Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο"

Transcript

1 Κινητές επικοινωνίες Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο 1

2 ΓΕΝΙΚΑ Ο αριθμός των κλήσεων σε εξέλιξη μεταβάλλεται με έναν τυχαίο τρόπο καθώς κάθε κλήση ξεχωριστά αρχίζει και τελειώνει με τυχαίο τρόπο. Κατά τη διάρκεια της νύχτας υπάρχει γενικά μικρότερη δραστηριότητα Αύξηση της κίνησης παρατηρείται προς το μέσο του πρωινού (επαγγελματικές δραστηριότητες), το απόγευμα και το βράδυ (κοινωνικές δραστηριότητες). Παίζει ρόλο επίσης το γεωγραφικό μέρος που εξετάζουμε (πόλη ή επαρχία), καθώς και η εποχή του χρόνου Κλήσεις σε εξέλιξη 2 Χρόνος σε min

3 ΩΡΕΣ ΑΙΧΜΗΣ Ώρα αιχμής ή ώρα μέγιστης απασχόλησης: Καλείται η περίοδος μιας ώρας που αντιστοιχεί στην αιχμή του φόρτου κίνησης Το πλήθος των αναγκαίων καναλιών εξαρτάται από τη μεταφερόμενη κίνηση και πρέπει να είναι επαρκές για να καλύψει τις ανάγκες που προκύπτουν κατά την ώρα αιχμής Σε ώρες μη αιχμής το μεγαλύτερο ποσοστό του εξοπλισμού παραμένει αδρανές Οι τηλεπικοινωνιακοί οργανισμοί με σκοπό την ανακατανομή της κίνησης και κατ επέκταση τη μείωση των δαπανών δίνουν κίνητρα στους πελάτες τους (π.χ. φθηνότερες κλήσεις τις βραδινές ώρες) 3

4 ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ ΤΗΣ ΚΙΝΗΣΗΣ Ένταση κίνησης ήαπλάκίνηση: Καθορίζεται από τον μέσο αριθμό κλήσεων που βρίσκονται σε εξέλιξη Η μονάδα κίνησης καλείται erlang (E) Σε μία ομάδα ζευκτικών κυκλωμάτων, ο μέσος αριθμός των κλήσεων εν εξελίξει εξαρτάται: από το ρυθμό άφιξης των κλήσεων απότημέσηδιάρκειάτους Χρόνος κράτησης: Διάρκεια μιας κλήσης (Διάρκεια κατάληψης ενός ζευκτικού κυκλώματος). Ζευκτικό κέντρο Ε 1Ε 1Ε 3 0 Τ Χρόνος Ελεύθερο Απασχολημένο 4

5 ΟΡΙΣΜΟΣ ΤΟΥ ERLANG Μία ομάδα ζευκτικών κυκλωμάτων διακινεί κίνηση, η οποία δίνεται από τη σχέση: A = C h Α = κίνηση σε erlangs T C = μέσοςόροςαφίξεωνκλήσεωνκατάτηδιάρκειατ h = μέση διάρκεια κλήσεων Ηκίνησησεerlangs ισούται με το μέσο αριθμό των κλήσεων που φτάνουν κατά τη διάρκεια μίας περιόδου ίσης με τη μέση διάρκεια των κλήσεων (αν T = h τότε A = C) (καλείται προσφερόμενη κίνηση) Πρέπει Α 1 για ένα μόνο κανάλι, αφού αυτό δεν μπορεί να διακινεί περισσότερες από μία κλήσεις Τότε η κίνηση είναι ένα κλάσμα του erlang ίσο με το μέσο ποσοστό του χρόνου για το οποίο το κύκλωμα είναι απασχολημένο. Το κλάσμα αυτό καλείται απασχόληση Η πιθανότητα να βρεθεί το κύκλωμα απασχολημένο, είναι ίση με το κλάσμα της μονάδας του χρόνου για το οποίο είναι απασχολημένο, δηλαδή ίση με την απασχόληση (Α) του κυκλώματος 5

6 Τι σημαίνει πρακτικά? Ένταση 1 Erlang ισοδυναμεί με ένα χρήστη να μιλά συνεχώς Ένταση 0.1 Erlang ισοδυναμεί με ένα χρήστη να μιλά στο 10% του χρόνου Αν στην παραπάνω σχέση, το C υποδηλώνει το μέγιστο πλήθος πλήθος κλήσεων σε χρόνο T, τότε υπολογίζουμε τη μέγιστη αιτούμενη κίνηση γιααυτότοδιάστημα 6

7 Βαθμός Εξυπηρέτησης (GOS) Ο βαθμός εξυπηρέτησης (Grade of Service, GOS) είναι ένα μέτρο της πιθανότητας ανεπιτυχούς πρόσβασης κάποιου χρήστη στο σύστημα κατά την ώρα αιχμής, και ορίζεται ως ο λόγος του αριθμού των ανεπιτυχών κλήσεων προς τον συνολικό αριθμό κλήσεων την ώρα αιχμής. Στην ουσία, υποδηλώνει την πιθανότητα φραγής (πιθανότητα να μην εξυπηρετηθεί ένας χρήστης). Με άλλα λόγια, θα ήταν περισσότερο δόκιμο ίσως να ονομάζεται «βαθμός μη εξυπηρέτησης». Ο βαθμός εξυπηρέτησης είναι ένας δείκτης επίδοσης ενός συγκεκριμένου συστήματος. Στόχος των μηχανικών: υπολογισμός των καναλιών που πρέπει να διαθέσουν, έτσι ώστε ο GOS να είναι σε ένα προκαθορισμένο επιθυμητό επίπεδο (τυπική τιμή του GOS: 2%) 7

8 Βαθμός Εξυπηρέτησης (GOS) Φυσική σημασία Αριθμός των κλήσεων που χάνονται Αριθμός των κλήσεων που προσφέρονται = Απωλεσθείσα κίνηση Προσφερόμενη κίνηση ποσοστό του χρόνου κατά τη διάρκεια του οποίου υπάρχει συμφόρηση πιθανότητα συμφόρησης πιθανότητα απώλειας κλήσεως λόγω συμφόρησης Όπου συμφόρηση (η οποία προκαλεί φραγή) είναι η κατάσταση κατά την οποία όλα τα κυκλώματα μιας ζευκτικής ομάδας είναι απασχολημένα και επομένως δεν μπορούν να δεχθούν άλλες κλήσεις. Αν προσφέρονται Α erlangs κίνησης σε μία ομάδα ζευκτικών κυκλωμάτων, που έχουν βαθμό εξυπηρέτησης GOS, τότε η απώλεια κίνησης είναι Α*GOS, και η μεταφερόμενη κίνηση είναι Α(1 GOS) erlangs. 8

9 Πιθανότητα φραγής (φόρμουλα Erlang Β) Η πιθανότητα φραγής σε ένα σύστημα με C κανάλια και συνολική παρεχόμενη ένταση κίνησης A, υπολογίζεται από την ακόλουθη σχέση που είναι γνωστή ως φόρμουλα Erlang Β: 9

10 Πώς προέκυψε η πιθανότητα φραγής? Με ένα συγκεκριμένο μαθηματικό μοντέλο, στο οποίο κάναμε τις ακόλουθες υποθέσεις: Οι φραγμένες κλήσεις δεν επανέρχονται άμεσα Ο αριθμός των χρηστών είναι μεγάλος Οι κλήσεις είναι ανεξάρτητες μεταξύ τους Ο ρυθμός αφίξεων ακολουθεί μία συγκεκριμένη κατανομή (κατανομή Poisson δεν θα τη μελετήσουμε) Με βάση τα παραπάνω, φτιάχνουμε το ακόλουθο διάγραμμα καταστάσεων: 10

11 Διάγραμμα καταστάσεων μ: Μέσος χρόνο διάρκειας κλήσης 11

12 Υπολογισμοί 12

13 Συνέχεια των υπολογισμών Υπάρχουν έτοιμοι πίνακες για τους υπολογισμούς!! 13

14 Χωρητικότητα για συγκεκριμένα GOS και πλήθος καναλιών 14

15 Παράδειγμα Πόσους χρήστες μπορεί να ικανοποιήσει ένα σύστημα με πιθανότητα φραγής 0.5% και με αριθμό καναλιών 5,10,20,100, αν κάθε χρήστης δημιουργεί φορτίο 0.1 Erlang? C=5, GOS= Από τον προηγούμενο πίνακα προκύπτει ότι η παρεχόμενη κίνηση ισούται με A=1.13. Άρα, ο αριθμός των χρηστών είναι 1.13/ χρήστες. C=10, GOS= Από τον προηγούμενο πίνακα προκύπτει ότι η παρεχόμενη κίνηση ισούται με A=3.96. Άρα, ο αριθμός των χρηστών είναι 3.96/ χρήστες. C=20, GOS= Από τον προηγούμενο πίνακα προκύπτει ότι η παρεχόμενη κίνηση ισούται με A=11.1. Άρα, ο αριθμός των χρηστών είναι 11.1/ χρήστες. C=100, GOS= Απότονπροηγούμενοπίνακαπροκύπτειότιη παρεχόμενη κίνηση ισούται με A=80.9. Άρα, ο αριθμός των χρηστών είναι 80.9/ χρήστες. 15

16 Παράδειγμα Μια πόλη έχει επιφάνεια A=1300km 2, και καλύπτεται με σύστημα κυψελωτής τηλεφωνίας με μέγεθος συστάδας Ν=7. Κάθε κυψέλη έχει ακτίνα R=4 km. Το διαθέσιμο εύρος ζώνης είναι Β=40MHz, με εύρος δικατευθυντικού καναλιού Βc=60 KHz.Η μέγιστη επιτρεπτή πιθανότητα φραγής ορίζεται στο Το φορτίο ανά χρήστη είναι 0.03 Erlang. Να βρεθούν: Ο αριθμός των κυψελών Ο αριθμός των καναλιών ανά κυψέλη Η μέγιστη ένταση του ολικού προσφερόμενου φορτίου ανά κυψέλη Το συνολικό προσφερόμενο φορτίο Ο αριθμός των χρηστών που μπορούν να εξυπηρετηθούν ταυτόχρονα Ο αριθμός των συσκευών (χρηστών) ανά κανάλι συχνότητας, όταν εξυπηρετείται ο μέγιστος αριθμός χρηστών ταυτόχρονα 16

17 Λύση Κάθε κυψέλη έχει εμβαδό 2.598R 2 =41.57km 2. Άρα, ο συνολικός αριθμός κυψελών είναι 1300/ , δηλαδή 31. Συνολικά έχουμε 40000/ κανάλια, τα οποία διαμοιράζονται ισοδύναμα στις 7 κυψέλες κάθε συστάδας. Άρα, κάθε κυψέλη έχει 666/7 95 κανάλια. Με πιθανότητα φραγής (GOS) 0.02 και 95 κανάλια, μπορούμε να έχουμε φορτίο 84 Erlang ανά κυψέλη (κοιτάμε την αντίστοιχη καταχώρηση στον πλήρη πίνακα, όπως στο προηγούμενο παράδειγμα). Το συνολικά προσφερόμενο φορτίο είναι 31 x 84 = 2604 Erlangs. Αφού κάθε χρήστης δημιουργεί φορτίο 0.03 Erlangs, o αριθμός των ταυτόχρονων χρηστών είναι 2604/0.03=86800 πελάτες. Έχουμε συνολικά 31 x 95 κανάλια συχνότητας στο σύστημα (τα 666 κανάλια της συστάδας επαναχρησιμοποιούνται σε άλλες συστάδες), άρα 86800/(31 x 95) 29 χρήστες ανά κανάλι 17

18 Παράδειγμα Αν διαθέτουμε 50 κανάλια σε μία κυψέλη για τη διαχείριση όλων των κλήσεων και ο μέσος χρόνος συνδιάσκεψης είναι 100 sec ανά κλήση, πόσες κλήσεις μπορεί να διαχειριστεί αυτή η κυψέλη με GOS 2%? Αφού C=50 και GOS=2%, η παρεχόμενηκίνησηαπότοσύστημα είναι Α=40.3 Erlangs (Κοιτάμε τον αντίστοιχο πίνακα). Ο αριθμός των κλήσεων ανά ώρα και ανά κυψέλη είναι C A T = h = = 1451 κλήσεις ανά ώρα 18

19 Πώς καθορίζονται τα κανάλια που πρέπει να εκχωρηθούν σε μία κυψέλη? Ο μέγιστος αριθμός καναλιών καθορίζεται από το μέσο χρόνο συνδιάλεξης ανά σύστημα, το επιθυμητό GOS και το μέσο πλήθος συνδρομητών που αιτούνται κλήσεις (δηλαδή, στους πίνακες Erlang, μπορούμε για δοθέν φόρτο και GOS, να βρούμε τα κανάλια που απαιτούνται) 19

20 Παράδειγμα υπολογισμού καναλιών Έστω ότι για ένα σύστημα δίνεται ότι ο μέγιστος αριθμός κλήσεων ανά ώρα και ανά κυψέλη είναι 3000, με μέσο χρόνο συνδιάλεξης 1.76min, και πιθανότητα απόρριψης 2%. Τότε υπολογίζουμε εύκολα το φόρτο του συστήματος: A = = 88 Erlangs Κοιτώντας τον πλήρη πίνακα Erlang, βρίσκουμε ότι χρειάζονται 100 κανάλια. 20

21 Παράδειγμα Ένα κυψελωτό σύστημα αποτελείται από 394 κυψέλες, όπου η κάθε μία έχει 19 κανάλια. Υπολογίστε τον μέγιστο αριθμό των χρηστών που μπορούν να εξυπηρετηθούν ταυτόχρονα, με GOS 2% αν κάθε χρήστης πραγματοποιεί κατά μέσο όρο 2 κλήσεις την ώρα, με μέση διάρκεια κλήσης 3 λεπτά. 21

22 Λύση Κάθε χρήστης προσφέρει κίνηση A u = λh = 2*(3min/60min) = 0.1 Erlang Λόγω του ότι GOS = 0.02 και C = 19, από τους Erlang B πίνακες βρίσκουμε ότι κάθε κυψέλη μπορεί να εξυπηρετήσει κίνηση Erlang. Άρα, κάθε κυψέλη μπορεί να εξυπηρετήσει το πολύ U = A/A u = 12.33/0.1 = χρήστες. Αφού έχουμε συνολικά 394 κυψέλες, το συνολικό πλήθος συνδρομητών που μπορούν να εξυπηρετηθούν είναι 123.3*394 =

23 Πηγές Για τη διαμόρφωση των διαφανειών αυτού του κεφαλαίου, χρησιμοποιήθηκε υλικό (εικόνες, διαγράμματα κτλ.) από διάφορες άλλες διαλέξεις που είναι διαθέσιμες στο Διαδίκτυο: Θ. Σφηκόπουλος και Δ. Βαρουτάς, Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήμιο Αθηνών Σ. Τουμπής, Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πανεπιστήμιο Κύπρου (2007) 23

Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών Η ενότητα αυτή θα αρχίσει παρουσιάζοντας την δυνατότητα ενός κυψελωτού ράδιοσυστήματος να εξασφαλίζει την υπηρεσία σε έναν μεγάλο αριθμό

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου

Κινητές επικοινωνίες. Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου Κινητές επικοινωνίες Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου 1 Σχεδίαση συστήματος Η εταιρία μας θέλει να καλύψει με κυψελωτό σύστημα τηλεφωνίας μία πόλη επιφάνειας 20000 km 2 (συχνότητα

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 2 Ενδοκαναλικές παρεμβολές

Κινητές επικοινωνίες. Κεφάλαιο 2 Ενδοκαναλικές παρεμβολές Κινητές επικοινωνίες Κεφάλαιο 2 Ενδοκαναλικές παρεμβολές 1 Γενικά Σχεδιαστική παράμετρος 2 Μέτρηση ισχύος Για λόγους ευκολίας, λογαριθμίζουμε την ισχύ και έχουμε τις ακόλουθες μονάδες μέτρησης: Κατά συνέπεια:

Διαβάστε περισσότερα

ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου

ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου Συγκέντρωση/Οµαδοποίηση Πόρων Τα συστήµατα απευθύνονται σε µεγάλο πλήθος χρηστών Η συγκέντρωση (trunking) ή αλλιώς οµαδοποίηση των διαθέσιµων καναλιών επιτρέπει

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Άσκηση 1. Ερώτηση 1: ο αριθμός των συνδρομητών που θα εξυπηρετηθούν στη συγκεκριμένη τυχαία κυψέλη.

Άσκηση 1. Ερώτηση 1: ο αριθμός των συνδρομητών που θα εξυπηρετηθούν στη συγκεκριμένη τυχαία κυψέλη. Άσκηση 1 Ένα δίκτυο κινητής τηλεφωνίας τεχνολογίας GSM, ελέγχεται κατά την ώρα αιχμής (busy hour) από πλευράς εξυπηρέτησης συνδρομητών. Συγκεκριμένα, ο έλεγχος πραγματοποιείται σε μια τυχαία κυψέλη, στην

Διαβάστε περισσότερα

Κινητές Επικοινωνίες

Κινητές Επικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Κινητές Επικοινωνίες Ενότητα 2: Βασικές Αρχές Σχεδίασης Ασύρματων και Κυψελωτών Συστημάτων Σαββαΐδης Στυλιανός Τμήμα Ηλεκτρονικών

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 5 Σχεδιασμός Δικτύου

Κινητές επικοινωνίες. Κεφάλαιο 5 Σχεδιασμός Δικτύου Κινητές επικοινωνίες Κεφάλαιο 5 Σχεδιασμός Δικτύου 1 Προϋπολογισμός ισχύος ραδιοζεύξης (Ιink budget) Συνυπολογίζοντας διάφορες παραμέτρους (απώλειες καλωδίωσης, χαρακτηριστικά κεραιών κτλ), υπολογίζουμε

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Εργαστηριακό Μάθημα 1 Κυψελοποίηση

Κινητές επικοινωνίες. Εργαστηριακό Μάθημα 1 Κυψελοποίηση Κινητές επικοινωνίες Εργαστηριακό Μάθημα 1 Κυψελοποίηση 1 Αρχική Μορφή της Αρχιτεκτονικής του Τηλεφωνικού Συστήματος Κινητές Υπηρεσίες πρώτης γενιάς το σχέδιο με το οποίο έχει δομηθεί είναι παρόμοιο με

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Προβλήματα 11 ου Κεφαλαίου

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 1: Εισαγωγή. Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 1: Εισαγωγή. Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 1: Εισαγωγή Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου Θεωρία Τηλεπικοινωνιακής

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 1 Κυψελωτά Συστήματα

Κινητές επικοινωνίες. Κεφάλαιο 1 Κυψελωτά Συστήματα Κινητές επικοινωνίες Κεφάλαιο 1 Κυψελωτά Συστήματα Ιστορικά στοιχεία 1940 1946 1975 1985 1 ο ασύρματο τηλέφωνο από την Bell System 1 η υπηρεσία παροχής κινητής τηλεφωνίας (Missouri, USA) 1 o κυψελωτό σύστημα

Διαβάστε περισσότερα

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για τη διαχείριση

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Τηλεματική, Διαδίκτυα και Κοινωνία Κυψελωτή Τηλεφωνία

Τηλεματική, Διαδίκτυα και Κοινωνία Κυψελωτή Τηλεφωνία Τηλεματική, Διαδίκτυα και Κοινωνία Κυψελωτή Τηλεφωνία 1 Κυψελωτή Τηλεφωνία Για την ανάπτυξη νέων δικτύων κινητών επικοινωνιών υιοθετήθηκε η σχεδιαστική αρχή της κυψελωτής τηλεφωνίας που παρά την περιορισμένη

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ ΙΚΤΥΟΥ GSM ΕΝΤΟΣ ΤΟΥ ΟΛΥΜΠΙΑΚΟΥ ΣΤΑ ΙΟΥ ΚΑΤΑ ΤΗ ΙΕΞΑΓΩΓΗ ΤΩΝ ΟΛΥΜΠΙΑΚΩΝ

ΜΕΛΕΤΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ ΙΚΤΥΟΥ GSM ΕΝΤΟΣ ΤΟΥ ΟΛΥΜΠΙΑΚΟΥ ΣΤΑ ΙΟΥ ΚΑΤΑ ΤΗ ΙΕΞΑΓΩΓΗ ΤΩΝ ΟΛΥΜΠΙΑΚΩΝ ΜΕΛΕΤΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ ΙΚΤΥΟΥ GSM ΕΝΤΟΣ ΤΟΥ ΟΛΥΜΠΙΑΚΟΥ ΣΤΑ ΙΟΥ ΚΑΤΑ ΤΗ ΙΕΞΑΓΩΓΗ ΤΩΝ ΟΛΥΜΠΙΑΚΩΝ ΑΓΩΝΩΝ ΤΟΥ 2004 Αντώνης Γ. ηµητρίου, Θεόδωρος Γ. Βασιλειάδης, Γεώργιος. Σεργιάδης Αριστοτέλειο Πανεπιστήµιο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

Εργαστήριο 9: Άλλες Λειτουργίες στα Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 9: Άλλες Λειτουργίες στα Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 9: Άλλες Λειτουργίες στα Δίκτυα Κινητών Επικοινωνιών 9.1 Ανάθεση καναλιών (channel allocation) Η κατανομή καναλιών σχετίζεται με την ανάθεση το καναλιών στις κυψέλες ενός κυψελωτού δικτύου.

Διαβάστε περισσότερα

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Τα κυψελωτά συστήματα εξασφαλίζουν ασύρματη κάλυψη σε μια γεωγραφική περιοχή η οποία διαιρείται σε τμήματα τα οποία είναι γνωστά ως κυψέλες (Εικόνα 1).

Διαβάστε περισσότερα

Άσκηση 1. Απάντηση Άσκησης 1

Άσκηση 1. Απάντηση Άσκησης 1 Άσκηση 1 Σε μια χώρα υπάρχουν δύο (2) Πάροχοι κινητών επικοινωνιών. Με βάση το πρότυπο του κυψελωειδούς δικτύου κινητής τηλεφωνίας GSM, να πραγματοποιηθεί η καταχώρηση συχνοτήτων (channel assignment) για

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ 3 ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ ΚΑΙ ΑΡΧΕΣ ΔΙΑΣΥΝΔΕΣΗΣ

ΠΑΡΑΡΤΗΜΑ 3 ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ ΚΑΙ ΑΡΧΕΣ ΔΙΑΣΥΝΔΕΣΗΣ ΠΑΡΑΡΤΗΜΑ 3 ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ ΚΑΙ ΑΡΧΕΣ ΔΙΑΣΥΝΔΕΣΗΣ 1. ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ MTN 1.1 Η ΜΤΝ προσφέρει τις επιλογές διασύνδεσης στο Σταθερό Δημόσιο Τηλεφωνικό Δίκτυό της και στο Κινητό Δημόσιο Δίκτυο Ηλεκτρονικών

Διαβάστε περισσότερα

1.2 Οι Κόμβοι Διασύνδεσης στους οποίους προσφέρεται Διασύνδεση από τη Cyta, είναι οι ακόλουθοι:

1.2 Οι Κόμβοι Διασύνδεσης στους οποίους προσφέρεται Διασύνδεση από τη Cyta, είναι οι ακόλουθοι: 1. ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ CYTA ΠΑΡΑΡΤΗΜΑ 3 ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ CYTA 1.1. Η Cyta θα προσφέρει Διασύνδεση στις Πύλες Μέσων (ΠΜ) του δικτύου Λογισμικής Μεταγωγής και του Δημόσιου Δικτύου Ηλεκτρονικών Επικοινωνιών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 2009-2010 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00) Να απαντηθούν

Διαβάστε περισσότερα

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 1 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΥΨΕΛΩΤΑ ΣΥΣΤΗΜΑΤΑ ΚΙΝΗΤΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Κυψελωτή κάλυψη Σκο ός µείωση οµοκαναλικής αρεµβολής Μεγάλες κυψέλες

Διαβάστε περισσότερα

Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η. Αρχές Δικτύων Επικοινωνιών

Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η. Αρχές Δικτύων Επικοινωνιών Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η Αρχές Δικτύων Επικοινωνιών Τι είναι επικοινωνία; Είναι η διαδικασία αποστολής πληροφοριών από ένα πομπό σε κάποιο δέκτη. Η Τηλεπικοινωνία είναι η επικοινωνία από απόσταση (τηλε-).

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 6: Θεωρία Ουρών Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΝΑΛΛΑΚΤΙΚΗΣ ΡΟΜΟΛΟΓΗΣΗΣ

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΝΑΛΛΑΚΤΙΚΗΣ ΡΟΜΟΛΟΓΗΣΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΙΚΤΥΩΝ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΝΑΛΛΑΚΤΙΚΗΣ ΡΟΜΟΛΟΓΗΣΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ελευθερία

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η

Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η Μ Α Θ Η Μ Α : Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η Ε Π Ω Ν Τ Μ Ο : < < < < < <

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι αυτό που προϋποθέτει την ύπαρξη μιας συνεχούς προσανατολισμένης ροής ηλεκτρονίων; Με την επίδραση διαφοράς δυναμικού ασκείται δύναμη στα ελεύθερα ηλεκτρόνια του μεταλλικού

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Γ. Λυμπερόπουλος Ιανουάριος 2012 Θέμα 1 Ένα εργοστάσιο που δουλεύει ασταμάτητα έχει τέσσερις (4) πανομοιότυπες γραμμές παραγωγής. Από αυτές, μπορούν

Διαβάστε περισσότερα

Κινητές και Δορυφορικές Επικοινωνίες

Κινητές και Δορυφορικές Επικοινωνίες Πανεπιστήμιο Αιγαίου Κινητές και Δορυφορικές Επικοινωνίες Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Τεχνολογίες Δικτύων Επικοινωνιών & Υπολογιστών» Βασικές Αρχές Κυψελωτών Συστημάτων Δημοσθένης Βουγιούκας

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.5 Εφαρμογές των αρχών διατήρησης στη μελέτη απλών ηλεκτρικών κυκλωμάτων Λέξεις κλειδιά: σύνδεση σε σειρά, παράλληλη σύνδεση, κόμβος, κλάδος, αντίσταση, τάση. Υπάρχουν δυο τρόποι σύνδεσης των ηλεκτρικών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 8ης ΔΕΚΕΜΒΡΙΟΥ 2000 ΔΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ. ΜΕΡΟΣ Ι Κανονιστικές Διοικητικές Πράξεις

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 8ης ΔΕΚΕΜΒΡΙΟΥ 2000 ΔΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ. ΜΕΡΟΣ Ι Κανονιστικές Διοικητικές Πράξεις Κ.Δ.Π. 354/2000 ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3455 της 8ης ΔΕΚΕΜΒΡΙΟΥ 2000 ΔΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΜΕΡΟΣ Ι Κανονιστικές Διοικητικές Πράξεις Αριθμός 354 Οι περί Υπηρεσίας Τηλεπικοινωνιών

Διαβάστε περισσότερα

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 Περιεχόμενα Πρόλογος...7 1 Κατανόηση της εφοδιαστικής αλυσίδας...9 2 Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 3 Πρόβλεψη της ζήτησης σε μια εφοδιαστική αλυσίδα...109 4 Συγκεντρωτικός προγραμματισμός

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Τσίτσος Επίκουρος Καθηγητής Δίκτυα

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες:

Διαβάστε περισσότερα

ΔΕΙΚΤΕΣ ΠΟΙΟΤΗΤΑΣ COSMOTE

ΔΕΙΚΤΕΣ ΠΟΙΟΤΗΤΑΣ COSMOTE ΔΕΙΚΤΕΣ ΠΟΙΟΤΗΤΑΣ COSMOTE Διαθεσιμότητα υπηρεσίας εξυπηρέτησης τελικών χρηστών (H01) Υπηρεσία Τηλεφωνική Γραμμή Ωράριο Λειτουργίας Χρέωση υπηρεσίας εξυπηρέτησης τελικών Εξυπηρέτηση Οικιακών Πελατών & Καρτοκινητής

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ ΜΕ ΑΠΛΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΑΝΤΙΣΤΑΤΩΝ

ΚΥΚΛΩΜΑΤΑ ΜΕ ΑΠΛΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΑΝΤΙΣΤΑΤΩΝ ΚΥΚΛΩΜΑΤΑ ΜΕ ΑΠΛΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΑΝΤΙΣΤΑΤΩΝ Αντιστάτες συνδεδεμένοι σε σειρά Όταν ν αντιστάτες ενός κυκλώματος διαρρέονται από το ίδιο ρεύμα τότε λέμε ότι οι αντιστάτες αυτοί είναι συνδεδεμένοι σε σειρά.

Διαβάστε περισσότερα

Δεύτερη Σειρά Ασκήσεων

Δεύτερη Σειρά Ασκήσεων Δεύτερη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 Από ένα αθόρυβο κανάλι 4 khz παίρνουμε δείγματα κάθε 1 msec. - Ποιος είναι ο μέγιστος ρυθμός μετάδοσης δεδομένων; - Πώς μεταβάλλεται ο μέγιστος ρυθμός μετάδοσης δεδομένων

Διαβάστε περισσότερα

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Νόμος του Coulomb Έστω δύο ακίνητα σημειακά φορτία, τα οποία βρίσκονται σε απόσταση μεταξύ τους. Τα φορτία αυτά αλληλεπιδρούν μέσω δύναμης F, της οποίας

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Χωρητικότητα Εικόνα: Όλες οι παραπάνω συσκευές είναι πυκνωτές, οι οποίοι αποθηκεύουν ηλεκτρικό φορτίο και ενέργεια. Ο πυκνωτής είναι ένα είδος κυκλώματος που μπορούμε να συνδυάσουμε

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΗΣ 19.5.013 ΘΕΜΑ 1 Ένα δίκτυο κινητής τηλεφωνίας τεχνολογίας GSM, με μέγεθος συστάδας (cluster) κυψελών επαναληψιμότητας συχνοτήτων 1, είναι εγκατεστημένο σε μια γεωγραφική περιοχή και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

Project ΒΑΣΔΕΚΗΣ ΑΝΔΡΕΑΣ ΡΟΔΙΤΗΣ ΒΑΣΙΛΗΣ ΣΙΦΑΚΗΣ ΣΙΦΗΣ ΦΙΛΙΠΠΑΚΟΣ ΠΑΝΑΓΙΩΤΗΣ 8/1/12

Project ΒΑΣΔΕΚΗΣ ΑΝΔΡΕΑΣ ΡΟΔΙΤΗΣ ΒΑΣΙΛΗΣ ΣΙΦΑΚΗΣ ΣΙΦΗΣ ΦΙΛΙΠΠΑΚΟΣ ΠΑΝΑΓΙΩΤΗΣ 8/1/12 Project ΒΑΣΔΕΚΗΣ ΑΝΔΡΕΑΣ ΡΟΔΙΤΗΣ ΒΑΣΙΛΗΣ ΣΙΦΑΚΗΣ ΣΙΦΗΣ ΦΙΛΙΠΠΑΚΟΣ ΠΑΝΑΓΙΩΤΗΣ 8/1/12 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 3 2. Δίκτυα Επικοινωνίες Κάποιες Συμβουλές 4,5 3. Σταθμοί βάσης και κυψέλες..6,7,8 4. Λειτουργίες

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΚΥΨΕΛΩΤΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΤΟΧΟΙ ΚΥΨΕΛΩΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟΧΟΙ ΚΥΨΕΛΩΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΡΑ ΙΟΚΑΛΥΨΗ ΚΑΙ ΚΙΝΗΤΙΚΟΤΗΤΑ - Ευρεία Ραδιοκάλυψη Εξωτερικών χώρων -Βάθος Ραδιοκάλυψης -Interwoking µεταξύ συστηµάτων ΧΩΡΗΤΙΚΟΤΗΤΑ -Μεγάλος αριθµός συνδροµητών -Μικρή απόρριψη

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ. 3 η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. ρ. Λάμπρος Μπισδούνης.

ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ. 3 η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. ρ. Λάμπρος Μπισδούνης. ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ ρ. Λάμπρος Μπισδούνης Καθηγητής η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ T... ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Περιεχόμενα ης ενότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ 25/7/2015

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ 25/7/2015 ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ

Διαβάστε περισσότερα

ΤΕΙ Κρήτης, Παράρτηµα Χανίων

ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ ( ηµιουργία συστήµατος µε ροint-tο-ροint σύνδεση) ρ Θεοδώρου Παύλος Χανιά 2003 Περιεχόµενα 1 ΕΙΣΑΓΩΓΗ...2 2 ΤΟ ΚΑΝΑΛΙ PΟINT-TΟ-PΟINT...2

Διαβάστε περισσότερα

Σχεδίαση & Υλοποίηση Ασύρµατων ικτύων Εσωτερικού Χώρου Τεχνολογίας WiFi

Σχεδίαση & Υλοποίηση Ασύρµατων ικτύων Εσωτερικού Χώρου Τεχνολογίας WiFi Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Ηλεκτρονικών Υπολογιστών του ΑΠΘ Σχεδίαση & Υλοποίηση Ασύρµατων ικτύων Εσωτερικού Χώρου Τεχνολογίας WiFi Αντώνης Γ. ηµητρίου ιδάκτωρ Τµ. Ηλεκτρολόγων Μηχ/κών &

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι ; Ηλεκτρικό ρεύμα ονομάζεται η προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων Που μπορεί να

Διαβάστε περισσότερα

Με τον όρο μνήμη αναφερόμαστε στα μέσα που χρησιμοποιούνται για την αποθήκευση προγραμμάτων και δεδομένων σε έναν υπολογιστή ή άλλη ψηφιακή

Με τον όρο μνήμη αναφερόμαστε στα μέσα που χρησιμοποιούνται για την αποθήκευση προγραμμάτων και δεδομένων σε έναν υπολογιστή ή άλλη ψηφιακή Μνήμη Με τον όρο μνήμη αναφερόμαστε στα μέσα που χρησιμοποιούνται για την αποθήκευση προγραμμάτων και δεδομένων σε έναν υπολογιστή ή άλλη ψηφιακή ηλεκτρονική συσκευή, σε προσωρινή ή μόνιμη βάση. Τα σύγχρονα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ6 / ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # - Λύσεις Ασκήσεων Θέµα Α Έστω T t ο µέσος χρόνος µετάδοσης ενός πλαισίου δεδοµένων και Τ f, αντίστοιχα, ο χρόνος µετάδοσης πλαισίου επιβεβαίωσης αρνητικής, na, ή θετικής ac

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ ΕΠΙΛΟΓΗΣ ΠΑΡΟΧΟΥ ΣΤΑΘΕΡΗΣ ΤΗΛΕΦΩΝΙΑΣ ΜΕΣΩ ΜΟΝΙΜΗΣ ΣΥΝ ΕΣΗΣ ΜΕ ΦΟΡΗΤΟΤΗΤΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ ΕΠΙΛΟΓΗΣ ΠΑΡΟΧΟΥ ΣΤΑΘΕΡΗΣ ΤΗΛΕΦΩΝΙΑΣ ΜΕΣΩ ΜΟΝΙΜΗΣ ΣΥΝ ΕΣΗΣ ΜΕ ΦΟΡΗΤΟΤΗΤΑ ΠΡΟΔΙΑΓΡΑΦΕΣ ΕΠΙΛΟΓΗΣ ΠΑΡΟΧΟΥ ΣΤΑΘΕΡΗΣ ΤΗΛΕΦΩΝΙΑΣ ΜΕΣΩ ΜΟΝΙΜΗΣ ΣΥΝ ΕΣΗΣ ΜΕ ΦΟΡΗΤΟΤΗΤΑ Γενικά Σύμφωνα με την απόφαση 353 (πρακτικό 32/2012) του Συμβουλίου του ΤΕΙ Σερρών, το Τ.Ε.Ι. Σερρών προκηρύσσει πρόχειρο

Διαβάστε περισσότερα

- Η ισοδύναμη πηγή τάσης Thevenin (V ή VT) είναι ίση με τη τάση ανοικτού κυκλώματος VAB.

- Η ισοδύναμη πηγή τάσης Thevenin (V ή VT) είναι ίση με τη τάση ανοικτού κυκλώματος VAB. ΘΕΩΡΗΜΑ THEVENIN Κάθε γραμμικό ενεργό κύκλωμα με εξωτερικούς ακροδέκτες Α, Β μπορεί να αντικατασταθεί από μια πηγή τάση V (ή VT) σε σειρά με μια σύνθετη αντίσταση Z (ή ZT), όπως φαίνεται στο παρακάτω σχήμα.

Διαβάστε περισσότερα

Μετά τη λύση του παραδείγµατος 1 του σχολικού βιβλίου να διαβάσετε τα παραδείγµατα 1, 2, 3 και 4 που ακολουθούν. ΠΑΡΑ ΕΙΓΜΑ 2 ο

Μετά τη λύση του παραδείγµατος 1 του σχολικού βιβλίου να διαβάσετε τα παραδείγµατα 1, 2, 3 και 4 που ακολουθούν. ΠΑΡΑ ΕΙΓΜΑ 2 ο ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ Οι ασκήσεις που αναφέρονται στο νόµο του Τζάουλ είναι απλή εφαρµογή στον τύπο. Για τη λύση των ασκήσεων θα ακολουθούµε τα εξής βήµατα: i) ιαβάζουµε προσεκτικά την εκφώνηση της άσκησης,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές Ι. Ενότητα 4: Εύρεση Παραμέτρων. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές Ι. Ενότητα 4: Εύρεση Παραμέτρων. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές Ι Ενότητα 4: Εύρεση Παραμέτρων Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

ΟΡΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΕΡΓΟΥ

ΟΡΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΕΡΓΟΥ ΟΡΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΕΡΓΟΥ Α. ΠΕΡΙΓΡΑΦΗ ΕΡΓΟΥ To Νοσοκοµείο µας χρησιµοποιεί το Πληροφοριακό Σύστηµα Νοσοκοµείου ΑΣΚΛΗΠΙΟΣ 2.3 (Η. Ι.Κ.Α. Α.Ε.). Τα τερµατικά των χρηστών (client) συνδέονται µε

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ η Γραπτή Εργασία ΠΛΗ 3 Ακαδημαϊκό Έτος 011-01 (Τόμος Α, Κεφάλαια 1-3) Ημερομηνία Παράδοσης 9/01/01 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Άσκηση 1 Στόχος: Στο πλαίσιο της εκπαιδευτικής ύλης του Α Τόμου, ο στόχος της άσκησης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Τεχνολογία Ηλεκτρονικών Επικοινωνιών Τεχνολογία Τεχνικών Σχολών Ι, Θεωρητικής

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

ΣΤΑΤΙΚΕΣ ΚΑΙ ΔΥΝΑΜΙΚΕΣ ΜΝΗΜΕΣ ΤΥΧΑΙΑΣ ΠΡΟΣΠΕΛΑΣΗΣ (Static and Dynamic RAMs). ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ

ΣΤΑΤΙΚΕΣ ΚΑΙ ΔΥΝΑΜΙΚΕΣ ΜΝΗΜΕΣ ΤΥΧΑΙΑΣ ΠΡΟΣΠΕΛΑΣΗΣ (Static and Dynamic RAMs). ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΣΤΑΤΙΚΕΣ ΚΑΙ ΔΥΝΑΜΙΚΕΣ ΜΝΗΜΕΣ ΤΥΧΑΙΑΣ ΠΡΟΣΠΕΛΑΣΗΣ (Static and Dynamic RAMs). ΔΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΗΜΙΑΓΩΓΙΚΩΝ ΜΝΗΜΩΝ. ΒΑΣΙΚΗ ΛΕΙΤΟΥΡΓΙΑ RAM CMOS. ΤΥΠΟΙ ΚΥΤΤΑΡΩΝ ΑΡΧΕΣ

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Άσκηση E9: Εκτίµηση παροχών εξόδου κόµβων, υπολογισµός ελάχιστης κατώτατης

Διαβάστε περισσότερα

ΤΗΛΕΡΓΑΣΙΑ : ΑΠΟΜΑΚΡΥΣΜΕΝΟ CALL CENTER

ΤΗΛΕΡΓΑΣΙΑ : ΑΠΟΜΑΚΡΥΣΜΕΝΟ CALL CENTER ΤΗΛΕΡΓΑΣΙΑ : ΑΠΟΜΑΚΡΥΣΜΕΝΟ CALL CENTER Τι ακριβώς είναι η «τηλεργασία»? Παρακάτω ακολουθεί ένα παράδειγμα για πρόγραμμα απομακρυσμένης εργασίας, ενός τμήματος call center ή της εξυπηρέτησης πελατών μιας

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 6/0/0 ΘΕΜΑ 0 Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής - 5, να γράψετε στο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Γ Γυμνασίου >> Αρχική σελίδα ΗΛΕΚΤΡΙΙΚΗ ΕΝΕΡΓΕΙΙΑ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς

Διαβάστε περισσότερα

0 1 0 0 0 1 p q 0 P =

0 1 0 0 0 1 p q 0 P = Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΚΤΥΩΝ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΚΤΥΩΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΛΕΞΗ 7 ΔΙΔΑΣΚΩΝ: ΑΝΑΡΓΥΡΟΣ ΣΙΔΕΡΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ ΤΕΙ ΚΡΗΤΗΣ Διαχείριση Δικτυακών

Διαβάστε περισσότερα

- Η ισοδύναµη πηγήτάσηςthevenin (V ή VT) είναι ίση µε τητάση ανοικτού κυκλώµατος VAB.

- Η ισοδύναµη πηγήτάσηςthevenin (V ή VT) είναι ίση µε τητάση ανοικτού κυκλώµατος VAB. ΘΕΩΡΗΜΑ THEVENIN Κάθε γραµµικό ενεργό κύκλωµα µε εξωτερικούς ακροδέκτες Α, Β µπορεί να αντικατασταθεί από µια πηγή τάση V (ή VT) σε σειρά µε µια σύνθετη αντίσταση Z (ή ZT), όπως φαίνεται στο παρακάτω σχήµα.

Διαβάστε περισσότερα

Εγγυημένη ποιότητα υπηρεσίας

Εγγυημένη ποιότητα υπηρεσίας Εγγυημένη ποιότητα υπηρεσίας Απαιτήσεις ποιότητας υπηρεσίας Μηχανισμοί κατηγοριοποίησης Χρονοπρογραμματισμός Μηχανισμοί αστυνόμευσης Ενοποιημένες υπηρεσίες Διαφοροποιημένες υπηρεσίες Τεχνολογία Πολυμέσων

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΛΕΙΤΟΥΡΓΙΑ ΜΕ ΦΟΡΤΙΟ

ΑΣΚΗΣΗ 2 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΛΕΙΤΟΥΡΓΙΑ ΜΕ ΦΟΡΤΙΟ ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΛΕΙΤΟΥΡΓΙΑ ΜΕ ΦΟΡΤΙΟ Σκοπός της Άσκησης: Στόχος της εργαστηριακής άσκησης είναι η μελέτη των χαρακτηριστικών λειτουργίας ενός μονοφασικού μετασχηματιστή υπό φορτίο. 1. Λειτουργία

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 2: Ηλεκτρικό Ρεύμα - Μέρος 2 ο. Βασίλης Γαργανουράκης Φυσική Γ Γυμνασίου

Φυσική Γ Γυμνασίου - Κεφάλαιο 2: Ηλεκτρικό Ρεύμα -  Μέρος 2 ο. Βασίλης Γαργανουράκης Φυσική Γ Γυμνασίου ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 2 ο Βασίλης Γαργανουράκης Φυσική Γ Γυμνασίου Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού

Διαβάστε περισσότερα

Λύση: Λύση: Λύση: Λύση:

Λύση: Λύση: Λύση: Λύση: 1. Ένας δίαυλος έχει ρυθµό δεδοµένων 4 kbps και καθυστέρηση διάδοσης 20 msec. Για ποια περιοχή µηκών των πλαισίων µπορεί η µέθοδος παύσης και αναµονής να έχει απόδοση τουλάχιστον 50%; Η απόδοση θα είναι

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το ασύρματο

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΩΤΗΣΗ 1 Ένα σώμα εκτελεί κίνηση που οφείλεται στη σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας διεύθυνσης, που γίνονται γύρω από το ίδιο σημείο, με το ίδιο πλάτος A και συχνότητες

Διαβάστε περισσότερα