N. Σ. ΜΑΥΡΟΓΙΑΝΝΗΣ. Mαθήματα Θεωρίας Αριθμών PPwWpp (με βάση το σχολικό βιβλίο)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "N. Σ. ΜΑΥΡΟΓΙΑΝΝΗΣ. Mαθήματα Θεωρίας Αριθμών PPwWpp (με βάση το σχολικό βιβλίο)"

Transcript

1 N. Σ. ΜΑΥΡΟΓΙΑΝΝΗΣ Mαθήματα Θεωρίας Αριθμών PPwWpp (με βάση το σχολικό βιβλίο) ΑΘΗΝΑ 2006

2

3 Σημείωμα Συνέταξα αυτές τις σημειώσεις, προς χάριν των μαθητών μου, το σχολικό έτος όταν δίδασκα στο 3 ο Λύκειο Ν. Σμύρνης. Θεώρησα τότε ότι θα ήταν καλό να έχουν, όσοι μαθητές ενδιαφέρονται, κάποια πληροφόρηση, συμβατή με το σχολικό βιβλίο αλλά λίγο πιο πέρα από αυτό. Ήταν και ένας τρόπος για να καλωσορίσω τη Θεωρία Αριθμών που μετά από απουσία ετών επανήλθε στα σχολεία. Υπολόγιζα ότι οι σημειώσεις αυτές θα αποτελούσαν αφετηρία και για κάποιες μαθητικές εργασίες που με την τότε, ως συνήθως ξύλινη, επίσημη γλώσσα τις ονόμασαν «συνθετικές». Ωστόσο οι σημειώσεις αυτές διαδραμάτισαν πολύ μικρό ρόλο. Και στα δύο τμήματα Θετικής Κατεύθυνσης που είχα την ευθύνη της διδασκαλίας κατόρθωσα να διδάξω σχεδόν το σύνολο των προτάσεων- ασκήσεων που περιέχουν. Όμως δεν τόλμησα να φορτώσω, τους σκληροτράχηλους μεν αλλά εξουθενωμένους δε, μαθητές μου με παραπάνω δουλειά. Ήταν η εποχή του παραλογισμού όπου δεν έμενε στα παιδιά και πολύ καιρός για σκέψη. Δέσποζε ένα τερατώδες εξεταστικό σύστημα μαθημάτων που οι εμπνευστές του, στ αλήθεια με περισσό θράσος, ονόμασαν, ψευδώνυμα, «μεταρρύθμιση». Η Θεωρία Αριθμών, ίσως ο πιο συναρπαστικός κλάδος των Μαθηματικών, ονομάστηκε από το μεγάλο Gauss «Βασίλισσα των Μαθηματικών». Μάλλον όχι άδικα. Τα προβλήματα της ελκύουν το ενδιαφέρον ενός μεγάλου και ετερόκλητου κοινού. Από ανθρώπους που έχουν απλώς τελειώσει το σχολείο έως μεγάλους μαθηματικούς που είναι κορυφαίοι στον τομέα τους. Και προσφέρει χαρά, συγκίνηση και, πιο σπάνια βέβαια, διάκριση. Από την άλλη μεριά η θεωρία Αριθμών υπήρξε η κινητήρια δύναμη για την ανάπτυξη πλείστων περιοχών των Μαθηματικών. Η παρούσα θέση της Θεωρίας Αριθμών στα σχολεία είναι περιορισμένη στο πιο ρηχό και μηχανικό μέρος της άρα και στο πλέον ανούσιο: Επαγωγή, η ταυτότητα της διαίρεσης συν ολίγη διαιρετότητα. Κατά πως φαίνεται οι ιθύνοντες δεν πολυεκτιμούν τα πολιτιστικά επιτεύγματα ακόμη και αν αυτά (ιδίως αν αυτά, θα έλεγα) έχουν τις ρίζες τους στον ανεπανάληπτο πολιτισμό των Αρχαίων Ελλήνων. Οι σημειώσεις αυτές δημοσιοποιούνται με την ίδια αρχική ελπίδα που γράφτηκαν: ότι θα βοηθήσουν κάποιους νέους παράλληλα με τα μαθήματα τους να κάνουν μία είσοδο σε αυτό το εξαίρετο ανθρώπινο διανοητικό δημιούργημα. Αν η ελπίδα αυτή ευοδωθεί ίσως κάποιοι αναγνώστες θα ήθελαν να συνεχίσουν τη μελέτη. Στις επόμενες σελίδες υπάρχει ένας κατάλογος που ενδέχεται να τους διευκολύνει. Η ένδειξη αναφέρεται σε κάτι που με τον ένα ή τον άλλο τρόπο υπάρχει στο σχολικό βιβλίο. Η ένδειξη υποδηλώνει ότι ο μαθητής πρέπει να δουλέψει μόνος του. Και στα Μαθηματικά αυτό σημαίνει, συνήθως, χαρτί και μολύβι! Αθήνα 22 Ιουνίου στην Β Τάξη και 14 στην Γ Τάξη

4 Oι παρούσες σημειώσεις διατίθενται ως έχουν και ο συντάκτης τους δεν ευθύνεται για τυχόν προβλήματα που προκύψουν από τη χρήση τους. Μπορούν να διανεμηθούν ή / και να εκτυπωθούν ελεύθερα αρκεί να μην τροποποιηθεί η μορφή τους.

5 ΓΙΑ ΠΕΡΑΙΤΕΡΩ ΜΕΛΕΤΗ Α. Βιβλία στα Ελληνικά: [1.] J. HUNTER Αριθμοθεωρία Σε μετάφραση του αείμνηστου Νικολάου Κριτικού Σύλλογος προς Διάδοσιν Ωφελίμων Βιβλίων, ΑΘΗΝΑ 1974 [2.] ADOLPH HURWITZ Μαθήματα Αριθμοθεωρίας (Επεξεργασμένες σημειώσεις του μαθητή του Νικολάου Κριτικού) Γ.Α. Πνευματικός, ΑΘΗΝΑ 1981 [3.] ΔΗΜΗΤΡΙΟΣ ΠΟΥΛΑΚΗΣ Θεωρία Αριθμών Εκδόσεις Ζήτη, ΘΕΣΣΑΛΟΝΙΚΗ, 1997 [4.] Π.Μ. ΒΛΑΜΜΟΣ, Ε. ΡΑΠΠΟΣ, Π. ΨΑΡΡΑΚΟΣ Θεωρία Αριθμών Ελληνική Μαθηματική Εταιρεία ΑΘΗΝΑ 2000 Β. Ηλεκτρονικά Βιβλία - Σημειώσεις στα Ελληνικά: [5.] N. Γ. ΤΖΑΝΑΚΗΣ Θεμελιώδης Θεωρία Αριθμών ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ [6.] ΓΙΑΝΝΗΣ Α. ΑΝΤΩΝΙΑΔΗΣ Θεωρία Αριθμών κατά τον 17 ο και 18 ο αιώνα. ΕΠΕΑΕΚ «Προμηθέας»- ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γ. Βιβλία στα Αγγλικά: Η ξενόγλωσση βιβλιογραφία του κλάδου είναι πλουσιότατη. Νομίζω όμως ότι κάθε βιβλιογραφικός κατάλογος αξίζει να περιλαμβάνει τα: [7.] G. H. HARDY, E. Μ. WRIGHT An Introduction to the Theory of Numbers OXFORD, 1959 [8.] EDMUND LANDAU Elementary Number Theory ( Μετάφραση από τα Γερμανικά: Jacob E. Goodman) CHELSEA, 1966 Β. Ηλεκτρονικά Βιβλία - Σημειώσεις στα Άγγλικά: [9.] LEO MOSER An Introduction to the Theory of Numbers The Trillia Lectures on Mathematics, 2004 (1957) [10.] DAVID A. SANTOS Number Theory for Mathematical Contests 2005 REVISION [11.] EDWIN W.CLARK Elementary Number Theory Department of Mathematics. University of South Florida, [12.] A. BAKER Algebra & Number Theory Department of Mathematics, University of Glasgow., [13.] ROBIN CHAPMAN A Guide to Arithmetic [14.] FELIX LAZEBNIK Elements of number theory: Lecture Notes 2005

6

7 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 1 1. ΟΙ ΦΥΣΙΚΟΙ, ΟΙ ΑΚΕΡΑΙΟΙ ΚΑΙ ΟΙ ΡΗΤΟΙ ΑΡΙΘΜΟΙ 1.1. Οι φυσικοί αριθμοί είναι οι 0, 1, 2, 3, 4, 5,... Το σύνολο τους συμβολίζεται με N. Γράφουμε λοιπόν N ={0, 1, 2, 3,...}. Τα αποσιωπητικά υποδηλώνουν ότι οι αριθμοί συνεχίζονται επ άπειρον. Το πλήθος των φυσικών αριθμών είναι άπειρο. Κάθε φυσικός αριθμός ν έχει και ένα επόμενο τον ν+1. Ο επόμενος του 2 είναι ο 3, ο επόμενος του 5 είναι ο 6. Κάθε φυσικός αριθμός εκτός από το 0 είναι και επόμενος κάποιου άλλου φυσικού αριθμού: Ο 56 είναι επόμενος του 55, ο 13 είναι επόμενος του 12. Κάθε φυσικός αριθμός είναι μικρότερος του επομένου του. Ο 0 είναι ο πιο μικρός φυσικός αριθμός. Ομως δεν υπάρχει φυσικός αριθμός που να είναι πιο μεγάλος από τους άλλους φυσικούς αριθμούς. Μερικές φορές χρειάζεται να εργασθούμε με μη μηδενικούς φυσικούς αριθμούς. Το σύνολο τους το συμβολίζουμε με N *. Είναι δηλαδή N * ={0, 1, 2, 3,...}. Συνήθως (αλλά όχι και απαραιτήτως) χρησιμοποιούμε «ενδιάμεσα» γράμματα της αλφαβήτου για να συμβολίσουμε τους φυσικούς αριθμούς: κ, λ, μ, ν, k, m, n. Λέγοντας ο «φυσικός αριθμός ν» εννοούμε, αν δεν προσδιορίζεται κάτι διαφορετικό, ένα οποιοδήποτε αριθμό μικρό ή μεγάλο. Ομως κάθε φορά πρόκειται για ένα αριθμό και όχι για το άπειρο. Για παράδειγμα το άθροισμα είναι το άθροισμα όλων των κλασμάτων πού έχουν ν αριθμητή 1 και των οπίων ο παρονομαστής παίρνει όλες τις τιμές από 1 έως ν. Το άθροισμα αυτό δεν έχει βέβαια 4 προσθετέους επειδή φαίνονται μόνο 4 διότι αποσιωπώνται και κάποιοι προσθετέοι που η ύπαρξη τους εννοείται. Είναι άσκοπο (αλλά και ανέφικτο όταν ο ν είναι μεγάλος) να γραφούν όλοι. Το πλήθος των προσθετέων του αθροίσματος αυτού είναι ν. Το πλήθος είναι 4 όταν ο ν είναι 4. Το πλήθος είναι 1 όταν ο ν είναι 1. Σε καμία όμως περίπτωση το πλήθος δεν είναι άπειρο.

8 2 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 1.2. Να βρείτε το πλήθος των προσθετέων στα παρακάτω αθροίσματα ν p+ p + p p n n k Να βρείτε το πλήθος των παραγόντων στα παρακάτω γινόμενα ( 1+ 1)( 1+ x)( 1+ x 2 )...( 1+ x ν ) ( 1+ 1)( 1+ x)( 1+ x 2 )( 1+ x 3 )...( 1+ x 2ν ) ( 1+ 1)( 1+ x 2 )( 1+ x 4 )...( 1+ x 2ν ) 1.4. Ο επόμενος του 3x-2 είναι ο 31. Ποιο είναι ο x; 1.5. Τίνων φυσικών αριθμών το τετράγωνο είναι 81; 1.6. Οι ακέραιοι αριθμοί είναι όπως απλά μπορούμε να πούμε οι φυσικοί αριθμοί και οι αντίθετοι τους δηλαδή οι 0, ±1, ±2, ±3,... Το σύνολο των ακεραίων συμβολίζεται με Z δηλαδή Z ={0, ±1, ±2, ±3,...}. Με Z * συμβολίζουμε το σύνολο των μη μηδενικών ακεραίων δηλαδή Z * ={ ±1, ±2, ±3,...}. Οι ακέραιοι αριθμοί είναι και αυτοί άπειροι όπως οι φυσικοί αριθμοί όμως όχι μόνο δεν υπάρχει ακέραιος αριθμός που να είναι πιο μεγάλος από τους άλλους αλλά δεν υπάρχει ούτε ακέραιος αριθμός που να είναι πιο μικρός από τους άλλους. Αν παραστήσουμε τους ακέραιους αριθμούς στην ευθεία των πραγματικών αριθμών τότε οι ακέραιοι αριθμοί «εκτείνονται» και προς τα δύο μέρη της ευθείας:

9 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) Ποιοι ακέραιοι περιέχονται στο διάστημα [-1,5]; 1.8. Ποιες ακέραιες τιμές παίρνει η συνάρτηση συνx; 1.9. Πόσοι ακέραιοι περιέχονται στο διάστημα [-480, 1999]; Υπάρχουν άραγε ακέραιοι μεταξύ των αντιστρόφων δύο διαδοχικών φυσικών αριθμών; Τίνων ακεραίων το τετράγωνο είναι ίσο με 81; Οι ρητοί αριθμοί είναι όλα τα κλάσματα με αριθμητή και παρονομαστή ακεραίους. Εννοείται βέβαια ότι ο παρονομαστής δε μπορεί να είναι 0. Οι αριθμοί 2 13,, είναι ρητοί αριθμοί ενώ οι 2 3, 5, συν1 δεν είναι (οι πραγματικοί αριθμοί που δεν είναι ρητοί ονομάζονται άρρητοι). Το σύνολο των ρητών αριθμών το συμβολίζουμε με Q. Είναι λοιπόν RST U VW μ Q = / μ Z, ν Z. ν Υπενθυμίζεται ότι δύο κλάσματα μπορεί να παριστούν τον ίδιο ρητό αριθμό λ.χ. 2 4 =. Αν θέλουμε να συγκρίνουμε δύο ρητούς που εκφράζονται με τα κλάσματα 3 6 κ μ, των οποίων οι όροι κ, λ, μ, ν είναι θετικοί σχηματίζουμε τα δύο γινόμενα λ ν κν, μλ. Αν είναι ίσα οι ρητοί είναι ίσοι. Αν είναι μεγαλύτερο το πρώτο γινόμενο τότε

10 4 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) μεγαλύτερος είναι ο πρώτος ρητός και αν είναι το δεύτερο μεγαλύτερος είναι ο δεύτερος. Και οι ρητοί αριθμοί αν παρασταθούν στην ευθεία των πραγματικών αριθμών εκτείνονται και προς τα δύο μέρη της αλλά έχουν και ένα επιπλέον χαρακτηριστικό: Είναι «διάσπαρτοι» στην ευθεία δηλαδή μεταξύ δύο οποιωνδήποτε πραγματικών αριθμών υπάρχει πάντοτε και ένας ρητός. Εντούτοις οι ρητοί αριθμοί δεν «καλύπτουν» όλα τα σημεία της πραγματικής ευθείας. 13. Να βρείτε δέκα ρητούς που ανήκουν στο διάστημα (0, 1). 14. Για ποια τιμή του φυσικού αριθμού x οι ρητοί x x 3, +11 είναι ίσοι; Κάθε φυσικός αριθμός είναι και ακέραιος αριθμός και κάθε ακέραιος αριθμός είναι ρητός αριθμός. Λέμε ότι το σύνολο των φυσικών αριθμών είναι υποσύνολο του συνόλου των ακεραίων αριθμών και ότι το σύνολο των ακεραίων αριθμών είναι υποσύνολο του συνόλου των ρητών αριθμών. Γράφουμε συμβολικά N Z και Z Q. Q 2 3. Z 1. N Για ποιες τιμές του ακεραίου x ο x+12 είναι φυσικός αριθμός; 17. Για ποιες ακέραιες τιμές του x o ρητός αριθμός 18 x είναι ακέραιος; Ο 11 x 18. Υπενθυμίζεται ότι γενικά αν έχουμε δύο σύνολα Α και Β

11 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 5 τα Α και Β λέγονται ίσα (γράφουμε Α=Β) αν έχουν ακριβώς τα ίδια στοιχεία δηλαδή κάθε στοιχείο του Α είναι και στοιχείο του Β αλλά και κάθε στοιχείο του Β είναι και στοιχείο του Α. το Α λέγεται υποσύνολο του Β (γράφουμε Α Β) αν κάθε στοιχείο του Α είναι και στοιχείο του Β. Η τομή των Α και Β (συμβολικά Α Β) είναι το σύνολο που απαρτίζεται από τα κοινά στοιχεία των Α και Β δηλαδή εκείνα που ανήκουν και στο Α και στο Β. Η ένωση των Α και Β (συμβολικά Α Β) είναι το σύνολο που απαρτίζεται από όλα τα στοιχεία των Α και Β κοινά και μη κοινά. Το σύνολο που δεν έχει καθόλου στοιχεία δηλαδή το { } συμβολίζεται με (κενό σύνολο) Λ.χ. αν είναι Α={0, 1, 2, 3}, Β={0, 1, 2, 3, 4, 5} τότε Α Β. Αν είναι Α={0, 1, 2, 3}, Β={0, -1, 2, -3, 4, -5} τότε Α Β={0, 2} ενώ Α Β={0, 1, -1, 2, 3, -3, 4, -5} B A A A B B A B Να βρείτε την τομή των συνόλων Α και Β όταν το A έχει ως στοιχεία τους ακεραίους του διαστήματος ( 27), το Β έχει ως στοιχεία τους ακεραίους του διαστήματος ( 5, 7) Να βρείτε την ένωση των συνόλων Α και Β όταν

12 6 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) το A έχει ως στοιχεία τους ακεραίους του διαστήματος [-1, 5) το Β έχει ως στοιχεία τους ακεραίους του διαστήματος (-2, 4] Μπορούμε να εκτελούμε τις τέσσερις πράξεις μεταξύ φυσικών, ακεραίων και των ρητών αριθμών αλλά ενδέχεται το αποτέλεσμα τους να μην ανήκει πάντοτε στο σύνολο από το οποίο προέρχονται οι αριθμοί λ.χ. η διαφορά 4-7 των φυσικών αριθμών 4 και 7 δεν είναι φυσικός αριθμός με άλλα λόγια για να βρούμε το αποτέλεσμα της πράξης αυτής χρειάζεται να «βγούμε» από το σύνολο των φυσικών αριθμών και να εργασθούμε στο «μεγαλύτερο» σύνολο των ακεραίων. Στον πίνακα που ακολουθεί φαίνεται ποιες πράξεις μπορούν να διεκπεραιωθούν μέσα στο σύνολο από το οποίο προέρχονται οι αριθμοί. Ανήκει πάντοτε το αποτέλεσμα της πράξης στο αντίστοιχο σύνολο ; Πράξη N Z Q α+β ΝΑΙ ΝΑΙ ΝΑΙ α. β ΝΑΙ ΝΑΙ ΝΑΙ α-β ΟΧΙ ΝΑΙ ΝΑΙ α:β (β 0) ΟΧΙ ΟΧΙ ΝΑΙ Οι α, β είναι ακέραιοι αριθμοί. Ποιοι από τους παρακάτω αριθμούς είναι βέβαιο ότι είναι ακέραιοι: (α+β)(α-β), 2 2 α+β α-β, α+β αβ, αβ+αβ β, α, αβ β α Ποιοι από τους ακέραιους 90, 100, 120, 130 είναι της μορφής ν 2 1, ν Z ;

13 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 7 ( Η έκφραση «είναι της μορφής» είναι πολύ συνηθισμένη στα Μαθηματικά: δίνεται ένας τύπος του οποίου οι μεταβλητές δηλαδή τα «γράμματα» μεταβάλλονται σε ένα σύνολο και τίθεται το ερώτημα ποιοι αριθμοί μπορούν ή δε μπορούν να προκύψουν από την εφαρμογή του τύπου δηλαδή να «παραχθούν» από τον τύπο) Ποιοι από τους ακέραιους 90, 100, 120, 130 είναι της μορφής 20κ+30, κ Z ; Ποιοι από τους ακέραιους 90, 100, 120, 130 είναι της μορφής 20κ 2 +30, κ Z ; Ποιοι από τους ακέραιους 90, 100, 120, 130 είναι της μορφής κ 2 +λ 2 +1, κ,λ Z ; Ποιος από τους αριθμούς 2 2 n 2 2 n,( ) (n φυσικός) είναι μεγαλύτερος; Ποια είναι η μικρότερη τιμή που μπορεί να πάρει η απόλυτη τιμή ενός μη μηδενικού ακεραίου; Αν οι αριθμοί α, β, γ είναι θετικοί ακέραιοι ποιος από τους παρακάτω αριθμούς είναι ο μεγαλύτερος από τους παρακάτω αριθμούς; (α+1) 2 +(β+1) 2 (α+1) 3 +(β+1) 2 α+β Γραμμικός συνδυασμός δύο ακεραίων α, β λέγεται κάθε ακέραιος της μορφής κα+λβ με κ,λ Z. Οι κ, λ λέγονται συντελεστές του γραμμικού συνδυασμού κα+λβ Οι αριθμοί 2α+3β, -5α+6β, 12α+0β, 0α+(-1)β είναι όλοι τους γραμμικοί συνδυασμοί των α, β. Ο α 2 +αβ είναι γραμμικός συνδυασμός των α, β αφού γράφεται (α)α+α(β). Ο 5 δε μπορεί να γραφεί ως γραμμικός συνδυασμός των 2 και 8. (Γιατί;). Οι γραμμικοί συνδυασμοί ακεραίων συμπεριφέρονται γενικά όπως οι γραμμικοί συνδυασμοί διανυσμάτων με μία μόνο, αλλά σημαντική, διαφορά: Μπορεί δύο γραμμικοί συνδυασμοί ακεραίων να είναι ίσοι χωρίς οι αντίστοιχοι συντελεστές τους να είναι ίσοι. Λ.χ. (-2) 2+1 3=(10) 2+(-7) Να αποδείξετε ότι:

14 8 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) I. Αν οι ακέραιοι x, y είναι γραμμικοί συνδυασμοί των α, β τότε και το άθροισμα τους x-y και η διαφορά τους x-y είναι γραμμικός συνδυασμός των α, β. Δηλαδή να αποδείξετε ότι το άθροισμα και η διαφορά γραμμικών συνδυασμών των α, β είναι γραμμικός συνδυασμός των α, β. II. Αν ο x είναι γραμμικός συνδυασμός των α, β τότε για κάθε ακέραιο λ ο λx είναι γραμμικός συνδυασμός των α, β. Δηλαδή το γινόμενο επί ένα ακέραιο ενός γραμμικού συνδυασμού των α, β είναι γραμμικός συνδυασμός των α, β. III.Αν ο x είναι γραμμικός συνδυασμός των β, γ και ο γ είναι γραμμικός συνδυασμός των α, β τότε ο x είναι γραμμικός συνδυασμός των α, β Ποιοι αριθμοί μπορούν να γραφούν ως γραμμικοί συνδυασμοί των α, β; Αυτό είναι ένα ερώτημα που θα το απαντήσουμε πλήρως στο τέλος αυτών των μαθημάτων. Εντούτοις μπορούμε να δούμε τι σημαίνει αυτό γεωμετρικά. Κατ αρχήν αν α=β=0 μόνο ο 0 μπορεί να γραφεί ως γραμμικός συνδυασμός των α, β. Αν κάποιος από τους α, β είναι διάφορος του 0 τότε ο γ γράφεται ως γραμμικός συνδυασμός των α, β αν και μόνο αν υπάρχουν ακέραιοι x, y έτσι ώστε xα+yβ=γ δηλαδή αx+by=γ. Αυτό σημαίνει ότι θα πρέπει η ευθεία αx+by=γ να έχει ένα τουλάχιστον σημείο με ακέραιες συντεταγμένες. Τα σημεία του επιπέδου με ακέραιες συντεταγμένες ονομάζονται συνδεσμικά σημεία. Επομένως ο γ είναι γραμμικός συνδυασμός των α, β αν και μόνο αν η ευθεία αx+by=γ διέρχεται από ένα τουλάχιστον συνδεσμικό σημείο. Για παράδειγμα η ευθεία 2x+3y=5 διέρχεται από τα συνδεσμικά σημεία Α(1,1) και Β(-2, 3). Απεναντίας δεν υπάρχουν ακέραιοι x, y έτσι ώστε 2x+4y=5 (αν υπήρχαν το πρώτο μέλος που είναι άρτιος θα ήταν ίσο με το δεύτερο μέλος που είναι περιττός πράγμα αδύνατο). άρα ο 5

15 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 9 δεν γράφεται ως γραμμικός συνδυασμός των 2 και 4. Αντιθέτως ο 6 γράφεται ( =6). Επομένως η ευθεία 2x+4y=5 δεν διέρχεται από κανένα συνδεσμικό σημείο ενώ η παράλληλη της 2x+4y=6 διέρχεται. 2. Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 2.1. Στις φυσικές επιστήμες η αλήθεια βρίσκεται κατ αρχήν με πειραματισμό. Αν μία υπόθεση επιβεβαιωθεί πολλές φορές αυτό μας είναι αρκετό για να την θεωρήσουμε ως «νόμο». Στα Μαθηματικά η κατάσταση είναι διαφορετική. Ο πειραματισμός μπορεί να μας δώσει ενδείξεις για την ισχύ μίας πρότασης αλλά ποτέ οριστική απόδειξη Για παράδειγμα ο μέγας Euler δοκιμάζοντας τιμές στην παράσταση ν 2 +ν+41 (τριώνυμο του Euler) πίστεψε προς στιγμήν ότι η παράσταση αυτή μας δίνει πάντα πρώτους αριθμούς (πρώτοι αριθμοί λέγονται εκείνοι οι θετικοί ακέραιοι που είναι μεγαλύτεροι του 1 και έχουν μόνο δύο διαιρέτες: τον εαυτό τους και τη μονάδα). Πράγματι αν στο τριώνυμο του Euler θέσουμε όπου ν τις τιμές 1, 2, 3,..., 39 θα βρούμε

16 10 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) ν ν 2 +ν+41 ν ν 2 +ν Αν όμως θέσουμε ν=40 θα βρούμε: =40(40+1)+41= =41. (40+1)=41 2 Βρήκαμε δηλαδή ένα αριθμό που έχει διαιρέτη τον 41 και επομένως δεν είναι πρώτος Οταν εργαζόμαστε με δοκιμές δοκιμάζουμε πεπερασμένο πλήθος αριθμών αφήνοντας απέξω άπειρους αριθμούς. Ενα χαρακτηριστικό παράδειγμα είναι το ακόλουθο: Στην δεκαετία του 30 στην τότε Σοβιετική Ενωση οι μαθηματικοί προσπαθούσαν να λύσουν ένα πρόβλημα του Τσεμποτάρεφ. Συγκεκριμένα να εξετασθεί αν όταν αναλύσουμε το κυκλοτομικό πολυώνυμο x ν -1 σε γινόμενο πρώτων παραγόντων θα βρούμε πολυώνυμα των οποίων όλοι οι συντελεστές είναι +1 ή -1. Ας δούμε τι συμβαίνει με μικρές τιμές του ν: ν x ν -1 Ανάλυση του x ν -1 σε γινόμενο πρώτων παραγόντων. 1 x 1-1 x-1 2 x 2-1 (x-1)(x+1) 3 x 3-1 (x-1)(x 2 +x+1) 4 x 4-1 (x-1)(x+1)(x 2 +1) 5 x 5-1 (x-1)(x 4 +x 3 +x 2 +x+1) Γνωρίζουμε πόσο επίπονη είναι η διαδικασία της παραγοντοποίησης. Ο Ιβάνωφ το 1941 με τα περιορισμένα υπολογιστικά μέσα της εποχής απέδειξε ότι για ν=105 είναι

17 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 11 x 105-1=(x-1) (x 6 +x 5 +x 4 +x 3 +x 2 +x+1)(x 4 +x 3 +x 2 +x+1) (1-x+x 5 -x 6 +x 7 -x 8 +x 10 -x 11 +x 12 -x 13 +x 14 -x 16 +x 17 -x 18 +x 19 -x 23 +x 24 ) (x 2 +x+1)(1-x+x 3 -x 4 +x 6 -x 8 +x 9 -x 11 +x 12 ) (1-x+x 3 -x 4 +x 5 -x 7 +x 8 ) (1+x-x 43 +x 46 +x 47 +x 34 +x 35 +x 36 -x 39 -x 40-2x 41 -x 42 -x 22 -x 26 -x 28 +x 31 +x 32 +x 33 -x 20 +x 15 +x 48 - x 6 -x 5 +x 2-2x 7 -x 24 +x 12 -x 8 +x 13 +x 14 +x 16 +x 17 -x 9 ) Προσέξτε ότι στον τελευταίο παράγοντα εμφανίζονται οι συντελεστές 2. Επομένως δεν είναι σωστό ότι όλοι οι ανάγωγοι παράγοντες του x ν -1 έχουν συντελεστές ±1 παρά το ότι αυτό ισχύει για ν Ενα άλλο παράδειγμα είναι η εικασία του Goldbach. Σύμφωνα με αυτή κάθε άρτιος αριθμός που είναι μεγαλύτερος του 4 μπορεί να γραφεί ως άθροισμα δύο περιττών πρώτων ( ο μόνος άρτιος πρώτος είναι ο 2) Πράγματι αν δοκιμάσουμε τιμές έχουμε Αρτιος αριθμός Γράφεται ως άθροισμα αλλά και Η ισχύς της εικασίας του Goldbach έχει δοκιμασθεί με την βοήθεια υπολογιστών για πολύ μεγάλους αριθμούς και σε κάθε μεμονωμένη περίπτωση έχει επιβεβαιωθεί. Πράγμα που σημαίνει ότι αν ξοδέψουμε όλη τη ζωή μας σε μεμονωμένες δοκιμές πάντα θα βλέπουμε την εικασία να επιβεβαιώνεται. Είναι τούτοις με τις δοκιμές δεν θα έχουμε αποδείξει την εικασία. Διότι ενδέχεται κάποιος μεγάλος αριθμός που δεν έχουμε δοκιμάσει να μη την επαληθεύει.

18 12 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) Η εικασία του Goldbach είναι ένα από τα άλυτα προβλήματα 1 των Μαθηματικών Πόσο είναι το άθροισμα των ν πρώτων θετικών ακεραίων δηλαδή το άθροισμα ν; Το άθροισμα που ζητάμε έχει ν προσθετέους. Αυτό που ζητάμε είναι ένας γενικός τύπος γι αυτό το άθροισμα. Ας δούμε μερικές τιμές του αθροίσματος 1=1 1+2= =(1+2)+3=3+3= =(1+2+3)+4=6+4= =( )+5=10+5= =( )+6=15+6= =( )+7=21+6= Μπορούμε άραγε εξετάζοντας τα τελικά αποτελέσματα 1, 3, 6, 10, 15, 21, να βρούμε ένα τρόπο δηλαδή ένα κανόνα με τον οποίο προκύπτουν; Αν όχι ας βοηθήσουμε την παρατηρητικότητα μας με ένα σχήμα: Ας παραστήσουμε κάθε μονάδα με ένα μικρό τετραγωνάκι. Ζητάμε να μάθουμε πόσα τετραγωνάκια θα έχουμε αν παραθέσουμε 1, 2, 3, 4,..., ν τετραγωνάκια. Το πλήθος θα είναι ν. (Στο σχήμα που ακολουθεί έχουμε πάρει ν=7) 1 Πρόκειται για προβλήματα που κανείς δεν έχει λύσει ή τουλάχιστον δεν είναι γνωστό αν κάποιος τα έχει λύσει. Ασφαλώς δεν πρόκειται για «άλυτες ασκήσεις»

19 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 13 Αν κάθε τετραγωνάκι έχει πλευρά 1 τότε το άθροισμα που ζητάμε είναι το εμβαδόν του γραμμοσκιασμένου χωρίου. Το χωρίο αυτό απαρτίζεται από ένα ορθογώνιο τρίγωνο που έχει εμβαδόν ίσο με το εμβαδόν του τετραγώνου που σχηματίζεται δηλαδή 1 2 ν2 συν το εμβαδόν των ν μικρών τριγώνων που βρίσκονται πάνω από την διαγώνιο δηλαδή συν 1 ν. Επομένως ν= ν + ν= (ν + ν)= ν(ν+ 1) άρα ν ( ν + 1) ν = 2 Ας ξαναγυρίσουμε στους αρχικούς μας υπολογισμούς ξέροντας τώρα το αποτέλεσμα. Εκ των υστέρων ίσως δούμε ότι θα μπορούσαμε αν έχουμε παρατηρήσει ότι 1=1=1. 2/2 1+2=3=1. 1/ =6=3. 4/ =10=4. 5/ =15=5. 6/ =21=6. 7/ =27=7. 8/ Ας υποθέσουμε ότι κάποιος κατόρθωνε να κάνει αυτή την παρατήρηση. Θα μπορούσε να υποθέσει ότι ν=ν(ν+1)/2. Πρόκειται όμως απλώς για μία υπόθεση που πρέπει να επικυρωθεί από απόδειξη. Η υπόθεση αυτή επιβεβαιώνεται για τους

20 14 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) πρώτους 7 θετικούς ακεραίους αλλά αυτοί δεν είναι τίποτε μπροστά στους άπειρους που ακολουθούν. 1 Ξέρουμε (έχει επιβεβαιωθεί) ότι = 7(7 + 1). 2 Το γεγονός αυτό μας επιτρέπει να επιβεβαιώσουμε την υπόθεση για ν=8. Πράγματι = ( ) + 8 = = = = 8 = 8(8 + 1). Ετσι επεκτείναμε την ισχύ της υπόθεσης μας για ν=8. Πόσο μακριά μπορούμε να φθάσουμε; Δεν έχει σημασία έτσι κι αλλιώς δεν επαρκεί η μικρή ζωή μας για να καλύψουμε όλους τους θετικούς ακεραίους. Ας πούμε ότι κατορθώσαμε να επιβεβαιώσουμε την ισχύ της υπόθεσης μας για ν=k δηλαδή ότι κατορθώσαμε να φθάσουμε έως τον k. 1 Φθάνοντας έως τον k ξέρουμε ότι k= k(k + 1) 2 Τότε μπορούμε να επαληθεύσουμε την ισχύ της υπόθεσης μας για ν=k+1. Πράγματι: k + (k +1) 1 1 = k(k + 1) + (k +1) = k + 1 (k +1) 2 2 = ( k) + (k +1) = 1 = 2 (k +1)(k + 2) Βλέπουμε λοιπόν ότι κάθε φορά μπορούμε να επεκτείνουμε την ισχύ της υπόθεσης μας κατά 1 δηλαδή ξέροντας ότι ισχύει για ν=k να αποδείξουμε ότι ισχύει και για ν=k+1. Είναι λοιπόν καθαρά θέμα «χρόνου» να κάνουμε την απόδειξη για όλους τους φυσικούς αριθμούς. Απλώς ξέρουμε πως θα το πετύχουμε αλλά δεν μπορούμε γιατί οι φυσικοί αριθμοί είναι άπειροι. Αυτή την αδυναμία έρχεται να καλύψει η αρχή της μαθηματικής επαγωγής η οποία μας λέει ότι αν ξέρουμε πώς να κάνουμε μία απόδειξη «διατρέχοντας» τους θετικούς ακεραίους είναι σαν να την έχουμε κάνει.

21 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) Μία αρχή για να επαληθεύονται προτάσεις που έχουν να κάνουν με φυσικούς αριθμούς είναι η αρχή της μαθηματικής επαγωγής ή όπως αλλιώς λέγεται της τέλειας επαγωγής: Έστω ένας ισχυρισμός που αναφέρεται στους θετικούς ακεραίους. Aν Τότε ο ισχυρισμός είναι αληθής για 1. όταν ο ισχυρισμός αληθεύει για ν=k τότε είναι βέβαιο ότι αληθεύει και για ν=k+1. ο ισχυρισμός αληθεύει για όλους τους θετικούς ακεραίους ν Για όλους τους θετικούς ακεραίους ν με ν 2 και για όλους τους πραγματικούςα με α 0 και α > 1 ισχύει: (1 + α) ν > 1+να. (Ανισότητα του Bernoulli) 2.8. Η ανισότητα του Bernoulli είναι προφανής όταν α>0 και δεν χρειάζεται επαγωγή για να αποδειχθεί. Αρκεί να παρατηρήσουμε ότι ν ( 1+ a ) = (1+ a)(1 + a)...(1 + a) ν παράγοντες Ας εκτελέσουμε νοερά τους πολλαπλασιασμούς του β μέλους. Αρκεί κάθε φορά να παίρνουμε ένα παράγοντα από κάθε παρένθεση και να πολλαπλασιάσουμε τους παράγοντες. Αν διαλέξουμε από όλες τις παρενθέσεις το 1 θα έχουμε γινόμενο 1. Αν διαλέξουμε από μία παρένθεση το α και από όλες τις υπόλοιπες παρενθέσεις το 1 θα βρούμε γινόμενο α. Το β μέλος -που θα είναι τελικά ένα άθροισμα γινομένων που θα διαθέτει ένα παράγοντα από κάθε παρένθεση-θα έχει ως προσθετέο το 1, θα έχει ν προσθετέους ίσους με α και θα έχει και άλλους προσθετέους που αντιστοιχούν σε

22 16 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) άλλες επιλογές (λ.χ. να διαλέξουμε από τις δύο πρώτες παρενθέσεις το 1 και από τις υπόλοιπες το α οπότε θα πάρουμε ως προσθετέο το α ν-2 ). Αρα το β μέλος είναι κάτι ν παραπάνω από 1 + a + a... a. Αυτό σημαίνει ότι (1 + a) > 1 + νa. Αρα η ν προσθετέοι ενδιαφέρουσα περίπτωση της ανισότητας του Ανισότητα του Bernoulli είναι όταν 1< a 0 Αυτή διατυπώνεται και με την μορφή θ ν 1 ν(1- θ) 0 < θ 1 Να αποδείξετε την ανισότητα αυτή α) Αυτοτελώς με επαγωγή β) Στηριζόμενοι στην προηγούμενη μορφή της ανισότητας του Bernoulli Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει I. II. III ν ν ( ν + 1)(2ν = ν ( ν + 1) ν = ν ( ν + 1)( ν + 2) ν ( ν + 1) = 3 2 1) IV ν ( ν + 1) ν =. ν Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει 1+ x + x x ν 1 = ν x 1, εφόσον x 1. x H μαθηματική επαγωγή δεν είναι ασφαλώς ούτε ο μόνος ούτε ο καλύτερος τρόπος για να αποδεικνύουμε προτάσεις που εξαρτώνται από φυσικούς αριθμούς. Αποδείξτε την ισότητα του προηγουμένου παραδείγματος εκτελώντας απλώς τον πολλαπλασιασμό (x -1)(x ν x 2 + x +1)

23 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) Να αποδείξετε ότι: 2 I. ν > 2ν + 1 για κάθε ακέραιο ν 3 II. ν 4 3 > ν για κάθε ακέραιο ν 7 ν III. 5 > 5ν 1 για κάθε θετικό ακέραιο ν Nα λυθεί η ανισότητα x > 2x + 1. Στη συνέχεια να βρείτε τις ακέραιες λύσεις της. Θα έχετε έτσι μία απόδειξη για το ερώτημα Ι της προηγούμενης άσκησης χωρίς να έχετε χρησιμοποιήσει επαγωγή Να αποδείξετε ότι για κάθε θετικό ακέραιο ν 4 ισχύει ν ν!> 2, όπου ν! = ν Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει ν ν Να αποδείξετε ότι για κάθε θετικό ακέραιο ν 3 ισχύει ν + 1 ν ν > ( ν + 1) Να αποδείξετε με την βοήθεια της μαθηματικής επαγωγής ότι I. a a a ν 1 a ν II. a a a ν 1 a ν Η πρώτη ανισότητα αναφέρεται σε απόλυτες τιμές ενώ η δεύτερη σε μέτρα διανυσμάτων. Να χρησιμοποιήσετε και στις δύο περιπτώσεις-ως δεδομένη- την τριγωνική ανισότητα Για μία συνάρτηση φ είναι γνωστό ότι για κάθε ζεύγος αριθμών x, y ισχύει φ( x + y) φ( x) + φ( y). Υπάρχουν πολλές τέτοιες συναρτήσεις. Ανάμεσα τους

24 18 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) η φ(x)=αx, η φ(x)= x κ.α. Να αποδειχθεί ότι αν πραγματικοί αριθμοί τότε ισχύει x 1 x2,...,, x ν είναι ν οποιοιδήποτε φ( x 1 + x xν ) φ( x1) + φ( x2 ) φ( xν ) Να αποδείξετε ότι κάθε πεπερασμένο υποσύνολο των πραγματικών αριθμών έχει μέγιστο και ελάχιστο στοιχείο. Με άλλα λόγια να αποδειχθεί ότι αν X = { x1, x2,..., xν} είναι ένα υποσύνολο του R με ν στοιχεία τότε υπάρχουν δύο στοιχεία μ, Μ του Χ τέτοια ώστε για κάθε στοιχείο x του Χ να ισχύει μ x M Υπάρχουν υποσύνολα του R τα οποία δεν έχουν ελάχιστο στοιχείο. Για παράδειγμα το ανοικτό διάστημα (0, 1) δεν έχει ελάχιστο στοιχείο δηλαδή δεν υπάρχει κάποιο στοιχείο του που να είναι πιο μικρό από τα υπόλοιπα στοιχεία του. Λόγω της ένα τέτοιο σύνολο δε μπορεί να είναι πεπερασμένο. Να αποδειχθεί όμως ότι κάθε μη κενό υποσύνολο (πεπερασμένο ή όχι) του συνόλου των θετικών ακεραίων έχει ελάχιστο στοιχείο. Για την απόδειξη εργασθείτε ως εξής: Εστω S ένα υποσύνολο των θετικών ακεραίων. Ας υποθέσουμε ότι το S δεν έχει ελάχιστο στοιχείο. Τότε 1 S. Εστω Τ το σύνολο όλων των θετικών ακεραίων που δεν ανήκουν στο S. Προφανώς 1 Τ. Δείξτε τώρα με επαγωγή ότι κάθε θετικός ακέραιος ανήκει στο T. Οταν τελειώσετε θα έχετε καταλήξει στο άτοπο συμπέρασμα ότι το S δεν έχει στοιχεία Αν έχουμε ένα σύνολο Χ μεταξύ των υποσυνόλων του συγκαταλέγονται το ίδιο το X και το κενό σύνολο που δεν έχει καθόλου στοιχεία. Ας πούμε ότι Χ={α}. Τότε το Χ έχει δύο μόνο υποσύνολα τα και Χ. Αν Χ={α, β} τότε τα

25 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 19 υποσύνολα του Χ είναι 4: Τα, {α}, {β}, Χ. Αν Χ={α, β, γ} τότε το Χ έχει 8 υποσύνολα: Τα, {α}, {β}, {γ}, {α, β}, {α, γ}, {β, γ}, Χ. Πόσα άραγε υποσύνολα έχει ένα σύνολο με ν στοιχεία; Προσπαθήστε να αποδείξετε το συμπέρασμα σας με επαγωγή Με ν! ( διαβάζεται «νι παραγοντικό») συμβολίζουμε το γινόμενο v. Είναι 1!=1, 2!=2, 3!=6, 4!=24 κ.ο.κ. Επίσης δεχόμαστε ότι 0!=1 I. Να αποδειχθεί ότι ισχύει (ν+1)!=ν!. (ν+1) II. Το ν! αυξάνει πολύ γρήγορα, γρηγορότερα από τις δυνάμεις οποιουδήποτε αριθμού. Εστω m ένας θετικός ακέραιος. Να αποδείξετε ότι για κάθε ν m+1 ισχύει ν! m ν Εστω k ένας θετικός ακέραιος. Να αποδείξετε ότι κάθε σύνολο με ν στοιχεία (ν k) έχει ν (ν -1)... (ν - k +1) k! υποσύνολα με k στοιχεία. ν (ν -1)... (ν - k +1) ν Ο αριθμός συμβολίζεται με. k! k ν Δεχόμαστε ότι = 1 0 Επειδή αν θέλουμε από ν αντικείμενα να διαλέξουμε k δηλαδή να συνδυάσουμε k αντικείμενα που διαλέγουμε από ν λέμε ότι το πλήθος των συνδυασμών ν αντικειμένων ανά k είναι ν ν (ν -1)... (ν - k +1) =. k k! Δείξτε ότι το ( α + β) ν δηλαδή το γινόμενο ( α + β)( α + β)( α + β)...( α + β) είναι ίσο με ν α 0 ν ν + α 1 ν-1 1 ν β + α 2 ν-2 β 2 ν φορές ν + α 3 ν-3 β 3 ν ν -1 1 ν-1 α β ν + β ν ν (Νewton)

26 20 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 3. ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 3.1. Η ταυτότητα της Ευκλείδειας διαίρεσης Ξέρουμε ότι όταν διαιρούμε ένα φυσικό αριθμό (διαιρετέο) με ένα μικρότερο του (διαιρέτη) θα βρούμε ένα πηλίκο και ένα υπόλοιπο. Το υπόλοιπο που μπορεί (όταν η διαίρεση είναι τέλεια) να είναι και 0 είναι σε κάθε περίπτωση μικρότερο από τον διαιρέτη. Επιπροσθέτως ο διαιρετέος είναι ίσος με το πηλίκο επί τον διαιρέτη συν το υπόλοιπο. Πρόκειται για την γνωστή ταυτότητα της Ευκλείδειας διαίρεσης Δ=πδ+υ με υ<δ. Ετσι η διαίρεση 25:4 έχει πηλίκο 6 και υπόλοιπο 1 είναι δε 25= ενώ η διαίρεση 120:100 έχει πηλίκο 1 και υπόλοιπο 20 είναι δε 120= Μπορούμε να διαιρέσουμε ένα φυσικό και με ένα μεγαλύτερο του αριθμό. Τότε το πηλίκο είναι 0 και ο διαιρετέος είναι ταυτοχρόνως και υπόλοιπο. Η διαίρεση 100:120 έχει πηλίκο 0 και αφήνει υπόλοιπο 100 δηλαδή 100= Αν α και β είναι φυσικοί αριθμοί με β 0, τότε υπάρχουν μοναδικοί φυσικοί π και υ, τέτοιοι, ώστε α=πβ+υ, β>υ 0. Το θεώρημα αυτό που έχουμε μάθει να χρησιμοποιούμε από το Δημοτικό μπορεί να αποδειχθεί με την βοήθεια της μαθηματικής επαγωγής: Απόδειξη Εστω β 0. Αποδεικνύουμε ότι για κάθε φυσικό αριθμό α υπάρχουν φυσικοί αριθμοί π και υ τέτοιοι ώστε α=πβ+υ και β>υ. Οταν εξασφαλίσουμε την ύπαρξη των κ, υ θα δείξουμε ότι είναι και οι μοναδικοί. Αν α=0 αρκεί να πάρουμε π=0 και υ=0. Αν α=1 διακρίνουμε τις περιπτώσεις I. β=1 οπότε παίρνουμε π=1 και υ=0 II. β>1 οπότε παίρνουμε π=0 και υ=1

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν. Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r. Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της. ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 1: Βασικές Γνώσεις Άλγεβρας Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Κεφάλαιο 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4.1 πωλυωνυμα Η έννοια του πολυωνύμου Έστω x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε πραγματική τιμή. Καλούμε μονώνυμο του x κάθε παράσταση της μορφής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», «

Ας θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», « .1 Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη διατύπωση μαθηματικών εννοιών, προτάσεων

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 41 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εισαγωγή Η Θεωρία Αριθμών, δηλαδή η μελέτη των ιδιοτήτων των θετικών ακεραίων, έθεσε από πολύ νωρίς τους μαθηματικούς μπροστά στο εξής πρόβλημα: Κάποια πρόταση

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x.

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x. ΑΣΚΗΣΕΙΣ. ίνονται τα πολυώνυµα Ρ (x), Ρ (x), Ρ (x) αν τα πολυώνυµα Ρ (x) και Ρ (x) δεν έχουν κοινή ρίζα και ισχύει : ( Ρ (x)) + (Ρ (x)) = (Ρ (x)) για κάθε x R να δείξετε ότι το Ρ (x) δεν έχει πραγµατική

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ - 11 - ΚΕΦΑΛΑΙΟ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ Έστω Ρ(ν) ένας ισχυρισµός, ο οποίος αναφέρεται στους θετικούς ακέραιους Αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της

Διαβάστε περισσότερα

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή.

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή. Ερωτήσεις ανάπτυξης 1. * Παρατηρούµε ότι: 1 11 ( + = 1 ) 1+ = ( + 1) 1 3 33 ( + + + = 1 ) Ποιο νοµίζετε ότι θα είναι το άθροισµα 1 + + 3 +... + ν; Αποδείξτε την ισότητα που συµπεράνατε µε επαγωγή.. * Μετράµε

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Ορισµός Ονοµάζουµε ακέραιο πολυώνυµο του x κάθε έκφραση της µορφής : α ν x ν + α ν-1 x ν-1 + α ν-2 x ν-2 + +α 1 x + α 0 όπου α ν, α ν-1, α ν-2,, α 1, α 0 C και

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( ) ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης

Διαβάστε περισσότερα

Θέμα 1 ο. Λύση θέματος 1 ο Α.

Θέμα 1 ο. Λύση θέματος 1 ο Α. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θέματα δόθηκαν στις εξετάσεις Ιουνίου 013 στο 17 ο ΓΕΛ από τους καθηγητές Ν.Κ, Κ.Μ, Δ.Α. Παρακάτω παρατίθενται τα θέματα και οι λύσεις ανεπτυγμένες σε κάποια σημεία, με σχόλια καθώς

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα