# 1-Berggren trans. MEASUREMENT OF A CIRCLE. 03a0 03b1 0xxx 03c2 03f0 03cd 03f0 03bb 03bf 03c2. 03b2 0384(tonos) 0387(ano teleia)

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1-Berggren trans. MEASUREMENT OF A CIRCLE. 03a0 03b1 0xxx 03c2 03f0 03cd 03f0 03bb 03bf 03c2. 03b2 0384(tonos) 0387(ano teleia)"

## Transcript

1 Use Deja Vu Serif Condensed, 10 point/6 point Direct translation by J. Holly DeBlois *****TITLE***** 1 Title: This is Archimedes' Dimensions of A Circle, ed. Heiberg, pp Greek ΚΥΚΛΟΥ ΜΕΤΡΗΣΙΣ 1-unicode 1-direct trans. Of Circles Measure 1-Berggren trans. MEASUREMENT OF A CIRCLE. *****PROP1***** 1.1 Proposition 1: 0-Greek ά 0-unicode 0-translation a. 0-translation Berggren Proposition Sentence 1: 1-Greek 1-unicode 1-direct translation 1-translation Berggren Πα ς ϰύϰλος 03a0 03b1 0xxx 03c2 03f0 03cd 03f0 03bb 03bf 03c2 All circles [area] measures the same as a right triangle, where distance from th The area of any circle is equal to a right-angled triangle in which one of the sid Stop here. *****PROP2***** 1.2 Proposition 2: 0-Greek β 0-unicode 0-translation b. 0-translation Berggren Proposition 2. 03b2 0384(tonos) 0387(ano teleia) Sentence 1: 1-Greek 1-unicode Ο ϰύϰλος 039f(Greek capital letter omicron) 03f0 03cd 03f0 03bb 03bf 03c2 1-direct translation The circle pros to apo whose diameter squared logon is, on ia pros id. 1-translation Berggren The area of a circle is to the square on its diameter as 11 is to 14. Stop here. Page 1

2 *******PROP3********* Note: I'm anglicizing Gamma as G not C. 1.3 Proposition 3: p262 0-Greek γ 0-unicode 0-direct translation c. 0-translation Berggren Proposition 3. p93 ***** 03b3(Greek small letter Gamma) 0384(tonos) 0387(ano teleia) Section 1: Sentence 1: 1-Greek 1-unicode 1-direct translation p262 Παντος κύκλον ή περίμετρος της διαμέτρον τριπλασίων εστί, και έ ελάσσονι μεν ή έβδόμω μέρει τής διαμέτρον, μείζονι δε ή δέκα έβδ 03a0(capital pi) 03b1(small alpha) 03bd(small nu) 03c4(small tau) 03bf(small omicron) 0384(tonos) 03c2(small final sigma) In any case, the perimeter of the circle to its diameter is triple, but still measur 1-translation Berggren The ratio of the circumference of any circle to its diameter is less than 3 1/7 bu p93 ***** Gist of argument: 1 Consider a circle with center E, point G on the circumference C, radius EG of le 2 Place a vertical line tangent to the circle at G. 3 Let Z be the point on the tangent such that the line from Z to center of circle E 4 Triangle ZEG has a right angle at G and the 30 degree angle at E. 5 Consider the top of the triangle to be angle ZEG, so the (unequal) sides are ZE 6 In right triangle ZGE, designate length ZE as hyp for hypotenuse and length ZG 7 Length opp is one-half of the side of a polygon of six sides that circumscribes th 8 By Euclid VI.3, the ratio of hyp to opp is 2:1 (or cosecant of angle ZEG). 9 Also, the ratio of r to opp is square root 3: 1 (or cotangent of angle ZEG). 10 Note bene: the ratio of opp to r gives the first estimate of C/D as 6*(1:square ro 11 To calculate, with square root of 3 estimated as 1.5, so 1/1.5 = 2/3, so 6*2/3 = 1 12 Now, increase the number of sides of the polygon by bisecting the angle ZEG re 13 As an example, use a circle of radius r (C4-correction was r=153,now r=265/15 14 In the example, hyp/opp=2/1=307/153 and r/opp=square root 3/1=265/153, so 15 Note that these two formulas use all three sides of right triangle ZEG and know 16 To make the first increase in number of sides, bisect angle ZEG. 17 Construct line EH from center E to point H on tangent line. 18 Because H is on the tangent line outside the circle and between Z and G, EH > 19 Let HGE be the new right triangle with right angle HGE and angle HEG = 15 d Page 2

3 20 Consider the top of this triangle to be angle HEG, so the (unequal) sides are HE 21 In right triangle HGE, designate length HE as hyp2 and base length GH as opp2 22 As before, the third side has length r. 23 Now compare (shorter) base GH in right triangle HGE to base GZ of right trian 24 Base GZ is bifurcated by H, giving segments GH and HZ. 25 The angle ZEG was bisected into two equal parts, but segments GH and HZ are 26 By Euclid VI:3, for a bisected angle at the top of a triangle, the segments of the 27 Because sides ratio ZE to r in triangle ZGE has ZE > r, base segments ratio ZH 28 Now use the construction for angle HEG to estimate the polygon side using the 29 Its base GH is one-half of one side of the 12-sided polygon determined by angle 30 We know the radius r which is one side of triangle HGE, but we need to know th 31 We seek to express the length HG in terms of the known ratios hyp/opp (or hyp 32 By Euclid above for the larger right triangle ZGE, unequal sides ratio hyp/r = u 33 Now expand the ratio numerator to include both pieces, keeping the denominat 34 This gives ratio two sides/r = base/hg which is hyp + r/r = base ZG/base segm 35 Next swap two 'middle' components, ie for 1/4=3/12, it is also true that 1/3=4/1 36 This gives ratio two sides/base = r/hg which is hyp + r/zg = r/hg.(c3-clearer 37 We know hyp/zg and r/zg from (C5-addition: line 14) the ratios in the example 38 That means hyp +r/zg = hyp/opp + r/opp = (hyp + r)/opp = ( )/153 = 5 39 Therefore r/hg=571/153, which is larger than the starting ratio r/ 40 Now work to get C/D by flipping the ratio which gives us that the ratio of the ta 41 This gives us a next approximation for the ratio of the circumference to the diam 42 The tangent segment HG is one-half the length of a side of a polygon with 12 si 43 Thus, the second approximation of the ratio of the circumference to the diamete 44 HG/r is 153:571, so what is 12*HG/r? It is ( ): 571 or 1836:571 or This value is less than the first estimate C/D=4 and greater than the proposition 46 Then we repeat for more bisections of the angle at E. Section 2: Sentence 1: 1-Greek 1-unicode 1-direct translation 1-translation Berggren p93 p264 ἔστω ϰύϰλος, ϰαὶ διαμετρος ἡ ΑΓ, ϰαὶ ϰέντρον το Ε, ϰαὶ ἡ ΓΛΖ ἑ So we have this circle, and also diameter AG, and also center E, and also line G I. Let AB be the diameter of any circle, O its centre, AC the tangent at A; and le Diagram 1 Descriptions: Labels The Greek version of the picture with transliterated letters and no lines for the Page 3

4 Z H L G E Greek numbers used by Archimedes: ϚϜϞϠ source: 1=α,2=β,3=γ,4=δ,5=ε,6={digamma,Ϝ, or stigma,ϛ },7=ζ,8=η,9=θ,10=ι 11=ια,...,20=ϰ, 21=ϰα,..., 30=λ,40=μ,50=ν,60=ξ,70=ο,80=π,90=Ϟ 100=ρ,200=σ,300=τ,400=υ,500=φ,600=χ,700=ψ,800=ω,900=Ϡ sampi use iota sub or superscript with letters for =M, and higher numbers put the number in front of M (or on top of it) 27 symbols: numbers 1-10, tenths , hundredths , greek letters plus 3-4 phoen 11-19: ia, ibeta, etc.; : 347 tau mu zeta Sentence 2: 2-Greek 2-unicode ἡ ΕΖ ἂρα πρὸς ΖΓ λόγον ἒχει, ὃν τζ προς ρνγ. 2-direct translation The EZ therefore to ZG surely is, as which 307 to 153. This is the ratio of the length of slant line from center E to point Z Note: there may have been Dimensions of a Triangle written bef It is 2:1 because angle ZEG is 1/3 of a right angle or 30 degrees. W Berggren reverses it: 2-translation Berggren The OA:AC is >265:153...(1), and OC:CA = 306:153...(2). [OA:AC= p94 the horiz. to the vert. the slant to the vertical going down So for this line: The OC:CA = 306:153...(2). [OC:CA=2:1] Sentence 3: 3-Greek ἡ δὲ ΕΓ πρὸς τὴν ΓΖ λόγον ἒχει, ὃν σξέ προς ρνγ. 3-unicode sigma xi epsilon to direct translation But the [other side] EG to [vertical] GZ surely is, as which 265::15 Page 4

5 the horiz. the vert. going up The ratio of the radius EG to tangent segment GZ is square root 3 3-translation Berggren And for this line: The OA:AC is >265:153...(1) [OA:AC=square roo Sentence 4: DRAW NEXT LINE (Bisect 30 degrees, get 15 degrees) 4-Greek 4-unicode 4-direct trans. τετμήσδω οὖν ἡ υπο ZEΓ δίχα τη EH. Bisect therefore the angle ZEG and [draw] EH to divide it [evenly] 4-Berggren trans. First, draw OD bisecting the angle AOC and meeting AC in D Sentence 5: 5-Greek 5-unicode 5-direct trans. 5-Berggren trans. Euclid: VI: 3: έστιν άρα, ώς ή ΖΕ προς ΕΓ, ή ΖΗ προς ΗΓ [καί έναλλάξ καί συνδ Therefore it is, as far ZE to EG, as ZH to HG [and also alternately and also conn Now CO:OA=CD:DA, [Eucl.VI.3] If an angle of a triangle is bisected by a straight line cutting the base, then the segments of the base have the same ratio as the remaining sides of the triangle; and, if segments of the base have the same ratio as the remaining sides of the triangle, then the straight line joining the vertex to the point of section bisects the angle of the triangle. so that [CO+OA:OA=CA:DA, or] CO+OA:CA=OA:AD. Translating letters in picture: ZE:EG = ZH:HG, it's above [ZE + EG:EG = ZG:HG or] it's added to explain ZE + EG:ZG = EG:GH It's covered next sentence Sentence 6: 6-Greek 6-unicode 6-direct trans. ώς άρα συναμφότερος ή ΖΕ, ΕΓ προς ΖΓ, ή ΕΓ προς ΓΗ. As far as therefore ZE connected to EG in ratio to ZG is the same a Therefore same ratios are ZE plus EG in ratio to ZG and EG in rati ie slant side plus radius to vertical as is radius to lower section o 6-Berggren trans. CO+OA:CA=OA:AD. ZE + EG:ZG=EG:GH 1/4=2/8 so 1/2=4/8 Not often used. We know: ZE/ZG=2/1 and EG/ZG=sq.root 3/1. Page 5

6 By the steps above we reach: (ZE +EG)/ZG = EZ/HG. Compute (ZE + EG)/ZG = ZE/ZG + EG/ZG = 2/1+root3/1 = 306/ Sentence 7: 7-Greek ωστε ή ΓΕ προς ΓΗ μείζονα λογον εχει, ήπερ φοά προς ρνγ. 7-unicode EG:GH greater now, bigger as: direct trans. Consequently, GE is to GH all the more so has, more now as 571 to Consequently, the ratio of the radius EG to tangent segment GH is Was 265:153, which is square root 3 to 1, and is now: 571:153 7-Berggren trans. Therefore [by (1) and (2)] OA:AD.571:153...(3). p94 EG:GH Sentence 8: 19,450 measures what? 9,450 measures what? Could the M be 340,000? it's in Bergren! 13,404 measures what? 3,404 measures what? Could M be 20,000? 3,409? Line 68-(7) has:so hyp2 squared/base2 squared = 349,450/23,409 8-Greek 8-unicode 8-direct translation ή ΕΗ άρα προς ΗΓ δυνάμεί λογον εχει, όν Μ ϑ The EH slant line thus from before HG (or ratio EH:HG) strengthe April16: to be considering M in ratio to considering M 3+4 Earlier: with being M (below horizontal) from before M?. In triangle HGE, the hyp2 EH to base2 HG ratio increases to?459/ Longshot: Archimedes is ratioing the hypotenuse hyp2 in triangleh I got 591/153 for the non-doubled base2 in hyp2/base2. So doublin Which gives: 295/153 NO! The answer 591/153 is next sentence. Page 6

7 Earlier: How do you get a squaring from this!?! The Greeks did squaring by drawing squares against the sides of t They then compared the areas and knew the Pythagorean relation So either M is about the complete side of the circumscribed polygo Did the 10,000 M need the number sign? April16: we don't know the 3 and 9's significance either! Not very likely that it is the big numbers for Bergren's squares! 8-translation Berggren Hence OD sq :AD sq [(OA squared + AD squared: AD squared >(57 p94 Is EH sq:hg sq Sentence 9: 9-Greek μήκει άρα, φ? ά ή προς ρνγ. second digit in first number looks like upside down 'h' must be one of Phoenician chars ϚϜϞϠ : 6,6,90,900 stigma, digamma, koppa, sampi CAN WE PROVE THIS IS A KOPPA? It must be!! The ratio of slant line EH to vertical HG is thus lengthened to 591/ 9-unicode 9-direct translation lengthen thus, the from before? 9-translation Berggren so that OD: DA> 591 1/8: (4) p94 see this worked out below at line 68 onward! This is for Sentence 10: next bisection using point theta (called T): 47 To make the second increase in number of sides, bisect angle HEG. 48 Construct line ET from center E to point T on tangent line. 49 Because T is on the tangent line outside the circle and between H and G, ET > 50 Let TGE be the new right triangle with right angle TGE and angle TEG = 7.5 de 51 Consider the top of this triangle to be angle TEG, so the (unequal) sides are TE 52 In right triangle TGE, designate length TE as hyp3 and base length GT as opp3 53 As before, the third side has length r. 54 Now compare (shorter) base GT in right triangle TGE to base GH of right triang 55 Base GH is bifurcated by T, giving segments GT and TH. 56 The angle HEG was bisected into two equal parts, but segments GT and TH are 57 By Euclid VI:3, for a bisected angle at the top of a triangle, the segments of the 58 Because sides ratio HE to r in triangle HGE has HE > r, base segments ratio HT 59 Now use the construction for angle TEG to estimate the polygon side using the 60 Its base GT is one-half of one side of the 24-sided polygon determined by angle 61 We know the radius r which is one side of triangle TGE, but we need to know th 62 We seek to express the length TG in terms of the known ratios hyp/opp (or hyp/ Page 7

8 New part added: 63 By Euclid above for the larger right triangle HGE, unequal sides ratio hyp/r = u 64 Now expand the ratio numerator to include both pieces, keeping the denominat 65 This gives ratio two sides/r = base/tg which is hyp + r/r = base HG/base segme 66 Next swap two 'middle' components, ie for 1/4=3/12, it is also true that 1/3=4/1 67 This gives ratio two sides/base = r/tg which is hyp + r/hg = r/tg. Call basehg 68 We want to know hyp2/base2 and r/tg from the prior data, but so far we only k Earlier, we got: hyp/base ZG=hyp/opp=307/153 and r/base ZG=r/opp=265/153 Using Euclid I.47 (Pythagorean theorem) and the known ratio r/base2=571/153 Consider that hyp2 squared/base2 squared is a ratio of two sides of a triangle. Rewrite hyp2 squared by the sum of squares of the other two sides gives ratio: We know r and base2 so this gives ratio: (571 squared squared)/153 squa So hyp2 squared/base2 squared = 349,450/23,409 so the denominator is squar Taking square root of numerator gives ratio hyp2/base2= 591 1/8 over Before (line 38) we had: (hyp +r)/zg = hyp/opp + r/opp = (hyp + r)/opp = (307 So now we know both r/base2=571/153 and hyp2/base2=591 1/8 over 153 and This is like lines above, which concluded (line 37): We know hyp/zg and r/zg from (C5-addition: line 14) the ratios in the example So we use the new data for the two ratios: Here we use: (hyp2+r)/base2=hyp2/base2 + r/base2 = 591 1/8 over / (Also see pictures for April 16 in notebook) 70 Therefore r/tg=1162/153, which is larger than the starting ratio r 71 Now work to get C/D by flipping the ratio which gives us that the ratio of the ta 72 This gives us a next approximation for the ratio of the circumference to the diam 73 The tangent segment TG is one-half the length of a side of a polygon with 24 sid 74 Thus, the second approximation of the ratio of the circumference to the diamete 75 TG/r is 153:1162, so what is 24*TG/r? It is ( ): 1162 or 3672:1162 or 3 76 This value is less than the second estimate(3 1/5), less than first estimate C/D= 77 Then we repeat for more bisections of the angle at E. So do the Greek numbers match? Sentence 9 yes, but sentence Sentence 10: DRAW NEW LINE. 10-Greek πάλιν δίχα ἡ υπο ΗΕΓ τή ΕΘ. 10-unicode 10-direct translation Again, once more, on the other hand, bisect as far as angle HEG b 10-translation Berggren Secondly, let OE bisect the angle AOD, meeting AD in E. p94 ET HEG [Then DO:OA=DE:EA, so that DO+OA:DA = OA:AE] Page 8

9 Sentence 11: Sheet1 11-Greek διά τά αύτα άρα ή ΕΓ προς ΓΘ μείζονα λογον εχει, 11-unicode 11-direct translation Because the same ratio EG: GT all the moreso, lengthens so is translation Berggren Therefore OA:AE[>(591 1/ ): 153, by (3) and (4)] p94 >1162 1/8: (5) EG:GT Both are radius to new GT base Sentence 12: 12-Greek ή ΘΕ άρα προς ΘΓ μείζονα λογον εχει, ή όν 12-unicode 12-direct translation The TE ratio from before TG all the moreso has, a being 1172 to 1 [It follows that OE sq: EA sq >{(1162 1/8 sq sq}: 153 sq >( / ): > /64: 23409] 12-translation Berggren Thus OE:EA > /8: (6) p95 ET:TG hyp to new base Per Berg we now have the two ratios needed: the r/gt AND the wi Sentence 13: DRAW NEW LINE. 13-Greek έτι δίχα ἡ υπο ΘΕΓ τη ΕΚ. 13-unicode 13-direct translation Moreover, bisect the angle TEG with line EK. 13-translation Berggren Thirdly, let OF bisect the angle AOE and meet (vertical segment) A p Sentence 14: 14-Greek 14-unicode ή ΕΓ άρα προς ΓΚ μείζονα λογον εχει, ή όν βτλδ δ προς ρνγ. Page 9

10 14-direct translation Because the same ratio EG: GK (radius to new base) all the moreso 14-translation Berggren We thus obtain the result [corresponding to (3) and (5) above] that p95 OA:AF [>(1162 1/ /8): 153] EG:GK > >2334 1/4: (7) [Therefore OF sq:fa sq >{(2334 1/4)sq sq}:153 sq > /16: ] Sentence 15: 15-Greek 15-unicode could get old theta char from ή ΕΚ άρα προς ΓΚ μείζονα, ή όν βτλθ δ προς ρνγ. 15-direct translation Because the same ratio EK: GK all the moreso, is 2339 to 153. slant line EK to vertical seg. GK 15-translation Berggren Thus, OF:FA >2339 1/4: (8) p95 EK : KG Sentence 16: DRAW NEW LINE. 16-Greek έτι δίχα ἡ υπο ΚΕΓ τη ΛΕ. 16-unicode 16-direct translation Moreover, bisect the angle KEG with line LE. 16-translation Berggren Fourthly, let OG bisect the angle AOF, meeting AF in G. p Sentence 17: Note: there is one character that is only approximate! the character looks like L but the horiz is wiggly. must be one of Phoenician chars ϚϜϞϠ : 6,6,90,900 stigma, digamma, koppa, sampi 17-Greek ή ΕΓ άρα προς ΛΓ μείζονα [μήκει] λογον εχει, 17-unicode 17-direct translation Because the same ratio EG: LG all the moreso, is greater being 4,6 EG horizontal to LG vertical segment (smallest above ho Page 10

11 17-translation Berggren We have then OA:AG [>(2334 1/ /4): 153, by means of (7) p95 EG:GL >4673 1/2: Sentence 18: 18-Greek 18-unicode 18-direct translation ἐπεὶ οὖν ἡ ὑπὸ ΖΕΓ τρίτον οὖσα ὀρϑᾔς τέτμηται τετράϰις epei?? consequently, the first angle ZEG, one-third of a right angle, bise 18-translation Berggren p Sentence 19: 19-Greek 19-unicode 19-direct translation 19-translation Berggren To do it out: 1/3 of 90 deg with 4 bisections: 1/6 1/12 1/24 1/48 of 90 deg or go Now the angle AOC, which is one-third of a right angle, has been bisected four times, and it follows that angle AOG = 1/48 (of a right angle). Angle GEL ϰείσϑω οὖν αὐτἤ ίση προς τὦ Ε ἡ ὑπὸ ΓΕΜ. Make the self same angle to E as angle GEM (dips below horizonta Make the angle AOH on the other side of OA equal to the angle AO p95 and let GA produced meet OH in H Sentence 20: 20-Greek 20-unicode 20-direct translation 20-translation Berggren p95 ἡ ἄρα ὑπὸ ΛΕΜ ὀρϑᾔς ἐστι ϰδ ʹ And angle LEM is 24 to 3 of a right angle. Then angle GOH= 1/24 (a right angle) Sentence 21: 21-Greek 21-unicode 21-direct translation 21-translation Berggren p95 must be one of Phoenician chars ϚϜϞϠ : 6,6,90,900 stigma, digamma, koppa, sampi ϰαὶ ἡ ΛΜ ἄρα εὐϑεἴα τὸὕ περί τὸν κύκλον ἐστι πολυγώνου πλευρὰ Thus LM straight side to go around the circle is polygon side worth Thus GH is one side of a regular poloygon of 96 sides circumscribed to the given circle. Page 11

12 Sentence 22: 22-Greek Sheet1 ἐπεὶ οὖν ἡ ΕΓ προς τὴν ΓΛ ἐδείχϑη μείζονα λογον τή ς με ν ΕΓ διπλἥ ἡ ΑΓ, τή ς δὲ ΓΛ διπλασίων ἡ ΛΜ, ϰαὶ ἡ ΑΓ περίμετρον μείζονα λογον εχει, ήπερ δχογ προς Μ δχπη ʹ. 22-unicode 22-direct translation Consequently, the radius EG in ratio to the GL all the more so is w then double radius EG giving diameter AG, then GL (the half side) and the ratio of the diameter AG to the 96 sided perimeter of polyg 4,673 to 14,688. it follows that AB:(perimeter of polygon of 96 sides)[>4673 1/2:15 22-translation Berggren And, since OA:AG > /3 : 153, p95 while AB:2OA, GH = 2AG. >4673 1/2: Sentence 23: 23-Greek 23-unicode 23-direct translation και ε στίν τριπλασία, και υ περέχουσιν χξζʹ, But this is threefold, exceeding it by ratio of 667 to 4,673 less than 667/4673=.1427 (remainder 1729/4673) whereas 1/7= /7. 23-translation Berggren But 14688/4673 ½ = /2/4673 ½ = [< /2/4672 ½ p96 <3 1/ Sentence 24: 24-Greek 24-unicode 24-direct translation 24-translation Berggren p95 ὤστε τὸ πολυγώνον τὸ περὶ τὸν κύκλον της διαμέτρου ε στί τριπλ Thus the polygon to around the circle of its diameter is threefold b no sentence- some subtleties are being argued? Page 12

13 Sentence 25: 25-Greek 25-unicode 25-direct trans. 25-Berggren trans. ***** Section 3: Sentence 1: 1-Greek 1-unicode 1-direct trans. 1-Berggren trans. Sheet1 ἡ τοὔ κύκλου ἄρα περίμετρος πολὺ μἂλλον ἐλάσσων ἐστὶν ἤ τριπ Therefore the circumference of the circle is much more less than t Therefore the circumference of the circle(being less than the perimeter of the polygon) is a fortiori less than 3 1/7 times the diameter AB. p266 ἔστω ϰύϰλος, ϰαὶ διαμετρος ἡ ΑΓ, ἡ ὑπὸ ΒΑΓ τρίτον ὀρϑᾔς. (Archimedes assumes that angle GBA is the right angle.) So we have this circle, and also diameter AG, also of the angle BAG II. Next let AB be the diameter of a circle, and let AC meeting the circle in C, make the angle CAB equal to one-third of a right angle. Join BC Sentence 2: B right angle adj=ab GB=opp 30 deg angle G A hyp=ag 2-Greek 2-unicode 2-direct trans. ἡ AB ἄρα πρὸς BΓ ἐλάσσονά λόγον ἒχει, ἡ ὃν ατναʹ προς ψπ [ἡ δὲ AΓ ἄρα πρὸς ΓB, ὃν αφξʹ προς ψπʹ]. The ratio of AB to BG (adj side to opp side) is on the lesser side tha [the ratio of AG to GB (hyp to opp side) being 156 to 780]. SHOULD BE Berggren trans. Then AC:CB [=root 3:1] <1351:780. ***** Section 4: p268 Page 13

14 Sentence 1: 1-Greek 1-unicode 1-direct trans. 1-Berggren trans Sentence 2: 2-Greek 2-unicode 2-direct trans. 2-Berggren trans Sentence 3: 3-Greek 3-unicode 3-direct trans. 3-Berggren trans Sentence 4: 4-Greek 4-unicode 4-direct trans. 4-Berggren trans Sentence 5: 5-Greek 5-unicode 5-direct trans. 5-Berggren trans. Sheet1 δίχα ἡ υπο BAΓ τή AΗ. Divide or bisect as far as angle BAG by line HA (eta alpha). First, let AD bisect the angle BAC and meet BC in d and the circle ἐπε ὶ ίση ἐστιν ἡ υπο BAΗ τή υπο ΗΓB, ἀλλἁ ϰαὶ ή υπο ΗΓB τή ἱπο B H x G x x A The same are angles BAH and HGB or HAG (15 degrees) and angles HGB and HAG are the same. See below. ϰαὶ ϰοινή ἡ υπο AΗΓ ὀρϑᾔ. The common angle AHG is a right angle. See below. ϰαὶ τρἱτη ἄρα ἡ υπο ΗZΓ τρἱτη τή υπο AΓΗ ίση. The big angle HZG is the same as the big angle AGH. Then angle BAD=angle dac=angle dbd, and angles at D, C are bo GAH = ZAB = ZGH,.. H,B ἰσογώνιον ἄρα τὸ AΗΓ τ ὤ ΓΗZ τρἱγώνω. Similar are the AHG to GHZ triangles. It follows that the triangles ADB, [AC d], BD d are similar. (AHG, [ABZ], GHZ) Page 14

15 Sentence 6: 6-Greek 6-unicode 6-direct trans. 6-Berggren trans. ἐ στιν ἄ ρα, ώς ή AΗ προς ΗΓ, ή ΓΗ προς ΗZ, It follows that the ratio of AH to HG, GH to HZ and AG to GZ are th Therefore AD:DB = BD:Dd [=AC:Cd]...=AB:Bd [Eucl. VI. 3]...=AB + AC: Bd + Cd...=AB + AC: BC or BA + AC : BC = AD:DB Sentence 7: 7-Greek 7-unicode 7-direct trans. 7-Berggren trans. ἀλλ ὡς ἡ ΑΓ πρὸς ΓZ, ϰαὶ συναμφοτερος Change then the AG (diameter) in ratio to GZ (lower half of base), but together the GAB (central angle 30 deg) in ratio to BG (ba Haven't got to above yet! Sentence 8: 8-Greek ϰαὶ συναμφοτερος ἄρα ή ΒΑΓ προς ΒΓ, ή 8-unicode 8-direct trans. But together angle BAG (30 deg) in ratio to BG (base), and AH ( 8-Berggren trans. Haven't got to above yet still! Sentence 9: 9-Greek 9-unicode 9-direct trans. 9-Berggren trans. διὰ τοῦτο οὐν ή ΑΗ προς τὴν ΗΓ. for this therefore the AH (new line) to the HG (its base). Haven't got to above yet still! Sentence 10: 10-Greek ἐ λάσσονά λόγον ἒχει, ἤπερ βϡια προς ψπ ʹ, Page 15

16 10-unicode 10-direct trans. 10-Berggren trans Sentence 11: 11-Greek 11-unicode 11-direct trans. 11-Berggren trans. Sheet1 ἡ δὲ ΑΓ προς τὴν ΓΗ ἐλάσσονά, ἢ ὃν γιγ δ προς ψπʹ. Being on the lesser side, Therefore AD:DB < 2911: 780 (1)..(p97) (and from above: = BD δίχα ἡ υπο ΓAΗ τή AΘ Sentence 12: 12-Greek 12-unicode 12-direct trans. 12-Berggren trans Sentence 13: 13-Greek 13-unicode 13-direct trans. 13-Berggren trans Sentence 14: 14-Greek 14-unicode 14-direct trans. 14-Berggren trans Sentence 15: 15-Greek 15-unicode 15-direct trans. 15-Berggren trans Sentence 16: 16-Greek 16-unicode 16-direct trans. 16-Berggren trans. Page 16

17 Sentence 17: 17-Greek 17-unicode 17-direct trans. 17-Berggren trans. Sheet Sentence 18: 18-Greek 18-unicode 18-direct trans. 18-Berggren trans Sentence 19: 19-Greek 19-unicode 19-direct trans. 19-Berggren trans Sentence 20: 20-Greek 20-unicode 20-direct trans. 20-Berggren trans Sentence 21: 21-Greek 21-unicode 21-direct trans. 21-Berggren trans Sentence 22: 22-Greek 22-unicode 22-direct trans. 22-Berggren trans. ***** Section 5: Sentence 1: 1-Greek 1-unicode 1-direct trans. p270 Page 17

18 1-Berggren trans. Sheet1 Thus the ratio of the circumference to the diameter is < 3/1/7 but 1.4 Words Used: Greek: English: ἀλλ change ἀλλἁ other, else, rest, next αρα then therefore so then (seems like it is 'ratio') αύτα same αὐτἤ self δε διά but and (text has δὲ) for, because διπλἥ double διχα form of divide δυνάμεί strengthen ἔβδομον ἐλάσσονά seventh less than (elasson) ἐλάττονά less than (elasson) ίση ἐστιν έναλλάξ alternately ἐπε ὶ εχει ἔχοντος, ἔχο has to be worth ἐστι έστω albeit (the text has a different accent) έστω v.i. to be έτι still, moreover εὐϑεἴα straight, direct ήπερ hyper, more ἱπο ίση same και ϰείσϑω λογον ϰοινή μἂλλον μείζονα μείζονα λογον μέρει μήκει ουν ον and also (the text has different kappa and accent) not found not found (another said man of his word, so surely?) common more, rather, to some extent greater all the more so portion lengthen therefore, consequently as which or being, creature Page 18

20 Arch68v r Arch69r 177r-172v Sheet1 Page 20

21 int/6 point Character map Group by unicode subrange Greek A Circle, ed. Heiberg, pp 258,260,262,264,266,268,270 (Greek) and alternating following pages in Latin. Remaining questions: *In Prop 3, Section 4, s2: 156 should be 1560 How do Greeks do zero for *10?? ight triangle, where distance from the center is the same as one side from the right angle, and the perimeter is same as base. gled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference, of the circle. ared logon is, on ia pros id. iameter as 11 is to 14. Page 21

22 αμέτρον τριπλασίων εστί, και έτι υπερέχει αμέτρον, μείζονι δε ή δέκα έβδομηκοστομόνοις. f(small omicron) 0384(tonos) 03c2(small final sigma) 03f0 03cd 03f0 03bb 03bf 03c2 ts diameter is triple, but still measures more by on the low side a seventh of its diameter, by on the high side ten seventifirsts. to its diameter is less than 3 1/7 but greater than 3 10/ /7=3 10/70, 10/71 sts is less. the circumference C, radius EG of length r and diameter D. the line from Z to center of circle E creates an angle ZEG of 30 deg. e 30 degree angle at E. ZEG, so the (unequal) sides are ZE and GE and the base is GZ. as hyp for hypotenuse and length ZG as opp for side opposite central angle ZEG. The third side length is r. gon of six sides that circumscribes the circle of radius r. 1 (or cosecant of angle ZEG). 1 (or cotangent of angle ZEG). rst estimate of C/D as 6*(1:square root 3) and is larger than true C/D. ed as 1.5, so 1/1.5 = 2/3, so 6*2/3 = 12/3 = 4, we get C/D = 4. olygon by bisecting the angle ZEG repeatedly, increasing opp/r, bettering C/D. correction was r=153,now r=265/153=1.7) and right triangle ZEG with hyp and opp as the other sides. r/opp=square root 3/1=265/153, so r/opp is less than hyp/opp as expected for the circumscribed polygon case. sides of right triangle ZEG and knowing r means all lengths of sides are known. es, bisect angle ZEG. on tangent line. e circle and between Z and G, EH > r and EH < hyp from triangle ZEG. ht angle HGE and angle HEG = 15 degrees. Page 22

23 e HEG, so the (unequal) sides are HE and GE and the base is GH. as hyp2 and base length GH as opp2 (side opposite top angle HEG). iangle HGE to base GZ of right triangle ZGE. (C1-corrected) ts GH and HZ. l parts, but segments GH and HZ are not equal. top of a triangle, the segments of the base have the same ratio as the lengths of the sides. has ZE > r, base segments ratio ZH to HG will have ZH > HG. estimate the polygon side using the new (shorter) right triangle HGE. 2-sided polygon determined by angle HEG being 15 degrees. triangle HGE, but we need to know the length of HG. (C2-shortened) of the known ratios hyp/opp (or hyp/base) and r/opp (or r/base). e ZGE, unequal sides ratio hyp/r = unequal base segments ratio ZH/HG. both pieces, keeping the denominator the same. ch is hyp + r/r = base ZG/base segment HG. 1/4=3/12, it is also true that 1/3=4/12, so use that! ch is hyp + r/zg = r/hg.(c3-clearer to write base instead of ZG?) on: line 14) the ratios in the example: hyp/zg=hyp/opp=307/153 and r/zg=r/opp=265/153. = (hyp + r)/opp = ( )/153 = 571/153. larger than the starting ratio r/zg=265/153. hich gives us that the ratio of the tangent segment HG to the radius r is smaller than before. ratio of the circumference to the diameter as follows. gth of a side of a polygon with 12 sides and r is half the diameter D. o of the circumference to the diameter is 12*HG/r ): 571 or 1836:571 or 3 123/571 or 3 1/5 approximately. D=4 and greater than the proposition 3 result 3 1/7 for the circumscribed case. ϰαὶ ϰέντρον το Ε, ϰαὶ ἡ ΓΛΖ ἑφαπτομένη, ϰαὶ ἡ ὑπὸ ΖΕΓ τρίτον ὀρϑᾔς. G, and also center E, and also line GLZ tangent, and also angle ZEG a third of a right angle. s centre, AC the tangent at A; and let the angle AOC be one-third of a right angle. literated letters and no lines for the circle's The Berggren edge, diameter version or of tangent: the picture with transliterated letters and no lines for the circle's edg Page 23

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

### Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

### Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

### LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

### Code Breaker. TEACHER s NOTES

TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

### ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS

ΟΜΗΡΟΥ ΙΛΙΑΔΑ ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS www.scooltime.gr [- 2 -] The Project Gutenberg EBook of Iliad, by Homer This ebook is for the use of anyone anywhere at no cost and with almost no restrictions

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Advanced Subsidiary Unit 1: Understanding and Written Response

Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

### Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

### department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

### ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

### Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

### 1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

### FSM Toolkit Exercises Part II

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών Αναπληρωτής Καθηγητής: Αλέξανδρος Ποταμιάνος Ονοματεπώνυμο: Α. Μ. : ΗΜΕΡΟΜΗΝΙΑ: ΤΗΛ 413 : Συστήματα Επικοινωνίας

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### 14 Lesson 2: The Omega Verb - Present Tense

Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

### Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### Ian the Thorpedo Ian Thorpe (προτείνεται να διδαχθεί στο Unit 7, Lesson 1, Αγγλικά Στ Δημοτικού)

Ian the Thorpedo Ian Thorpe (προτείνεται να διδαχθεί στο Unit 7, Lesson 1, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες Εκπαιδευτικό Υλικό Οι µαθητές επιδιώκεται:

Διαβάστε περισσότερα

### Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference

Διαβάστε περισσότερα

### ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,

Διαβάστε περισσότερα

### Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1

Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1 Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 2 Dervish Abu Bekr, «Παραμύθια τησ Χαλιμϊσ, τομ. Α» Ιούνιοσ 2013 Φωτo εξωφύλλου: Βαςιλεύα Αςπαςύα Μαςούρα Επιμϋλεια ϋκδοςησ:

Διαβάστε περισσότερα

### King James Bible Greek New Testament Word List

King James Bible Greek New Testament Word List Extracted From The Supercomputer-Compiled Textus Receptus CSR9 By Dr. Michael J. Bisconti Copyright 2013 Dr. Michael J. Bisconti The King James Bible Greek

Διαβάστε περισσότερα

### Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author

Διαβάστε περισσότερα

### «Έντυπο και ψηφιακό βιβλίο στη σύγχρονη εποχή: τάσεις στην παγκόσμια βιομηχανία».

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι- Κεφαλληνίας, Ελλάδα 28100, +30

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### Calculating the propagation delay of coaxial cable

Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

### ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε.

ΔΗΜΟΣΙΕΥΣΗ Νο 95 ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε. (2003). Το πρόβλημα του νερού στη Θεσσαλία και προτάσεις για την αντιμετώπισή του στα πλαίσια της αειφόρου ανάπτυξης.

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

### Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV 10 December 2013 I get up/i stand up I wash myself I shave myself I comb myself I dress myself Once (one time) Twice (two times) Three times Salary/wage/pay Alone/only

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΒΑΛΚΑΝΙΚΩΝ, ΣΛΑΒΙΚΩΝ & ΑΝΑΤΟΛΙΚΩΝ ΣΠΟΥΔΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΒΑΛΚΑΝΙΚΩΝ, ΣΛΑΒΙΚΩΝ & ΑΝΑΤΟΛΙΚΩΝ ΣΠΟΥΔΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΠΟΛΙΤΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ ΤΗΣ ΝΟΤΙΟΑΝΑΤΟΛΙΚΗΣ ΕΥΡΩΠΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ "Η ΕΛΛΑΔΑ ΚΑΙ ΤΑ

Διαβάστε περισσότερα

### LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG 4 March 2014 Family η οικογένεια a/one(fem.) μία a/one(masc.) ένας father ο πατέρας mother η μητέρα man/male/husband ο άντρας letter το γράμμα brother ο

Διαβάστε περισσότερα

### ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

### Nuclear Physics 5. Name: Date: 8 (1)

Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

### 3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ... 64 3.4.1 Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ... 64 3.5 οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ

2 Πεξηερόκελα Δονεηήνζμ πζκάηςκ... 4 Δονεηήνζμ δζαβναιιάηςκ... 5 Abstract... 6 Πενίθδρδ... 7 Δζζαβςβή... 8 ΘΔΩΡΗΣΙΚΟ ΜΔΡΟ... 12 Κεθάθαζμ 1: Θεςνδηζηέξ πνμζεββίζεζξ βζα ηδκ ακζζυηδηα ζηδκ εηπαίδεοζδ...

Διαβάστε περισσότερα

### Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

### Συνεργασία Μουσείου και Σχολείου. Ο ρόλος των Μουσειοπαιδαγωγών ΕΠΙΣΤΗΜΟΝΙΚΗ ΑΝΑΚΟΙΝΩΣΗ 1

ΕΠΙΣΤΗΜΟΝΙΚΗ ΑΝΑΚΟΙΝΩΣΗ 1 Συνεργασία Μουσείου και Σχολείου Ο ρόλος των Μουσειοπαιδαγωγών Ράπτου Θεοδοσία δασκάλα- μουσειοπαιδαγωγός αποσπασμένη στο Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πανεπιστημίου

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5

Μ Ρ : 0 9 / 0 1 / 2 0 1 6 Ρ. Ρ Ω. : 7 Λ Γ Μ - Λ Γ Μ Μ Η Γ Δ Κ Δ Μ Β Ρ Υ 2 0 1 5 Δ Γ Ρ Ϋ Λ Γ Θ Δ ΚΔ Μ Β Δ Β Ω Θ Δ Δ Ρ Υ Θ Δ 0111 Χ / Γ Δ Θ Μ Θ Δ Ρ Ω Κ - - - 0112 Χ / Γ Λ Ρ Γ Κ Δ 2 3. 2 1 3. 0 0 0, 0 0-2

Διαβάστε περισσότερα

### MATH 150 Pre-Calculus

MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

### Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### þÿ»±íº Â»¹ ÁÃ Â : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼

Neapolis University HEPHAESTUS Repository School of Health Sciences http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ»±íº Â»¹ ÁÃ Â : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼ þÿ Ä Æ Á Â, Á ÃÄ Â þÿ ÁÌ³Á±¼¼±

Διαβάστε περισσότερα

### Τ.Ε.Ι ΠΕΙΡ ΑΙΑ ΠΑΡΆΡΤΗΜΑ ΣΠΕΤΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓ ΑΣΙΑ

Τ.Ε.Ι ΠΕΙΡ ΑΙΑ ΠΑΡΆΡΤΗΜΑ ΣΠΕΤΣΩΝ Τ. Ε. Ψ. 3J ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓ ΑΣΙΑ ΤΙΤ ΛΟΣ ΠΤΥΧΙΑΚΗΣ ΕΡΓ ΑΣΙΑΣ: «Τάσεις και Προοπτικέ ς του Εθελοντικού

Διαβάστε περισσότερα

### LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV 4 February 2014 Somewhere κάπου (kapoo) Nowhere πουθενά (poothena) Elsewhere αλλού (aloo) Drawer το συρτάρι (sirtari) Page η σελίδα (selida) News τα νέα (nea)

Διαβάστε περισσότερα

### Chapter 2 * * * * * * * Introduction to Verbs * * * * * * *

Chapter 2 * * * * * * * Introduction to Verbs * * * * * * * In the first chapter, we practiced the skill of reading Greek words. Now we want to try to understand some parts of what we read. There are a

Διαβάστε περισσότερα

### VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!!

VBA ΣΤΟ WORD Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! Μου παρουσιάστηκαν δύο θέματα. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Εγραφα σε ένα αρχείο του Word τις

Διαβάστε περισσότερα

### Συντακτικές λειτουργίες

2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

### KEPKYPA Â Î Û Â È KEPKYPA

KEPKYPA Â Î Û Â È KEPKYPA ISBN: 978-960-9490-06-1 Copyright: Εκδόσεις ΚΕΡΚΥΡΑ Α.Ε. Economia PUBLISHING 1η έκδοση, Νοέµβριος 2010 Ελεύθερη έµµετρη απόδοση: ηµήτρης Β. Χρυσοβιτσιώτης Εικονογράφηση: Ειρήνη

Διαβάστε περισσότερα

### (1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

### ETOΣ 16o - AP. ΦΥΛΛΟΥ 61 - ΑΠΡΙΛΙΟΣ-ΜΑΪΟΣ-ΙΟΥΝΙΟΣ 2010 - AIOΛOY 100 AΘHNA, T.θ. 4043 - T.K. 102 10 - (AΘHNA) ΕMAIL: lynistaina@gmail.

Αιόλου 100 682 κωδ. αρ. 4666 ΛΥΝΙΣΤΙΑΝΙΚΗ ΦΩΝΗ Όργανο επικοινωνίας Συνδέσμου Αποδήμων Λυνιστιάνων Ολυμπίας ETOΣ 16o - AP. ΦΥΛΛΟΥ 61 - ΑΠΡΙΛΙΟΣ-ΜΑΪΟΣ-ΙΟΥΝΙΟΣ 2010 - AIOΛOY 100 AΘHNA, T.θ. 4043 - T.K. 102

Διαβάστε περισσότερα

### ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ Π Τ Υ Χ Ι Α Κ Η Ε Ρ Γ Α Σ Ι Α: Ο ΡΟΛΟΣ ΤΗΣ ΣΥΝΑΙΣΘΗΜΑΤΙΚΗΣ ΝΟΗΜΟΣΥΝΗΣ ΣΤΗΝ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΗΓΕΣΙΑ ΕΠΙΜΕΛΕΙΑ

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### περίπτωση της ΖΑΝΑΕ Α.Ε.

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Εμπορίας Και Διαφήμισης (MARKETIΝG) «ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ» ΘΕΜΑ: Διεθνής δραστηριοποίηση μιας επιχείρησης εν μέσω κρίσης: Η περίπτωση της ΖΑΝΑΕ

Διαβάστε περισσότερα

### τεύχος #20, Οκτώβριος#Νοέμβριος#Δεκέμβριος 2009, περιοδικό των Μεγάλων Οδηγών

τεύχος #20, Οκτώβριος#Νοέμβριος#Δεκέμβριος 2009, περιοδικό των Μεγάλων Οδηγών [ ] Ματούλα Βελιανίτη, Έφορος Κλάδου Μεγάλων Οδηγών 2004-2009 20 τεύχη κυκλοφορίας συμπληρώνει ο Τρόπος Ζωής. Ήταν πριν από

Διαβάστε περισσότερα

### Door Hinge replacement (Rear Left Door)

Door Hinge replacement (Rear Left Door) We will continue the previous article by replacing the hinges of the rear left hand side door. I will use again the same procedure and means I employed during the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ

ΤΑ Π ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ Εφη μ ε ρ ί δ α τ ο υ τ μ ή μ α τ ο ς Β τ ο υ 1 9 ου Δ η μ ο τ ι κ ο ύ σ χ ο λ ε ί ο υ Η ρ α κ λ ε ί ο υ Α ρ ι θ μ ό ς φ ύ λ λ ο υ 1 Ι ο ύ ν ι ο ς 2 0 1 5 «Γ λ υ κ ό κ α λ ο κ α ι ρ

Διαβάστε περισσότερα

### Adjectives. Describing the Qualities of Things. A lesson for the Paideia web-app Ian W. Scott, 2015

Adjectives Describing the Qualities of Things A lesson for the Paideia web-app Ian W. Scott, 2015 Getting Started with Adjectives It's hard to say much using only nouns and pronouns Simon is a father.

Διαβάστε περισσότερα

### ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης

ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Χρηστίδης Δ. Ανωγιάτη Χ. Κοκκολάκη Α. Λουράντου Α. Χασάπης Φ. Σταυροπούλου Ε. Αλωνιστιώτη Δ. Καρκασίνας Α. Μαραγκουδάκης Θ. Κεφαλάς Γ. Μπαχά Α. Μπέζα Γ. Μποραζέλης Ν. Χίνης Π. Λύτρα

Διαβάστε περισσότερα

### *2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 1 hour 30 minutes

Διαβάστε περισσότερα

### ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΓΕΩΠΟΝΙΑΣ, ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΓΕΩΠΟΝΙΑΣ ΤΟΜΕΑΣ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ Πτυχιούχου Γεωπόνου Κατόχου Μεταπτυχιακού

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

### «ΣΧΕΔΙΑΣΜΟΣ ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΟΛΙΤΙΚΗ ΤΟΥ ΤΟΥΡΙΣΜΟΥ»

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΟΛΙΤΙΚΗ ΤΟΥ ΤΟΥΡΙΣΜΟΥ» ΔΙΙΠΛΩΜΑΤΙΙΚΗ ΕΡΓΑΣΙΙΑ ΜΕ ΘΕΜΑ:: ΤΟΥΡΙΙΣΜΟΣ ΚΑΙΙ ΕΠΟΧΙΙΚΟΤΗΤΑ Η ΠΕΡΙΙΠΤΩΣΗ ΤΗΣ ΧΑΛΚΙΙΔΙΙΚΗΣ ΕΙΙΣΗΓΗΤΗΣ:: ΠΑΜΛΙΙΔΗΣ ΧΡΗΣΤΟΣ((Α..Μ.211//03//004))

Διαβάστε περισσότερα

### Risk! " #\$%&'() *!'+,'''## -. / # \$

Risk! " #\$%&'(!'+,'''## -. / 0! " # \$ +/ #%&''&(+(( &'',\$ #-&''&\$ #(./0&'',\$( ( (! #( &''/\$ #\$ 3 #4&'',\$ #- &'',\$ #5&''6(&''&7&'',\$ / ( /8 9 :&' " 4; < # \$ 3 " ( #\$ = = #\$ #\$ ( 3 - > # \$ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Διαβάστε περισσότερα

### ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ!

ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ! ΘΥΜΑΡΑ Μ. Μ. 11 Ο Γυμνάσιο Πειραιά, Δ/νση Β/Θμιας Εκπ/σης Πειραιά e-mail: margthym@yahoo.gr ΠΕΡΙΛΗΨΗ Το πρόγραμμα της διαμόρφωσης των σχολικών

Διαβάστε περισσότερα

### UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα