N. Σ. ΜΑΥΡΟΓΙΑΝΝΗΣ. Mαθήματα Θεωρίας Αριθμών PPwWpp (με βάση το σχολικό βιβλίο)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "N. Σ. ΜΑΥΡΟΓΙΑΝΝΗΣ. Mαθήματα Θεωρίας Αριθμών PPwWpp (με βάση το σχολικό βιβλίο)"

Transcript

1 N. Σ. ΜΑΥΡΟΓΙΑΝΝΗΣ Mαθήματα Θεωρίας Αριθμών PPwWpp (με βάση το σχολικό βιβλίο) ΑΘΗΝΑ 2006

2

3 Σημείωμα Συνέταξα αυτές τις σημειώσεις, προς χάριν των μαθητών μου, το σχολικό έτος όταν δίδασκα στο 3 ο Λύκειο Ν. Σμύρνης. Θεώρησα τότε ότι θα ήταν καλό να έχουν, όσοι μαθητές ενδιαφέρονται, κάποια πληροφόρηση, συμβατή με το σχολικό βιβλίο αλλά λίγο πιο πέρα από αυτό. Ήταν και ένας τρόπος για να καλωσορίσω τη Θεωρία Αριθμών που μετά από απουσία ετών επανήλθε στα σχολεία. Υπολόγιζα ότι οι σημειώσεις αυτές θα αποτελούσαν αφετηρία και για κάποιες μαθητικές εργασίες που με την τότε, ως συνήθως ξύλινη, επίσημη γλώσσα τις ονόμασαν «συνθετικές». Ωστόσο οι σημειώσεις αυτές διαδραμάτισαν πολύ μικρό ρόλο. Και στα δύο τμήματα Θετικής Κατεύθυνσης που είχα την ευθύνη της διδασκαλίας κατόρθωσα να διδάξω σχεδόν το σύνολο των προτάσεων- ασκήσεων που περιέχουν. Όμως δεν τόλμησα να φορτώσω, τους σκληροτράχηλους μεν αλλά εξουθενωμένους δε, μαθητές μου με παραπάνω δουλειά. Ήταν η εποχή του παραλογισμού όπου δεν έμενε στα παιδιά και πολύ καιρός για σκέψη. Δέσποζε ένα τερατώδες εξεταστικό σύστημα μαθημάτων που οι εμπνευστές του, στ αλήθεια με περισσό θράσος, ονόμασαν, ψευδώνυμα, «μεταρρύθμιση». Η Θεωρία Αριθμών, ίσως ο πιο συναρπαστικός κλάδος των Μαθηματικών, ονομάστηκε από το μεγάλο Gauss «Βασίλισσα των Μαθηματικών». Μάλλον όχι άδικα. Τα προβλήματα της ελκύουν το ενδιαφέρον ενός μεγάλου και ετερόκλητου κοινού. Από ανθρώπους που έχουν απλώς τελειώσει το σχολείο έως μεγάλους μαθηματικούς που είναι κορυφαίοι στον τομέα τους. Και προσφέρει χαρά, συγκίνηση και, πιο σπάνια βέβαια, διάκριση. Από την άλλη μεριά η θεωρία Αριθμών υπήρξε η κινητήρια δύναμη για την ανάπτυξη πλείστων περιοχών των Μαθηματικών. Η παρούσα θέση της Θεωρίας Αριθμών στα σχολεία είναι περιορισμένη στο πιο ρηχό και μηχανικό μέρος της άρα και στο πλέον ανούσιο: Επαγωγή, η ταυτότητα της διαίρεσης συν ολίγη διαιρετότητα. Κατά πως φαίνεται οι ιθύνοντες δεν πολυεκτιμούν τα πολιτιστικά επιτεύγματα ακόμη και αν αυτά (ιδίως αν αυτά, θα έλεγα) έχουν τις ρίζες τους στον ανεπανάληπτο πολιτισμό των Αρχαίων Ελλήνων. Οι σημειώσεις αυτές δημοσιοποιούνται με την ίδια αρχική ελπίδα που γράφτηκαν: ότι θα βοηθήσουν κάποιους νέους παράλληλα με τα μαθήματα τους να κάνουν μία είσοδο σε αυτό το εξαίρετο ανθρώπινο διανοητικό δημιούργημα. Αν η ελπίδα αυτή ευοδωθεί ίσως κάποιοι αναγνώστες θα ήθελαν να συνεχίσουν τη μελέτη. Στις επόμενες σελίδες υπάρχει ένας κατάλογος που ενδέχεται να τους διευκολύνει. Η ένδειξη αναφέρεται σε κάτι που με τον ένα ή τον άλλο τρόπο υπάρχει στο σχολικό βιβλίο. Η ένδειξη υποδηλώνει ότι ο μαθητής πρέπει να δουλέψει μόνος του. Και στα Μαθηματικά αυτό σημαίνει, συνήθως, χαρτί και μολύβι! Αθήνα 22 Ιουνίου στην Β Τάξη και 14 στην Γ Τάξη

4 Oι παρούσες σημειώσεις διατίθενται ως έχουν και ο συντάκτης τους δεν ευθύνεται για τυχόν προβλήματα που προκύψουν από τη χρήση τους. Μπορούν να διανεμηθούν ή / και να εκτυπωθούν ελεύθερα αρκεί να μην τροποποιηθεί η μορφή τους.

5 ΓΙΑ ΠΕΡΑΙΤΕΡΩ ΜΕΛΕΤΗ Α. Βιβλία στα Ελληνικά: [1.] J. HUNTER Αριθμοθεωρία Σε μετάφραση του αείμνηστου Νικολάου Κριτικού Σύλλογος προς Διάδοσιν Ωφελίμων Βιβλίων, ΑΘΗΝΑ 1974 [2.] ADOLPH HURWITZ Μαθήματα Αριθμοθεωρίας (Επεξεργασμένες σημειώσεις του μαθητή του Νικολάου Κριτικού) Γ.Α. Πνευματικός, ΑΘΗΝΑ 1981 [3.] ΔΗΜΗΤΡΙΟΣ ΠΟΥΛΑΚΗΣ Θεωρία Αριθμών Εκδόσεις Ζήτη, ΘΕΣΣΑΛΟΝΙΚΗ, 1997 [4.] Π.Μ. ΒΛΑΜΜΟΣ, Ε. ΡΑΠΠΟΣ, Π. ΨΑΡΡΑΚΟΣ Θεωρία Αριθμών Ελληνική Μαθηματική Εταιρεία ΑΘΗΝΑ 2000 Β. Ηλεκτρονικά Βιβλία - Σημειώσεις στα Ελληνικά: [5.] N. Γ. ΤΖΑΝΑΚΗΣ Θεμελιώδης Θεωρία Αριθμών ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ [6.] ΓΙΑΝΝΗΣ Α. ΑΝΤΩΝΙΑΔΗΣ Θεωρία Αριθμών κατά τον 17 ο και 18 ο αιώνα. ΕΠΕΑΕΚ «Προμηθέας»- ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Γ. Βιβλία στα Αγγλικά: Η ξενόγλωσση βιβλιογραφία του κλάδου είναι πλουσιότατη. Νομίζω όμως ότι κάθε βιβλιογραφικός κατάλογος αξίζει να περιλαμβάνει τα: [7.] G. H. HARDY, E. Μ. WRIGHT An Introduction to the Theory of Numbers OXFORD, 1959 [8.] EDMUND LANDAU Elementary Number Theory ( Μετάφραση από τα Γερμανικά: Jacob E. Goodman) CHELSEA, 1966 Β. Ηλεκτρονικά Βιβλία - Σημειώσεις στα Άγγλικά: [9.] LEO MOSER An Introduction to the Theory of Numbers The Trillia Lectures on Mathematics, 2004 (1957) [10.] DAVID A. SANTOS Number Theory for Mathematical Contests 2005 REVISION [11.] EDWIN W.CLARK Elementary Number Theory Department of Mathematics. University of South Florida, [12.] A. BAKER Algebra & Number Theory Department of Mathematics, University of Glasgow., [13.] ROBIN CHAPMAN A Guide to Arithmetic [14.] FELIX LAZEBNIK Elements of number theory: Lecture Notes 2005

6

7 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 1 1. ΟΙ ΦΥΣΙΚΟΙ, ΟΙ ΑΚΕΡΑΙΟΙ ΚΑΙ ΟΙ ΡΗΤΟΙ ΑΡΙΘΜΟΙ 1.1. Οι φυσικοί αριθμοί είναι οι 0, 1, 2, 3, 4, 5,... Το σύνολο τους συμβολίζεται με N. Γράφουμε λοιπόν N ={0, 1, 2, 3,...}. Τα αποσιωπητικά υποδηλώνουν ότι οι αριθμοί συνεχίζονται επ άπειρον. Το πλήθος των φυσικών αριθμών είναι άπειρο. Κάθε φυσικός αριθμός ν έχει και ένα επόμενο τον ν+1. Ο επόμενος του 2 είναι ο 3, ο επόμενος του 5 είναι ο 6. Κάθε φυσικός αριθμός εκτός από το 0 είναι και επόμενος κάποιου άλλου φυσικού αριθμού: Ο 56 είναι επόμενος του 55, ο 13 είναι επόμενος του 12. Κάθε φυσικός αριθμός είναι μικρότερος του επομένου του. Ο 0 είναι ο πιο μικρός φυσικός αριθμός. Ομως δεν υπάρχει φυσικός αριθμός που να είναι πιο μεγάλος από τους άλλους φυσικούς αριθμούς. Μερικές φορές χρειάζεται να εργασθούμε με μη μηδενικούς φυσικούς αριθμούς. Το σύνολο τους το συμβολίζουμε με N *. Είναι δηλαδή N * ={0, 1, 2, 3,...}. Συνήθως (αλλά όχι και απαραιτήτως) χρησιμοποιούμε «ενδιάμεσα» γράμματα της αλφαβήτου για να συμβολίσουμε τους φυσικούς αριθμούς: κ, λ, μ, ν, k, m, n. Λέγοντας ο «φυσικός αριθμός ν» εννοούμε, αν δεν προσδιορίζεται κάτι διαφορετικό, ένα οποιοδήποτε αριθμό μικρό ή μεγάλο. Ομως κάθε φορά πρόκειται για ένα αριθμό και όχι για το άπειρο. Για παράδειγμα το άθροισμα είναι το άθροισμα όλων των κλασμάτων πού έχουν ν αριθμητή 1 και των οπίων ο παρονομαστής παίρνει όλες τις τιμές από 1 έως ν. Το άθροισμα αυτό δεν έχει βέβαια 4 προσθετέους επειδή φαίνονται μόνο 4 διότι αποσιωπώνται και κάποιοι προσθετέοι που η ύπαρξη τους εννοείται. Είναι άσκοπο (αλλά και ανέφικτο όταν ο ν είναι μεγάλος) να γραφούν όλοι. Το πλήθος των προσθετέων του αθροίσματος αυτού είναι ν. Το πλήθος είναι 4 όταν ο ν είναι 4. Το πλήθος είναι 1 όταν ο ν είναι 1. Σε καμία όμως περίπτωση το πλήθος δεν είναι άπειρο.

8 2 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 1.2. Να βρείτε το πλήθος των προσθετέων στα παρακάτω αθροίσματα ν p+ p + p p n n k Να βρείτε το πλήθος των παραγόντων στα παρακάτω γινόμενα ( 1+ 1)( 1+ x)( 1+ x 2 )...( 1+ x ν ) ( 1+ 1)( 1+ x)( 1+ x 2 )( 1+ x 3 )...( 1+ x 2ν ) ( 1+ 1)( 1+ x 2 )( 1+ x 4 )...( 1+ x 2ν ) 1.4. Ο επόμενος του 3x-2 είναι ο 31. Ποιο είναι ο x; 1.5. Τίνων φυσικών αριθμών το τετράγωνο είναι 81; 1.6. Οι ακέραιοι αριθμοί είναι όπως απλά μπορούμε να πούμε οι φυσικοί αριθμοί και οι αντίθετοι τους δηλαδή οι 0, ±1, ±2, ±3,... Το σύνολο των ακεραίων συμβολίζεται με Z δηλαδή Z ={0, ±1, ±2, ±3,...}. Με Z * συμβολίζουμε το σύνολο των μη μηδενικών ακεραίων δηλαδή Z * ={ ±1, ±2, ±3,...}. Οι ακέραιοι αριθμοί είναι και αυτοί άπειροι όπως οι φυσικοί αριθμοί όμως όχι μόνο δεν υπάρχει ακέραιος αριθμός που να είναι πιο μεγάλος από τους άλλους αλλά δεν υπάρχει ούτε ακέραιος αριθμός που να είναι πιο μικρός από τους άλλους. Αν παραστήσουμε τους ακέραιους αριθμούς στην ευθεία των πραγματικών αριθμών τότε οι ακέραιοι αριθμοί «εκτείνονται» και προς τα δύο μέρη της ευθείας:

9 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) Ποιοι ακέραιοι περιέχονται στο διάστημα [-1,5]; 1.8. Ποιες ακέραιες τιμές παίρνει η συνάρτηση συνx; 1.9. Πόσοι ακέραιοι περιέχονται στο διάστημα [-480, 1999]; Υπάρχουν άραγε ακέραιοι μεταξύ των αντιστρόφων δύο διαδοχικών φυσικών αριθμών; Τίνων ακεραίων το τετράγωνο είναι ίσο με 81; Οι ρητοί αριθμοί είναι όλα τα κλάσματα με αριθμητή και παρονομαστή ακεραίους. Εννοείται βέβαια ότι ο παρονομαστής δε μπορεί να είναι 0. Οι αριθμοί 2 13,, είναι ρητοί αριθμοί ενώ οι 2 3, 5, συν1 δεν είναι (οι πραγματικοί αριθμοί που δεν είναι ρητοί ονομάζονται άρρητοι). Το σύνολο των ρητών αριθμών το συμβολίζουμε με Q. Είναι λοιπόν RST U VW μ Q = / μ Z, ν Z. ν Υπενθυμίζεται ότι δύο κλάσματα μπορεί να παριστούν τον ίδιο ρητό αριθμό λ.χ. 2 4 =. Αν θέλουμε να συγκρίνουμε δύο ρητούς που εκφράζονται με τα κλάσματα 3 6 κ μ, των οποίων οι όροι κ, λ, μ, ν είναι θετικοί σχηματίζουμε τα δύο γινόμενα λ ν κν, μλ. Αν είναι ίσα οι ρητοί είναι ίσοι. Αν είναι μεγαλύτερο το πρώτο γινόμενο τότε

10 4 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) μεγαλύτερος είναι ο πρώτος ρητός και αν είναι το δεύτερο μεγαλύτερος είναι ο δεύτερος. Και οι ρητοί αριθμοί αν παρασταθούν στην ευθεία των πραγματικών αριθμών εκτείνονται και προς τα δύο μέρη της αλλά έχουν και ένα επιπλέον χαρακτηριστικό: Είναι «διάσπαρτοι» στην ευθεία δηλαδή μεταξύ δύο οποιωνδήποτε πραγματικών αριθμών υπάρχει πάντοτε και ένας ρητός. Εντούτοις οι ρητοί αριθμοί δεν «καλύπτουν» όλα τα σημεία της πραγματικής ευθείας. 13. Να βρείτε δέκα ρητούς που ανήκουν στο διάστημα (0, 1). 14. Για ποια τιμή του φυσικού αριθμού x οι ρητοί x x 3, +11 είναι ίσοι; Κάθε φυσικός αριθμός είναι και ακέραιος αριθμός και κάθε ακέραιος αριθμός είναι ρητός αριθμός. Λέμε ότι το σύνολο των φυσικών αριθμών είναι υποσύνολο του συνόλου των ακεραίων αριθμών και ότι το σύνολο των ακεραίων αριθμών είναι υποσύνολο του συνόλου των ρητών αριθμών. Γράφουμε συμβολικά N Z και Z Q. Q 2 3. Z 1. N Για ποιες τιμές του ακεραίου x ο x+12 είναι φυσικός αριθμός; 17. Για ποιες ακέραιες τιμές του x o ρητός αριθμός 18 x είναι ακέραιος; Ο 11 x 18. Υπενθυμίζεται ότι γενικά αν έχουμε δύο σύνολα Α και Β

11 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 5 τα Α και Β λέγονται ίσα (γράφουμε Α=Β) αν έχουν ακριβώς τα ίδια στοιχεία δηλαδή κάθε στοιχείο του Α είναι και στοιχείο του Β αλλά και κάθε στοιχείο του Β είναι και στοιχείο του Α. το Α λέγεται υποσύνολο του Β (γράφουμε Α Β) αν κάθε στοιχείο του Α είναι και στοιχείο του Β. Η τομή των Α και Β (συμβολικά Α Β) είναι το σύνολο που απαρτίζεται από τα κοινά στοιχεία των Α και Β δηλαδή εκείνα που ανήκουν και στο Α και στο Β. Η ένωση των Α και Β (συμβολικά Α Β) είναι το σύνολο που απαρτίζεται από όλα τα στοιχεία των Α και Β κοινά και μη κοινά. Το σύνολο που δεν έχει καθόλου στοιχεία δηλαδή το { } συμβολίζεται με (κενό σύνολο) Λ.χ. αν είναι Α={0, 1, 2, 3}, Β={0, 1, 2, 3, 4, 5} τότε Α Β. Αν είναι Α={0, 1, 2, 3}, Β={0, -1, 2, -3, 4, -5} τότε Α Β={0, 2} ενώ Α Β={0, 1, -1, 2, 3, -3, 4, -5} B A A A B B A B Να βρείτε την τομή των συνόλων Α και Β όταν το A έχει ως στοιχεία τους ακεραίους του διαστήματος ( 27), το Β έχει ως στοιχεία τους ακεραίους του διαστήματος ( 5, 7) Να βρείτε την ένωση των συνόλων Α και Β όταν

12 6 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) το A έχει ως στοιχεία τους ακεραίους του διαστήματος [-1, 5) το Β έχει ως στοιχεία τους ακεραίους του διαστήματος (-2, 4] Μπορούμε να εκτελούμε τις τέσσερις πράξεις μεταξύ φυσικών, ακεραίων και των ρητών αριθμών αλλά ενδέχεται το αποτέλεσμα τους να μην ανήκει πάντοτε στο σύνολο από το οποίο προέρχονται οι αριθμοί λ.χ. η διαφορά 4-7 των φυσικών αριθμών 4 και 7 δεν είναι φυσικός αριθμός με άλλα λόγια για να βρούμε το αποτέλεσμα της πράξης αυτής χρειάζεται να «βγούμε» από το σύνολο των φυσικών αριθμών και να εργασθούμε στο «μεγαλύτερο» σύνολο των ακεραίων. Στον πίνακα που ακολουθεί φαίνεται ποιες πράξεις μπορούν να διεκπεραιωθούν μέσα στο σύνολο από το οποίο προέρχονται οι αριθμοί. Ανήκει πάντοτε το αποτέλεσμα της πράξης στο αντίστοιχο σύνολο ; Πράξη N Z Q α+β ΝΑΙ ΝΑΙ ΝΑΙ α. β ΝΑΙ ΝΑΙ ΝΑΙ α-β ΟΧΙ ΝΑΙ ΝΑΙ α:β (β 0) ΟΧΙ ΟΧΙ ΝΑΙ Οι α, β είναι ακέραιοι αριθμοί. Ποιοι από τους παρακάτω αριθμούς είναι βέβαιο ότι είναι ακέραιοι: (α+β)(α-β), 2 2 α+β α-β, α+β αβ, αβ+αβ β, α, αβ β α Ποιοι από τους ακέραιους 90, 100, 120, 130 είναι της μορφής ν 2 1, ν Z ;

13 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 7 ( Η έκφραση «είναι της μορφής» είναι πολύ συνηθισμένη στα Μαθηματικά: δίνεται ένας τύπος του οποίου οι μεταβλητές δηλαδή τα «γράμματα» μεταβάλλονται σε ένα σύνολο και τίθεται το ερώτημα ποιοι αριθμοί μπορούν ή δε μπορούν να προκύψουν από την εφαρμογή του τύπου δηλαδή να «παραχθούν» από τον τύπο) Ποιοι από τους ακέραιους 90, 100, 120, 130 είναι της μορφής 20κ+30, κ Z ; Ποιοι από τους ακέραιους 90, 100, 120, 130 είναι της μορφής 20κ 2 +30, κ Z ; Ποιοι από τους ακέραιους 90, 100, 120, 130 είναι της μορφής κ 2 +λ 2 +1, κ,λ Z ; Ποιος από τους αριθμούς 2 2 n 2 2 n,( ) (n φυσικός) είναι μεγαλύτερος; Ποια είναι η μικρότερη τιμή που μπορεί να πάρει η απόλυτη τιμή ενός μη μηδενικού ακεραίου; Αν οι αριθμοί α, β, γ είναι θετικοί ακέραιοι ποιος από τους παρακάτω αριθμούς είναι ο μεγαλύτερος από τους παρακάτω αριθμούς; (α+1) 2 +(β+1) 2 (α+1) 3 +(β+1) 2 α+β Γραμμικός συνδυασμός δύο ακεραίων α, β λέγεται κάθε ακέραιος της μορφής κα+λβ με κ,λ Z. Οι κ, λ λέγονται συντελεστές του γραμμικού συνδυασμού κα+λβ Οι αριθμοί 2α+3β, -5α+6β, 12α+0β, 0α+(-1)β είναι όλοι τους γραμμικοί συνδυασμοί των α, β. Ο α 2 +αβ είναι γραμμικός συνδυασμός των α, β αφού γράφεται (α)α+α(β). Ο 5 δε μπορεί να γραφεί ως γραμμικός συνδυασμός των 2 και 8. (Γιατί;). Οι γραμμικοί συνδυασμοί ακεραίων συμπεριφέρονται γενικά όπως οι γραμμικοί συνδυασμοί διανυσμάτων με μία μόνο, αλλά σημαντική, διαφορά: Μπορεί δύο γραμμικοί συνδυασμοί ακεραίων να είναι ίσοι χωρίς οι αντίστοιχοι συντελεστές τους να είναι ίσοι. Λ.χ. (-2) 2+1 3=(10) 2+(-7) Να αποδείξετε ότι:

14 8 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) I. Αν οι ακέραιοι x, y είναι γραμμικοί συνδυασμοί των α, β τότε και το άθροισμα τους x-y και η διαφορά τους x-y είναι γραμμικός συνδυασμός των α, β. Δηλαδή να αποδείξετε ότι το άθροισμα και η διαφορά γραμμικών συνδυασμών των α, β είναι γραμμικός συνδυασμός των α, β. II. Αν ο x είναι γραμμικός συνδυασμός των α, β τότε για κάθε ακέραιο λ ο λx είναι γραμμικός συνδυασμός των α, β. Δηλαδή το γινόμενο επί ένα ακέραιο ενός γραμμικού συνδυασμού των α, β είναι γραμμικός συνδυασμός των α, β. III.Αν ο x είναι γραμμικός συνδυασμός των β, γ και ο γ είναι γραμμικός συνδυασμός των α, β τότε ο x είναι γραμμικός συνδυασμός των α, β Ποιοι αριθμοί μπορούν να γραφούν ως γραμμικοί συνδυασμοί των α, β; Αυτό είναι ένα ερώτημα που θα το απαντήσουμε πλήρως στο τέλος αυτών των μαθημάτων. Εντούτοις μπορούμε να δούμε τι σημαίνει αυτό γεωμετρικά. Κατ αρχήν αν α=β=0 μόνο ο 0 μπορεί να γραφεί ως γραμμικός συνδυασμός των α, β. Αν κάποιος από τους α, β είναι διάφορος του 0 τότε ο γ γράφεται ως γραμμικός συνδυασμός των α, β αν και μόνο αν υπάρχουν ακέραιοι x, y έτσι ώστε xα+yβ=γ δηλαδή αx+by=γ. Αυτό σημαίνει ότι θα πρέπει η ευθεία αx+by=γ να έχει ένα τουλάχιστον σημείο με ακέραιες συντεταγμένες. Τα σημεία του επιπέδου με ακέραιες συντεταγμένες ονομάζονται συνδεσμικά σημεία. Επομένως ο γ είναι γραμμικός συνδυασμός των α, β αν και μόνο αν η ευθεία αx+by=γ διέρχεται από ένα τουλάχιστον συνδεσμικό σημείο. Για παράδειγμα η ευθεία 2x+3y=5 διέρχεται από τα συνδεσμικά σημεία Α(1,1) και Β(-2, 3). Απεναντίας δεν υπάρχουν ακέραιοι x, y έτσι ώστε 2x+4y=5 (αν υπήρχαν το πρώτο μέλος που είναι άρτιος θα ήταν ίσο με το δεύτερο μέλος που είναι περιττός πράγμα αδύνατο). άρα ο 5

15 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 9 δεν γράφεται ως γραμμικός συνδυασμός των 2 και 4. Αντιθέτως ο 6 γράφεται ( =6). Επομένως η ευθεία 2x+4y=5 δεν διέρχεται από κανένα συνδεσμικό σημείο ενώ η παράλληλη της 2x+4y=6 διέρχεται. 2. Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 2.1. Στις φυσικές επιστήμες η αλήθεια βρίσκεται κατ αρχήν με πειραματισμό. Αν μία υπόθεση επιβεβαιωθεί πολλές φορές αυτό μας είναι αρκετό για να την θεωρήσουμε ως «νόμο». Στα Μαθηματικά η κατάσταση είναι διαφορετική. Ο πειραματισμός μπορεί να μας δώσει ενδείξεις για την ισχύ μίας πρότασης αλλά ποτέ οριστική απόδειξη Για παράδειγμα ο μέγας Euler δοκιμάζοντας τιμές στην παράσταση ν 2 +ν+41 (τριώνυμο του Euler) πίστεψε προς στιγμήν ότι η παράσταση αυτή μας δίνει πάντα πρώτους αριθμούς (πρώτοι αριθμοί λέγονται εκείνοι οι θετικοί ακέραιοι που είναι μεγαλύτεροι του 1 και έχουν μόνο δύο διαιρέτες: τον εαυτό τους και τη μονάδα). Πράγματι αν στο τριώνυμο του Euler θέσουμε όπου ν τις τιμές 1, 2, 3,..., 39 θα βρούμε

16 10 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) ν ν 2 +ν+41 ν ν 2 +ν Αν όμως θέσουμε ν=40 θα βρούμε: =40(40+1)+41= =41. (40+1)=41 2 Βρήκαμε δηλαδή ένα αριθμό που έχει διαιρέτη τον 41 και επομένως δεν είναι πρώτος Οταν εργαζόμαστε με δοκιμές δοκιμάζουμε πεπερασμένο πλήθος αριθμών αφήνοντας απέξω άπειρους αριθμούς. Ενα χαρακτηριστικό παράδειγμα είναι το ακόλουθο: Στην δεκαετία του 30 στην τότε Σοβιετική Ενωση οι μαθηματικοί προσπαθούσαν να λύσουν ένα πρόβλημα του Τσεμποτάρεφ. Συγκεκριμένα να εξετασθεί αν όταν αναλύσουμε το κυκλοτομικό πολυώνυμο x ν -1 σε γινόμενο πρώτων παραγόντων θα βρούμε πολυώνυμα των οποίων όλοι οι συντελεστές είναι +1 ή -1. Ας δούμε τι συμβαίνει με μικρές τιμές του ν: ν x ν -1 Ανάλυση του x ν -1 σε γινόμενο πρώτων παραγόντων. 1 x 1-1 x-1 2 x 2-1 (x-1)(x+1) 3 x 3-1 (x-1)(x 2 +x+1) 4 x 4-1 (x-1)(x+1)(x 2 +1) 5 x 5-1 (x-1)(x 4 +x 3 +x 2 +x+1) Γνωρίζουμε πόσο επίπονη είναι η διαδικασία της παραγοντοποίησης. Ο Ιβάνωφ το 1941 με τα περιορισμένα υπολογιστικά μέσα της εποχής απέδειξε ότι για ν=105 είναι

17 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 11 x 105-1=(x-1) (x 6 +x 5 +x 4 +x 3 +x 2 +x+1)(x 4 +x 3 +x 2 +x+1) (1-x+x 5 -x 6 +x 7 -x 8 +x 10 -x 11 +x 12 -x 13 +x 14 -x 16 +x 17 -x 18 +x 19 -x 23 +x 24 ) (x 2 +x+1)(1-x+x 3 -x 4 +x 6 -x 8 +x 9 -x 11 +x 12 ) (1-x+x 3 -x 4 +x 5 -x 7 +x 8 ) (1+x-x 43 +x 46 +x 47 +x 34 +x 35 +x 36 -x 39 -x 40-2x 41 -x 42 -x 22 -x 26 -x 28 +x 31 +x 32 +x 33 -x 20 +x 15 +x 48 - x 6 -x 5 +x 2-2x 7 -x 24 +x 12 -x 8 +x 13 +x 14 +x 16 +x 17 -x 9 ) Προσέξτε ότι στον τελευταίο παράγοντα εμφανίζονται οι συντελεστές 2. Επομένως δεν είναι σωστό ότι όλοι οι ανάγωγοι παράγοντες του x ν -1 έχουν συντελεστές ±1 παρά το ότι αυτό ισχύει για ν Ενα άλλο παράδειγμα είναι η εικασία του Goldbach. Σύμφωνα με αυτή κάθε άρτιος αριθμός που είναι μεγαλύτερος του 4 μπορεί να γραφεί ως άθροισμα δύο περιττών πρώτων ( ο μόνος άρτιος πρώτος είναι ο 2) Πράγματι αν δοκιμάσουμε τιμές έχουμε Αρτιος αριθμός Γράφεται ως άθροισμα αλλά και Η ισχύς της εικασίας του Goldbach έχει δοκιμασθεί με την βοήθεια υπολογιστών για πολύ μεγάλους αριθμούς και σε κάθε μεμονωμένη περίπτωση έχει επιβεβαιωθεί. Πράγμα που σημαίνει ότι αν ξοδέψουμε όλη τη ζωή μας σε μεμονωμένες δοκιμές πάντα θα βλέπουμε την εικασία να επιβεβαιώνεται. Είναι τούτοις με τις δοκιμές δεν θα έχουμε αποδείξει την εικασία. Διότι ενδέχεται κάποιος μεγάλος αριθμός που δεν έχουμε δοκιμάσει να μη την επαληθεύει.

18 12 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) Η εικασία του Goldbach είναι ένα από τα άλυτα προβλήματα 1 των Μαθηματικών Πόσο είναι το άθροισμα των ν πρώτων θετικών ακεραίων δηλαδή το άθροισμα ν; Το άθροισμα που ζητάμε έχει ν προσθετέους. Αυτό που ζητάμε είναι ένας γενικός τύπος γι αυτό το άθροισμα. Ας δούμε μερικές τιμές του αθροίσματος 1=1 1+2= =(1+2)+3=3+3= =(1+2+3)+4=6+4= =( )+5=10+5= =( )+6=15+6= =( )+7=21+6= Μπορούμε άραγε εξετάζοντας τα τελικά αποτελέσματα 1, 3, 6, 10, 15, 21, να βρούμε ένα τρόπο δηλαδή ένα κανόνα με τον οποίο προκύπτουν; Αν όχι ας βοηθήσουμε την παρατηρητικότητα μας με ένα σχήμα: Ας παραστήσουμε κάθε μονάδα με ένα μικρό τετραγωνάκι. Ζητάμε να μάθουμε πόσα τετραγωνάκια θα έχουμε αν παραθέσουμε 1, 2, 3, 4,..., ν τετραγωνάκια. Το πλήθος θα είναι ν. (Στο σχήμα που ακολουθεί έχουμε πάρει ν=7) 1 Πρόκειται για προβλήματα που κανείς δεν έχει λύσει ή τουλάχιστον δεν είναι γνωστό αν κάποιος τα έχει λύσει. Ασφαλώς δεν πρόκειται για «άλυτες ασκήσεις»

19 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 13 Αν κάθε τετραγωνάκι έχει πλευρά 1 τότε το άθροισμα που ζητάμε είναι το εμβαδόν του γραμμοσκιασμένου χωρίου. Το χωρίο αυτό απαρτίζεται από ένα ορθογώνιο τρίγωνο που έχει εμβαδόν ίσο με το εμβαδόν του τετραγώνου που σχηματίζεται δηλαδή 1 2 ν2 συν το εμβαδόν των ν μικρών τριγώνων που βρίσκονται πάνω από την διαγώνιο δηλαδή συν 1 ν. Επομένως ν= ν + ν= (ν + ν)= ν(ν+ 1) άρα ν ( ν + 1) ν = 2 Ας ξαναγυρίσουμε στους αρχικούς μας υπολογισμούς ξέροντας τώρα το αποτέλεσμα. Εκ των υστέρων ίσως δούμε ότι θα μπορούσαμε αν έχουμε παρατηρήσει ότι 1=1=1. 2/2 1+2=3=1. 1/ =6=3. 4/ =10=4. 5/ =15=5. 6/ =21=6. 7/ =27=7. 8/ Ας υποθέσουμε ότι κάποιος κατόρθωνε να κάνει αυτή την παρατήρηση. Θα μπορούσε να υποθέσει ότι ν=ν(ν+1)/2. Πρόκειται όμως απλώς για μία υπόθεση που πρέπει να επικυρωθεί από απόδειξη. Η υπόθεση αυτή επιβεβαιώνεται για τους

20 14 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) πρώτους 7 θετικούς ακεραίους αλλά αυτοί δεν είναι τίποτε μπροστά στους άπειρους που ακολουθούν. 1 Ξέρουμε (έχει επιβεβαιωθεί) ότι = 7(7 + 1). 2 Το γεγονός αυτό μας επιτρέπει να επιβεβαιώσουμε την υπόθεση για ν=8. Πράγματι = ( ) + 8 = = = = 8 = 8(8 + 1). Ετσι επεκτείναμε την ισχύ της υπόθεσης μας για ν=8. Πόσο μακριά μπορούμε να φθάσουμε; Δεν έχει σημασία έτσι κι αλλιώς δεν επαρκεί η μικρή ζωή μας για να καλύψουμε όλους τους θετικούς ακεραίους. Ας πούμε ότι κατορθώσαμε να επιβεβαιώσουμε την ισχύ της υπόθεσης μας για ν=k δηλαδή ότι κατορθώσαμε να φθάσουμε έως τον k. 1 Φθάνοντας έως τον k ξέρουμε ότι k= k(k + 1) 2 Τότε μπορούμε να επαληθεύσουμε την ισχύ της υπόθεσης μας για ν=k+1. Πράγματι: k + (k +1) 1 1 = k(k + 1) + (k +1) = k + 1 (k +1) 2 2 = ( k) + (k +1) = 1 = 2 (k +1)(k + 2) Βλέπουμε λοιπόν ότι κάθε φορά μπορούμε να επεκτείνουμε την ισχύ της υπόθεσης μας κατά 1 δηλαδή ξέροντας ότι ισχύει για ν=k να αποδείξουμε ότι ισχύει και για ν=k+1. Είναι λοιπόν καθαρά θέμα «χρόνου» να κάνουμε την απόδειξη για όλους τους φυσικούς αριθμούς. Απλώς ξέρουμε πως θα το πετύχουμε αλλά δεν μπορούμε γιατί οι φυσικοί αριθμοί είναι άπειροι. Αυτή την αδυναμία έρχεται να καλύψει η αρχή της μαθηματικής επαγωγής η οποία μας λέει ότι αν ξέρουμε πώς να κάνουμε μία απόδειξη «διατρέχοντας» τους θετικούς ακεραίους είναι σαν να την έχουμε κάνει.

21 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) Μία αρχή για να επαληθεύονται προτάσεις που έχουν να κάνουν με φυσικούς αριθμούς είναι η αρχή της μαθηματικής επαγωγής ή όπως αλλιώς λέγεται της τέλειας επαγωγής: Έστω ένας ισχυρισμός που αναφέρεται στους θετικούς ακεραίους. Aν Τότε ο ισχυρισμός είναι αληθής για 1. όταν ο ισχυρισμός αληθεύει για ν=k τότε είναι βέβαιο ότι αληθεύει και για ν=k+1. ο ισχυρισμός αληθεύει για όλους τους θετικούς ακεραίους ν Για όλους τους θετικούς ακεραίους ν με ν 2 και για όλους τους πραγματικούςα με α 0 και α > 1 ισχύει: (1 + α) ν > 1+να. (Ανισότητα του Bernoulli) 2.8. Η ανισότητα του Bernoulli είναι προφανής όταν α>0 και δεν χρειάζεται επαγωγή για να αποδειχθεί. Αρκεί να παρατηρήσουμε ότι ν ( 1+ a ) = (1+ a)(1 + a)...(1 + a) ν παράγοντες Ας εκτελέσουμε νοερά τους πολλαπλασιασμούς του β μέλους. Αρκεί κάθε φορά να παίρνουμε ένα παράγοντα από κάθε παρένθεση και να πολλαπλασιάσουμε τους παράγοντες. Αν διαλέξουμε από όλες τις παρενθέσεις το 1 θα έχουμε γινόμενο 1. Αν διαλέξουμε από μία παρένθεση το α και από όλες τις υπόλοιπες παρενθέσεις το 1 θα βρούμε γινόμενο α. Το β μέλος -που θα είναι τελικά ένα άθροισμα γινομένων που θα διαθέτει ένα παράγοντα από κάθε παρένθεση-θα έχει ως προσθετέο το 1, θα έχει ν προσθετέους ίσους με α και θα έχει και άλλους προσθετέους που αντιστοιχούν σε

22 16 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) άλλες επιλογές (λ.χ. να διαλέξουμε από τις δύο πρώτες παρενθέσεις το 1 και από τις υπόλοιπες το α οπότε θα πάρουμε ως προσθετέο το α ν-2 ). Αρα το β μέλος είναι κάτι ν παραπάνω από 1 + a + a... a. Αυτό σημαίνει ότι (1 + a) > 1 + νa. Αρα η ν προσθετέοι ενδιαφέρουσα περίπτωση της ανισότητας του Ανισότητα του Bernoulli είναι όταν 1< a 0 Αυτή διατυπώνεται και με την μορφή θ ν 1 ν(1- θ) 0 < θ 1 Να αποδείξετε την ανισότητα αυτή α) Αυτοτελώς με επαγωγή β) Στηριζόμενοι στην προηγούμενη μορφή της ανισότητας του Bernoulli Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει I. II. III ν ν ( ν + 1)(2ν = ν ( ν + 1) ν = ν ( ν + 1)( ν + 2) ν ( ν + 1) = 3 2 1) IV ν ( ν + 1) ν =. ν Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει 1+ x + x x ν 1 = ν x 1, εφόσον x 1. x H μαθηματική επαγωγή δεν είναι ασφαλώς ούτε ο μόνος ούτε ο καλύτερος τρόπος για να αποδεικνύουμε προτάσεις που εξαρτώνται από φυσικούς αριθμούς. Αποδείξτε την ισότητα του προηγουμένου παραδείγματος εκτελώντας απλώς τον πολλαπλασιασμό (x -1)(x ν x 2 + x +1)

23 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) Να αποδείξετε ότι: 2 I. ν > 2ν + 1 για κάθε ακέραιο ν 3 II. ν 4 3 > ν για κάθε ακέραιο ν 7 ν III. 5 > 5ν 1 για κάθε θετικό ακέραιο ν Nα λυθεί η ανισότητα x > 2x + 1. Στη συνέχεια να βρείτε τις ακέραιες λύσεις της. Θα έχετε έτσι μία απόδειξη για το ερώτημα Ι της προηγούμενης άσκησης χωρίς να έχετε χρησιμοποιήσει επαγωγή Να αποδείξετε ότι για κάθε θετικό ακέραιο ν 4 ισχύει ν ν!> 2, όπου ν! = ν Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει ν ν Να αποδείξετε ότι για κάθε θετικό ακέραιο ν 3 ισχύει ν + 1 ν ν > ( ν + 1) Να αποδείξετε με την βοήθεια της μαθηματικής επαγωγής ότι I. a a a ν 1 a ν II. a a a ν 1 a ν Η πρώτη ανισότητα αναφέρεται σε απόλυτες τιμές ενώ η δεύτερη σε μέτρα διανυσμάτων. Να χρησιμοποιήσετε και στις δύο περιπτώσεις-ως δεδομένη- την τριγωνική ανισότητα Για μία συνάρτηση φ είναι γνωστό ότι για κάθε ζεύγος αριθμών x, y ισχύει φ( x + y) φ( x) + φ( y). Υπάρχουν πολλές τέτοιες συναρτήσεις. Ανάμεσα τους

24 18 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) η φ(x)=αx, η φ(x)= x κ.α. Να αποδειχθεί ότι αν πραγματικοί αριθμοί τότε ισχύει x 1 x2,...,, x ν είναι ν οποιοιδήποτε φ( x 1 + x xν ) φ( x1) + φ( x2 ) φ( xν ) Να αποδείξετε ότι κάθε πεπερασμένο υποσύνολο των πραγματικών αριθμών έχει μέγιστο και ελάχιστο στοιχείο. Με άλλα λόγια να αποδειχθεί ότι αν X = { x1, x2,..., xν} είναι ένα υποσύνολο του R με ν στοιχεία τότε υπάρχουν δύο στοιχεία μ, Μ του Χ τέτοια ώστε για κάθε στοιχείο x του Χ να ισχύει μ x M Υπάρχουν υποσύνολα του R τα οποία δεν έχουν ελάχιστο στοιχείο. Για παράδειγμα το ανοικτό διάστημα (0, 1) δεν έχει ελάχιστο στοιχείο δηλαδή δεν υπάρχει κάποιο στοιχείο του που να είναι πιο μικρό από τα υπόλοιπα στοιχεία του. Λόγω της ένα τέτοιο σύνολο δε μπορεί να είναι πεπερασμένο. Να αποδειχθεί όμως ότι κάθε μη κενό υποσύνολο (πεπερασμένο ή όχι) του συνόλου των θετικών ακεραίων έχει ελάχιστο στοιχείο. Για την απόδειξη εργασθείτε ως εξής: Εστω S ένα υποσύνολο των θετικών ακεραίων. Ας υποθέσουμε ότι το S δεν έχει ελάχιστο στοιχείο. Τότε 1 S. Εστω Τ το σύνολο όλων των θετικών ακεραίων που δεν ανήκουν στο S. Προφανώς 1 Τ. Δείξτε τώρα με επαγωγή ότι κάθε θετικός ακέραιος ανήκει στο T. Οταν τελειώσετε θα έχετε καταλήξει στο άτοπο συμπέρασμα ότι το S δεν έχει στοιχεία Αν έχουμε ένα σύνολο Χ μεταξύ των υποσυνόλων του συγκαταλέγονται το ίδιο το X και το κενό σύνολο που δεν έχει καθόλου στοιχεία. Ας πούμε ότι Χ={α}. Τότε το Χ έχει δύο μόνο υποσύνολα τα και Χ. Αν Χ={α, β} τότε τα

25 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 19 υποσύνολα του Χ είναι 4: Τα, {α}, {β}, Χ. Αν Χ={α, β, γ} τότε το Χ έχει 8 υποσύνολα: Τα, {α}, {β}, {γ}, {α, β}, {α, γ}, {β, γ}, Χ. Πόσα άραγε υποσύνολα έχει ένα σύνολο με ν στοιχεία; Προσπαθήστε να αποδείξετε το συμπέρασμα σας με επαγωγή Με ν! ( διαβάζεται «νι παραγοντικό») συμβολίζουμε το γινόμενο v. Είναι 1!=1, 2!=2, 3!=6, 4!=24 κ.ο.κ. Επίσης δεχόμαστε ότι 0!=1 I. Να αποδειχθεί ότι ισχύει (ν+1)!=ν!. (ν+1) II. Το ν! αυξάνει πολύ γρήγορα, γρηγορότερα από τις δυνάμεις οποιουδήποτε αριθμού. Εστω m ένας θετικός ακέραιος. Να αποδείξετε ότι για κάθε ν m+1 ισχύει ν! m ν Εστω k ένας θετικός ακέραιος. Να αποδείξετε ότι κάθε σύνολο με ν στοιχεία (ν k) έχει ν (ν -1)... (ν - k +1) k! υποσύνολα με k στοιχεία. ν (ν -1)... (ν - k +1) ν Ο αριθμός συμβολίζεται με. k! k ν Δεχόμαστε ότι = 1 0 Επειδή αν θέλουμε από ν αντικείμενα να διαλέξουμε k δηλαδή να συνδυάσουμε k αντικείμενα που διαλέγουμε από ν λέμε ότι το πλήθος των συνδυασμών ν αντικειμένων ανά k είναι ν ν (ν -1)... (ν - k +1) =. k k! Δείξτε ότι το ( α + β) ν δηλαδή το γινόμενο ( α + β)( α + β)( α + β)...( α + β) είναι ίσο με ν α 0 ν ν + α 1 ν-1 1 ν β + α 2 ν-2 β 2 ν φορές ν + α 3 ν-3 β 3 ν ν -1 1 ν-1 α β ν + β ν ν (Νewton)

26 20 Mαθήματα Θεωρίας Αριθμών (με βάση το σχολικό βιβλίο) 3. ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 3.1. Η ταυτότητα της Ευκλείδειας διαίρεσης Ξέρουμε ότι όταν διαιρούμε ένα φυσικό αριθμό (διαιρετέο) με ένα μικρότερο του (διαιρέτη) θα βρούμε ένα πηλίκο και ένα υπόλοιπο. Το υπόλοιπο που μπορεί (όταν η διαίρεση είναι τέλεια) να είναι και 0 είναι σε κάθε περίπτωση μικρότερο από τον διαιρέτη. Επιπροσθέτως ο διαιρετέος είναι ίσος με το πηλίκο επί τον διαιρέτη συν το υπόλοιπο. Πρόκειται για την γνωστή ταυτότητα της Ευκλείδειας διαίρεσης Δ=πδ+υ με υ<δ. Ετσι η διαίρεση 25:4 έχει πηλίκο 6 και υπόλοιπο 1 είναι δε 25= ενώ η διαίρεση 120:100 έχει πηλίκο 1 και υπόλοιπο 20 είναι δε 120= Μπορούμε να διαιρέσουμε ένα φυσικό και με ένα μεγαλύτερο του αριθμό. Τότε το πηλίκο είναι 0 και ο διαιρετέος είναι ταυτοχρόνως και υπόλοιπο. Η διαίρεση 100:120 έχει πηλίκο 0 και αφήνει υπόλοιπο 100 δηλαδή 100= Αν α και β είναι φυσικοί αριθμοί με β 0, τότε υπάρχουν μοναδικοί φυσικοί π και υ, τέτοιοι, ώστε α=πβ+υ, β>υ 0. Το θεώρημα αυτό που έχουμε μάθει να χρησιμοποιούμε από το Δημοτικό μπορεί να αποδειχθεί με την βοήθεια της μαθηματικής επαγωγής: Απόδειξη Εστω β 0. Αποδεικνύουμε ότι για κάθε φυσικό αριθμό α υπάρχουν φυσικοί αριθμοί π και υ τέτοιοι ώστε α=πβ+υ και β>υ. Οταν εξασφαλίσουμε την ύπαρξη των κ, υ θα δείξουμε ότι είναι και οι μοναδικοί. Αν α=0 αρκεί να πάρουμε π=0 και υ=0. Αν α=1 διακρίνουμε τις περιπτώσεις I. β=1 οπότε παίρνουμε π=1 και υ=0 II. β>1 οπότε παίρνουμε π=0 και υ=1

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0 3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν 1. Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών και να παραστήσετε σε ορθογώνιο σύστημα αξόνων τα αντίστοιχα σημεία. α. αν = 4ν + 3 β. αν = 2 + ( 1) ν γ. 1 1 1 1 αν = + + +... + 1 2 2

Διαβάστε περισσότερα

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4.. Η ταυτότητα της διαίρεσης A. Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης. Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ(x) και δ(x), με δ(x) 0

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα