ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου"

Transcript

1 ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011

2

3 MATLAB Χρησιμοποιείται για : Υπολογισμούς Γραφική απεικόνιση δεδομένων Ανάλυση γραμμικών συστημάτων Επίλυση, γενικά, προβλημάτων στα Εφαρμοσμένα Μαθηματικά, Φυσική, Χημεία, Μηχανική, Οικονομικά και όπου απαιτούνται υ- πολογισμοί με πολλές μεταβλητές και σε σύνθετα προβλήματα. Χρησιμοποιείται ιδιαίτερα Στα Συστήματα Αυτομάτου Ελέγχου, όπου διαθέτει ειδικές συναρτήσεις για την περιγραφή και τη μελέτη των συστημάτων. Με διπλό κλικ στο εικονίδιο του MATLAB μεταφερόμαστε στο περιβάλλον εργασίας του MATLAB (MATLAB Command Window) :» To get started, type one of these: helpwin, helpdesk, or demo. For product information, type tour or visit Για έξοδο από το MATLAB πληκτρολογήστε : Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 1 -

4 ΧΕΙΡΙΣΜΟΣ ΔΙΑΝΥΣΜΑΤΩΝ ( Παράδειγμα ) Το "Διάνυσμα γραμμή" π.χ. A = [ 1 3 ] εισάγεται στο περιβάλλον MATLAB πληκτρολογώντας : Α = [1 3] ή (Σημείωση : οι παύλες δεν πληκτρολογούνται, τέθηκαν για (Σημείωση : να δηλώσουν κενό διάστημα) Α = [1,,3] και πατώντας Enter έχουμε την απόκριση του προγράμματος : A = 1 3 Το "Διάνυσμα στήλη" π.χ. A = εισάγεται στο περιβάλλον MATLAB πληκτρολογώντας : Α = [ 4 ; 5 ; 6 ] και πατώντας Enter έχουμε την απόκριση του προγράμματος : A = Σελίδα - Κ. Νασόπουλος - Α. Χρηστίδου

5 Μερικές ενσωματωμένες συναρτήσεις Ονομασία στο MATLAB sin(x) cos(x) tan(x) log(x) log10(x) exp(x) sqrt(x) Σημασία ημίτονο του x συνημίτονο του x εφαπτομένη του x φυσικός (νεπέρειος) λογάριθμος του x δεκαδικός λογάριθμος του x εκθετική συνάρτηση e x τετραγωνική ρίζα του x Κάποιες ενσωματωμένες σταθερές Ονομασία Τρόπος εισαγωγής Απόκριση προγράμματος π pi ans = (1) (1) ans = answer = απάντηση Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 3 -

6 Γραφικές παραστάσεις Παράδειγμα Έστω ότι ζητείται η γραφική παράσταση της συνάρτησης f = sint για διάστημα χρόνου 0 έως ος τρόπος ος τρόπος t = linspace(0,10,100); fplot( 'sin(t)', [0 10] ) Enter Enter f = sin(t); Enter plot(t,f) Enter Και στις δύο περιπτώσεις λαμβάνουμε : sint t - Σελίδα 4 - Κ. Νασόπουλος - Α. Χρηστίδου

7 ΧΕΙΡΙΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ( Παράδειγμα ) Ένα πολυώνυμο παριστάνεται στο MATLAB από το διάνυσμα γραμμής των συντελεστών των όρων του, διατεταγμένων κατά φθίνουσα σειρά των δυνάμεων της μεταβλητής. Π.χ. το πολυώνυμο x + x + 1 παριστάνεται σαν [1 1] Πολλαπλασιασμός Δίνονται P 1 (x) = x + x + 1 P (x) = x 3-15 Ζητείται το P(x) = P 1 (x) P (x)» p1x=[1 1]; (διάνυσμα συντελεστών του P 1 (x) )» px=[ ]; (διάνυσμα συντελεστών του P (x) )» px=conv(p1x,px) (εντολή πολλαπλασιασμού του P 1 (x) επί το P (x) ) px = (συντελεστές του P(x) ) Άρα P(x) = x 5 + x 4 + x 3-15x - 30x - 15 Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 5 -

8 ΧΕΙΡΙΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ( Παράδειγμα ) Ρίζες P(x) = x 3 - x - 5x + 6 = 0» px=[ ]; (διάνυσμα συντελεστών του P(x) )» r=roots(px) (εντολή εύρεσης ριζών) r = Άρα r 1 = 3 r = - r 3 = (ρίζες) Ανάκτηση συντελεστών από τις ρίζες r 1 = 3 r = - r 3 = 1 Άρα» r=[3-1]; (διάνυσμα ριζών)» px=poly(r) (εντολή εύρεσης συντελεστών) px = P(x) = x 3 - x - 5x (συντελεστές) - Σελίδα 6 - Κ. Νασόπουλος - Α. Χρηστίδου

9 Συνάρτηση Μεταφοράς Πεδίο του χρόνου (t) Πεδίο της μιγαδικής συχνότητας (s) x(t) (Σ) y(t) X(s) (Σ) Y(s) Δ.Ε. G(s) X(s) = L{x(t)} Y(s) = L{y(t)} Συνάρτηση μεταφοράς (transfer function) ενός γραμμικού, μη χρονικά μόνιμου συστήματος (Σ) καλείται ο λόγος της μετασχηματισμένης κατά Laplace συνάρτησης εξόδου προς τη μετασχηματισμένη κατά Laplace συνάρτηση εισόδου, όταν θεωρηθούν μηδενικές οι αρχικές συνθήκες. G( s) = Y( s) X( s) Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 7 -

10 Εισαγωγή της Συνάρτησης Μεταφοράς στο περιβάλλον MATLAB ( Παράδειγμα ) Για την εισαγωγή της Συνάρτησης Μεταφοράς : G( s) Υ(s) = = Χ(s) 3 s + 3 s + 6s + 11s + 6 στο περιβάλλον MATLAB χρησιμοποιούμε την εντολή tf(...) (transfer function). Ακολουθούμε τα εξής βήματα : 1. Εισάγουμε τα πολυώνυμα αριθμητή (numerator) και παρονομαστή (denominator) πληκτρολογώντας : num = [ 3 ] ; den = [ ] ;. Εισάγουμε τη Συνάρτηση Μεταφοράς G(s) πληκτρολογώντας : gs = tf(num,den) 3. Πατώντας Enter παίρνουμε την απόκριση του προγράμματος : Transfer function: s s^3 + 6 s^ + 11 s Σελίδα 8 - Κ. Νασόπουλος - Α. Χρηστίδου

11 Για τη συνάρτηση π.χ. f(t) = e t Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Μετασχηματισμός Laplace ( Παράδειγμα ) 1. Ορίζουμε τις συμβολικές μεταβλητές s και t γράφοντας : syms s t ;. Εισάγουμε τη συνάρτηση f(t) πληκτρολογώντας : ft = exp(t) ; 3. Εισάγουμε τη συνάρτηση laplace πληκτρολογώντας : fs = laplace(ft) 4. Πατώντας Enter λαμβάνουμε : fs = 1 1/(s-1) δηλαδή f( s) = s 1 Αντίστροφος Μετασχηματισμός Laplace ( Παράδειγμα ) 1 Για τη συνάρτηση f( s) = s 1 1. Ορίζουμε τις συμβολικές μεταβλητές s και t γράφοντας : syms s t ;. Εισάγουμε τη συνάρτηση f(s) πληκτρολογώντας : fs = 1/(s -1) ; 3. Εισάγουμε τη συνάρτηση ilaplace πληκτρολογώντας : ft = ilaplace(fs) 4. Πατώντας Enter λαμβάνουμε : ft = exp(t) δηλαδή f(t) = e t Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 9 -

12 Μορφές της Συνάρτησης Μεταφοράς Πολυωνυμική μορφή G( s) Υ(s) = = Χ(s) b m m m 1 m 1 n 1 n 1 s + b s b s + b n 1 0 s + a s a s + a 1 0 Αναλυτική μορφή μηδενικών τιμών και πόλων G( s) = K (s z 1) (s z )... (s z m) (s p ) (s p )... (s p ) 1 n όπου z 1, z,..., z m οι μηδενικές τιμές (zeros) του συστήματος (δηλ. οι ρίζες της Y(s) = 0) p 1, p,..., p n οι πόλοι (poles) του συστήματος (δηλ. οι ρίζες της X(s) = 0) K το κέρδος (gain) του συστήματος Μορφή μερικών κλασμάτων G(s) = c1 s p 1 c s p cn s p n + K(s) όπου c 1, c,..., c n οι γραμμικοί συντελεστές p 1, p,..., p n οι πόλοι K(s) ο ακέραιος όρος - Σελίδα 10 - Κ. Νασόπουλος - Α. Χρηστίδου

13 Μορφές της Συνάρτησης Μεταφοράς Παράδειγμα Πολυωνυμική μορφή G( s) Υ(s) = = Χ(s) 3 s + 3 s + 6s + 11s + 6 Αναλυτική μορφή μηδενικών τιμών και πόλων Y( s) = s + 3 = 0 z = 15. μηδενική τιμή (zero) p1 = 3 3 X( s) = s + 6s + 11s + 6 = 0 p = πόλοι (poles) p = 3 1 K = κέρδος οπότε G( s) = K s z (s p ) (s p ) (s p ) 1 3 = s ( 1.5) [s ( 3)] [s ( )] [s ( 1)] G( s) = s+ 1.5 (s+ 3) (s+ ) (s+ 1) Μορφή μερικών κλασμάτων c1 = 15. Γραμμικοί συντελεστές : c = 1 c3 = 0. 5 & Ακέραιος όρος : K( s) = 0 οπότε c1 c c3 G(s) = K(s) = s p s p s p s ( 3) s ( ) s ( 1) 1 3 G(s) = 15. s s s + 1 Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 11 -

14 Μηδενικές τιμές, Πόλοι και Κέρδος Συνάρτησης Μεταφοράς ( Παράδειγμα ) Για τον υπολογισμό Μηδενικών τιμών (zeros) z, Πόλων (poles) p και Κέρδους (gain) Κ της Συνάρτησης Μεταφοράς : G( s) Υ(s) = = Χ(s) 3 s + 3 s + 6s + 11s + 6 χρησιμοποιούμε την εντολή [ z, p, k ]=tf zp(...) ως εξής :» num=[ 3];» den=[ ];» [z,p,k]=tfzp(num,den) z = p = k = - Σελίδα 1 - Κ. Νασόπουλος - Α. Χρηστίδου

15 Γραμμικοί συντελεστές, Πόλοι και Ακέραιος όρος Συνάρτησης Μεταφοράς ( Παράδειγμα ) Για τον υπολογισμό Γραμμικών συντελεστών c, Πόλων p και Σταθερού όρου K(s) της Συνάρτησης Μεταφοράς : G( s) Υ(s) = = Χ(s) 3 s + 3 s + 6s + 11s + 6 χρησιμοποιούμε την εντολή [ c, p, k ]=residue(...) ως εξής :» num=[ 3];» den=[ ];» [c,p,k]=residue(num,den) c = p = k = [] Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 13 -

16 Γράφημα Πόλων και Μηδενικών τιμών Συνάρτησης Μεταφοράς ( Παράδειγμα ) Το γράφημα Πόλων p και Μηδενικών τιμών z (οι πόλοι σημειώνονται με "x" και οι μηδενικές τιμές με "ο") της Συνάρτησης Μεταφοράς : G( s) Υ(s) = = Χ(s) 3 s + 3 s + 6s + 11s + 6 λαμβάνεται χρησιμοποιώντας την εντολή pzmap(...) ως εξής :» num=[ 3];» den=[ ];» pzmap(num,den) - Σελίδα 14 - Κ. Νασόπουλος - Α. Χρηστίδου

17 Γράφημα Πόλων και Μηδενικών τιμών Συνάρτησης Μεταφοράς ( Παράδειγμα ) 1 Pole zero map 0.5 Imag Axis Real Axis (Οι Πόλοι σημειώνονται με "x" και οι Μηδενικές τιμές με "ο") Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 15 -

18 Η μοναδιαία βηματική συνάρτηση Ορισμός : u( t) = 1 0 απροσδιόριστη για για για t > 0 t < 0 t = 0 Γραφική παράσταση : u(t) 1 0 t - Σελίδα 16 - Κ. Νασόπουλος - Α. Χρηστίδου

19 Χρονική απόκριση συστήματος ης τάξης Συνάρτηση μεταφοράς : G( s) Υ(s) = = Χ(s) s ω ζω s + ω όπου ω 0 κυκλική ιδιοσυχνότητα συστήματος ζ συντελεστής απόσβεσης ταλαντώσεων (damping factor) Όταν στην είσοδο του συστήματος εφαρμοσθεί η μοναδιαία βηματική συνάρτηση (unit step function) u(t) ή U(s) = 1/s, τότε Αν Πόλοι της Συνάρτησης Μεταφοράς G(s) Χρονική απόκριση συστήματος y(t) ζ = 0 φανταστικοί συζυγείς συντηρούμενη ταλάντωση με συχνότητα ω 0 και πλάτος 1 0 < ζ < 1 μιγαδικοί συζυγείς φθίνουσα ταλάντωση που τείνει να λάβει την τιμή 1 ζ = 1 διπλός πόλος : πραγματικός αριθμός χωρίς ταλάντωση και τείνει ασυμπτωτικά στην τιμή 1 Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 17 -

20 Χρονική απόκριση συστήματος ης Εφαρμογή τάξης Συνάρτηση μεταφοράς : G( s) Υ(s) = = Χ(s) s ω ζω s + ω Για δεδομένη κυκλική ιδιοσυχνότητα ω 0 και συντελεστή απόσβεσης ταλαντώσεων ζ : η Συνάρτηση Μεταφοράς οι Πόλοι και το Γράφημα της Χρονικής απόκρισης y(t) του συστήματος, όταν στην είσοδο εφαρμοσθεί η μοναδιαία βηματική συνάρτηση u(t) προκύπτει, στο περιβάλλον Matlab, ως εξής :» w= εδώ εισάγεται η κυκλική ιδιοσυχνότητα του συστήματος ω 0 ;» z= εδώ εισάγεται ο συντελεστής απόσβεσης ταλαντώσεων ζ» num=[w^];» den=[1 *z*w w^];» gs=tf(num,den)» p=pole(gs)» step(gs) - Σελίδα 18 - Κ. Νασόπουλος - Α. Χρηστίδου

21 Ασκήσεις 1. Βρείτε με τη χρήση του MATLAB το μετασχηματισμό Laplace των συναρτήσεων : a) f ( 1 t ) = sin wt b) f ( t ) = cos wt c) f ( t) = e t sin t 3 5. Αποτυπώστε στο φύλλο έργου τον τρόπο εισαγωγής στο MATLAB των παρακάτω συναρτήσεων μεταφοράς : a) G ( s) = b) G ( s) = c) G ( s) = 1 3 s 4 s 3s + 5 s + s 1 5s s + s + s 3 s s 1 3. Αποτυπώστε στο φύλλο έργου ποιες συναρτήσεις μεταφοράς αντιστοιχούν στα παρακάτω ζεύγη αριθμητών και παρονομαστών : a) num1 = [1 3], den1 = [4 5 6] b) num = [ ], den = [1 -] c) num3 = [1 0 1], den3 = [ ] 4. Βρείτε (κάνοντας χρήση του MATLAB) και σημειώστε στο φύλλο έργου τον αντίστροφο μετασχηματισμό Laplace μιας εκάστης των ακολούθων συναρτήσεων μεταφοράς : 1 a) G1( s) = s 1 b) G( s) = 5s s + c) G ( s) = s s + Κ. Νασόπουλος - Α. Χρηστίδου - Σελίδα 19 -

22 5. Απεικονίστε γραφικά τα αποτελέσματα της προηγούμενης άσκησης (πεδίο του χρόνου) κάνοντας χρήση της εντολής fplot. (Σχεδιάστε στο φύλλο έργου τις γραφικές παραστάσεις). Ως εξής : a) t = 0 έως 10 b) t = 0 έως 100 c) t = 0 έως Για τη συνάρτηση μεταφοράς s+ G(s) = s +6s+5 να δοθούν : a) η αναλυτική μορφή μηδενικών τιμών και πόλων b) η μορφή μερικών κλασμάτων c) το γράφημα πόλων και μηδενικών τιμών 7. Για συνάρτηση μεταφοράς της μορφής : G( s) = s ω 0 + ζω s + ω 0 0 να δοθούν, με τη βοήθεια του Matlab : η ίδια η συνάρτηση μεταφοράς οι πόλοι το γράφημα της χρονικής απόκρισης, όταν στην είσοδο εφαρμοσθεί η μοναδιαία βηματική συνάρτηση για ω 0 = 10 και a) ζ = 0 b) ζ = 0.1 c) ζ = 1 - Σελίδα 0 - Κ. Νασόπουλος - Α. Χρηστίδου

Εισαγωγή στη Matlab Βασικές Συναρτήσεις

Εισαγωγή στη Matlab Βασικές Συναρτήσεις Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας Εισαγωγή στη Matlab Βασικές Συναρτήσεις 2016-2017 Εισαγωγή στη Matlab Matlab

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω

Διαβάστε περισσότερα

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Σχολή Τεχνολογικών Εφαρμογών Τμήμα Αυτοματισμού Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Επιμέλεια: Ξανθή Παπαγεωργίου E-mail: xanthi.papageorgiou@gmail.com Τμήματα:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Maxima

Εισαγωγή στο Πρόγραμμα Maxima Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace

Μετασχηματισμοί Laplace Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Καθ. Εφαρμογών: Σ. Βασιλειάδου Εργαστήριο Συστήματα Αυτομάτου Ελέγχου για Ηλεκτρολόγους Μηχανικούς Εργαστηριακές Ασκήσεις Χειμερινό

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές Διδακτικές Σημειώσεις Τμήματος Πληροφορικής και Επικοινωνιών Τομέας Αρχιτεκτονικής Υπολογιστικών και Βιομηχανικών εφαρμογών Δρ. Βολογιαννίδης Σταύρος email:

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 73 Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Ο µετασχηµατισµός Laplace µετασχηµατίζει τις διαφορικές εξισώσεις που περιγράφουν τα γραµµικά µη χρονικά µεταβαλλόµενα συστήµατα συνεχούς χρόνου, σε αλγεβρικές εξισώσεις και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #20 Πόλοι και μηδενικά Διάγραμμα πόλων και μηδενικών Ιδιότητες της περιοχής σύγκλισης Ο αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace Αμφίπλευρος μετασχηματισμός

Διαβάστε περισσότερα

Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε

Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 1 Άσκηση 1 η : Εισαγωγή στο Matlab Αντικείμενο Εξοικείωση με τις βασικές λειτουργίες του Matlab (πρόγραμμα αριθμητικής ανάλυσης και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τίτλος Μαθήματος Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος 1 Τι είναι τα Matlab και Simulink? Το Matlab (MATrix LABoratory) είναι ένα περιβάλλον επιστημονικού

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Καθ. Εφαρμογών: Σ. Βασιλειάδου Εργαστήριο Συστήματα Αυτομάτου Ελέγχου για Ηλεκτρολόγους Μηχανικούς Εργαστηριακές Ασκήσεις Χειμερινό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Εργαστηριακές Ασκήσεις με χρήση του λογισμικού Matlab ΣΚΟΠΟΣ: Σκοπός των εργαστηριακών ασκήσεων είναι η πλήρης μελέτη ενός συστήματος αυτομάτου ελέγχου. Για το λόγο αυτό, στη

Διαβάστε περισσότερα

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: 1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ Η χρονική απόκριση μπορεί να ληφθεί από αναλυτικά μέσα όπως η μέθοδος μετασχηματισμού Laplace, εναλλακτικά δε μπορεί να χρησιμοποιηθεί εξομοίωση από Η/Υ. Η προσέγγιση

Διαβάστε περισσότερα

3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΔΟΥΛΕΥΟΝΤΑΣ ΜΕ ΣΗΜΑΤΑ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 6o Εγραστήριο Σ.Α.Ε

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 6o Εγραστήριο Σ.Α.Ε ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 6o Εγραστήριο Σ.Α.Ε Ενότητα: Προσομοίωση Σ.Α.Ε. με το πρόγραμμα Comprehensive Control Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητς: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ: Σ. ΒΑΣΙΛΕΙΑΔΟΥ

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών

ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ 1 Τύποι δεδομένων Η γλώσσα προγραμματισμού C++ υποστηρίζει τους παρακάτω τύπους δεδομένων: 1) Ακέραιοι αριθμοί (int). 2) Πραγματικοί αριθμοί διπλής ακρίβειας

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των

Διαβάστε περισσότερα

Παρουσίαση του Mathematica

Παρουσίαση του Mathematica Παρουσίαση του Mathematica Εργαστήριο Σκυλίτσης Θεοχάρης Καλαματιανός Ρωμανός Καπλάνης Αθανάσιος Ιόνιο Πανεπιστήμιο (www.ionio.gr)( Εισαγωγή Σύμβολα πράξεων ή συναρτήσεων: Πρόσθεση + Αφαίρεση - Πολλαπλασιασμός

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικς περιόδου χειμερινού εξαμνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (2,0 μονάδες) Να σχεδιαστεί το δομικό (λειτουργικό) διάγραμμα του για τον ηλεκτρικό θερμοσίφωνα του σχματος. Είσοδος

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab

Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Εργαστηριακές Ασκήσεις με χρήση του λογισμικού Matlab Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab ΣΚΟΠΟΣ: Ο βασικός σκοπός της άσκησης αυτής είναι η μελέτη

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου, Θεωρία και Εφαρμογές. Δρ. Βολογιαννίδης Σταύρος,

Συστήματα Αυτομάτου Ελέγχου, Θεωρία και Εφαρμογές. Δρ. Βολογιαννίδης Σταύρος, Συστήματα Αυτομάτου Ελέγχου, Θεωρία και Εφαρμογές Δρ. Βολογιαννίδης Σταύρος, (svol@teicm.gr) 9 Νοεμβρίου 204 Περιεχόμενα Βασικές έννοιες. Σήματα και συστήματα.........................2 Σήματα συνεχούς

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory

Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory Σ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Συστήματα αυτομάτου ελέγχου (ΙΙ) Modern Control Theory (Προσομοίωση δυναμικών συστημάτων) Διδάσκων : Αναπληρωτής Καθηγητής 1 Προσομοίωση δυναμικών συστημάτων Θα

Διαβάστε περισσότερα

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016 ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 016 Θέμα 1. α) (Μον.1.5) Αποδείξτε ότι αν το σύστημα στο χώρο

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 23 ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μάθημα 2ο Τμήμα Διοίκησης Επιχειρήσεων α εξάμηνο Β. Φερεντίνος I/O 24 Βασική βιβλιοθήκη συναρτήσεων εισόδου/εξόδου #include Η συνάρτηση εξόδου printf printf("συμβολοσειρά

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος

Διαβάστε περισσότερα

Σημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων

Σημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων Σημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Γρήγορες προσθέσεις αριθμών Γρήγορες συγκρίσεις αριθμών Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων Σχετικά γρήγορη μετάδοση και πρόσληψη

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 7 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Επανάληψη 1 ου μέρους μαθήματος: Μοντελοποίηση & Κατάστρωση Δυναμικών Εξισώσεων Εισαγωγή 2 ου μέρους μαθήματος:

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Η Mathematica είναι ένα ολοκληρωμένο μαθηματικό πακέτο με πάρα πολλές δυνατότητες σε σχεδόν όλους τους τομείς των μαθηματικών (Άλγεβρα, Θεωρία συνόλων, Ανάλυση,

Διαβάστε περισσότερα

Ευστάθεια, Τύποι συστημάτων και Σφάλματα

Ευστάθεια, Τύποι συστημάτων και Σφάλματα 1. Ευστάθεια συστημάτων Ευστάθεια, Τύποι συστημάτων και Σφάλματα Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Α Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Σήµατα και Συστήµατα ΗΜΥ220 24/1/2007. of them occurring as the solution of a problem indicates some inconsistency or absurdity.

Σήµατα και Συστήµατα ΗΜΥ220 24/1/2007. of them occurring as the solution of a problem indicates some inconsistency or absurdity. Σήµατα και Συστήµατα ΗΜΥ0 //007 Μιγαδικοί Αριµοί Παναγιώτης Παναγή, ppanagi@ucy.ac.cy ηµήτρης Ηλιάδης, eldemet@ucy.ac.cy The imaginary expression a and the negative expression b, have this resemblance,

Διαβάστε περισσότερα

Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής

Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Τι είναι η Matlab; Ιστορικά Χρήσεις και στοιχεία της Matlab

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου. ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB (το παρόν αποτελεί τροποποιηµένη έκδοση του οµόνυµου εγχειριδίου του κ. Ν. Μαργαρη) 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1.1.1 ΠΡΟΣΘΕΣΗ» 3+5 8 % Το σύµβολο

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Β Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/16 Πρόβλημα 1 (βιβλίο σελίδα 146) Να υπολογιστεί ο ML της

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Συναρτήσεις Μεταφοράς, Δομικά Διαγράμματα, Διαγράμματα Ροής Σημάτων Aναστασία Βελώνη Τμήμα

Διαβάστε περισσότερα

Τοποθετήστε τη δισκέτα στο drive B και σε περιβάλλον MS-DOS πληκτρολογήστε: B:

Τοποθετήστε τη δισκέτα στο drive B και σε περιβάλλον MS-DOS πληκτρολογήστε: B: Συστήματα floppy disk Τοποθετήστε τη δισκέτα στο drive B και σε περιβάλλον MS-DOS πληκτρολογήστε: B: Συστήματα σκληρού δίσκου Οι χρήστες σκληρού δίσκου θα πρέπει να δημιουργήσουν ένα directory με το όνομα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (Θ.Ε. ΠΛΗ 1) 4 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Ημερομηνία Ανάρτησης 14 Φεβρουαρίου 014 Ημερομηνία Παράδοσης της εργασίας από τον Φοιτητή 14 Μαρτίου

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό. ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY Αν μια συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Αν μια συνάρτηση f είναι συνεχής σ ένα

Διαβάστε περισσότερα

MATLAB. Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών.

MATLAB. Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών. MATLAB Tι είναι το λογισµικό MATLAB? Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών. Σύστηµα αλληλεπίδρασης µε τοχρήστηγια πραγµατοποίηση επιστηµονικών υπολογισµών (πράξεις µε πίνακες επίλυση

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΑΘΑΙΝΟΝΤΑΣ ΤΟ MATLAB, ΜΕΡΟΣ B Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

Συναρτήσεις στη Visual Basic 6.0

Συναρτήσεις στη Visual Basic 6.0 Προγραμματισμός & Εφαρμογές Υπολογιστών Μάθημα 4ο Συναρτήσεις στη Visual Basic 6.0 Κ. Κωστοπούλου Σειρά εκτέλεσης των πράξεων Όταν ορίζετε μια ακολουθία αριθμητικών πράξεων είναι δυνατόν να προκύψει αμφισημία.

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

Βασικά στοιχεία του MATLAB

Βασικά στοιχεία του MATLAB ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟ Εξοικείωση µε το περιβάλλον του MATLAB και χρήση βασικών εντολών και τεχνικών δηµιουργίας προγραµµάτων, συναρτήσεων

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 1: Εισαγωγή στο Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ

EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ ηµιουργία ενός m-αρχείου Εισαγωγή των δεδοµένων στο αρχείο Αποθήκευση του αρχείου Καταχώρηση των δεδοµένων του αρχείου από το λογισµικό Matlab, γράφοντας απλά το όνοµα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές Βιομηχανικοί Ελεγκτές Σημειώσεις Εργαστηρίου Έλεγχος Στάθμης Δοχείου με P.I.D. Ελεγκτή Περιεχόμενα 1. Τρόπος Εισαγωγής στο πρόγραμμα εξομοίωσης. 2. Τρόπος λειτουργίας εξομοιωτή. 3. Αναγνώριση ιδιοτήτων

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Δ Μέρος Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος

ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος ΕΡΓΑΣΤΗΡΙΟ ΙV Συναρτήσεις στο Mathematica Στο Mathematica υπάρχουν ορισμένες πολλές βασικές συναρτήσεις όπως ημίτονο, συνημίτονο,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 3o Εργαστήριο Σ.Α.Ε

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 3o Εργαστήριο Σ.Α.Ε ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 3o Εργαστήριο Σ.Α.Ε Ενότητα : Μελέτη και Σχεδίαση Σ.Α.Ε Με χρήση του LabVIEW Control Design Toolkit Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace

Μετασχηματισμοί Laplace ΠΑΡΑΡΤΗΜΑ Α Μετασχηματισμοί Laplace Ο μετασχηματισμός Laplace μας επιτρέπει να μετατρέψουμε γραμμικές διαφορικές με σταθερούς συντελεστές και ολοκληρωτικοδιαφορικές εξισώσεις σε αλγεβρικές εξισώσεις, των

Διαβάστε περισσότερα

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πραγματικές συναρτήσεις πραγματικής μεταβλητής

Πραγματικές συναρτήσεις πραγματικής μεταβλητής ΚΕΦΑΛΑΙΟ Πραγματικές συναρτήσεις πραγματικής μεταβλητής Δεν υπάρχει πρόβλημα που δεν μπορεί να επιλυθεί François Viète (540-603) Υπάρχει το πρόβλημα, αναζητήστε τη λύση του, η ορθότητα των προτάσεων είναι

Διαβάστε περισσότερα

Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του.

Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του. MATrix LABoratory Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του. Τι είναι το MATLAB ; Μια γλώσσα υψηλού επιπέδου η οποία είναι χρήσιµη για τεχνικούς υπολογισµούς.

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι.

Α. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΕΞ. ΠΕΡΙΟΔΟΣ Β ΧΕΙΜ. 00 - ΩΡΕΣ ΘΕΜΑ Για τα παρακάτω συστήματα εισόδου εξόδου α. y ( 3x( x( n ) β. y ( x( n ) / γ. y ( x( x( n ) δ. y( x( n ) Α. Αιτιολογήστε αν είναι γραμμικά

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση Αρμονική Ταλάντωση Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Δ8- Η αρμονική διέγερση αποτελεί θεμελιώδη μορφή διέγερσης στη Δυναμική των Κατασκευών λόγω της μαθηματικής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα