµβάνει ένας περιορισµός χαρακτηρίζεται ως µοναδιαίος (unary), δυαδικός (binary) ή ανώτερης τάξης (higher order)

4 ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΠΕΡΙΟΡΙΣΜΩΝ Λύση αποτελεί µια ανάθεση τιµών στις µεταβλητές του προβλήµατος: V 1 = d 1, V 2 = d 2,... V n = d n (όπου d 1 D 1,d 2 D 2,..., d i D n ) τέτοια ώστε να ικανοποιούνται οι περιορισµοί C 1, C 2,..., C m Τα προβλήµατα µε D i διακριτών τιµών αναφέρονται ως προβλήµατα ικανοποίησης περιορισµών, ενώ αυτά µε D i συνεχών τιµών ως προβλήµατα επίλυσης περιορισµών. Η αναζήτηση λύσης στα προβλήµατα ικανοποίησης περιορισµών οδηγεί στο φαινόµενο της συνδυαστικής έκρηξης (combinatorial explosion). Γι αυτό απαιτούνται ειδικοί αλγόριθµοι για τη µείωση του χώρου αναζήτησης.

5 Παράδειγµα Προβλήµατος (1) Ζητούµενο: Με ποια σειρά πρέπει να εισαχθούν τα προϊόντα Α, Β, Γ, µέσα σε ένα βιοµηχανικό µύλο. Απαιτήσεις: Το προϊόν Α πρέπει να εισαχθεί στο µύλο µετά από το, το Γ πριν από το Β, και το Β πριν από το Α. Αναπαράσταση: Μεταβλητές: V Α, V Β, V Γ, V Πεδία τιµών: D Α D Β D Γ D = {1, 2, 3, 4} Περιορισµοί: V Α V Β V Γ V (διαφορετική σειρά) V Α > V, V Γ < V Β, V Β < V Α

6 Παράδειγµα Προβλήµατος (2) υνατές λύσεις: V Α = 4, V Β = 2, V Γ, = 1, V = 3 (Γ, Β,, Α) V Α = 4, V Β = 3, V Γ, = 1, V = 2 (Γ,, Β, Α) V Α = 4, V Β = 3, V Γ, = 2, V = 1 (, Γ, Β, Α)

7 ΠΑΡΑΓΩΓΗ ΚΑΙ ΟΚΙΜΗ (1) Χρήση Γεννήτριας Λύσεων (Generator) και Ελεγκτή (Tester) Αλγόριθµος 1. Παράγαγε µια υποψήφια λύση (συνδυασµό τιµών µεταβλητών) (γεννήτρια) 2. Έλεγξε αν είναι λύση (δηλ. ικανοποιεί τους περιορισµούς) (ελεγκτής) 3. Αν είναι σταµάτα (επιτυχία), αλλιώς πήγαινε στο βήµα 1.

8 ΠΑΡΑΓΩΓΗ ΚΑΙ ΟΚΙΜΗ (2) Ιδιότητες/κριτήρια γεννήτριας λύσεων: Να έχει πληρότητα (παράγονται όλοι οι δυνατοί συνδυασµοί τιµών-λύσεις) Να είναι απέριττη (κάθε δυνατός συνδυασµόςλύση παράγεται µια φορά) Να έχει ικανότητα ενηµέρωσης (χρησιµοποιεί πληροφορία σχετική µε το πρόβληµα για µείωση των παραγόµενων συνδυασµώνλύσεων)

9 ΠΑΡΑΓΩΓΗ ΚΑΙ ΟΚΙΜΗ (3) Π.χ. στο πρόβληµα της σειράς εισαγωγής των προϊόντων στο βιοµηχανικό µύλο, χρησιµοποιώντας ως πληροφορία σχετική µε το πρόβληµα το ότι το προϊόν Α εισάγεται πάντα τελευταίο, παράγονται µόνο οι συνδυασµοί: V Α = 4, V Β = 1, V Γ, = 1, V = 1 V Α = 4, V Β = 2, V Γ, = 1, V = 1 V Α = 4, V Β = 4, V Γ, = 4, V = 4 ηλ. 4 3 = 64 αντί 4 4 = 256.

10 ΑΛΓΟΡΙΘΜΟΙ ΕΠΙ ΙΟΡΘΩΣΗΣ (1) Για µείωση του χώρου αναζήτησης που δηµιουργείται. Αναρρίχηση λόφου (Hill-climbing) 1. Ανάθεσε στις µεταβλητές τυχαίες τιµές από τα πεδία τιµών τους. 2. Αν οι τιµές των µεταβλητών δεν παραβιάζουν τους περιορισµούς του προβλήµατος τότε επέστρεψε τις τιµές αυτές ως λύση. 3. Εξέτασε για µια τυχαία µεταβλητή όλες τις δυνατές τιµές που µπορεί να πάρει. i.. Αν κάποια από τις τιµές που εξετάστηκαν ελαχιστοποιεί το πλήθος των περιορισµών που παραβιάζονται, ανάθεσε την τιµή της στην αντίστοιχη µεταβλητή και επέστρεψε στο βήµα 2. ii. Αν δεν υπάρχει τιµή που να ελαχιστοποιεί το πλήθος των περιορισµών, τότε επέστρεψε στο βήµα 1 (τοπικό ελάχιστο ο ο αλγόριθµος ξεκινά από µια νέα τυχαία ανάθεση τιµών). Μειονεκτήµατα: (α) Εξέταση µεγάλου πλήθους γειτονικών καταστάσεων (β) Μπορεί να «πέσει» σε τοπικό ελάχιστο

11 ΑΛΓΟΡΙΘΜΟΙ ΕΠΙ ΙΟΡΘΩΣΗΣ (2) Ευριστικός αλγόριθµος ελαχίστων συγκρούσεων 1. Ανέθεσε στις µεταβλητές τυχαίες τιµές από τα πεδία τιµών τους. 2. Αν οι τιµές των µεταβλητών δεν παραβιάζουν τους περιορισµούς του προβλήµατος τότε επέστρεψε τις τιµές αυτές ως λύση. 3. Εξέτασε για µια τυχαία µεταβλητή όλες τις δυνατές τιµές που µπορεί να πάρει. i. Αν κάποια από τις τιµές για τη µεταβλητή που εξετάστηκαν µειώνει το πλήθος των περιορισµών που παραβιάζονται, ανάθεσε την τιµή της στη µεταβλητή. ii. Αν δεν υπάρχει τιµή που να µειώνει το πλήθος των περιορισµών που παραβιάζονται, τότε επέλεξε µια τιµή που να διατηρεί τον ίδιο αριθµό περιορισµών. iii. Αν δεν υπάρχει ούτε τέτοια τιµή, τότε άφησε την τιµή της εξεταζόµενης µεταβλητής 4. Επέστρεψε στο βήµα 2. Πλεονέκτηµα: Εξέταση ΌΧΙ µεγάλου πλήθους γειτονικών καταστάσεων Μειονέκτηµα: Μπορεί να «πέσει» σε τοπικό ελάχιστο

12 ΚΛΑΣΣΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΖΗΤΗΣΗΣ (1) Οι κλασικοί αλγόριθµοι αναζήτησης (π.χ. DFS, BFS) είναι δυνατό να χρησιµοποιηθούν και για την επίλυση των προβληµάτων ικανοποίησης περιορισµών. Αναπαράσταση Μια κατάσταση αποτελείται από τις µεταβλητές του προβλήµατος (µε τις τιµές τους). Υπάρχει ένας µόνο τύπος τελεστή, ο οποίος αντιστοιχεί στην ανάθεση τιµής σε µια µη-δεσµευµένη µεταβλητή (δηλ. µεταβλητή στην οποία δεν έχει ανατεθεί τιµή). Αρχική κατάσταση: όλες οι µεταβλητές είναι µηδεσµευµένες. Τελική κατάσταση: ελέγχεται αν έχει γίνει ανάθεση τιµών σε όλες τις µεταβλητές, καθώς επίσης και αν ικανοποιούνται όλοι οι περιορισµοί του προβλήµατος.

13 ΚΛΑΣΣΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΑΝΑΖΗΤΗΣΗΣ (2) Καλύτερα αποτελέσµατα έχουν οι ευριστικοί αλγόριθµοι αναζήτησης (π.χ. ο BestFS). Η ευριστική συνάρτηση αφορά την επιλογή της µεταβλητής για ανάθεση τιµής στο επόµενο βήµα. Στηρίζεται, στην αρχή της συντοµότερης αποτυχίας (επιλογή µεταβλητής µε το µικρότερο πεδίο τιµών) και στην αρχή της πιο περιορισµένης µεταβλητής (επιλογή της µεταβλητής που συµµετέχει στους περισσότερους περιορισµούς σε περίπτωση ισοδύναµων πεδίων τιµών). Μειονεκτήµατα Μη ικανοποιητική απόδοση για προβλήµατα µεγάλου µεγέθους. εν γίνεται ικανοποιητική εκµετάλλευση των περιορισµών (a posteriori έλεγχος). Εξακολουθεί να υπάρχει το φαινόµενο της συνδυαστικής έκρηξης.

14 ΑΛΓΟΡΙΘΜΟΙ ΕΛΕΓΧΟΥ ΣΥΝΕΠΕΙΑΣ Βασική ιδέα: απαλοιφή τιµών, που δεν είναι συνεπείς ως προς κάποιο περιορισµό, από τα πεδία τιµών (:έλεγχος συνέπειας, που γίνεται a priori, δηλ. πριν την παραγωγή των πιθανών λύσεων, αντί για µετά-a posteriori). Γίνεται κατά κάποιο τρόπο διάδοση περιορισµών (constraint propagation), δηλ. οι µεταβολές σ ένα πεδίο τιµών «διαδίδονται» στα πεδία των υπόλοιπων µεταβλητών µέσω των περιορισµών.

15 ΠΑΡΑ ΕΙΓΜΑ Πρόβληµα: Σειρά εισαγωγής των προϊόντων Α, Β, Γ, σ ένα βιοµηχανικό µύλο. Περιορισµοί: V Α V Β (C1) V Β V Γ (C4) V Α > V (C7) V Α V Γ (C2) V Β V (C5) V Γ < V Β (C8) V Α V (C3) V Γ V (C6) V Β < V Α (C9) Τα πεδία τιµών των µεταβλητών: V Α {1,2,3,4} V Β {1,2,3,4} V Γ {1,2,3,4} V {1,2,3,4} ΕΠΑΝΕΞΕΤΑΣΗ Λόγω C9 (V Β < V Α ): V Α {1, {2,3,4} 1,2,3,4} V Β {1,2,3,4 {1,2,3},4} V Γ {1,2,3,4} V {1,2,3,4} Λόγω C8 (V Γ < V Β ): V Α {2,3,4} V Β {1,2,3} {2,3} V Γ {1,2,3,4} {1,2} V {1,2,3,4} Λόγω C7 (V Α > V ): V Α {2,3,4} V Β {2,3} V Γ {1,2} V {1,2,3} {1,2,3,4} Λόγω C9 (V Β < V Α ): V Α {3,4} {2,3,4} V Β {2,3} V Γ {1,2} V {1,2,3}

16 ΓΡΑΦΟΣ ΠΕΡΙΟΡΙΣΜΩΝ Ένα πρόβληµα µπορεί να αναπαρασταθεί ως γράφος (γράφος περιορισµών - constraint graph), όπου τα τόξα (arcs) αναπαριστούν περιορισµούς οι κόµβοι (nodes) αναπαριστούν τις µεταβλητές. Περιορισµοί: V Α > V V Γ < V Β V Β < V Α

17 ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΣΥΝΕΠΕΙΑΣ Βαθµός συνέπειας (degree of consistency) Πόσες ασυνεπείς τιµές αφαιρούνται από τα πεδία. Βαθµός συνέπειας είναι αντιστρόφως ανάλογος µε τον απαιτούµενο χρόνο εκτέλεσης. Αλγόριθµος συνέπειας κόµβου (Node Consistency) Μοναδιαίοι περιορισµοί (αφαιρεί τιµές πεδίων βασισµένος σε αυτούς). Αλγόριθµοι συνέπειας τόξου (Arc Consistency-AC) υαδικοί περιορισµοί ιάφοροι αλγόριθµοι συνέπειας τόξου, όπως οι AC-3, AC-4, AC- 5, AC-6, κλπ. Η δυσκολία που παρουσιάζουν οι αλγόριθµοι της κατηγορίας: ιαγραφή µιας τιµής οδηγεί σε αλλαγές στα πεδία άλλων µεταβλητών. Μετά από κάθε διαγραφή ασυνεπούς τιµής πρέπει να επανεξεταστούν τα πεδία των "άµεσα" συνδεδεµένων µεταβλητών. Αλγόριθµοι συνέπειας µονοπατιού (path consistency algorithms) Υψηλό υπολογιστικό κόστος.

18 Ο ΑΛΓΟΡΙΘΜΟΣ AC-3 Ο απλούστερος αλγόριθµος συνέπειας τόξου. Έστω οι µεταβλητές V 1, V 2,..V n µε τιµές d 1, d 2,,d n από τα πεδία τιµών των µεταβλητών D 1, D 2,,D n και ένα σύνολο περιορισµών C(V i, V j ) για τις µεταβλητές αυτές, οι οποίοι αναπαριστώνται ως τόξα (V i,v j ). Για συντοµία, κάθε τόξο (V i,v j ) αναφέρεται ως (i,j). Το Q περιλαµβάνει αρχικά όλα τα τόξα του γράφου περιορισµών. Επανέλαβεταακόλουθαβήµατα µέχρι το Q να γίνει κενό: 1. Επέλεξε ένα τόξο (i,j) και διέγραψε το από το Q 2. Για κάθε τιµή d i τουπεδίουτηςµεταβλητής V i έλεγξε αν υπάρχει τουλάχιστον µία τιµή d j τουπεδίουτηςµεταβλητής V j τέτοια ώστε να ικανοποιεί το περιορισµό C(V i,v j ) που αντιστοιχεί στο τοξο (i, j). 3. Αν δεν υπάρχει τέτοια τιµή d j τότε αφαίρεσε την τιµή d i από το πεδίο τιµών της V i. Αν το πεδίο τιµών της V i είναι κενό τότε τερµάτισε µε αποτυχία. 4. Αν έχει µεταβληθεί το πεδίο τιµών της Vi τότε πρόσθεσε στο σύνολο Q όλα τα τόξα (k,i), που αντιστοιχούν στους περιορισµούς C(V k,v i ), για k i.

19 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ AC-3 Προϋποθέτει δυαδικούς περιορισµούς. Απαιτείται µετασχηµατισµός περιορισµών ανώτερης τάξεως σε πρόβληµα δυαδικών περιορισµών (binarization). Μη-πληρότητα (υπάρχουν τιµές στα πεδία που δεν εµφανίζονται στη λύση) Στο προηγούµενο παράδειγµα στο πεδίο τιµών της µεταβλητής V Α παρέµεινε η τιµή 3 (που δεν είναι δυνατόν να συµµετέχει στη λύση): V Α {3,4} V Β {2,3} V Γ {1,2} V {1,2,3} Οι αλγόριθµοι συνέπειας τόξου δεν απαλείφουν όλες τις ασυνεπείς τιµές. Οπότε για την επίλυση προβληµάτων περιορισµών χρησιµοποιούνται συνήθως αλγόριθµοι ελέγχου συνέπειας τόξου σε συνδυασµό µε κάποιο κλασσικό αλγόριθµο αναζήτησης (DFS,( BFS, BestFS).

20 Κ-ΣΥΝΕΠΕΙΑ Ένας γράφος περιορισµών είναι Κ-συνεπής Κ (K-consistent consistent) ) εάν για κάθε Κ-1 Κ 1 µεταβλητές που ικανοποιούν τους περιορισµούς υπάρχει µια µεταβλητή Κ µε τέτοιο πεδίο ώστε να ικανοποιούνται ταυτόχρονα όλοι οι περιορισµοί που συνδέουν τις Κ µεταβλητές. Ένας γράφος είναι ισχυρά Κ-συνεπής (strongly K- consistent) εάν για κάθε L K, είναι L-συνεπής. Ο αλγόριθµος συνέπειας κόµβου εξασφαλίζει ότι ο γράφος είναι ισχυρά 1-συνεπής. Οι αλγόριθµοι συνέπειας τόξου εξασφαλίζουν ισχυρή 2-συνεπεία. Προφανώς σε ένα γράφο µε Ν κόµβους, εάν εξασφαλισθεί ότι ο γράφος είναι ισχυρά Ν-συνεπής, τότε Μπορεί να βρεθεί λύση χωρίς αναζήτηση. Όµως σε προβλήµατα µε Κ>2 το υπολογιστικό κόστος εφαρµογής είναι υψηλό, οπότε προτιµάται ο συνδυασµός µε κλασσικό αλγόριθµο αναζήτησης.

21 ΣΥΝ ΥΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ ΣΥΝΕΠΕΙΑΣ ΚΑΙ ΚΛΑΣΣΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ (1) Οσυνδυασµός αλγορίθµων συνέπειας και αναζήτησης στηρίζεται στη συµπληρωµατικότητά τους: Αλγόριθµοι συνέπειας: µη-πλήρεις αλλά αποδοτικοί Κλασικοί αλγόριθµοι αναζήτησης: πλήρεις αλλά µη-αποδοτικοί Βασική ιδέα : Μείωση του χώρου αναζήτησης µε την χρήση ενός αλγορίθµου συνέπειας πριν από κάθε βήµα ανάθεσης τιµών (a( a priori pruning). Υπάρχουν τρεις βασικοί τρόποι συνδυασµού, που έχουν κοινό το ότι εφαρµόζεται ένας αλγόριθµος συνέπειας πριν την εκκίνηση της διαδικασίας αναζήτησης, διαφέρουν στο βαθµό ελέγχου των πεδίων των µεταβλητών σε κάθε βήµα, δηλ. στον τρόπο διάδοσης των περιορισµών.

22 ΣΥΝ ΥΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ ΣΥΝΕΠΕΙΑΣ ΚΑΙ ΚΛΑΣΣΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ (2) Ο προοπτικός έλεγχος (Forward checking) Απαλείφει τιµές από τα πεδία των µη-δεσµευµένων µεταβλητών που συνδέονται άµεσα µε περιορισµούς µε την µεταβλητή στην οποία µόλις ανατέθηκε τιµή. Παραµένει µεγάλος αριθµός ασυνεπών τιµών στα πεδία. Χαµηλό υπολογιστικό κόστος κάθε βήµατος. Ο αλγόριθµος έγκαιρης µερικής εξέτασης (Partial Look Αhead) Κατευθυντική συνέπεια (directional consistency) σε κάθε βήµα (εξετάζει όλα τα πεδία τιµών των µη-δεσµευµένων µεταβλητών µε προκαθορισµένη σειρά, ελέγχοντας τους περιορισµούς µία µόνο φορά). Παραµένουν στα πεδία των µεταβλητών µη συνεπείς τιµές. Ο αλγόριθµος έγκαιρης πλήρους εξέτασης (Full Look Ahead) ή διατήρησης συνέπειας τόξου (Maintaining Arc Consistency - MAC). Εφαρµόζει πλήρη αλγόριθµο συνέπειας τόξου σε κάθε βήµα. Αφαιρεί το µεγαλύτερο αριθµό ασυνεπών τιµών από τους τρεις. Υψηλό υπολογιστικό κόστος

23 ΣΥΝ ΥΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ ΣΥΝΕΠΕΙΑΣ ΚΑΙ ΚΛΑΣΣΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ (3) Ο ολοκληρωµένος αλγόριθµος διατήρησης συνέπειας τόξου : 1. Για κάθε περιορισµό αφαίρεσε από τα πεδία τιµών των µεταβλητών τις τιµές εκείνες που δεν µπορούν να συµµετέχουν στην τελική λύση µε ένα αλγόριθµο ελέγχου συνέπειας. 2. Στο µειωµένο χώρο αναζήτησης που προκύπτει από το προηγούµενο βήµα εφάρµοσε έναν κλασικό αλγόριθµο αναζήτησης για να βρεθεί η λύση. Σε κάθε βήµα (ανάθεση τιµής) αυτής της αναζήτησης εφάρµοσε ξανά τον αλγόριθµο ελέγχου συνέπειας έτσι ώστε να αφαιρεθούν τυχόν τιµές από τα πεδία των µεταβλητών οι οποίες δεν µπορούν να συµµετέχουν στην λύση.

24 ΠΑΡΑ ΕΙΓΜΑ V Α {3,4} V Β {2,3} V Γ {1,2} V {1,2,3} V Α = 3 V Α = 4 Περιορισµοί V Γ V V Β V V Γ <V Β V Α >V Αποτυχία V Α =3 V Β {2,3} V Γ {1,2} V {1,2,3} V Α = 4 V Β {2,3} V Γ {1,2} V {1,2,3} V Β = 2 V Β = 3 Περιορισµοί V Γ V V Β V V Γ < V Β V Α = 4 V Β = 2 V Γ {1,2} V {1,2,3} V Α = 4 V Β = 3 V Γ {1,2} V {1,2,3} Περιορισµοί V Β V Λύση V Α = 4 V Β = 2 V Γ = 1 V = 3 V Γ = 1 V Γ = 2 Περιορισµοί V Γ V V Β V V Α = 4 V Β = 3 V Γ = 1 V {1,2,3} V Α = 4 V Β = 3 V Γ = 2 V {1,2,3} Περιορισµοί V Γ V V Β V Λύση V Α = 4 V Β = 3 V Γ = 1 V = 2 Λύση V Α = 4 V Β = 3 V Γ = 2 V = 1

25 ΠΡΟΒΛΗΜΑ 8 ΒΑΣΙΛΙΣΣΩΝ (1) Κλασικό παράδειγµα προβλήµατος περιορισµών. Το πρόβληµα απαιτεί να τοποθετηθούν 8 βασίλισσες σε µια σκακιέρα 8x8 χωρίς να απειλούν η µια την άλλη. Το πρόβληµα ορίζεται και για περισσότερες των 8 βασιλισσών Η δυσκολία στην επίλυσή του αυξάνει εκθετικά. Χρησιµοποιείται για την µέτρηση της απόδοσης αλγορίθµων ικανοποίησης περιορισµών. Συνθήκη µη απειλής µεταξύ των βασιλισσών: Όλες οι βασίλισσες πρέπει να είναι σε διαφορετική γραµµή: i, j: Qj Qi. Ισχύουν οι περιορισµοί: Qj Qj+n + n, για n>1 και n+j 8 Qj Qj+n n, για n>1 και n+j 8 Σχηµατική αναπαράσταση περιορισµών µε δύο βασίλισσες στην σκακιέρα Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8

26 ΠΡΟΒΛΗΜΑ 8 ΒΑΣΙΛΙΣΣΩΝ (2) Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 1. Ανάθεση τιµής στην πρώτη βασίλισσα (Q1=1) 2. Αφαίρεση τιµών που δεν ικανοποιούν τους περιορισµούς (βλ. σχήµα) από τα πεδία των µεταβλητών των υπολοίπων βασιλισσών 1 Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 3. Ανάθεση τιµής στη δεύτερη βασίλισσα (Q2=3) 4. Αφαίρεση τιµών που δεν ικανοποιούν τους περιορισµούς (βλ. σχήµα) από τα πεδία των µεταβλητών των υπολοίπων βασιλισσών

27 ΠΡΟΒΛΗΜΑ 8 ΒΑΣΙΛΙΣΣΩΝ (3) Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Περαιτέρω ανάθεση τιµών που δεν οδηγεί σε λύση. 7 8 Λύση στο πρόβληµα των 8 βασιλισσών Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8

28 ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ηµιουργία ενός νέου είδους προγραµµατισµού, του προγραµµατισµού µε περιορισµούς (constraint programming). Λογικός Προγραµµατισµός µε Περιορισµούς (Constraint Logic Programming - CLP), ως επέκταση των γλωσσών λογικού προγραµµατισµού (π.χ. Prolog). Παράδειγµα τέτοιου συστήµατος είναι το CHIP µε πλήθος βιοµηχανικών εφαρµογών: σύνταξη ωρολογίων προγραµµάτων κατανοµής εργασιών, σχεδιασµός ενεργειών (planning) για την οργάνωση γραµµών παραγωγής. Άλλες γνωστές γλώσσες που υποστηρίζουν προγραµµατισµό µε περιορισµούς: SICSTUS, ECLIPSE PROLOG, η Οz και η GNU- PROLOG, κλπ Αρκετές εκδόσεις της γλώσσας Prolog υποστηρίζουν σε µεγαλύτερο ή µικρότερο βαθµό το νέο είδος προγραµµατισµού.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction)

Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction) Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction) Ηλίας Σακελλαρίου Δομή Περιορισμοί Προβλήματα ικανοποίησης περιορισμών

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Πρόβληµα ικανοποίησης περιορισµών

Πρόβληµα ικανοποίησης περιορισµών Προβλήµατα ικανοποίησης περιορισµών Constraint Satisfaction Problems Πρόβληµα ικανοποίησης περιορισµών Μεταβλητές: X 1, X 2,, X n, Πεδία ορισµού: D 1, D 2, D n Περιορισµοί: C 1, C 2,, C m Ανάθεση τιµών:

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΥΡΙΣΤΙΚΩΝ ΜΕΘΟ ΩΝ ΜΕ ΤΗ ΜΟΝΑ ΙΑΙΑ ΣΥΝΕΠΕΙΑ ΤΟΞΟΥ

ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΥΡΙΣΤΙΚΩΝ ΜΕΘΟ ΩΝ ΜΕ ΤΗ ΜΟΝΑ ΙΑΙΑ ΣΥΝΕΠΕΙΑ ΤΟΞΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΥΡΙΣΤΙΚΩΝ ΜΕΘΟ ΩΝ ΜΕ ΤΗ ΜΟΝΑ ΙΑΙΑ ΣΥΝΕΠΕΙΑ ΤΟΞΟΥ ιπλωµατική Εργασία του Καριπίδη Κωνσταντίνου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)

Διαβάστε περισσότερα

Προβλήµατα ικανοποίησης περιορισµών

Προβλήµατα ικανοποίησης περιορισµών Προβλήµατα Ικανοποίησης Περιορισµών Προβλήµατα ικανοποίησης περιορισµών Λογικός προγραµµατισµός µε περιορισµούς Προβλήµατα Ικανοποίησης Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint satisfaction

Διαβάστε περισσότερα

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη

Διαβάστε περισσότερα

Εξελιγµένες Τεχνικές Σχεδιασµού

Εξελιγµένες Τεχνικές Σχεδιασµού Κεφάλαιο 16 Εξελιγµένες Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Σχεδιασµός Βασισµένος σε Γράφους Γράφος σχεδιασµού (1/2) Ο

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12: Λογικός Προγραμματισμός με Περιορισμούς

ΚΕΦΑΛΑΙΟ 12: Λογικός Προγραμματισμός με Περιορισμούς ΚΕΦΑΛΑΙΟ 12: Λογικός Προγραμματισμός με Περιορισμούς Λέξεις Κλειδιά: Προβλήματα ικανοποίησης περιορισμών. Η έννοια του περιορισμού σε μεταβλητές. Πεδία μεταβλητών. Επίλυση προβλημάτων περιορισμών. Αλγόριθμοι

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΚΑΤΑΡΤΙΣΗΣ ΩΡΟΛΟΓΙΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΣΤΟ ΣΥΣΤΗΜΑ ECL i PS e

ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΚΑΤΑΡΤΙΣΗΣ ΩΡΟΛΟΓΙΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΣΤΟ ΣΥΣΤΗΜΑ ECL i PS e ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΚΑΤΑΡΤΙΣΗΣ ΩΡΟΛΟΓΙΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΣΤΟ ΣΥΣΤΗΜΑ ECL i PS e Από την Ελένη Ψαρά Πολυτεχνείο Κρήτης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική

Διαβάστε περισσότερα

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s

Διαβάστε περισσότερα

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 7 Γενετικοί Αλγόριθµοι Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Εισαγωγή Σε αρκετές περιπτώσεις το µέγεθος ενός προβλήµατος καθιστά απαγορευτική

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Αναστασία Παπαρρίζου. Επιβλέπων Καθηγητής: Κώστας Στεργίου Τριμελής Επιτροπή: Κώστας Στεργίου, Νικόλαος Σαμαράς, Μανώλης Κουμπαράκης

Αναστασία Παπαρρίζου. Επιβλέπων Καθηγητής: Κώστας Στεργίου Τριμελής Επιτροπή: Κώστας Στεργίου, Νικόλαος Σαμαράς, Μανώλης Κουμπαράκης Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Δυτικής Μακεδονίας Αναστασία Παπαρρίζου Επιβλέπων Καθηγητής: Κώστας Στεργίου Τριμελής Επιτροπή: Κώστας Στεργίου, Νικόλαος Σαμαράς, Μανώλης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 23: Κλασική Ανάλυση Ευαισθησίας, Βασικές Έννοιες Γραφημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1)

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1) ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1) 2. ΑΝΑΠΑΡΑΣΤΑΣΗ ΠΡΟΒΛΗΜΑΤΟΣ H υλοποίηση ενός προβλήµατος σε σύστηµα Η/Υ που επιδεικνύει ΤΝ 1 απαιτεί: Την κατάλληλη περιγραφή του προβλήµατος

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

Περιεχόµενα. ΜΕΡΟΣ Α: Επίλυση Προβληµάτων... 17

Περιεχόµενα. ΜΕΡΟΣ Α: Επίλυση Προβληµάτων... 17 ΠΡΟΛΟΓΟΣ... I ΠΡΟΛΟΓΟΣ ΤΩΝ ΣΥΓΓΡΑΦΕΩΝ...III ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΩΝ... IX ΠΕΡΙΕΧΟΜΕΝΑ... XI 1 ΕΙΣΑΓΩΓΗ... 1 1.1 ΤΙ ΕΙΝΑΙ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ... 1 1.1.1 Ορισµός της Νοηµοσύνης... 2 1.1.2 Ορισµός

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Αλγόριθµοι Εκτίµησης Καθυστέρησης και

Αλγόριθµοι Εκτίµησης Καθυστέρησης και Αλγόριθµοι Εκτίµησης Καθυστέρησης και Βελτιστοποίησης Εισαγωγή Το κύριο πρόβληµα στην σχεδίαση κυκλωµάτων είναι η επίτευξη της µέγιστης απόδοσης για την δεδοµένη τεχνολογία. Μεγιστοποίηση απόδοσης: (α)

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Ιανουαρίου 2005 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΤΕΧΝΙΚΩΝ ΤΟΠΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ

ΜΕΛΕΤΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΤΕΧΝΙΚΩΝ ΤΟΠΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ ΜΕΛΕΤΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΤΕΧΝΙΚΩΝ ΤΟΠΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Η διπλωματική εργασία παρουσιάστηκε ενώπιον του Διδακτικού προσωπικού του Πανεπιστημίου

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 8 Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αναπαράσταση Γνώσης Σύνολο συντακτικών

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων Ενότητα 13: B-Δέντρα/AVL-Δέντρα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ικανο οίηση Περιορισµών Constraint Satisfaction Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Το ική αναζήτηση αναρρίχηση λόφων προσοµοιωµένη

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Επίλυση Προβληµάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Χαρακτηριστικά αλγορίθµων: Αποδοτικότητα (efficiency) σε µνήµη και χρόνο, Πολυπλοκότητα (complexity), Πληρότητα

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Βασικοί Ορισµοί υαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το S αντιστοιχίζει ένα στοιχείο του S = set, σύνολο Συνηθισµένα Αξιώµατα (α,

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Πρόλογος των Συγγραφέων

Πρόλογος των Συγγραφέων Πρόλογος των Συγγραφέων Τεχνητή Νοηµοσύνη (ΤΝ) είναι ο τοµέας της επιστήµης των υπολογιστών, που ασχολείται µε τη σχεδίαση ευφυών (νοηµόνων) υπολογιστικών συστηµάτων, δηλαδή συστηµάτων που επιδεικνύουν

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ ΘΕΜΑ 1 ο Έστω το πρόβληµα της τοποθέτησης τεσσάρων (4) βασιλισσών πάνω σε µια σκακιέρα 4x4, έτσι ώστε να µην απειλεί η µία την άλλη. Προσπαθήστε

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων: Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 7.1. Ανάπτυξη Προγράµµατος Τι είναι το Πρόγραµµα; Το Πρόγραµµα: Είναι ένα σύνολο εντολών για την εκτέλεση ορισµένων λειτουργιών από τον υπολογιστή.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Προηγμένα Ευρετικά Διαχώρισης Πεδίων Τιμών Προβλημάτων Ικανοποίησης Περιορισμών

Προηγμένα Ευρετικά Διαχώρισης Πεδίων Τιμών Προβλημάτων Ικανοποίησης Περιορισμών Προηγμένα Ευρετικά Διαχώρισης Πεδίων Τιμών Προβλημάτων Ικανοποίησης Περιορισμών Μαρία Άννα Γ. Περιδέλη * Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστημιούπολη,

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Κεφάλαιο 2.3: Προγραμματισμός. Επιστήμη ΗΥ Κεφ. 2.3 Καραμαούνας Πολύκαρπος

Κεφάλαιο 2.3: Προγραμματισμός. Επιστήμη ΗΥ Κεφ. 2.3 Καραμαούνας Πολύκαρπος Κεφάλαιο 2.3: Προγραμματισμός 1 2.3.1 Αναφορά σε γλώσσες προγραμματισμού και «Προγραμματιστικά Υποδείγματα» 2.3.1.1 Πρόγραμμα και Γλώσσες Προγραμματισμού Πρόγραμμα: σύνολο εντολών που χρειάζεται να δοθούν

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική

Διαβάστε περισσότερα

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 20 Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Τεχνητή Νοηµοσύνη, B' Έκδοση - 1 - Ανακάλυψη Γνώσης σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Χειρισµός εδοµένων

ΚΕΦΑΛΑΙΟ 2: Χειρισµός εδοµένων ΚΕΦΑΛΑΙΟ 2: Χειρισµός εδοµένων 2.1 Αρχιτεκτονική Υπολογιστών 2.1 Αρχιτεκτονική Υπολογιστών 2.2 Γλώσσα Μηχανής 2.3 Εκτέλεση προγράµµατος 2.4 Αριθµητικές και λογικές εντολές 2.5 Επικοινωνία µε άλλες συσκευές

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

2 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΙΟΙΚΗΣΗΣ ΕΡΓΩΝ

2 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΙΟΙΚΗΣΗΣ ΕΡΓΩΝ 2 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΙΟΙΚΗΣΗΣ ΕΡΓΩΝ 2.1 Βασικοί Ορισµοί ιοίκηση έργου είναι η διαδικασία (process) του σχεδιασµού και της διοίκησης εργασιών και αποθεµάτων, και της επικοινωνίας µεταξύ προόδου και αποτελεσµάτων.

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990,

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990, ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μια σημείωση από τον Α. Δελή για το άρθρο: W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees, Comms of the ACM, 33(), June 10,

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 4: Προβλήματα Ικανοποίησης Περιορισμών Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα