4.3 Ορθότητα και Πληρότητα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.3 Ορθότητα και Πληρότητα"

Transcript

1 4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί να αποτύχει: να απαντήσει ότι μια εξαγωγή συμπεράσματος είναι έγκυρη ενώ στην πραγματικότητα είναι μη-έγκυρη. Για παράδειγμα η εξαγωγή συμπεράσματος { Q, Q} / είναι μη-έγκυρη. Ένα σύστημα αποδείξεων λέγεται ορθό αν οποτεδήποτε υποδεικνύει μια εξαγωγή συμπεράσματος ως έγκυρη, αυτή είναι πράγματι έγκυρη. Ένα σύστημα αποδείξεων μπορεί επίσης να αποτύχει με το να χαρακτηρίσει ως μη-έγκυρη μια έγκυρη εξαγωγή συμπεράσματος. Ένα σύστημα αποδείξεων λέγεται πλήρες αν προσδιορίζει κάθε έγκυρη εξαγωγή συμπεράσματος ως έγκυρη. Για παράδειγμα, ένα σύστημα που δεν μπορεί να χαρακτηρίσει την εξαγωγή συμπεράσματος { Q, } / Q ως έγκυρη είναι μη-πλήρες. Οι ιδιότητες της ορθότητας και της πληρότητας είναι επιθυμητές για κάθε σύστημα αποδείξεων. Δεν είναι όμως πάντα εύκολο να επιτευχθούν και οι δύο. Ορισμός Μια πρόταση Α παράγεται από ένα σύνολο προτάσεων S σύμφωνα με ένα σύστημα αποδείξεων S, αν το S προσδιορίζει την Α σαν λογική συνέπεια του S. Συμβολισμός : S - S A. Στη μορφολογική παραγωγή, η Α παράγεται από το S αν υπάρχει αν υπάρχει παραγωγή από το S χρησιμοποιώντας τους κανόνες της μορφολογικής παραγωγής. Στην κατασκευή μοντέλων η Α παράγεται από το S αν το σύνολο { S { A}} μπορεί να αναχθεί στο κενό σύνολο με τη χρήση των κανόνων αντικατάστασης. Ορισμοί 1. Ένα σύστημα αποδείξεων S είναι ορθό αν S = A όποτε S - S A. 2. Ένα σύστημα αποδείξεων S είναι πλήρες αν S - S A όποτε S = A. 3. Ένα σύστημα αποδείξεων S είναι ορθό και πλήρες αν S - S A αν και μόνο αν S = A. Παραδείγματα: 1. Θεωρείστε το σύστημα S 1 για το οποίο ισχύει S - S1A αν και μόνο αν Α A S. Για το S 1 η εξαγωγή συμπεράσματος {, Q} / είναι έγκυρη αλλά η { Q, } / Q είναι μη-έγκυρη. Είναι το σύστημα ορθό; Αν A S τότε S = A. Άρα, αν S - S1A, τότε A S και επομένως S = A. Άρα είναι ορθό. Είναι και πλήρες; Όχι, γιατί δεν αναγνωρίζει έγκυρες εξαγωγές συμπερασμάτων. 2. Θεωρείστε το σύστημα S 2 για το οποίο ισχύει S - S 2 A για κάθε Α. Δηλαδή αναγνωρίζει κάθε εξαγωγή συμπεράσματος ως έγκυρη. Είναι ορθό; Όχι, γιατί αναγνωρίζει ως έγκυρες και τις μη-έγκυρες εξαγωγές συμπεράσματος. Είναι πληρές; Ναι, γιατί χαρακτηρίζει σωστά ως έγκυρες όλες τις έγκυρες εξαγωγές συμπερασμάτων.

2 Τα S 1 και S 2 δεν μας είναι χρήσιμα. Χρησιμότερο θα ήταν ένα σύστημα που χαρακτηρίζει ως έγκυρες τις έγκυρες εξαγωγές συμπερασμάτων και μόνο αυτές. Η κατασκευή μοντέλων είναι ορθό και πλήρες σύστημα. 4.4 Πολυπλοκότητα των Συστημάτων Αποδείξεων Η πολυπλοκότητα ενός αλγόριθμου είναι ένα μέτρο της αποδοτικότητάς του. Συνήθως εκφράζεται σαν μια συνάρτηση η οποία σχετίζει τον αριθμό των υπολογιστικών βημάτων που απαιτούνται με το μέγεθος των δεδομένων εισόδου. Στην περίπτωση των συστημάτων αποδείξεων το πρόβλημα προσδιορισμού της πολυπλοκότητας εκφράζεται ως εξής : Για ένα σύστημα S βρείτε μια συνάρτηση f έτσι ώστε, η εγκυρότητα ή μη-εγκυρότητα μιας εξαγωγής συμπεράσματος που περιέχει σύμβολα μπορεί να προσδιοριστεί από το S σε f () το πολύ βήματα. Για παράδειγμα, για τη μέθοδο των πινάκων αληθείας και για την εξαγωγή συμπεράσματος { 1, 2,, 1 } /, όπου τα 1, 2,, είναι διακεκριμένα γράμματα, ο πίνακας αλήθειας θα έχει 2 γραμμές. Άρα η f είναι εκθετική. Καθώς μια εξαγωγή συμπεράσματος με σύμβολα δεν μπορεί να περιέχει περισσότερα από γράμματα, ο πίνακας αληθείας δεν μπορεί να περιέχει περισσότερες από 2 γραμμές. Άρα η πολυπλοκότητα της μεθόδου είναι εκθετική. Και άλλα συστήματα έχουν εκθετική πολυπλοκότητα στη χειρότερη περίπτωση. Υπάρχουν και περιπτώσεις που είναι απλούστερες, αλλά πάντα υπάρχουν άλλες στις οποίες απαιτείται εκθετικός αριθμός βημάτων. Ο έλεγχος της εγκυρότητας των εξαγωγών συμπερασμάτων του rop, ανήκει σε μια κλάση προβλημάτων που είναι γνωστή με το όνομα N-Πλήρη (N-Complete) προβλήματα. Υπάρχουν διάφορα είδη N-Πλήρων Προβλημάτων. Για τις ανάγκες μας, μας αρκεί να εξετάσουμε τα λεγόμενα N-Πλήρη Προβλήματα Αποφάσεων. Ένα πρόβλημα απόφασης είναι ένα πρόβλημα στο οποίο απαιτείται μια απάντηση της μορφής ναι/όχι. Για παράδειγμα, το πρόβλημα αποφάσισε αν ένας ακέραιος είναι πρώτος είναι πρόβλημα απόφασης, ενώ το πρόβλημα βρείτε τους πρώτους παράγοντες ενός ακέραιου δεν είναι. Για την περίπτωση του rop, το πρόβλημα αποφασίστε αν μια δεδομένη εξαγωγή συμπεράσματος είναι έγκυρη είναι ένα πρόβλημα απόφασης. Σχετίζεται στενά με ένα άλλο πρόβλημα απόφασης: αποφασίστε αν μια πρόταση του rop είναι ικανοποιήσιμη ή όχι (SAT) Προβλήματα N Τα δεδομένα ενός προβλήματος απόφασης για τα οποία η ορθή απάντηση είναι ναι λέγονται θετικά ενώ εκείνα για τα οποία η απάντηση είναι όχι λέγονται αρνητικά. Έστω ότι κάθε είσοδος για ένα πρόβλημα μπορεί να πάρει ένα πιστοποιητικό, το οποίο είναι κάποια έκφραση η οποία ελέγχεται εύκολα για το αν ικανοποιεί η αντίστοιχη είσοδος το

3 πρόβλημα. Π.χ., για το πρόβλημα SAT ένα τέτοιο πιστοποιητικό είναι μια ερμηνεία που ικανοποιεί την πρόταση. Ένα πρόβλημα απόφασης Q λέγεται N (o-determiistic polyomial) αν έχει τις παραπάνω ιδιότητες: 1. Κάθε θετική είσοδος έχει ένα πιστοποιητικό. 2. Υπάρχει αλγόριθμος AQ ο οποίος δέχεται ως είσοδο οποιοδήποτε είσοδο Ι του Q μαζί με πιστοποιητικό C (αν υπάρχει) και απαντά ναι αν το C είναι πιστοποιητικό του Ι και όχι αν δεν είναι. 3. ο αλγόριθμος είναι πολυωνυμικού χρόνου, δηλαδή υπάρχει ακέραιος k και μια σταθερά c, έτσι ώστε ο αριθμός των βημάτων που εκτελεί ο A για να διαπιστώσει αν το C είναι πιστοποιητικό του Ι, είναι το πολύ είναι το μέγεθος του Ι. Q k c, όπου Το πρόβλημα SAT είναι πρόβλημα N. Μια πρόταση με σύμβολα περιέχει το πολύ -1 συνδετικά. Κάθε ερμηνεία της πρότασης είναι ένα πιστοποιητικό: αρκεί να υπολογίσουμε μια γραμμή του πίνακα αληθείας η οποία αντιστοιχεί στην ερμηνεία. Χρειαζόμαστε -1 βήματα για μια γραμμή του πίνακα. Άρα f ( ) = 1 < 2. Το SAT έχει μια ακόμα ιδιότητα: αν Q είναι οποιοδήποτε άλλο N πρόβλημα, υπάρχει ένας συστηματικός τρόπος για να μετατρέψουμε την είσοδο Ι του Q στην είσοδο Ι του SAT, έτσι ώστε οι θετικές είσοδοι του Q να μετατρέπονται σε θετικές εισόδους του SAT και αντίστοιχα οι αρνητικές. Επιπλέον, ο αλγόριθμος μετατροπής είναι πολυωνυμικός. Τι σημαίνει αυτό; Σημαίνει ότι κανένα N πρόβλημα δεν είναι πιο δύσκολο από το SAT παρά μόνο κατά μια διαδικασία πολυωνυμικού χρόνου. Ένα πρόβλημα λέγεται N-Πλήρες αν είναι N και κάθε άλλο N πρόβλημα μπορεί να μετατραπεί σε αυτό σε πολυωνυμικό χρόνο. Ενδιαφέρον παρουσιάζουν τα N προβλήματα που δεν μπορούν να λυθούν σε πολυωνυμικό χρόνο (όλα τα N Πλήρη). Αν οποιοδήποτε N-πλήρες πρόβλημα μπορεί να λυθεί σε πολυωνυμικό χρόνο, τότε κάθε N πρόβλημα μπορεί να λυθεί σε πολυωνυμικό χρόνο. Αν μπορούσαμε να λύσουμε κάποιο N- Πλήρες πρόβλημα σε πολυωνυμικό χρόνο, τότε θα απαντούσαμε ένα από τα μεγάλα ανοιχτά ερωτήματα της θεωρίας των υπολογισμών: =? N. Το SAT ήταν το πρώτο N-Πλήρες πρόβλημα που ανακαλύφθηκε. Θεώρημα (Cook 1971). To SAT είναι N-Πλήρες. Άρα και ο έλεγχος μη-εγκυρότητας είναι N-Πλήρες πρόβλημα. Σημαίνει αυτό ότι δεν έχουμε ελπίδες για την αυτόματη απόδειξη θεωρημάτων; Όχι, στην πράξη, τα περισσότερα προβλήματα λύνονται σε αποδεκτό χρόνο. Επίσης, χρησιμοποιούμε μεθόδους οι οποίες περιορίζονται σε κάποιες ειδικής μορφής προτάσεις.

4 4.5 Μέθοδος της Επίλυσης (Resolutio) Η μέθοδος της επίλυσης διαφέρει από τη μορφολογική παραγωγή και την κατασκευή μοντέλων στο ότι αφορά προτασιακά σχήματα περιορισμένης μορφής. Ορισμοί Ένας όρος είναι μια διάζευξη γραμμάτων. Π.χ. Q, Q R, Q R S. Καθώς μια διάζευξη είναι μεταθετική, ο όρος Q R είναι ισοδύναμος με τον όρο R Qκαι με τον R Q. Συχνά θεωρούμε τον έναν όρο σαν ένα σύνολο γραμμάτων, επομένως η σειρά με την οποία τα γράμματα εμφανίζονται δεν έχει σημασία. Οι παραπάνω όροι γράφονται ως {,Q, {, QR, } και { Q,, RS, } αντίστοιχα. Τα σύνολα {,Q} και {Q,} απεικονίζουν τον ίδιο όρο. Ένας μοναδιαίος όρος είναι ένας όρος που αποτελείται από ένα και μόνο γράμμα. Π.χ. {}, { Q }. Οι μοναδιαίοι όροι γράφονται και χωρίς {,}, δηλαδή ως και Q αντίστοιχα. Ο κενός όρος που συμβολίζεται με, συμβολίζει μια αντινομία. Ο όρος Τ αντιστοιχεί σε ένα σύνολο που περιέχει ένα γράμμα και την άρνησή του.{,q, }. Κάθε σύνολο προτασιακών σχημάτων μπορεί να μετατραπεί σε έναν σύνολο όρων : πρώτα μετατρέπεται σε συζευκτική κανονική μορφή και κατόπιν διαχωρίζονται οι διαζεύξεις. Κάθε διάζευξη είναι ένας όρος. Η μέθοδος της επίλυσης βασίζεται στην εγκυρότητα εξαγωγών συμπερασμάτων της μορφής { Q, Q R} = R. Αν Rείναι ψευδής, τότε και και R είναι ψευδείς. Αν Q είναι ψευδής, τότε και Q θα είναι ψευδής. Αν Q είναι αληθής, τότε και Q R θα είναι ψευδής. Άρα, κάποια υπόθεση θα είναι ψευδής. Επομένως, αν οι υποθέσεις είναι αληθείς, τότε και το συμπέρασμα θα είναι αληθές. Ο όρος {,R} ονομάζεται όρος επίλυσης των {,Q} και { Q, R}. Αν δύο όροι C και C περιέχουν τα γράμματα Α και A αντίστοιχα, οι όροι επιλύονται και παράγουν έναν καινούριο όρο ο οποίος περιέχει όλα τα γράμματα του C πλην του Α και όλα τα γράμματα του C πλην του A. res(c,c ) = (C-{A}) (C -{ A}) ή res(κ {Α}, Κ { A }) = (Κ Κ ) Παραδείγματα res( {, QR, }, { QR,, S} ) = { R,, S} res(q, {, QR, }) = { R, } res(, ) = res( {, Q}, Q) = res( {, QR, }, { Q, RS, }) = { R,, RS, } ={ Q,, QS, } = T

5 Αν δύο όροι έχουν κάποιο όρο επίλυσης res(c, C ), τότε {C, C } = res(c, C ). Γενικότερα, { Κ {Α}, Κ { A }} = Κ Κ. Για να διαπιστώσουμε ότι αυτό ισχύει, ας υποθέσουμε για κάποια ερμηνεία το συμπέρασμα είναι ψευδές. Αν Α είναι αληθές τότε K { A } είναι ψευδές, ενώ αν Α είναι ψευδές τότε Κ {Α}είναι ψευδές. Σε κάθε περίπτωση, μια από τις υποθέσεις είναι ψευδής. Άρα αν οι υποθέσεις είναι αληθείς για κάποια ερμηνεία, τότε και το συμπέρασμα είναι αληθές. Γιατί όμως μας είναι χρήσιμο αυτό. Αν S = C, τότε το S είναι ικανοποιήσιμο αν και μόνο αν το S C είναι ικανοποιήσιμο. Άρα αφού {C, C } = res(c, C ) το {C, C }θα είναι ικανοποιήσιμο αν και μόνο αν το σύνολο {C, C, res(c, C )} είναι ικανοποιήσιμο. Γενικότερα, αν S είναι οποιοδήποτε σύνολο όρων και R είναι ένας όρος επίλυσης οποιονδήποτε δύο από αυτούς, τότε το S είναι ικανοποιήσιμο αν και μόνο αν το S {R} είναι ικανοποιήσιμο. Αρχή της επίλυσης Έστω S ένα σύνολο όρων και R(S) το σύνολο που προκύπτει αν προσθέσουμε στο S όλους τους όρους επίλυσης των μελών του. Τότε το S είναι ικανοποιήσιμο αν και μόνο αν το R(S) είναι ικανοποιήσιμο. Παράδειγμα Δείξτε ότι το σύνολο S = {{ Q, }, { QR, },, R} είναι μη ικανοποιήσιμο. Πρώτα βρίσκουμε τους όρους της επίλυσης res({ Q, }, { QR, }) = { R, } res({ Q, }, ) = Q res({ QR, }, R ) = Q R(S) = {{ Q, }, { QR, },, R, { R, },Q, Q } Αυτό το σύνολο είναι μη-ικανοποιήσιμο γιατί περιέχει Q και Q. Άρα, βάσει της αρχής της επίλυσης, το S θα είναι μη-ικανοποιήσιμο. Θα μπορούσαμε να συνεχίσουμε υπολογίζοντας το R(R(S)) = {{ Q, }, { QR, },, R, { R, },Q, Q, R,, } H αρχή της επίλυσης μπορεί να διατυπωθεί και ως εξής: Έστω S ένα σύνολο όρων και R η πράξη της προσθήκης των όρων επίλυσης. Αν για κάποιο ακέραιο, R (S), τότε το S είναι μη-ικανοποιήσιμο. Η διαδικασία της επίλυσης μπορεί να αναπαρασταθεί και με τη μορφή δέντρου. Για παράδειγμα :

6 { Q, } { QR, } R Q Q Ένα δέντρο επίλυσης για ένα σύνολο S είναι ένα δυαδικό δέντρο όπου κάθε φύλλο περιέχει ένα μέλος του S και κάθε ενδιάμεσος κόμβος περιέχει τον όρο επίλυσης των άμεσων απογόνων του στο δέντρο. Αν επιπλέον η ρίζα του δέντρου περιέχει τον όρο τότε το δέντρο επίλυσης λέγεται δέντρο ανασκευής. Αν ένα σύνολο έχει ένα δέντρο ανασκευής, τότε είναι μη-ικανοποιήσιμο. Παράδειγμα Δείξτε ότι το σύνολο S= {{ Q, },{ Q, },{ QR, },{ Q, RS, },{ Q, R, S}} είναι μη-ικανοποιήσιμο. { Q, RS, } { Q, R, S} { Q}, { Q, } { QR, } { Q, R} Q Q Θεώρημα Η μέθοδος της επίλυσης είναι ορθή.

7 Απόδειξη Προκύπτει από το γεγονός ότι κάθε σύνολο προτασιακών σχημάτων είναι ισοδύναμο με ένα σύνολο όρων. Είναι η μέθοδος πλήρης. Ας υποθέσουμε ότι δεν υπάρχει δέντρο ανασκευής για κάποιο σύνολο S. Σημαίνει αυτό ότι το S είναι μη-ικανοποιήσιμο. Για να το δείξουμε αυτό, πρέπει να δείξουμε ότι κάθε μη-ικανοποιήσιμο σύνολο όρων έχει ένα δέντρο ανασκευής. Υπάρχει αλγόριθμος ο οποίος κατασκευάζει ένα δέντρο ανασκευής για ένα οποιοδήποτε μη-ικανοποιήσιμο σύνολο όρων. Αλγόριθμος Iput: ένα σύνολο όρων S Output: αν το S είναι μη-ικανοποιήσιμο, ένα δένδρο ανασκευής για το S, διαφορετικά μήνυμα για την μη-εύρεση δέντρου. 1. Αν για κάποιο γράμμα Α, το Α και το A είναι μέλη του S, τότε ο αλγόριθμος τερματίζει επιστρέφοντας το δέντρο Α Α 2. Αν κάθε όρος του S περιέχει ένα αρνητικό γράμμα, τότε ο αλγόριθμος τερματίζει και δίνει ως αποτέλεσμα ένδειξη αποτυχίας. 3. Έστω C = { A1, A2, A3,..., A } ένας όρος του S όπου κάθε Α J είναι θετικό και έστω i := Αν Ai S, τότε έστω Ti το δέντρο με μόνο κόμβο το Ai. Πήγαινε στο βήμα Για κάθε όρο K S { C}, έστω K = K { A i }. Το K καλείται αντίστοιχος όρος του Κ. Αν A K, τότε K = K ). Έστω S = { K K S { C}}. i 6. Καλούμε αναδρομικά τον αλγόριθμο με είσοδο S i. Αν ο αλγόριθμος επιστρέψει «αποτυχία», τότε επιστρέφουμε «αποτυχία» και τερματίζουμε. Αλλιώς ο αλγόριθμος επιστρέφει το δέντρο ανασκευής T i και συνεχίζει στο βήμα Έστω T i το δέντρο που προκύπτει από το T i με την αντικατάσταση κάθε φύλλου του T με τον όρο του S του οποίου είναι αντίστοιχο και i αναμορφώνουμε το δέντρο. Αν η ρίζα του T i είναι, πήγαινε στο βήμα Αν i<, τότε i = i+ 1 και πήγαινε στο βήμα 4. Διαφορετικά πήγαινε στο βήμα Επιστρέφουμε το δέντρο. i

8 T 1 { AA..., A } 1, 2, T 2 { A..., A } A2 2, T 3 { A..., A } 3, A 3 T A A

9 και τερματίζομε 10. Καλούμε αναδρομικά τον αλγόριθμο με είσοδο S { C}. Παράδειγμα Ελέγξτε αν το σύνολο S= {{ Q,, R},{ ST,, },{ SU, }, T,{, U},{ QW, },{ Q, W}, R} είναι ικανοποιήσιμο. (1) Δεν υπάρχουν αντίθετα γράμματα στο S. (2) Υπάρχουν όροι που περιέχουν μόνο θετικά γράμματα. (3) C= { QR,, }, i= 1 (4) S (5) S1 = {{ ST, },{ SU, }, T, U,{ QW, },{ Q, W}, R} (6) Αναδρομική κλήση του αλγορίθμου με είσοδο S 1 (1 )- (2 )- (3 ) C = { ST, }, i = 1 (4 ) S S1 (5 ) S11 = { U, T, U,{ QW, },{ Q, W}, R} (6 ) Αναδρομική κλήση του αλγορίθμου με είσοδο S 11 (1 ) S 11 περιέχει U και U. Επιστρέφουμε το δέντρο Y U (7 ) Αντικαθιστούμε τον κόμβο U με τον αντίστοιχο όρο του. Προκύπτει το δέντρο T 11 { SU, } U S (8 ) i = 2 (4 ) T ST : T 1, 12 (8 ) i = 2 (9 ) Επιστρέφουμε το δέντρο

10 { SU, } U { ST, } S T T (7)Το δέντρο αναμορφώνεται στο T 1 { SU, } {, U} { ST,, } {, S} { T, } T (8) i = 2 (4) Q S (5) S2 = {{, S, T},{ S, U}, T,{, U}, W, W, R}

11 (6) Αναδρομική κλήση του αλγορίθμου με είσοδο S 2 (1 ) To S 2 περιέχει και W και W. Επιστρέφουμε το δέντρο W W (7) Το δέντρο αναμορφώνεται στο T 2 { QW, } { Q, W } { Q} (8) i = 3 (4) R S, T : R 3 (8) i = 3 (9) Επιστρέφουμε το δέντρο

12 { SU, } {, U} { ST,, } {, S} { T, } T {,Q,R} { QW, } { Q, W} {Q, R} Q R R Πληρότητα Για να αποδείξουμε ότι η μέθοδος της επίλυσης είναι πλήρης μέθοδος, χρειαζόμαστε τα ακόλουθα : Λήμμα 1: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Απόδειξη: Θεωρείστε την ερμηνεία I που απεικονίζει την τιμή ψ σε κάθε γράμμα. Έστω C ένας όρος του συνόλου. Τότε, = I C γιατί το C περιέχει ένα αρνητικό γράμμα. Άρα το σύνολο είναι ικανοποιήσιμο. Για παράδειγμα, θεωρείστε το σύνολο, S= {{ Q, },{ QRS,, },{ RST,, }, { ST, }}. Εύκολα βλέπουμε ότι το σύνολο είναι ικανοποιήσιμο: π.χ., για την ερμηνεία που απεικονίζει ψ σε όλα τα γράμματα. Λήμμα 2: Έστω ένα σύνολο όρων S και L κάποιο γράμμα για το οποίο: (α) S = L και (β) L S. Τότε, το σύνολο S = { C { L} C S} είναι μη-ικανοποιήσιμο. (Δικαιολογεί το βήμα (7) του αλγορίθμου). Απόδειξη: Έστω ότι το S είναι ικανοποιήσιμο και I ερμηνεία που το ικανοποιεί. Αν η I κάνει το L ψευδές, τότε I : = I. Διαφορετικά, έστω Ι η ερμηνεία η οποία διαφέρει από την I μόνο στο ότι I L. Ο μόνος τρόπος για να είναι ένας όρος αληθής στην I αλλά ψευδής στην Ι είναι με το να περιέχει το γράμμα L. Επομένως, αφού κανένας όρος

13 του S δεν περιέχει το L και η I ικανοποιεί το S, η Ι ικανοποιεί το S επίσης. Η Ι πρέπει να ικανοποιεί το S γιατί με την προσθήκη του L ένας αληθής όρος δεν μπορεί να γίνει ψευδής. Άρα υπάρχει ερμηνεία για την οποία = I S και I L, και επομένως S L. Αφού όμως S = L, το S πρέπει να είναι μη-ικανοποιήσιμο. Με τη χρήση των παραπάνω λημμάτων μπορούμε να δείξουμε ότι ο αλγόριθμος είναι σωστός. Άρα, κάθε μη-ικανοποιήσιμο σύνολο όρων έχει ένα δένδρο ανασκευής. Το συμπέρασμα είναι ότι η μέθοδος της επίλυσης είναι πλήρης Ακολουθίες Επίλυσης Μερικά δένδρα επίλυσης έχουν απλή δομή. Για παράδειγμα, για το σύνολο όρων S= {,{ Q, },{ QR, }, R} το δένδρο ανασκευής έχει τη μορφή : {, Q} Q { QR, } R R Αυτό το δένδρο έχει την ιδιότητα ότι κάθε επίλυση γίνεται μεταξύ ενός όρου του S και ενός άλλου όρου (ο οποίος μπορεί επίσης να ανήκει στο S). Με άλλα λόγια, ποτέ δεν επιλύονται δύο όροι οι οποίοι προκύπτουν από προηγούμενες επιλύσεις. Δένδρα επίλυσης με αυτή την ιδιότητα μπορούν να αναπαρασταθούν σε γραμμική μορφή και λέγονται ακολουθίες επίλυσης. Η ακολουθία επίλυσης του προηγούμενου παραδείγματος είναι η { Q, } { QR, } R Q R. Ορισμός: Έστω S ένα σύνολο όρων. Μια ακολουθία επίλυσης του S είναι μια πεπερασμένη ακολουθία όρων C0, C1,..., C για την οποία (α) C0 S και (β) για

14 i= 1, 2,..., C, i είναι ο όρος επίλυσης του Ci 1 με κάποιο μέλος του S. Αν C = τότε η C0, C1,..., C καλείται ακολουθία ανασκευής. Είναι εύκολο να δούμε ότι, αν υπάρχει μια ακολουθία ανασκευής για ένα σύνολο S, τότε το S είναι μη-ικανοποιήσιμο. Το αντίστροφο δεν ισχύει: δεν είναι απαραίτητο κάθε μη-ικανοποιήσιμο σύνολο να έχει μια ακολουθία ανασκευής. Παράδειγμα: Το σύνολο S= {{ Q, },{ Q, },{ QR, },{ Q, R}} έχει το παρακάτω δένδρο ανασκευής: { Q, } { Q, } { QR, } { Q, R} Q Q Το σύνολο είναι μη-ικανοποιήσιμο αλλά δεν έχει ακολουθία ανασκευής. Λήμμα 3: Αν ένα σύνολο όρων S έχει μια ακολουθία ανασκευής, τότε το S περιέχει ένα μοναδιαίο όρο. Απόδειξη: Κάθε ακολουθία ανασκευής τερματίζει με μια επίλυση της μορφής res( A, A) = για κάποιο Α. Εξ ορισμού το Α ή το A πρέπει να ανήκει στο S. Οι ακολουθίες ανασκευής είναι πιο αποδοτικές από τα δένδρα ανασκευής. Επομένως, μπορούμε να επικεντρώσουμε το ενδιαφέρον μας σε κάποιο υποσύνολο όρων για το οποίο η ύπαρξη ή μη-ύπαρξη μιας ακολουθίας ανασκευής είναι ικανή και αναγκαία συνθήκη για την (μη-)ικανοποιησιμότητα ενός συνόλου τέτοιων όρων. Ορισμός: Ένας όρος Hor είναι ένας όρος ο οποίος περιέχει το πολύ ένα θετικό γράμμα. Παράδειγμα: Οι όροι T,,,,{ Q, },{ Q,, R} είναι όροι Hor, αλλά οι { Q, },{ Q,, R},{ QR,,, S} δεν είναι. Λήμμα 4: Ο όρος επίλυσης δύο όρων Hor είναι όρος Hor. Απόδειξη: Ας υποθέσουμε ότι ο αριθμός των θετικών γραμμάτων δύο όρων C και C είναι και αντίστοιχα. Αν υπάρχει res( SS ),, τότε ο όρος αυτός προκύπτει από τη διαγραφή ενός θετικού γράμματος από τον ένα όρο και ενός αρνητικού γράμματος από τον άλλο. Επομένως, ο αριθμός των θετικών γραμμάτων στον res( CC, ) είναι + -1.

15 Αν οι C και C είναι όροι Hor τότε 1 και 1. Άρα επομένως ο res( CC, ) είναι όρος Hor. Πόρισμα: Αν ένα σύνολο όρων Hor είναι μη-ικανοποιήσιμο, τότε είτε πρέπει να περιέχει το, είτε ένα θετικό μοναδιαίο όρο. Απόδειξη: Από το Λήμμα 3, αν ένα σύνολο όρων Hor είναι μη-ικανοποιήσιμο, πρέπει να περιέχει τουλάχιστον ένα μοναδιαίο όρο χωρίς αρνητικά γράμματα. Οι μόνοι όροι Hor χωρίς αρνητικά γράμματα είναι οι όροι και A για κάποιο γράμμα Α Μέθοδος της Επίλυσης για όρους Hor Ο αλγόριθμος κατασκευής δένδρου ανασκευής εφαρμόζεται και σε όρους Hor. Σε αυτήν την περίπτωση το αποτέλεσμα είναι πάντα μια ακολουθία ανασκευής. Παράδειγμα: Κατασκευάστε μια ακολουθία ανασκευής για το σύνολο S = {,{ Q, },{ Q, R},{ R, }}. (1) Δεν υπάρχει όρος που να περιέχει Α και A για κάποιο Α (2) Υπάρχει τουλάχιστον ένας όρος που περιέχει μόνο θετικά γράμματα (3) C= i, = 1 (4) S (5) S1 = { Q,{ Q, R}, R} (6) αναδρομική κλήση του αλγορίθμου με είσοδο S 1 1. δεν υπάρχει όρος που να περιέχει Α και A για κάποιο Α 2. υπάρχει τουλάχιστον ένας όρος που περιέχει μόνο θετικά γράμματα 3. C = Qi, = 1 4. Q S1 5. S11 = { RR, } 6. αναδρομική κλήση του αλγορίθμου με είσοδο S 11 i. Το S 11 περιέχει R και R, οπότε ο αλγόριθμος τερματίζει R επιστρέφοντας την ακολουθία : R. R 7. Αναμορφώνουμε την ακολουθία { Q, R} Q 8. i = 1 R Q 9. Επιστρέφουμε την ακολουθία { Q, R} Q { R, } { Q, } (7) Αναμορφώνουμε την ακολουθία { Q, R} {, Q} (8) i = 1 (9) Επιστρέφουμε την ακολουθία { R, } { Q, } { Q, R} {, Q} και ο αλγόριθμος τερματίζει.

16 Η ακολουθία αυτή δεν είναι μοναδική. Υπάρχουν και άλλες για το ίδιο σύνολο S. Για παράδειγμα οι ακολουθίες : { Q, R} { Q, } { R, } {, Q} {, } {, } { Q, R} { R, } Q R { R, } { Q, R} { Q, } R Q Υπάρχουν συνολικά 12 ακολουθίες ανασκευής για το σύνολο S. Όλες οι ακολουθίες μπορούν να αναπαρασταθούν σε ένα γράφο ο οποίος ονομάζεται δίκτυο ανασκευής. Γενικά, αν ένα σύνολο όρων Hor είναι ικανοποιήσιμο, τότε το δίκτυο ανασκευής δεν περιέχει το. Για παράδειγμα, το δίκτυο ανασκευής του συνόλου S= {{ Q, },{ S, },{ QR, },{ S, R}, } δεν περιέχει το (κατασκευάστε το). Το σύνολο είναι ικανοποιήσιμο: η ερμηνεία I= { QRS,,, } είναι μοντέλο του S. Διαδικασία ελέγχου ικανοποιησιμότητας ενός συνόλου όρων Hor Κατασκευάζουμε συστηματικά το δίκτυο ανασκευής και σταματάμε όταν προκύψει ο όρος, οπότε το σύνολο είναι μη-ικανοποιήσιμο, ή όταν το δίκτυο είναι πλήρες (αν δεν περιέχει το τότε είναι ικανοποιήσιμο). Η διαδικασία είναι μη-αποδοτική. Ευτυχώς, δεν χρειάζεται να θεωρήσουμε όλες τις δυνατές ακολουθίες ανασκευής, όπως αποδεικνύει το ακόλουθο θεώρημα. Θεώρημα: Αν S είναι ένα μη-ικανοποιήσιμο σύνολο όρων Hor και C κάποιο μέλος του S, τότε, είτε το S { C} είναι μη-ικανοποιήσιμο είτε υπάρχει ακολουθία ανασκευής για το S η οποία ξεκινά με το C. To θεώρημα αυτό μας είναι χρήσιμο αν μπορούμε να είμαστε σίγουροι για την επιλογή ενός όρου C από το S για το οποίο το S { C} είναι μη-ικανοποιήσιμο. Υποθέστε ότι μας δίνεται ένα σύνολο όρων W το οποίο είναι ικανοποιήσιμο και θέλουμε να διαπιστώσουμε αν W = A για κάποιο A W. Αυτό θα συμβαίνει αν το σύνολο W = W { A} είναι μη-ικανοποιήσιμο. Εφόσον το W { A} = W είναι ικανοποιήσιμο, το θεώρημα λέει ότι το W θα είναι μη-ικανοποιήσιμο αν και μόνο αν υπάρχει μια ακολουθία ανασκευής που ξεκινά με το A. Άρα πρέπει να αναζητούμε συστηματικά μια ακολουθία ανασκευής αυτού του είδους. Παράδειγμα: Δεδομένου ότι το σύνολο W= {{ Q, S},,{ Q, },{, QR, }} είναι ικανοποιήσιμο, αποφασίστε αν W = R {, QR, } { Q, } R {, Q} Άρα, το W { R} είναι μη-ικανοποιήσιμο, οπότε W = R. Παράδειγμα: Δεδομένου ότι το σύνολο W = {{, R, S},{, Q, T},{ Q, R},{ S, U},{ T, U}} είναι ικανοποιήσιμο, αποφασίστε αν W = U. Οι παρακάτω ακολουθίες ξεκινούν με U : { SU, } {, RS, } { QR, } U S {, R} {, Q}

17 { TU, } {, QT, } U T {, Q} Δεν υπάρχει ακολουθία ανασκευής η οποία ξεκινά με το. U. Άρα W U Χρειαζόμαστε μια μέθοδο για να παράγουμε δίκτυα ανασκευής συστηματικά. Είναι ευκολότερο να βρεθεί μια τέτοια μέθοδος αν το δίκτυο γίνει δένδρο. Αυτό γίνεται με την αντικατάσταση ακμών που συγκλίνουν με παράλληλες ακμές. Παράδειγμα: Το δίκτυο ανασκευής R {, QR, } {, Q} { Q, S} { Q, } {, S} Q { Q, S} { Q, } S μετασχηματίζεται στο δένδρο

18 R {, QR, } {, Q} { Q, S} { Q, } {, S} Q { Q, S} { Q, } S S Χρησιμοποιούμε την εξής σύμβαση: αν δύο ή περισσότερα κλαδιά ξεκινούν από τον ίδιο κόμβο τότε γράφονται από τα αριστερά προς τα δεξιά με τη σειρά που οι ετικέτες τους εμφανίζονται στο αρχικό σύνολο. Αναζήτηση στο δένδρο: Ξεκινώντας από τη ρίζα του δένδρου ακολουθούμε πάντα το αριστερό κλαδί. Όταν συναντήσουμε ένα φύλλο, επιστρέφουμε στην προηγούμενη διακλάδωση και εξερευνούμε το αριστερότερο ανεξερεύνητο κλαδί. Αυτή η μέθοδος αναζήτησης λέγεται διάσχιση προδιάταξης (pre-order traversal). Παράδειγμα: Στο ακόλουθο δένδρο

19 θα επισκεφτούμε τους κόμβους με την εξής σειρά: 1,2,4,5,9,10,6,3,7,8. Σε σχέση με μια μέθοδο αναζήτησης, η σειρά με την οποία μας δίνονται οι όροι έχει σημασία στο πόσο γρήγορα θα βρεθεί ο όρος (αν υπάρχει). Παράδειγμα: Για το σύνολο S= {{,Q}, { Q, }, } η διάσχιση προδιάταξης δεν τερματίζεται. 4.6 Λογικός Προγραμματισμός Η μέθοδος της επίλυσης για όρους Hor βρίσκει εφαρμογή στον Λογικό Προγραμματισμό. Οι όροι Hor μεταφράζονται σε δεδομένα (facts), κανόνες (rules) και ερωτήσεις (queries). Θετικοί μοναδιαίοι όροι (π.χ.,,q) μεταφράζονται σε δεδομένα. Ένας όρος με ένα θετικό γράμμα και ένα ή περισσότερα αρνητικά γράμματα μεταφράζεται σε έναν κανόνα. Ο όρος { A1, A2,..., A, A} αναπαριστά την πρόταση A1 A2.... A A η οποία είναι ισοδύναμη με την πρόταση A1 A2... A A. Στο λογικό προγραμματισμό συνηθίζεται οι κανόνες να γράφονται στη μορφή A A1, A2,..., A, με την ερμηνεία «το Α είναι αληθές αν τα A1, A2,..., A είναι αληθή». Η επίλυση εφαρμόζεται στο λογικό προγραμματισμό ως εξής: οι κανόνες A A1, A2,..., A και Am B1, B2,..., Bkόπου Am { A1, A2,..., A} επιλύονται δίνοντας τον κανόνα A A1, A2,..., Am 1, B1, B2,..., Bk, Am+ 1,..., A Παράδειγμα: Θεωρείστε τις εξής προτάσεις 1. «αν βρέξει, ο αγώνας θα αναβληθεί» 2. «αν ο αγώνας θα αναβληθεί, θα πάμε στο πάρτυ» 3. «αν πάμε στο πάρτυ και βρέχει, θα πάρουμε το λεωφορείο» 4. «αν πάρουμε το λεωφορείο, θα χρειαστούμε χρήματα» 5. «θα βρέξει» Μπορούμε να συμπεράνουμε ότι «θα χρειαστούμε χρήματα».

20 Πρέπει να γράψουμε τις προτάσεις σε μορφή όρων Hor και στη μορφή που χρησιμοποιούνται στο Λογικό Προγραμματισμό. Ορίζουμε τα παρακάτω προτασιακά γράμματα: : «θα βρέξει» Q: «ο αγώνας θα αναβληθεί» R: «θα πάμε στο πάρτυ» S: «θα πάρουμε το λεωφορείο» V: «θα χρειαστούμε χρήματα» Τότε, οι προτάσεις (1)-(5) γράφονται ως εξής: 1. Q 2. R Q 3. S Q, 4. V S 5. ή σε μορφή όρων Hor: {{ Q, },{ QR, },{ Q, S, },{ SV, }, }. Η ερώτηση «θα χρειαστούμε χρήματα; μεταφράζεται σαν V. Για να διαπιστώσουμε αν είναι λογική συνέπεια των προτάσεων (1)-(5), πρέπει να βρούμε μια ακολουθία ανασκευής ξεκινώντας από το V. Η ακολουθία { SV, } { Q, S, } { Q, } V S { Q, }, δείχνει ότι το V είναι λογική συνέπεια των (1)-(5). Δυστυχώς, ο περιορισμός σε όρους Hor δεν μας επιτρέπει να εκφράσουμε κανόνες της μορφής «αν πάμε στο πάρτυ και δεν βρέχει, θα περπατήσουμε». Αν το γράμμα U δηλώνει την πρόταση «θα περπατήσουμε», τότε η πρόταση αυτή θα είναι ισοδύναμη με την R U, δηλαδή με τον όρο { R, U, } ο οποίος δεν είναι όρος Hor. Αν περιλάβομε όρους που δεν είναι Hor τότε δεν μπορούμε να είμαστε σίγουροι ότι κάθε μη-ικανοποιήσιμο σύνολο έχει μια ακολουθία ανασκευής. Στη γλώσσα rolog, οι παραπάνω προτάσεις μπορούν να εκφραστούν στη μορφή ενός λογικού προγράμματος: q :- p. r :- q. s :- q, r. v :- s. p. Αφού φορτωθεί το πρόγραμμα iterpreter της rolog, η ερώτηση?-v επιστρέφει yes.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 4ο μέρος σημειώσεων: Ακολουθίες Επίλυσης, Επίλυση για όρους Horn, Λογικός Προγραμματισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης

HY Λογική Διδάσκων: Δ. Πλεξουσάκης HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο,

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6

HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6 HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Επανάληψη. ΗΥ-180 Spring 2019

Επανάληψη. ΗΥ-180 Spring 2019 Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις

Διαβάστε περισσότερα

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 8 ης διάλεξης

Ασκήσεις μελέτης της 8 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

Αναδρομικός αλγόριθμος

Αναδρομικός αλγόριθμος Αναδρομικός αλγόριθμος Ένας αναδρομικός αλγόριθμος επιλύει ένα πρόβλημα για κάποιες τιμές δεδομένων λύνοντας το ίδιο πρόβλημα για άλλες (σχετιζόμενες) τιμές δεδομένων Είναι απαραίτητο βέβαια να λύνεται

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να

Διαβάστε περισσότερα

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Προτασιακός Λογισμός (HR Κεφάλαιο 1) Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδιο 1: Προτασιακή Λογική ΟΚΤΩΒΡΙΟΣ 2006 1. Ικανοποιησιμότητα Αποφασίστε αν οι παρακάτω προτάσεις είναι ταυτολογίες, ικανοποιήσιμες ή μη-ικανοποιήσιμες

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Σχεδιασμός Ασυμφραστικών Γραμματικών

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i. Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη Υποθέσεις - - Θεωρήματα Μαθηματικά Πληροφορικής 1ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες

Διαβάστε περισσότερα

Λογικός Προγραμματισμός

Λογικός Προγραμματισμός Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Περιεχόμενα Ορισμός και λειτουργία των μηχανών Turing Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Επ. Καθ. Π. Κατσαρός Τμήμ

Περιεχόμενα Ορισμός και λειτουργία των μηχανών Turing Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Επ. Καθ. Π. Κατσαρός Τμήμ Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF

Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας

Διαβάστε περισσότερα

Φροντιστήριο 11 Λύσεις

Φροντιστήριο 11 Λύσεις Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι

Διαβάστε περισσότερα

Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος

Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος Προτασιακή Λογική (Propositional Logic) Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος - 2015 Λογική Λογική είναι οι κανόνες που διέπουν τη σκέψη. Η λογική αφορά τη μελέτη των διαδικασιών

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο

Διαβάστε περισσότερα

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

, για κάθε n N. και P είναι αριθμήσιμα.

, για κάθε n N. και P είναι αριθμήσιμα. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών,, τα οποίo είναι υποσύνολο του. Υποστηριζόμενες λειτουργίες αναζήτηση(s,x): εισαγωγή(s,x): διαγραφή(s,x): διάδοχος(s,x): προκάτοχος(s,x):

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Λύσεις 4ης Σειράς Ασκήσεων

Λύσεις 4ης Σειράς Ασκήσεων Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων

Ανάλυση της Ορθότητας Προγραμμάτων Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες Απόδειξης Μερικής

Διαβάστε περισσότερα

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1 Διακριτά Μαθηματικά [Rosen, κεφ. 5] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέμβριος 2018 Επαγωγή και Αναδρομή [Rosen, κεφ. 5] Μαθηματική επαγωγή [Rosen 5.1] Μέθοδος απόδειξης μιας μαθηματικής

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει

Διαβάστε περισσότερα

Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης

Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Δομές Δεδομένων (Εργ.) Ακ. Έτος 2017-18 Διδάσκων: Ευάγγελος Σπύρου Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης 1. Στόχος του εργαστηρίου Στόχος του δέκατου εργαστηρίου

Διαβάστε περισσότερα

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Υποθέσεις - Θεωρήματα. Μαθηματικά Πληροφορικής 1ο Μάθημα. Η χρυσή τομή. Υποθέσεις - Εικασίες

Υποθέσεις - Θεωρήματα. Μαθηματικά Πληροφορικής 1ο Μάθημα. Η χρυσή τομή. Υποθέσεις - Εικασίες Υποθέσεις - - Θεωρήματα Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Μαθηματικά Πληροορικής ο Μάθημα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων

Ανάλυση της Ορθότητας Προγραμμάτων Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων ΚανόνεςΑπόδειξηςΜερικήςΟρθότητας

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

Κανονικές μορφές - Ορισμοί

Κανονικές μορφές - Ορισμοί HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα