Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα"

Transcript

1 Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα

2 Γραμμικές απώλειες Ύψος πίεσης Γραμμικές απώλειες Αρχές μόνιμης ομοιόμορφης ροής Ροή σε κλειστό αγωγό Αρχή διατήρησης μάζας (= εξίσωση συνέχειας) Q = V 1 A 1 = V 2 A 2 = V A (όπου Α το εμβαδό της διατομής) Αρχή διατήρησης ορμής ΣF = ρ Q (V 2 V 1 ) και λόγω συνέχειας και πρισματικού αγωγού: ΣF = 0 Αρχή διατήρησης ενέργειας z 1 + p 1 /γ + V 12 /2g = z 2 + p 2 /γ + V 22 /2g + h f και λόγω συνέχειας: z 1 + p 1 /γ = z 2 + p 2 /γ + h f Ροή σε ανοιχτό αγωγό z V 2 /2g p/γ z Γραμμή ενέργειας Ταχύτητα, V Παροχή, Q Πιεζομετρική γραμμή L 1 Επίπεδο αναφοράς (z = 0) 2 Πιεζομετρική γραμμή V 2 /2g y = p/γ Γραμμή ενέργειας Ταχύτητα, V L Παροχή, Q Επίπεδο αναφοράς 1 2 Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 2 h f h f

3 Ιδιαίτερα χαρακτηριστικά της μόνιμης ομοιόμορφης ροής σε κλειστό αγωγό Ύψος πίεσης Η διατομή αποτελεί καθαρά γεωμετρικό μέγεθος δεν εξαρτάται από τα υδραυλικά μεγέθη (παροχή, ταχύτητα). Αντίθετα η κλίση ενέργειας είναι υδραυλικό μέγεθος (μεταβάλλεται με την παροχή). Κατά κανόνα οι σωλήνες είναι κυκλικής διατομής (κυλινδρικοί), κάτι που εξασφαλίζει: την απλούστερη δυνατή γεωμετρία ροής (πολλαπλές συμμετρίες), και τη μαθηματική περιγραφή της γεωμετρίας ροής από ένα μέγεθος, την εσωτερική διάμετρο D. Η ομοιομορφία της ροής είναι δεδομένη (έστω κατά τμήματα). V 2 /2g p/γ z Γραμμή ενέργειας Ταχύτητα, V Παροχή, Q Πιεζομετρική γραμμή L 1 Επίπεδο αναφοράς (z = 0) 2 h f Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 3

4 Ιδιαίτερα χαρακτηριστικά της μόνιμης ομοιόμορφης ροής σε ανοιχτό αγωγό Η κλίση ενέργειας αποτελεί καθαρά γεωμετρικό μέγεθος: είναι ίση με την κλίση πυθμένα και δεν εξαρτάται από τα υδραυλικά μεγέθη (παροχή, ταχύτητα). Αντίθετα η διατομή είναι υδραυλικό μέγεθος (μεταβάλλεται με την παροχή). Η γεωμετρία της διατομής είναι σαφώς πιο πολύπλοκη από τη γεωμετρία των κυκλικών αγωγών χαρακτηριστικά γεωμετρικά μεγέθη αποτελούν η επιφάνεια, Α, Πιεζομετρική γραμμή Γραμμή ενέργειας η βρεχόμενη περίμετρος P, η υδραυλική ακτίνα R = A/P. Η ομοιομορφία της ροής δεν είναι δεδομένη (χρειάζεται υδραυλικές προϋποθέσεις). V 2 /2g y = p/γ z Ταχύτητα, V L Παροχή, Q Επίπεδο αναφοράς 1 2 h f Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 4

5 Γενικές αρχές εξίσωσης μόνιμης ομοιόμορφης ροής Από την αρχή διατήρησης ορμής (εν προκειμένω, την ισορροπία δυνάμεων) στον όγκο αναφοράς ανάμεσα στις διατομές 1 και 2, σε διεύθυνση παράλληλη με τον πυθμένα του αγωγού (αλλά και τη γραμμή ενέργειας), προκύπτει: Τ = Β sin θ όπου λήφθηκε υπόψη ότι οι υδροστατικές πιέσεις αλληλοαναιρούνται. Παίρνουμε υπόψη ότι Β = m g = ρ L A g, sin θ = J, T = τ P L όπου m = μάζα, ρ = πυκνότητα και τ = μέση διατμητική τάση στο όριο. Αντικαθιστώντας και κάνοντας πράξεις παίρνουμε τ = ρ g R J = γ R J Η διατμητική τάση δίνεται και από τη σχέση τ = C f ρv 2 /2 όπου C f αδιάστατος συντελεστής τριβής. Απαλείφοντας το τ παίρνουμε R J = C f V 2 /2g (γενικευμένη εξίσωση Chezy). Η ίδια τελική εξίσωση θα προέκυπτε και αν ο αγωγός ήταν υπό πίεση, παρόλο που τα δεδομένα είναι διαφορετικά. V 2 /2g y = p/γ z Υδροστατική πίεση B sin θ Βάρος Β = mg θ L Τριβή Τ 1 2 Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 5 h f

6 Υπολογισμός γραμμικών ενεργειακών απωλειών σε αγωγούς υπό πίεση κυκλικής διατομής (μόνιμη ροή) Αν στη γενικευμένη εξίσωση Chézy θέσουμε f := 4 C f και με δεδομένο ότι σε κυκλική διατομή R = A/P = (π D 2 /4) / (π D) = D/4, παίρνουμε h f = f L D V 2 2g που είναι γνωστή ως εξίσωση Darcy-Weisbach. Για μεγάλες τιμές του αριθμού Reynolds της ροής (Re := V D/ν, όπου ν η κινηματική συνεκτικότητα του νερού, ίση με m 2 /s, για θερμοκρασία 16C), ο συντελεστής τριβής f είναι σταθερός για δεδομένο υλικό και διάμετρο σωλήνα. Ακριβέστερα, στις συνθήκες αυτές ο συντελεστής f είναι συνάρτηση της σχετικής τραχύτητας ε/d, όπου ε η απόλυτη επιφανειακή τραχύτητα του τοιχώματος του αγωγού, μέγεθος με διάταση μήκους. Για μικρότερους αριθμούς Reynolds, ο συντελεστής f είναι συνάρτηση και του Re, που δίνεται από τον (πεπλεγμένο) τύπο Colebrook-White: 1f = 2 log 10 ε/d Re f ή γραφικά από το διάγραμμα Moody. Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 6

7 Προσεγγιστικός απλουστευμένος υπολογισμός γραμμικών απωλειών Η εξίσωση Colebrook-White γράφεται ισοδύναμα 1 f = 2 log ε/d (ε/d) 3/2 ε 3/2 * J 1/2, όπου ε := ε/ε * 0, ενώ ε 0 := ν2 g Εν προκειμένω ε 0 = 0.05 mm (σταθερά), ενώ το μέγεθος ε * είναι αδιάστατο με γνωστή τιμή για καθορισμένο υλικό και συνθήκες σωλήνα Για απλοποίηση υποτίθεται η προσεγγιστική εξίσωση δύναμης f α (ε 0/D) β J γ όπου α, β και γ συντελεστές που εξαρτώνται από το αδιάστατο μέγεθος ε * (ήτοι α = α(ε * ), β = β(ε * ) and γ = γ(ε * )) και εν τέλει από την απόλυτη τραχύτητα ε. Συνδυάζουμε την παραπάνω με την εξίσωση Darcy-Weisbach και, επιπλέον, εισάγουμε το (διαστατικό) μέγεθος (που θα αποκαλούμε γενικευμένο συντελεστή τραχύτητας Manning) N := ε β/ /2+β 1/2 α1/2 g Καταλήγουμε στην ακόλουθη απλή εξίσωση (που θα αποκαλούμε γενικευμένη εξίσωση Manning) V = (1/N) R (1+β)/2 J (1+γ)/2 Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 7 1/3

8 Τυπικές μορφές της γενικευμένης εξίσωσης Manning (για άνετους υπολογισμούς) Γενικευμένη εξίσωση Manning: V = (1/N) R (1+β)/2 J (1+γ)/2 Σχέση παροχής Q και ταχύτητας V: Q = π D2 4 V Σχέσεις ανάμεσα στην κλίση ενέργειας J, την ταχύτητα V και τη διάμετρο D: J = 41+β N 2 V 2 1 D 1+β 1+γ, V = β N D (1+β)/2 J (1+γ)/2, D = 4 N 2 V 2 1 J 1+γ 1+β Σχέσεις ανάμεσα στην κλίση ενέργειας J, την παροχή Q και τη διάμετρο D: J = 43+β N 2 Q 2 1 π 2 D 5+β 1+γ, Q = π 2 3+β N D (5+β)/2 J (1+γ)/2, D = 43+β N 2 Q 2 1 π 2 J 1+γ 5+β Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 8

9 Τιμές των συντελεστών της γενικευμένης εξίσωσης Manning (για τυπικές τιμές της τραχύτητας σχεδιασμού που χρησιμοποιούνται στην Ευρώπη) Για δεδομένη τραχύτητα ε (ή, ισοδύναμα, αδιαστατοποιημένη τραχύτητα ε * ), οι τιμές των συντελεστών β, γ και α (ή ισοδύναμα Ν) προκύπτουν από βελτιστοποίηση, με στόχο την ελαχιστοποίηση του σφάλματος σε σχέση με την αυθεντική σχέση Colebrook-White. Οι βέλτιστες τιμές εξαρτώνται από το θεωρούμενο εύρος διακύμανσης της διαμέτρου D και της ταχύτητας V. Οι ακόλουθες τιμές είναι βέλτιστες για εύρος διαμέτρου 0.05 m D 10 m και ταχύτητας 0.1 m/s V 10 m/s: ε (mm) a β γ Ν (μονάδες SI: m, s) Τα μέγιστα σχετικά σφάλματα στην εκτίμηση των μεγεθών J, D, V, Q είναι αντίστοιχα 10%, 2%, 6%, 6%. Τα σφάλματα αυτά είναι πολύ μικρότερα από άλλα τυπικά σφάλματα και αβεβαιότητες (π.χ. στην εκτίμηση της τραχύτητας ε). Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 9

10 Υπολογισμός των συντελεστών της γενικευμένης εξίσωσης Manning συναρτήσει της τραχύτητας Ορισμός της αδιαστατοποιημένης τραχύτητας ε * : ε * := ε/ε 0, όπου ε 0 = (ν 2 /g) 1/3 = m (για ν = m 2 /s) Σύνηθες εύρος (0.1 m D 1 m, 0.2 m/s V 2 m/s) [Σε αγκύλη δίνονται μέγιστα σχετικά σφάλματα στην εκτίμηση των μεγεθών J, D, V, Q, αντίστοιχα] β = ε * ε γ = * ε N = ( ε * ) 0.16 [5%, 1%, 3%, 3%] * Μικρές διάμετροι (0.05 m D 1 m, 0.1 m/s V 3 m/s) β = ε * ε γ = * ε N = ( ε * ) 0.16 [9%, 2%, 5%, 5%] * Μεγάλες διάμετροι (0.1 m D 10 m, 0.3 m/s V 10 m/s) β = ε * ε γ = * ε N = ( ε * ) 0.14 [8%, 2%, 5%, 5%] * Καθολικό εύρος (0.05 m D 10 m, 0.1 m/s V 10 m/s) β = ε * ε γ = * ε N = ( ε * ) 0.15 [12%, 2%, 7%, 7%] * Σημείωση: το διαστατικό μέγεθος Ν δίνεται στο σύστημα μονάδων SI (m, s). Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 10

11 Γραφική απεικόνιση των συντελεστών της γενικευμένης εξίσωσης Manning (συναρτήσει της τραχύτητας) β α Usual Small Large Global Σύνηθες Μικρές Μεγάλες Καθολικό Σύνηθες Μικρές Μεγάλες Καθολικό Usual Small Large Global ε (m) ε (m) γ Σύνηθες Usual Μικρές Small Μεγάλες Large Καθολικό Global N Σύνηθες Usual Μικρές Small Μεγάλες Large Καθολικό Global ε (m) ε (m) Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 11

12 Ειδικές περιπτώσεις: Οι εξισώσεις Manning και Hazen-Williams Για σχετικά μεγάλες τιμές της τραχύτητας ε μπορεί να θεωρηθεί: β = 1/3, γ = 0 ενώ από βελτιστοποίηση προκύπτει N = n = ( ε * ) 1/6 ε 1/6 / 26 (ε σε m), οπότε παίρνουμε την κλασική εξίσωση Manning V = (1/n) (D/4) 2/3 J 1/2 Για σχετικά μικρές τιμές της τραχύτητας ε μπορεί να θεωρηθεί: β = 0.26, γ = 0.08 ενώ από βελτιστοποίηση προκύπτει N = ( ε * ) 1/6 οπότε παίρνουμε τη γνωστή εμπειρική εξίσωση Hazen-Williams V = 0.85 C (D/4) 0.63 J 0.54, όπου C = 1 / (0.85 N) Σημείωση: Σε καμιά περίπτωση δεν συστήνεται η χρήση της εξίσωσης Hazen-Williams λόγω μεγάλου σφάλματος. Η χρήση της κλασικής εξίσωσης Manning δεν συστήνεται για κλειστούς αγωγούς κυκλικής διατομής, είναι όμως η πιο κατάλληλη για ανοιχτούς αγωγούς (βλ. παρακάτω). Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 12

13 Τιμές της τραχύτητας σχεδιασμού Δεδομένου ότι τα δίκτυα διανομής σχεδιάζονται με ορίζοντα 40 ετών, οι τιμές εφαρμογής των συντελεστών τραχύτητας πρέπει να λαμβάνουν υπόψη τη γήρανση των αγωγών. Κατά κανόνα οι τιμές εφαρμογής λαμβάνονται προσαυξημένες (ισοδύναμη τραχύτητα) προκειμένου να συμπεριληφθούν και τοπικές απώλειες (βλ. επόμενη σελίδα). Η ελάχιστη αποδεκτή ισοδύναμη τραχύτητα, με την προϋπόθεση νερού που δεν προκαλεί διάβρωση ή επικαθήσεις αλάτων, λαμβάνεται ε = 0.1 mm (ε * = 2). Στη συνήθη περίπτωση πλαστικών αγωγών, με την υπόθεση ότι αναμένονται φαινόμενα διάβρωσης ή επικαθήσεων αλάτων, συστήνεται ε = mm (ε * = 20-40). Ενδεικτικός πίνακας εργαστηριακών τιμών ισοδύναμης τραχύτητας τυπικών υλικών (δεν συστήνεται η χρήση τους σε μελέτες δικτύων) Υλικό ε (mm) Ορείχαλκος, χαλκός Χάλυβας εμπορίου ή σφυρήλατος σίδηρος Χυτοσίδηρος με ασφαλτική επάλειψη Γαλβανισμένος σίδηρος 0.15 Χυτοσίδηρος χωρίς επάλειψη 0.26 Σκυρόδεμα Πλαστικό (λείοι σωλήνες εργοστασίου) < 0.01 Πλαστικό, μετά από χρήση > 0.10 Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 13

14 Τοπικές απώλειες Πέραν των γραμμικών απωλειών, στα δίκτυα διανομής δημιουργούνται και τοπικές απώλειες, στις συνδέσεις των αγωγών και τις στροφές (τυπικές τοπικές απώλειες), και στις θέσεις των ειδικών συσκευών και διατάξεων (ειδικές τοπικές απώλειες). Οι τοπικές απώλειες οφείλονται κυρίως στην ανάπτυξη στροβίλων αποκόλλησης της ροής και εκφράζονται με όρους ύψους κινητικής ενέργειας, ήτοι: h L = Κ τ V 2 / 2g ή h L = Κ τ Δ(V 2 ) / 2g όπου Κ τ συντελεστής που εξαρτάται από τη γεωμετρία της τοπικής μεταβολής διατομής και κατεύθυνσης και τα χαρακτηριστικά της ροής (αριθμός Reynolds). Για να ληφθούν υπόψη οι τυπικές τοπικές απώλειες χωρίς αναλυτικό υπολογισμό, προσαυξάνονται οι τιμές της τραχύτητας ε (ισοδύναμη τραχύτητα). Ειδικά για τις δικλείδες, οι τοπικές απώλειες πρέπει να λαμβάνονται ξεχωριστά υπόψη, ιδίως όταν αυτές περιορίζουν σημαντικά τη ροή. Στην περίπτωση αυτή, ανάλογα και με το άνοιγμα της δικλείδας, ο συντελεστής Κ τ μπορεί να αποκτήσει πολύ υψηλές τιμές (π.χ. > ). Η εκτίμηση της ισοδύναμης τραχύτητας αποτελεί έναν από τους σημαντικότερους παράγοντες αβεβαιότητας κατά την προσομοίωση ενός δικτύου διανομής. Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 14

15 Παράδειγμα 1: Διαστασιολόγηση αγωγού Πρόβλημα: Να διαστασιολογηθεί υδρευτικός αγωγός ώστε να μεταφέρει παροχή σχεδιασμού 100 L/s αν η διαθέσιμη κλίση ενέργειας είναι 0.5%. Λύση: Τα δεδομένα είναι Q = 100 L/s = 0.1 m 3 /s, J = 0.5% = Έστω ότι θα χρησιμοποιήσουμε σωλήνες από πολυαιθυλένιο κλάσης (αντοχής) 1.25 MPa (12.5 atm). (Ο καθορισμός της κλάσης των σωλήνων προκύπτει από άλλους σχεδιαστικούς παράγοντες που δεν συζητούνται εδώ.) Για ασφαλή σχεδιασμό υποθέτουμε τραχύτητα ε = 1 mm, λόγω του ενδεχομένου επικαθήσεων. Η αδιαστατοποιημένη τραχύτητα είναι ε * = ε / ε 0 = 1/0.05 = 20. Θεωρώντας το σύνηθες εύρος διαμέτρων και ταχυτήτων, οι συντελεστές της γενικευμένης εξίσωσης Manning είναι β = ε * /( ε * ) = /( ) = 0.310, γ = 0.096/( ε * ) = 0.096/( ) = , N = ( ε * ) 0.16 = ( ) 0.16 = Κατά συνέπεια, D = [4 3+β N 2 Q 2 /(π 2 J 1+γ )] [1/(5+β)] = [ /(π )] [1/( )] = m Η ταχύτητα προκύπτει V = 4Q / πd 2 = / (π ) = 1.12 m/s. Παρατηρούμε ότι τόσο η διάμετρος, όσο και η ταχύτητα βρίσκονται μέσα στο σύνηθες εύρος διαμέτρων και ταχυτήτων και κατά συνέπεια το μέγιστο υπολογιστικό σφάλμα δεν θα ξεπεράσει το 1%. Τελικά επιλέγουμε σωλήνα πολυαιθυλενίου του εμπορίου 1.25 MPa (12.5 atm) ονομαστικής διαμέτρου 400 mm με εσωτερική διάμετρο 341 mm > 337 mm. Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 15

16 Παράδειγμα 1: Διαστασιολόγηση αγωγού διερεύνηση Διερεύνηση 1: Η ακριβής λύση, χρησιμοποιώντας τους τύπους Darcy-Weisbach και Colebrook-White βρίσκεται μετά από αρκετές δοκιμές που δεν παρουσιάζονται εδώ. Για σύγκριση παρουσιάζονται μόνο τα τελικά αποτελέσματα: Διάμετρος D = m (η απόκλιση από την προσεγγιστική λύση που υπολογίστηκε πιο πάνω είναι στο τέταρτο δεκαδικό ψηφίο) και ε/d = , V = 1.12, Re = (για ν = ), f = Διερεύνηση 2: Αν δεν αναμέναμε επικαθήσεις στο σωλήνα, θα μπορούσαμε να δεχτούμε τραχύτητα ε = 0.1 mm, οπότε ε * = ε / ε 0 = 0.1/0.05 = 2 και β = ε * /( ε * ) = /( ) = 0.302, γ = 0.096/( ε * ) = 0.096/( ) = 0.059, N = ( ε * ) 0.16 = ( ) 0.16 = Κατά συνέπεια, D = [4 3+β N 2 Q 2 /(π 2 J 1+γ )] [1/(5+β)] = [ /(π )] [1/( )] = m, δηλαδή, θα προέκυπτε μείωση της διαμέτρου κατά 9% (οι τύποι Darcy-Weisbach και Colebrook-White δίνουν D = m διαφορά < 1%). Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 16

17 Παράδειγμα 2: Υπολογισμός γραμμικών απωλειών Πρόβλημα: Στο παράδειγμα, ποιοί πρέπει να είναι οι χειρισμοί στην αρχή της περιόδου λειτουργίας για να μεταφερθεί παροχή 60 L/s αν το μήκος του υδραγωγείου είναι 10 km; Λύση: Τα δεδομένα είναι Q = 60 L/s = 0.06 m 3 /s, L = 10 km, D = 341 mm (από την επίλυση του προηγούμενου προβλήματος) ενώ η γεωμετρική κλίση είναι J = 0.5% = 0.005, πράγμα που σημαίνει ότι διατίθεται γεωμετρικό ύψος Η = = 50 m. Εφόσον το πρόβλημα αναφέρεται στην αρχή της περιόδου λειτουργίας του υδραγωγείου, θα δεχτούμε ισοδύναμη τραχύτητα ε = 0.1 mm. Όπως υπολογίσαμε προηγουμένως, για ε = 0.1 mm οι παράμετροι της γενικευμένης εξίσωσης Manning είναι β = 0.302, γ = 0.059, Ν = Συνεπώς η κλίση ενέργειας είναι: J = [4 3+β N 2 Q 2 /(π 2 D 5+β )] [1/(1+γ)] = [ /(π )] [1/( )] = Οι γραμμικές απώλειες είναι h f = J L = = m. Κατά συνέπεια, υπάρχει ένα πλεόνασμα ενέργειας = m που πρέπει να «σπάσει», δηλαδή να διατεθεί σε τοπικές απώλειες. Χρησιμοποιούμε για το σκοπό αυτό δικλείδα σε κατάλληλο άνοιγμα, ώστε h τ = m. Η ταχύτητα που προκύπτει είναι V = 4Q / πd 2 = / (π ) = m/s. Οι τοπικές απώλειες για τη δικλείδα είναι h τ = Κ δ V 2 / 2g. Κατά συνέπεια ο συντελεστής τοπικών απωλειών είναι Κ δ = 2g h τ / V 2 = / = Σημείωση: Η ακριβής λύση με τους τύπους Darcy-Weisbach και Colebrook-White είναι J = , δηλαδή το σχετικό σφάλμα είναι ( )/ = 3%. Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 17

18 Ενεργειακές απώλειες σε ανοιχτούς αγωγούς Αν και η εξίσωση γραμμικών ενεργειακών απωλειών στη βάση της δεν εξαρτάται από το αν ο αγωγός είναι ανοιχτός ή κλειστός (δηλαδή, αν η ροή είναι υπό πίεση ή με ελεύθερη επιφάνεια), υπάρχουν ορισμένες πρακτικές διαφορές. Συγκεκριμένα στους ανοιχτούς αγωγούς (σε αντίθεση με τους κλειστούς κυλινδρικούς σωλήνες): η γεωμετρία της ροής δεν έχει την τέλεια συμμετρία ενός κύκλου, αντίθετα, η γεωμετρία της ροής μπορεί να είναι αρκετά πολύπλοκη, ακόμη και σε κυλινδρικό αγωγό (η υγρή διατομή είναι κυκλικός τομέας και όχι κύκλος), και η τραχύτητα είναι κατά κανόνα μεγαλύτερη (π.χ. σε κανάλια από σκυρόδεμα) Με αυτές τις συνθήκες, δεν έχει νόημα (ούτε θα προσέφερε μεγαλύτερη ακρίβεια) η χρήση των πολύπλοκων τύπων Darcy-Weisbach-Colebrook-White. Εξ άλλου, όπως συζητήθηκε παραπάνω, για μεγάλες τραχύτητες ο γενικευμένος τύπος Manning πρακτικώς μεταπίπτει στον κλασικό τύπο του Manning. Τέλος, η συσσωρευμένη εμπειρία επιτυχούς εφαρμογής του τύπου του Manning και η εκτεταμένη πινακοποίηση τιμών του συντελεστή n για ποικιλία συνθηκών, ουσιαστικά τον καθιστά την μοναδική αξιόπιστη επιλογή. Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 18

19 Συμπεράσματα Ροή υπό πίεση σε κυλινδρικούς σωλήνες Για απλούστευση των υπολογισμών χωρίς ουσιαστικό σφάλμα μπορεί να χρησιμοποιείται ο γενικευμένος τύπος Manning αντί των πολύπλοκων τύπων Darcy- Weisbach και Colebrook-White Η αβεβαιότητα στην εκτίμηση της τραχύτητας οδηγεί σε σφάλμα πολύ μεγαλύτερο από το υπολογιστικό. Για τις πιο τυπικές τιμές της τραχύτητας και για σύνηθες εύρος διαμέτρων και ταχυτήτων σε υδρευτικά έργα (0.1 m D 1 m, 0.2 m/s V 2 m/s) οι βέλτιστες παράμετροι είναι οι εξής (το Ν στο SI για m, s): για ε = 0.1 mm: β = 0.302, γ = 0.059, Ν = , και για ε = 1 mm: β = 0.31, γ = , Ν = Ροή με ελεύθερη επιφάνεια Ο κλασικός τύπος του Manning αποτελεί τη βέλτιστη επιλογή. Ο τύπος αυτός προκύπτει και ως ειδική περίπτωση του γενικευμένου τύπου Manning για β = 1/3, γ = 0, n = N. Κατά κανόνα στη χρήση του τύπου του Manning η βιβλιογραφία δίνει απευθείας τιμές για το συντελεστή τριβής n. Αν όμως είναι δεδομένη η τραχύτητα ε, τότε ο συντελεστής n μπορεί να εκτιμηθεί από τη σχέση: N = n = ( ε * ) 1/6 ε 1/6 / 26 (ε σε m). Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 19

20 Παράρτημα 1: Εσωτερικές διάμετροι αγωγών από πολυαιυθύλένιο (HDPE) Ονομαστική Εσωτερική διάμετρος (mm) διάμετρος (mm) 10 atm 12.5 atm 16 atm 20 atm 25 atm 32 atm Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 20

21 Παράρτημα 2: Εσωτερικές διάμετροι αγωγών από πολυβινυλοχλωρίδιο (PVC) Ονομαστική διάμετρος (mm) Εσωτερική διάμετρος (mm) 10 atm 12.5 atm 16 atm Λοιποί σωλήνες ύδρευσης: Στους σωλήνες από χάλυβα και αμιαντοτσιμέντο η ονομαστική διάμετρος ταυτίζεται με την εσωτερική. Σωλήνες από χάλυβα διατίθενται σε διαμέτρους mm με διαβαθμίσεις ανά 50 mm μέχρι τη διάμετρο των 400 mm και ανά 100 mm για τις μεγαλύτερες. Σωλήνες από αμιαντοτσιμέντο διατίθενται σε διαμέτρους mm με διαβαθμίσεις ανά 50 mm μέχρι τη διάμετρο των 500 mm και ανά 100 mm για τις μεγαλύτερες. Δ. Κουτσογιάννης & Α. Ευστρατιάδης, Αρχές υδραυλικής στα αστικά υδραυλικά έργα 21

Αρχές υδραυλικής στα αστικά υδραυλικά έργα

Αρχές υδραυλικής στα αστικά υδραυλικά έργα Αστικά Υδραυλικά Έργα - Υδρεύσεις Αρχές υδραυλικής στα αστικά υδραυλικά έργα Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αρχές μόνιμης ομοιόμορφης ροής

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20')

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20') ΕΜΠ Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά Υδραυλικά Έργα Κανονική εξέταση 06/2011 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20') ΠΑΡΑΛΛΑΓΗ Α Απαντήστε στις ακόλουθες ερωτήσεις, σημειώνοντας στο

Διαβάστε περισσότερα

800 m. 800 m. 800 m. Περιοχή A

800 m. 800 m. 800 m. Περιοχή A Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E5: Τροφοδοσία µονάδας επεξεργασίας αγροτικών προϊόντων (Εξέταση

Διαβάστε περισσότερα

1. ΑΝΟΙΚΤΟΙ ΑΓΩΓΟΙ Σχήμα 1.1. Διατομή υδραγωγείου Υλίκης, γαιώδης περιοχή

1. ΑΝΟΙΚΤΟΙ ΑΓΩΓΟΙ Σχήμα 1.1. Διατομή υδραγωγείου Υλίκης, γαιώδης περιοχή . ΑΝΟΙΚΤΟΙ ΑΓΩΓΟΙ.. Γενικά Υπάρχουν φυσικοί (π.χ. ποταμοί, χείμαρροι και τεχνητοί (π.χ. αρδευτικές διώρυγες, στραγγιστικές τάφροι, διώρυγες μεταφορές νερού για υδρευτικούς σκοπούς, αγωγοί αποχέτευσης ανοικτοί

Διαβάστε περισσότερα

3. Δίκτυο διανομής επιλύεται για δύο τιμές στάθμης ύδατος της δεξαμενής, Η 1 και

3. Δίκτυο διανομής επιλύεται για δύο τιμές στάθμης ύδατος της δεξαμενής, Η 1 και ΕΜΠ Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά Υδραυλικά Έργα Επαναληπτική εξέταση 10/2011 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20') ΠΑΡΑΛΛΑΓΗ Α Απαντήστε στις ακόλουθες ερωτήσεις, σημειώνοντας

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο

ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο Άσκηση Οικισµός ΑΒΓ Α υδροδοτείται από δεξαµενή µέσω

Διαβάστε περισσότερα

Έργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται

Έργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται Ομοιόμορφη ροή σε ανοικτούς αγωγούς γ Βασικές έννοιες Ομοιόμορφη ροή Ταχύτητα και γραμμή ενέργειας σε ομοιόμορφη ροή, εξίσωση Manning (Παπαϊωάννου, 2010) Συνήθως οι ανοικτοί αγωγοί (ιδιαίτερα στα περισσότερα

Διαβάστε περισσότερα

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Έλεγχος λειτουργίας δικτύων διανομής με χρήση μοντέλων υδραυλικής ανάλυσης Βασικό ζητούμενο της υδραυλικής ανάλυσης είναι ο έλεγχος

Διαβάστε περισσότερα

Αρχές υδροενεργειακής τεχνολογίας

Αρχές υδροενεργειακής τεχνολογίας Υδροηλεκτρικά Έργα 8ο εξάμηνο Σχολής Πολιτικών Μηχανικών Αρχές υδροενεργειακής τεχνολογίας Ανδρέας Ευστρατιάδης, Νίκος Μαμάσης, & Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

Υδραυλική των υπονόμων. Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο

Υδραυλική των υπονόμων. Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Υδραυλική των υπονόμων Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Εισαγωγή Ποιο είναι το ποσοστό στερεών ουσιών στα λύματα; Περίπου 1. Έχουν επίπτωση οι στερεές ουσίες στην

Διαβάστε περισσότερα

Έργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται

Έργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται Ομοιόμορφη ροή σε ανοικτούς αγωγούς γ Ομοιόμορφη ροή Ταχύτητα και γραμμή ενέργειας σε ομοιόμορφη ροή, εξίσωση Manning Σύνθετες διατομές Μθδλ Μεθοδολογίες τα τρία βασικά προβλήματα της Υδραυλικής των ανοικτών

Διαβάστε περισσότερα

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Ειδικά κεφάλαια δικτύων αποχέτευσης Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

ΥδροδυναµικέςΜηχανές

ΥδροδυναµικέςΜηχανές ΥδροδυναµικέςΜηχανές Σωληνώσεις Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Σκοπός -Αντικείµενο Συνήθως η µελέτη υδροδυναµικών µηχανών και εγκαταστάσεων συνοδεύεται και από τη

Διαβάστε περισσότερα

Τα τρία βασικά προβλήματα της Υδραυλικής

Τα τρία βασικά προβλήματα της Υδραυλικής Τα τρία βασικά προβλήματα της Υδραυλικής Α βασικό πρόβλημα,, παροχή γνωστή απλός υπολογισμός απωλειών όχι δοκιμές (1): L1 = 300, d1 = 0.6 m, (): L = 300, d = 0.4 m Q = 0.5m 3 /s, H=?, k=0.6 mm Διατήρηση

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Άσκηση E9: Εκτίµηση παροχών εξόδου κόµβων, υπολογισµός ελάχιστης κατώτατης

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΥΔΡΑΥΛΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ

ΤΕΥΧΟΣ ΥΔΡΑΥΛΙΚΩΝ ΥΠΟΛΟΓΙΣΜΩΝ Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΤΜΗΜΑ ΜΕΛΕΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΟ: ΥΠΟΕΡΓΟ: ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ: «ΑΠΟΧΕΤΕΥΣΗ ΑΚΑΘΑΡΤΩΝ ΠΑΡΑΛΙΑΚΟΥ ΜΕΤΩΠΟΥ ΒΟΛΟΥ» «ΔΙΚΤΥΟ ΑΠΟΧΕΤΕΥΣΗΣ ΑΚΑΘΑΡΤΩΝ ΑΓ. ΣΤΕΦΑΝΟΥ Δ. ΒΟΛΟΥ» 3.866.000,00 πλέον

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20')

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20') ΕΜΠ Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά Υδραυλικά Έργα Κανονική εξέταση 07/2008 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Μονάδες 3, Διάρκεια 20') ΠΑΡΑΛΛΑΓΗ Α Απαντήστε στις ακόλουθες ερωτήσεις, σημειώνοντας στο

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 8 : Κλειστοί Αγωγοί ΙΙ Δρ. Μενέλαος Θεοχάρης 5.4. Λυμένες ασκήσεις Άσκηση 1η Δίνεται ένας σωληνωτός αγωγός από

Διαβάστε περισσότερα

Υδραυλικά Έργα Ι [ΠΟΜ 443]

Υδραυλικά Έργα Ι [ΠΟΜ 443] [ΠΟΜ 443] Δίκτυα Μεταφοράς Νερού Εξωτερικό Υδραγωγείο Ανδρέας Χριστοφή / ειδικός επιστήμονας Τμήμα Πολιτικών Μηχανικών και Μηχανικών Γεωπληροφορικής ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Email: andreas.christofe@cut.ac.cy

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΗ ΕΠΙΧΕΙΡΗΣΗ ΥΔΡΕΥΣΗΣ ΑΠΟΧΕΤΕΥΣΗΣ ΜΕΙΖΟΝΟΣ ΠΕΡΙΟΧΗΣ ΒΟΛΟΥ ΟΝΟΜΑΣΙΑ ΕΡΓΟΥ

ΔΗΜΟΤΙΚΗ ΕΠΙΧΕΙΡΗΣΗ ΥΔΡΕΥΣΗΣ ΑΠΟΧΕΤΕΥΣΗΣ ΜΕΙΖΟΝΟΣ ΠΕΡΙΟΧΗΣ ΒΟΛΟΥ ΟΝΟΜΑΣΙΑ ΕΡΓΟΥ ΔΗΜΟΤΙΚΗ ΕΠΙΧΕΙΡΗΣΗ ΥΔΡΕΥΣΗΣ ΑΠΟΧΕΤΕΥΣΗΣ ΜΕΙΖΟΝΟΣ ΠΕΡΙΟΧΗΣ ΒΟΛΟΥ ΟΝΟΜΑΣΙΑ ΕΡΓΟΥ «ΕΝΙΣΧΥΣΗ ΕΞΩΤΕΡΙΚΟΥ ΥΔΡΑΓΩΓΕΙΟΥ ΜΕΤΑΦΟΡΑΣ ΠΗΓΑΙΩΝ ΝΕΡΩΝ ΟΡΕΙΝΟΥ ΟΓΚΟΥ ΠΗΛΙΟΥ» ΤΙΤΛΟΣ ΤΕΥΧΟΥΣ 2. ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΜΕΛΕΤΗΤΗΣ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 4 ο : Σταθερά

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ «ΑΠΟΧΕΤΕΥΣΗ ΑΚΑΘΑΡΤΩΝ ΠΑΡΑΛΙΑΚΟΥ ΜΕΤΩΠΟΥ ΜΑΛΑΚΙ - ΒΟΛΟΣ» Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΤΜΗΜΑ ΜΕΛΕΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ «ΑΠΟΧΕΤΕΥΣΗ ΑΚΑΘΑΡΤΩΝ ΠΑΡΑΛΙΑΚΟΥ ΜΕΤΩΠΟΥ ΜΑΛΑΚΙ - ΒΟΛΟΣ» Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΤΜΗΜΑ ΜΕΛΕΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΤΜΗΜΑ ΜΕΛΕΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΟ: ΥΠΟΕΡΓΟ: «ΑΠΟΧΕΤΕΥΣΗ ΑΚΑΘΑΡΤΩΝ ΠΑΡΑΛΙΑΚΟΥ ΜΕΤΩΠΟΥ ΜΑΛΑΚΙ - ΒΟΛΟΣ» «ΣΥΝΔΕΣΗ ΔΙΚΤΥΟΥ ΑΠΟΧΕΤΕΥΣΗΣ ΑΚΑΘΑΡΤΩΝ ΑΓΡΙΑΣ Δ. ΒΟΛΟΥ ΜΕ Ε.Ε.Λ. Δ.Ε.Υ.Α.Μ.Β.»

Διαβάστε περισσότερα

Αρχές υδροενεργειακής τεχνολογίας

Αρχές υδροενεργειακής τεχνολογίας Υδροηλεκτρικά Έργα 8ο εξάμηνο Σχολής Πολιτικών Μηχανικών Αρχές υδροενεργειακής τεχνολογίας Ανδρέας Ευστρατιάδης, Νίκος Μαμάσης, & Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ / ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡ. ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ: ΥΔΡΑΥΛΙΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΥΔΡΑΥΛΙΚΩΝ ΕΡΓΩΝ Αγγελίδης Π., Αναπλ. Καθηγητής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΔΙΔΑΣΚΩΝ: Επικ. Καθ. Δ. ΜΑΘΙΟΥΛΑΚΗΣ ΘΕΜΑΤΑ ΤΕΤΡΑΜΗΝΟΥ

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του 301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,

Διαβάστε περισσότερα

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως. Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή

Διαβάστε περισσότερα

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

Εισαγωγή στα δίκτυα διανοµής

Εισαγωγή στα δίκτυα διανοµής Εισαγωγή στα δίκτυα διανοµής Σηµειώσεις στα πλαίσια του µαθήµατος: Τυπικά υδραυλικά έργα Ακαδηµαϊκό έτος 2005-06 Ανδρέας Ευστρατιάδης & ηµήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµανση Ψύξη ΚλιµατισµόςΙΙ ίκτυα διανοµής αέρα (αερισµού ή κλιµατισµού) Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Μέρηδικτύουδιανοµήςαέρα Ένα δίκτυο διανοµής αέρα εγκατάστασης

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η εκπόνηση του θέματος και η εκπόνηση της εργαστηριακής

Διαβάστε περισσότερα

ρ. Μ. Βαλαβανίδης, Επικ. Καθηγητής ΤΕΙ Αθήνας 10/6/2010 1

ρ. Μ. Βαλαβανίδης, Επικ. Καθηγητής ΤΕΙ Αθήνας 10/6/2010 1 Εργαλεία επίλυσης προβληµάτων µονοδιάστατης ασυµπίεστης ροής σε αγωγούς (ανοικτούς ή κλειστούς) Ι. Ισοζύγιο Μάζας (εξίσωση συνέχειας) ΙΙ. Ισοζύγιο Ενέργειας (εξίσωση Bernoull) ΙΙΙ. Ισοζύγιο Γραµµικής Ορµής

Διαβάστε περισσότερα

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Ρευστoμηχανική Εισαγωγικές έννοιες Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Εισαγωγή Περιεχόμενα μαθήματος Βασικές έννοιες, συνεχές μέσο, είδη, μονάδες διαστάσεις

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΤΥΡΒΩΔΟΥΣ ΡΟΗΣ ΣΕ ΚΛΕΙΣΤΟΥΣ ΑΓΩΓΟΥΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΤΥΡΒΩΔΟΥΣ ΡΟΗΣ ΣΕ ΚΛΕΙΣΤΟΥΣ ΑΓΩΓΟΥΣ Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΜΕΓΑΛΟΥ ΑΛΕΞΑΝΔΡΟΥ 1, 63 34, ΚΟΥΚΟΥΛΙ, ΠΑΤΡΑ ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΤΥΡΒΩΔΟΥΣ ΡΟΗΣ ΣΕ ΚΛΕΙΣΤΟΥΣ ΑΓΩΓΟΥΣ ΣΠΟΥΔΑΣΤΡΙΑ: ΓΕΩΡΓΙΑ ΣΓΟΥΡΔΟΥ Α.Μ.

Διαβάστε περισσότερα

4 Τριβές σε Σωλήνες και Εξαρτήματα

4 Τριβές σε Σωλήνες και Εξαρτήματα 4 Τριβές σε Σωλήνες και Εξαρτήματα 4.1 Εισαγωγή 4.1.1 ΜΟΡΙΑΚΗ ΘΕΩΡΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Ένα ρευστό δεν είναι παρά ένα σύνολο μορίων, τα οποία αφενός κινούνται (έχουν κινητική ενέργεια) και αφετέρου

Διαβάστε περισσότερα

Κεφάλαιο 13: Διαμόρφωση μοντέλου υδραυλικής ανάλυσης δικτύου διανομής

Κεφάλαιο 13: Διαμόρφωση μοντέλου υδραυλικής ανάλυσης δικτύου διανομής Κεφάλαιο 13: Διαμόρφωση μοντέλου υδραυλικής ανάλυσης δικτύου διανομής Κόμβος i Κόμβος j Συνιστώσες μοντέλου υδραυλικής ανάλυσης Κόμβος: Σημείο εισροής ή εκροής νερού ή αλλαγής της γεωμετρίας του δικτύου

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

Κεφάλαιο 11: Γενικές αρχές σχεδιασμού δικτύων διανομής

Κεφάλαιο 11: Γενικές αρχές σχεδιασμού δικτύων διανομής Κεφάλαιο 11: Γενικές αρχές σχεδιασμού δικτύων διανομής p max / γ Προδιαγραφές δικτύων: μέγιστες πιέσεις Για την προστασία των ευάλωτων σημείων του δικτύου (π.χ. συνδέσεις αγωγών), των εσωτερικών υδραυλικών

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 0 : Ανοικτοί Αγωγοί II Δρ. Μενέλαος Θεοχάρης Μόνιμη ομοιόμορφη ροή σε ανοικτούς αγωγούς 6... Εφαρμογή Για b=0,60

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: CSE220 Υδραυλική Ι

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: CSE220 Υδραυλική Ι ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: CSE220 Υδραυλική Ι (1) ΓΕΝΙΚΑ ΣΧΟΛΗ ΣΤΕΦ ΤΜΗΜΑ Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ Κατεύθυνση Πολιτικών Μηχανικών ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΔΙΑΣΠΟΡΑ ΡΥΠΩΝ ΣΕ ΠΟΤΑΜΟΥΣ με το HEC-RAS Αγγελίδης Π., Αναπλ. Καθηγητής HEC-RAS Το λογισμικό

Διαβάστε περισσότερα

ιόδευση των πληµµυρών

ιόδευση των πληµµυρών ιόδευση των πληµµυρών Με τον όρο διόδευση εννοούµε τον υπολογισµό του πληµµυρικού υδρογραφήµατος σε µια θέση Β στα κατάντη ενός υδατορρεύµατος, όταν αυτό είναι γνωστό σε µια θέση Α στα ανάντη ή αντίστοιχα

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΘEMA ο Επίπεδο κατακόρυφο σώµα από αλουµίνιο, µήκους 430 mm, ύψους 60 mm και πάχους

Διαβάστε περισσότερα

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Γιάννης Λ. Τσιρογιάννης Γεωργικός Μηχανικός M.Sc., PhD Επίκουρος Καθηγητής ΤΕΙ Ηπείρου Τμ. Τεχνολόγων Γεωπόνων Κατ. Ανθοκομίας Αρχιτεκτονικής Τοπίου ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Υδραυλική Έκδοση

Διαβάστε περισσότερα

ΤΑΥΤΟΤΗΤΑ ΑΓΩΓΟΥ Απ1 περίοδος σχεδιασμού T = 40 έτη

ΤΑΥΤΟΤΗΤΑ ΑΓΩΓΟΥ Απ1 περίοδος σχεδιασμού T = 40 έτη ΤΑΥΤΟΤΗΤΑ ΑΓΩΓΟΥ Απ1 περίοδος σχεδιασμού T = 40 έτη πληθυσμός που εξυπηρετεί ο αγωγός Θ = 5000 κάτοικοι 0.40 0.35 μέση ημερήσια κατανάλωση νερού w 1 = 300 L/κατ/ημέρα μέση ημερ. βιομηχανική κατανάλωση

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 ΜΜΚ 31 Μεταφορά Θερμότητας Εξαναγκασμένη Συναγωγή και Σφαίρες ΜΜΚ 31 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 και Σφαίρες (flow across cylinders

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 9 : Ανοικτοί Αγωγοί I Δρ. Μενέλαος Θεοχάρης Μόνιμη ομοιόμορφη ροή σε ανοικτούς αγωγούς 6.1. Γενικά Ανοικτός αγωγός

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού

Διαβάστε περισσότερα

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ: (040) 670854-1 Fax: (040) 670854-41

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ: (040) 670854-1 Fax: (040) 670854-41 Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Εγχειρίδιο Οδηγιών HM 150.07 Επίδειξη του θεωρήματος του Μπερνούλη G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ: (040) 670854-1

Διαβάστε περισσότερα

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι

ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΘΕΜΑ ΥΔΡΟΔΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ Ι ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η εκπόνηση του Θέματος και η εκπόνηση της Εργαστηριακής

Διαβάστε περισσότερα

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41 Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Εγχειρίδιο Οδηγιών HM 135 Συσκευή Μέτρησης της Οπισθέλκουσας Δύναμης σε Σφαίρες G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια

Διαβάστε περισσότερα

Γενική διάταξη δικτύων διανοµής

Γενική διάταξη δικτύων διανοµής Γενική διάταξη δικτύων διανοµής Σηµειώσεις στα πλαίσια του µαθήµατος: Τυπικά υδραυλικά έργα Ακαδηµαϊκό έτος 2005-06 Ανδρέας Ευστρατιάδης & ηµήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών

Διαβάστε περισσότερα

Μοριακή δομή υγρών: Μόρια υγρών με ασυνέχειες και χαλαρή δομής σε σχέση με τα στερεά αλλά περισσότερο συνεκτικής σε σχέση με τα αέρια.

Μοριακή δομή υγρών: Μόρια υγρών με ασυνέχειες και χαλαρή δομής σε σχέση με τα στερεά αλλά περισσότερο συνεκτικής σε σχέση με τα αέρια. 2. Βασικές έννοιες από το μάθημα της Ρευστομηχανικής στο μάθημα της Υδραυλικής και εισαγωγικές έννοιες Δρ Μ.Σπηλιώτη Λέκτορα ΔΠΘ Ρευστό: Παραμορφώνεται υπό την αντίδραση διατμητικής δύναμης οσοδήποτε μικρής

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΟΡΕΙΝΩΝ ΛΕΚΑΝΩΝ

ΥΔΡΑΥΛΙΚΗ ΟΡΕΙΝΩΝ ΛΕΚΑΝΩΝ ΥΔΡΑΥΛΙΚΗ ΟΡΕΙΝΩΝ ΛΕΚΑΝΩΝ Σταθερή Ομοιόμορφη Ροή ανοικτών αγωγών Φώτιος ΜΑΡΗΣ Αναπλ. Καθηγητής Παράδειγμα 1 Διώρυγα από γαιώδες υλικό με σταθερή διατομή, πρανή επενδυμένα με λίθους και με πυθμένα από άμμο

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 7 :Κλειστοί Αγωγοί Ι Δρ. Μενέλαος Θεοχάρης Ροή σε κλειστούς αγωγούς υπό πίεση 5.1. Γενικά Η ροή των πραγματικών

Διαβάστε περισσότερα

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών «ΔιερΕΥνηση Και Aντιμετώπιση προβλημάτων ποιότητας ηλεκτρικής Ισχύος σε Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) πλοίων» (ΔΕΥ.Κ.Α.Λ.Ι.ΩΝ) πράξη ΘΑΛΗΣ-ΕΜΠ, πράξη ένταξης 11012/9.7.2012, MIS: 380164, Κωδ.ΕΔΕΙΛ/ΕΜΠ:

Διαβάστε περισσότερα

ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ

ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ Η μελέτη της ροής μη συνεκτικού ρευστού γύρω από κύλινδρο γίνεται με την μέθοδο της επαλληλίας (στην προκειμένη περίπτωση: παράλληλη ροή + ροή διπόλου). Εδώ περιοριζόμαστε να

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΟΠΙΣΘΕΛΚΟΥΣΑΣ Σκοπός της άσκησης Η μέτρηση

Διαβάστε περισσότερα

Hydraulics - Υδραυλική CIV 224

Hydraulics - Υδραυλική CIV 224 Hydraulics - Υδραυλική CIV 224 5 ECTS - Ώρες διδασκαλίας 4: Θεωρία 3 ώρες, Εργαστήριο/Φροντιστήριο 1 ώρα Διδάσκοντας: Δρ. Ευάγγελος Ακύλας (www.evangelosakylas.weebly.com) Περιγραφή Μαθήματος Στοιχεία

Διαβάστε περισσότερα

Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον

Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον Ενότητα 5 : Προστασία αγωγών από πλήγμα κριού Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΡΑΚΤΙΚΗ ΑΝΤΙΜΕΤΩΠΙΣΗ ΚΑΜΙΝΑΔΑΣ

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΡΑΚΤΙΚΗ ΑΝΤΙΜΕΤΩΠΙΣΗ ΚΑΜΙΝΑΔΑΣ ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΡΑΚΤΙΚΗ ΑΝΤΙΜΕΤΩΠΙΣΗ ΚΑΜΙΝΑΔΑΣ Η βασική σχέση που περιγράφει την λειτουργία της καμινάδας είναι Η σχέση αυτή προέρχεται από την εφαρμογή της αρχής διατήρησης ενέργειας στην καμινάδα σύμφωνα

Διαβάστε περισσότερα

Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 Θερμοδυναμική και Μετάδοση Θερμότητας 1 1.2

Διαβάστε περισσότερα

Εισαγωγή στο μάθημα Εγγειοβελτιωτικά έργα και σε

Εισαγωγή στο μάθημα Εγγειοβελτιωτικά έργα και σε Εισαγωγή στο μάθημα Εγγειοβελτιωτικά έργα και σε βασικές γνώσεις Υδραυλικής Εισαγωγή Βασικές Έννοιες Δρ Μ.Σπηλιώτη Λέκτορα ΔΠΘ Ιστορική αναδρομή Γεωργική επανάσταση Σημασία των υδραυλικών έργων (αρδευτικά

Διαβάστε περισσότερα

Ροη αέρα σε Επίπεδη Πλάκα

Ροη αέρα σε Επίπεδη Πλάκα Ροη αέρα σε Επίπεδη Πλάκα Η ροή του αέρα γύρω από ένα σώμα επηρεάζεται από παράγοντες όπως το σχήμα του σώματος, το μέγεθός του, ο προσανατολισμός του, η ταχύτητά του όπως επίσης και οι ιδιότητες του ρευστού.

Διαβάστε περισσότερα

ΜΕΤΑΦΟΡΑ ΝΕΡΟΥ ΑΠΟ ΤΗ ΓΕΩΤΡΗΣΗ ΑΓΙΟΥ ΓΕΩΡΓΙΟΥ

ΜΕΤΑΦΟΡΑ ΝΕΡΟΥ ΑΠΟ ΤΗ ΓΕΩΤΡΗΣΗ ΑΓΙΟΥ ΓΕΩΡΓΙΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΘΕΣΣΑΛΙΑΣ ΗΜΟΣ ΦΑΡΣΑΛΩΝ ΜΕΤΑΦΟΡΑ ΝΕΡΟΥ ΑΠΟ ΤΗ ΓΕΩΤΡΗΣΗ ΑΓΙΟΥ ΓΕΩΡΓΙΟΥ ΟΡΙΣΤΙΚΗ ΜΕΛΕΤΗ Υ ΡΑΥΛΙΚΩΝ ΕΡΓΩΝ. Μελέτη: Σύµβουλος: Ι. ΑΥΓΕΡΗΣ Υ ΡΟΑΚΤΟΤΕΧΝΙΚΗ Σ. ΧΡΙΣΤΟΠΟΥΛΟΣ & ΣΥΝΕΡΓΑΤΕΣ

Διαβάστε περισσότερα

Υδρεύσεις Αποχετεύσεις - Αρδεύσεις

Υδρεύσεις Αποχετεύσεις - Αρδεύσεις ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υδρεύσεις Αποχετεύσεις - Αρδεύσεις Ενότητα 4. Σχεδιασμός δικτύων αποχέτευσης Ζαφειράκου Αντιγόνη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΛΕΠΤΟΤΗΤΑΣ ΑΛΕΣΗΣ ΤΟΥ ΤΣΙΜΕΝΤΟΥ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΛΕΠΤΟΤΗΤΑΣ ΑΛΕΣΗΣ ΤΟΥ ΤΣΙΜΕΝΤΟΥ Άσκηση 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΛΕΠΤΟΤΗΤΑΣ ΑΛΕΣΗΣ ΤΟΥ ΤΣΙΜΕΝΤΟΥ 1.1 Εισαγωγή αρχή της μεθόδου 1.2 Συσκευή Blaine 1.3 Βαθμονόμηση συσκευής 1.4 Πειραματική διαδικασία 1.1. ΕΙΣΑΓΩΓΗ ΑΡΧΗ ΤΗΣ ΜΕΘΟΔΟΥ Η λεπτότητα άλεσης

Διαβάστε περισσότερα

Υδραυλική Εργαστήριο 4. Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α.

Υδραυλική Εργαστήριο 4. Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α. Υδραυλική Εργαστήριο 4 Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α. Πρόγραμμα Άνοιξη 2014 ΗΜ/ΝΙΑ ΔΕΥΤΕΡΑ ΤΕΤΑΡΤΗ ΠΑΡΑΣΚΕΥΗ ΜΕΛΕΤΗ ΑΣΚΗΣΕΙΣ ΚΑΘΕ ΠΑΡΑΣΚΕΥΗ Part I: ΥΔΡΟΛΟΓΙΚΟΣ ΚΥΚΛΟΣ-ΥΔΡΟΛΟΓΙΚΕΣ

Διαβάστε περισσότερα

Εισαγωγή Διάκριση των ρευστών

Εισαγωγή Διάκριση των ρευστών ΥΔΡΑΥΛΙΚΗ Εισαγωγή στην Υδραυλική Αντικείμενο Πυκνότητα και ειδικό βάρος σωμάτων Συστήματα μονάδων Ιξώδες ρευστού, επιφανειακή τάση, τριχοειδή φαινόμενα Υδροστατική πίεση Εισαγωγή Ρευστομηχανική = Μηχανικές

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ. 1.-Εισαγωγή-Γενικά. 2.-Χαρακτηριστικές καμπύλες. 3.-Επιλογή Αντλίας. 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη. 5.

ΑΝΤΛΙΕΣ. 1.-Εισαγωγή-Γενικά. 2.-Χαρακτηριστικές καμπύλες. 3.-Επιλογή Αντλίας. 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη. 5. ΑΝΤΛΙΕΣ 1.-Εισαγωγή-Γενικά 2.-Χαρακτηριστικές καμπύλες 3.-Επιλογή Αντλίας 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη 5.-Ειδική Ταχύτητα 1.-Εισαγωγή-Γενικά - Μετατροπή μηχανικής ενέργειας σε υδραυλική

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης κάποιου

Διαβάστε περισσότερα

Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης

Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης ΜΜΚ 312 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής Διάλεξη 6 ΜΜΚ 312 Μεταφορά Θερμότητας Κεφάλαιο 4 1 Εισαγωγή Μέχρι

Διαβάστε περισσότερα

ΔΙΕΛΑΣΗ. Το εργαλείο διέλασης περιλαμβάνει : το μεταλλικό θάλαμο, τη μήτρα, το έμβολο και το συμπληρωματικό εξοπλισμό (δακτυλίους συγκράτησης κλπ.).

ΔΙΕΛΑΣΗ. Το εργαλείο διέλασης περιλαμβάνει : το μεταλλικό θάλαμο, τη μήτρα, το έμβολο και το συμπληρωματικό εξοπλισμό (δακτυλίους συγκράτησης κλπ.). ΔΙΕΛΑΣΗ Κατά τη διέλαση (extrusion) το τεμάχιο συμπιέζεται μέσω ενός εμβόλου μέσα σε μεταλλικό θάλαμο, στο άλλο άκρο του οποίου ευρίσκεται κατάλληλα διαμορφωμένη μήτρα, και αναγκάζεται να εξέλθει από το

Διαβάστε περισσότερα

ΠΑΡΑ ΕΙΓΜΑ 3.6-5... 25

ΠΑΡΑ ΕΙΓΜΑ 3.6-5... 25 3 ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ ΣΕ ΣΩΛΗΝΕΣ... 3.1 Γενικά... 3. Είσοδος σε σωλήνα Μήκος εισόδου- Οµοιόµορφη ροή... 3.3 Εξίσωση Darcy-Weisbach Απώλειες ενέργειας εξαιτίας τριβών... 5 3.4 Κατανοµή διατµητικών

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ Α.E.I. ΠΕΙΡΑΙΑ Τ.Τ. Σ.Τ.Ε.Φ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ ΣΤΗΝ ΕΠΙΦΑΝΕΙΑΣΥΜΜΕΤΡΙΚΗΣ ΑΕΡΟΤΟΜΗΣ &ΥΠΟΛΟΓΙΣΜΟΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

Βαλβίδες καταστροφής ενέργειας διάτρητων πλακών

Βαλβίδες καταστροφής ενέργειας διάτρητων πλακών Βαλβίδες καταστροφής ενέργειας διάτρητων πλακών Στα περισσότερα υδραυλικά συστήματα είναι απαραίτητη η χρήση ρυθμιστικών βαλβίδων που σκοπό έχουν τον έλεγχο της παροχής ή της πίεσης υπό την επίδραση μικρών

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Στρέψη κυκλικής διατομής

Διαβάστε περισσότερα