Optimal Monetary Policy in an Operational Medium-Sized DSGE Model: Technical Appendix

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Optimal Monetary Policy in an Operational Medium-Sized DSGE Model: Technical Appendix"

Transcript

1 ALLS1TehnAppx-808.ex Opimal Moneary Poliy in an Operaional Medium-Sized DSGE Model: Tehnial Appendix Malin Adolfson Sveriges Riksbank Sefan Laséen Sveriges Riksbank Jesper Lindé Sveriges Riksbank Lars E.O. Svensson Sveriges Riksbank Firs draf: Oober 2006 This version: Augus 2008 Absra Tehnial appendix o Opimal Moneary Poliy in an Operaional Medium-Sized DSGE Model JEL Classifiaion: E52, E58 Keywords: Opimal moneary poliy, foreass, judgmen This ehnial appendix of Adolfson, Laséen, Lindé, and Svensson [1] onains he deailed speifiaion of he maries A, B, C, andh in he model, as well as he deailed speifiaion of he measuremen equaion and he relaed maries D 0, D, and Ds. 1. Definiion of he maries A, B, C, D, andh and he insrumen rule [f X f x ] We wan o idenify he submaries in he model, X +1 = A 11 X + A 12 x + B 1 i + Cε +1, Hx +1 = A 22 x + A 21 X + B 2 i. We speify he predeermined variables X =(X ex0 ) 0, he forward-looking variables x,he poliy insrumen i, and he shok veor ε as follows (he number of he elemens in eah veor,x pd0 All remaining errors are ours. The views expressed in his paper are solely he responsibiliy of he auhors and should no be inerpreed as refleing he views of Sveriges Riksbank.

2 is also lised): X ex b 1 b 1 2 ˆ 3 ˆ, 1 4 ˆν 5 ˆζ 6 ˆζ h 7 ˆζ q 8 ˆλ f 9 ˆλ m 10 ˆλ mi 11 b φ 12 ˆΥ 13 b z 14 b z 1 15 ˆλ x 16 ˆε R 17 b π 18 b π 1 19 ˆτ k 20 ε ˆτ y 21 ˆτ 22 ˆτ w 23 ĝ 24 ˆτ k 1 25 ˆτ y 1 26 ˆτ 1 27 ˆτ w 1 28 ĝ 1 29 ˆπ 30 ŷ 31 ˆR 32 ˆπ 1 33 ŷ 1 34 ˆR 1 35 ˆπ 2 36 ŷ 2 37 ˆR 2 38 ˆπ 3 39 ŷ 3 40 ˆR 3 41 x ˆπ d 1 ˆπ m 2 ˆπ mi 3 ŷ 4 ˆπ x 5 b w 6 ĉ 7 bĩ 8 ˆψ z 9 ˆP k 0 10 Ŝ 11 Ĥ 12, X pd ˆk 13 ˆq 14 ˆμ 15 â ˆγ md ˆγ mid ˆγ x 19 b x 20 m x 21 b k b m b k 1 42 b m 2 43 ˆR ˆπ d ˆπ m ˆπ mi ŷ ˆπ x b w ĉ bĩ ˆψ z, ˆP k Ŝ Ĥ , i ˆR, ˆk ˆq ˆμ â ˆγ md ˆγ mid ˆγ x ε ε z ε ν ε ζ ε ζ h ε ζ q ε λ ε λ m ε λ mi ε φ ε Υ ε z ε λx ε εr ε π ε 0 τ ε 0 x : : b x m x b k û ˆπ d ˆπ m ˆπ d ˆπ m , 2

3 1.1. Predeermined variables Firs we speify he exogenous variables and he shoks, hen he endogenous predeermined variables. Row 1 - Saionary ehnology shok ˆ +1 = ρ ˆ + σ ε ε,+1. ˆ : A 11 (1, 1) = ρ, ε,+1 : C (1, 1) = σ ε. The noaion means ha he value of he persisene of he ehnology shok, ρ,isplaedinhe firs row and firs olumn of he marix A 11. The noaion ˆ : means ha he parameer value perains o ha speifi variable. Row 2 - Lagged saionary ehnology shok Row 3 - Permanen ehnology shok ˆ =ˆ. ˆ : A 11 (2, 1) = 1. ˆ,+1 = ρ μz ˆ + σ εz ε z,+1. ˆ : A 11 (3, 3) = ρ, ε z,+1 : C (3, 2) = σ ε. Row 4 - Lagged permanen ehnology shok ˆ =ˆ. ˆ : A 11 (4, 3) = 1. Row 5 - Firm money demand shok ˆν +1 = ρ νˆν + σ εν ε ν,+1. Row 6 - Consumpion preferene shok ˆν : A 11 (5, 5) = ρ ν, ε ν,+1 : C (5, 3) = σ εν. ˆζ +1 = ρ ζ ˆζ + σ εζ ε ζ,+1. ˆζ : A 11 (6, 6) = ρ ζ, ε ζ,+1 : C (6, 4) = σ εζ. 3

4 Row 7 - Labor supply shok ˆζ h +1 = ρ ζ hˆζ h + σ εζ h ε ζ h,+1. Row 8 - Household money demand shok ˆζ h : A 11 (7, 7) = ρ ζ h, ε ζ h,+1 : C (7, 5) = σ. εζ h ˆζ q +1 = ρ ζ qˆζh + σ εζ q ε ζ q,+1. Row 9 - Markup shok - domesi firms ˆζ q : A 11 (8, 8) = ρ ζ q, ε ζ q,+1 : C (8, 6) = σ εζ q. ˆλ d +1 = ρ λˆλd + σ ελ ε λ,+1. ˆλ d : A 11 (9, 9) = ρ λ, ε λ,+1 : C (9, 7) = σ ελ. Row 10 - Shok o subsiuion elasiiy beween domesi and foreign onsumpion goods ˆλ m +1 = ρ λ m ˆλm + σ ελ m ε λ m,+1. ˆλ m : A 11 (10, 10) = ρ η m, ε λ m,+1 : C (10, 8) = σ ελ m. Row 11 - Shok o subsiuion elasiiy beween domesi and foreign invesmen goods ˆλ mi mi +1 = ρ λ mi ˆλ + σ ε ελ mi λ mi,+1. Row 12 - Risk premium shok ˆλ mi : A 11 (11, 11) = ρ η mi, ε λ mi,+1 : C (11, 9) = σ. εη mi b φ +1 = ρ φ b φ + σ ε φε φ,+1. b φ : A 11 (12, 12) = ρ φ, ε φ,+1 : C (12, 10) = σ ε φ. 4

5 Row 13 - Invesmen speifi ehnology shok ˆΥ +1 = ρ Υ ˆΥ + σ ευ ε Υ,+1. ˆΥ : A 11 (13, 13) = ρ Υ, ε Υ,+1 : C (13, 11) = σ ευ. Row 14 - Relaive (asymmeri) ehnology shok (beween foreign and domesi) b z +1 = ρ z b z + σ ε z ε z,+1. b z : A 11 (14, 14) = ρ z, ε z,+1 : C (14, 12) = σ ε z. Row 15 - Lagged relaive (asymmeri) ehnology shok (beween foreign and domesi) b z = b z. b z : A 11 (15, 14) = 1. Row 16 - Markup shok - exporing firms ˆλ x,+1 = ρ λx ˆλx + σ ελx ε λx,+1. ˆλ x : A 11 (16, 16) = ρ λx, ε λx,+1 : C (16, 13) = σ ελx. Row 17 - Moneary poliy shok R,+1 = ρ εr R + σ εεr ε εr,+1. R : A 11 (17, 17) = ρ εr, ε εr,+1 : C (17, 14) = σ εεr. Row 18 - Inflaion arge b π +1 = ρ π b π + σ ε π ε π,+1. b π : A 11 (18, 18) = ρ π, ε π,+1 : C (18, 15) = σ ε π. Row 19 - Lagged inflaion arge b π = b π. b π : A 11 (19, 18) = 1. 5

6 Row Fisal VAR(2) τ +1 = Θ 1 τ + Θ 2 τ 1 + e τ,+1, (1.1) where Θ 1 = Θ 1 0 Θ 1, Θ 2 = Θ 1 0 Θ 2 and e τ = Θ 1 0 S τ ε τ N (0, Σ τ ). Rewrie (1.1) as VAR(1): ˆτ +1 Θ1 eτ,+1 ˆτ Row Foreign VAR(4) = Θ2 I 0 ˆτ ˆτ 1 + ˆτ : A 11 (20 : 24, 20 : 24) = Θ 1, ˆτ 1 : A 11 (20 : 24, 25 : 29) = Θ 2, ˆτ : A 11 (25:29, 20 : 24) = I, ε τ,+1 : C (20 : 24, 16 : 20) = hol Θ 1 0 S τ Θ S τ. X +1 = Φ 1 X + Φ 2 X 1 + Φ 3 X 2 + Φ 4 X 3 + e X,+1,. (1.2) where Φ 1 = Φ 1 0 Φ 1, Φ2 = Φ 1 0 Φ 2, e., and e X = Φ 1 0 S x ε x N (0, Σ x ). Rewrie (1.2) as VAR(1): X +1 Φ 1 Φ2 Φ3 Φ4 X X e X X 1 = I X, I 0 0 X + 0 X I 0 X 3 0 X : A 11 (30 : 32, 30 : 32) = Φ 1, X 1 : A 11 (30 : 32, 33 : 35) = Φ 2, X 2 : A 11 (30 : 32, 36 : 38) = Φ 3, X 3 : A 11 (30 : 32, 39 : 41) = Φ 4, X : A 11 (33 : 35, 30 : 32) = I, X 1 : A 11 (36 : 38, 33 : 35) = I, X 2 : A 11 (39 : 41, 36 : 38) = I, ε x,+1 : C (30 : 32, 21 : 23) = hol Φ 1 0 S x Φ 1 0 S 0 0 x. 0 Row 42 - Physial apial sok (noe ha b k+1 is predeermined variable no. 42 in period +1and forward-looking variable no. 22 in period ): b k+1 = b k+1, b k : A 12 (42, 22) = 1. Row 43 - Finanial asses (noe ha b m +1 is predeermined variable no. 43 in period +1 and forward-looking variable no. 23 in period ): b m +1 = b m +1, b m +1 : A 12 (43, 23) = 1. 6

7 Row Lagged forward-looking variables ˆR : B 1 (44, 1) = 1 ˆπ d : A 12 (45, 1) = 1 ˆπ m : A 12 (46, 2) = 1 ˆπ mi : A 12 (47, 3) = 1 ŷ : A 12 (48, 4) = 1 ˆπ x : A 12 (49, 5) = 1 b w : A 12 (50, 6) = 1 ĉ : A 12 (51, 7) = 1 bĩ : A 12 (52, 8) = 1 Row 66 - Lagged physial apial sok ˆψ z : A 12 (53, 9) = 1 ˆP k 0 : A 12 (54, 10) = 1 Ŝ : A 12 (55, 11) = 1 Ĥ : A 12 (56, 12) = 1 û : A 12 (57, 13) = 1 ˆq : A 12 (58, 14) = 1 ˆμ : A 12 (59, 15) = 1 â : A 12 (60, 16) = 1 ˆγ md : A 12 (61, 17) = 1 ˆγ mid : A 12 (62, 18) = 1 ˆγ x : A 12 (63, 19) = 1 b x : A 12 (64, 20) = 1 m x : A 12 (65, 21) = 1 b k 1 : A 11 (66, 42) = 1 Row 67 - Lagged apaiy uilizaion û 1 ˆk 1 b k 1 ˆk 1 : A 11 (67, 57) = 1 b k 1 : A 11 (67, 66) = 1 7

8 Rows Lagged inflaion ˆπ d 1 : A 11 (68, 45) = 1 ˆπ m 1 : A 11 (69, 46) = 1 ˆπ d 2 : A 11 (70, 68) = 1 ˆπ m 2 : A 11 (71, 69) = Forward-looking variables Row 1 - Domesi inflaion ˆπ d b π = β 1+κ d β κ dβ (1 ρ π ) 1+κ d β m d α ˆR f = m d αĥ αˆk + b w + Rewrie he above equaions as: ˆπ d +1 ρ π b π + κ d ˆπ d 1 b π 1+κ d β b π + (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) ˆ + Ĥ ˆk + b w + ˆR f ˆε, νr v(r 1) + 1 ˆR ν(r 1) 1 + v(r 1) + 1 ˆν β 1+κ d β ˆπd +1 = ˆπ d + κ d 1+κ d β ˆπd 1 + m d + ˆλ d, νr v(r 1) + 1 ˆR ν(r 1) 1 + v(r 1) + 1 ˆν ˆε + αˆ + (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) + (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) + (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) (1 κ d)(βρ π 1) b π 1+κ d β. αĥ (1 ξ d)(1 βξ d ) αˆk ξ d (1 + κ d β) b w + (1 ξ d)(1 βξ d ) νr ξ d (1 + κ d β) v(r 1) + 1 ˆR 1 + ν(r 1) v(r 1) + 1 ˆν + (1 ξ d)(1 βξ d ) αˆμ ξ d (1 + κ d β) z ˆε + (1 ξ d)(1 βξ d ) ˆλ d ξ d (1 + κ d β) 8

9 ˆπ d +1 : H (1, 1) = β 1+κ d β ˆπ d : A 22 (1, 1) = 1 ˆπ d 1 : A 21 (1, 45) = κ d 1+κ d β b π β : A 21 (1, 18) = 1 1+κ d β ρ π κ d 1+κ d β κ dβ (1 ρ π ) 1+κ d β ˆλ d : A 21 (1, 9) = (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) ˆλ d : A 21 (1, 9) = 1 (resaled) Marginal os : b w : A 22 (1, 6) = (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) Ĥ : A 22 (1, 12) = (1 ξ d)(1 βξ d ) α ξ d (1 + κ d β) ˆk : A 22 (1, 13) = (1 ξ d)(1 βξ d ) α ξ d (1 + κ d β) ˆε : A 21 (1, 1) = (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) ˆ : A 21 (1, 3) = (1 ξ d)(1 βξ d ) α ξ d (1 + κ d β) ˆν : A 21 (1, 5) = (1 ξ d)(1 βξ d ) ν(r 1) ξ d (1 + κ d β) v(r 1) + 1 ˆR 1 : A 21 (1, 44) = (1 ξ d)(1 βξ d ) νr ξ d (1 + κ d β) v(r 1) + 1 Row 2 - Impored onsumpion inflaion ˆπ m b π = β ˆπ m +1 1+κ m β ρ π b π + κ m m ˆπ 1 b π 1+κ m β κ mβ (1 ρ π ) b π + (1 ξ m)(1 βξ m ) 1+κ m β ξ m (1 + κ m β) m m m x ˆγ x ˆγ md m m + m ˆλ, 9

10 β +1 : H (2, 2) = 1+κ m β ˆπ m : A 22 (2, 2) = 1 ˆπ m 1 : A 21 (2, 46) = κ m 1+κ m β ˆπ m b π : A 21 (2, 18) = 1 β 1+κ m β ρ π κ m ˆλ m : A 21 (2, 10) = (1 ξ m)(1 βξ m ) ξ m (1 + κ m β) ˆλ m : A 21 (2, 10) = 1 (resaled) Marginal os : m x : A 22 (2, 21) = (1 ξ m)(1 βξ m ) ξ m (1 + κ m β) ˆγ x : A 22 (2, 19) = (1 ξ m)(1 βξ m ) ξ m (1 + κ m β) ˆγ md : A 22 (2, 17) = (1 ξ m)(1 βξ m ) ξ m (1 + κ m β) Row 3 - Impored invesmen inflaion ˆπ mi b π = 1+κ m β κ mβ (1 ρ π ) 1+κ m β β ˆπ mi +1 1+κ mi β ρ π b π + κ mi mi ˆπ 1 b π 1+κ mi β κ miβ (1 ρ π ) b π + (1 ξ mi)(1 βξ mi ) 1+κ mi β ξ mi (1 + κ mi β) m mi m x ˆγ x ˆγ mi,d m mi + mi ˆλ, ˆπ mi β +1 : H (3, 3) = 1+κ mi β ˆπ mi : A 22 (3, 3) = 1 ˆπ mi 1 : A 21 (3, 47) = κ mi 1+κ mi β Marginal os : ˆγ mid : A 22 (3, 18) = (1 ξ mi)(1 βξ mi ) ξ mi (1 + κ mi β) ˆγ x : A 22 (3, 19) = (1 ξ mi)(1 βξ mi ) ξ mi (1 + κ mi β) m x : A 22 (3, 21) = (1 ξ mi)(1 βξ mi ) ξ mi (1 + κ mi β) ˆλ mi : A 21 (3, 11) = (1 ξ mi)(1 βξ mi ) ξ mi (1 + κ mi β) ˆλ mi : A 21 (3, 11) = 1 (resaled) b π : β A 21 (3, 18) = 1 1+κ mi β ρ π κ mi 1+κ mi β κ miβ (1 ρ π ) 1+κ mi β 10

11 Row 4 - Oupu gap 0= ŷ + λ fˆ + λ f αˆk λ f αˆ + λ f (1 α) Ĥ ŷ : A 22 (4, 4) = 1 Ĥ : A 22 (4, 12) = λ f (1 α) ˆk : A 22 (4, 13) = λ f α Row 5 - Expor prie inflaion ˆπ x b π = ˆ : A 21 (4, 1) = λ f ˆ : A 21 (4, 3) = λ f α β ˆπ x +1 1+κ x β ρ π b π + κ x x ˆπ 1+κ x β 1 b π κ xβ (1 ρ π ) b π + (1 ξ x)(1 βξ x ) 1+κ x β ξ x (1 + κ x β) m x + ˆλ x, ˆπ x +1 : H (5, 5) = β 1+κ x β ˆπ x : A 22 (5, 5) = 1 ˆπ x 1 : A 21 (5, 49) = κ x 1+κ x β Marginal os : m x : A 22 (5, 21) = (1 ξ x)(1 βξ x ) ξ x (1 + κ x β) ˆλ x : A 21 (5, 16) = (1 ξ x)(1 βξ x ) ξ x (1 + κ x β) ˆλ x : A 21 (5, 16) = 1 (resaled) b π : β A 21 (5, 18) = 1 1+κ x β ρ π κ x 1+κ x β κ xβ (1 ρ π ) 1+κ x β Row 6 - Real wage d η 0 ŵ 1 + η 1 ŵ + η 2 ŵ +1 + η 3 ˆπ b π + d η4 ˆπ +1 ρ b π π 0 = E +η 5 ˆπ 1 b π + η6 ˆπ ρ π b π +η 7 ˆψτ z + η 8 Ĥ + η 9ˆτ y + η 10ˆτ w + η 11ˆζh bπ = (1 ω ) γ d (1 η ) bπ d + ω (γ m ) (1 η ) bπ m 11

12 where η b w ξ w σ L λ w b w 1+βξ 2 w b w βξ w b w ξ w b w βξ w b w ξ w κ w b w βξ w κ w 1 λ w (1 λ w )σ L (1 λ w ) τ y (1 τ y ) (1 λ w ) τ w (1+τ w ) (1 λ w ) η 0 η 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η 11. (1.3) Colle erms and use he definiion of bπ : µ η 2 ŵ +1 + η 4ˆπ d +1 = η 0 ŵ 1 η 1 ŵ η 3 + η 6 (1 ω ) γ d (1 η ) bπ d η 6 ω (γ m ) (1 η ) bπ m η 5 µ(1 ω ) γ d (1 η ) bπ d 1 η 5 (ω ) )(γ m ) (1 η bπ m 1 η 7 ˆψτ z η 8 Ĥ η 9ˆτ y η 10ˆτ w η 11ˆζh +[η 3 + ρ π η 4 + η 5 + ρ π η 6 ] b π 12

13 ˆπ d +1 : H (6, 1) = η 4 ŵ +1 : H (6, 6) = η 2 µ bπ d : A 22 (6, 1) = η 3 + η 6 (1 ω ) γ d (1 η ) bπ m : A 22 (6, 2) = η 6 ω (γ m ) (1 η ) ŵ : A 22 (6, 6) = η 1 ˆψ τ z : A 22 (6, 9) = η 7 Ĥ : A 22 (6, 12) = η 8 Resaling he labor supply shok so is oeffiien is of he same magniude as ŵ i hˆζh : A 21 (6, 7) = η 11 > 0 A 21 (6, 7) = η ˆζ h 1 : if η 11 < 0 A 21 (6, 7) = η 1 =0 A 21 (6, 7) = η 11 b π : A 21 (6, 18) = (η 3 + ρ π η 4 + η 5 + ρ π η 6 ) ˆτ y : A 21 (6, 21) = η 9 ˆτ w : A 21 (6, 23) = η 10 bπ d 1 : A 21 (6, 45) = η 5 (1 ω ) γ d (1 η ) bπ m 1 : A 21 (6, 46) = η 5 ω (γ m ) (1 η ) ŵ 1 : A 21 (6, 50) = η 0 Row 7 - Consumpion bβ ĉ +1 + μ 2 z + b 2 β ĉ b ĉ 1 + b ˆμz βˆ,+1 + E +( bβ)( b) ˆψ z + τ 1+τ (μ z bβ)( b)ˆτ +( bβ)( b)ˆγ d ( b) ˆζ bβˆζ =0 +1 bγ d = ω (γ m ) (1 η ) bγ md ˆ,+1 = ρ μz ˆ ˆζ +1 = ρ ζ ˆζ bβ ĉ +1 = μ 2 z + b 2 β ĉ b ĉ 1 + b 1 βρ μz ˆ +( bβ)( b) ˆψ z + τ 1+τ ( bβ)( b)ˆτ +( bβ)( b) ω (γ m ) (1 η ) bγ md ( b) bβρ ζ ˆζ 13

14 ĉ +1 : H (7, 7) = bβ ĉ : A 22 (7, 7) = μ 2 z + b 2 β ĉ 1 : A 21 (7, 51) = b ˆψ z : A 22 (7, 9) = ( bβ)( b) bγ md : A 22 (7, 17) = ( bβ)( b) ω (γ m ) (1 η ) ˆ : A 21 (7, 3) = b 1 βρ μz Resaling of ˆζ o give i he same oeffiien as ĉ hˆζ : A 21 (7, 6) = ( b) i bβρ ζ ˆζ : A 21 (7, 6) = μ 2 z + b 2 β ˆτ : A 21 (7, 22) = τ 1+τ ( bβ)( b) Row 8 - Invesmen n E ˆPk + ˆΥ h io ˆγ i,d μ 2 zs 00 ( ) b ĩ bĩ 1 β b ĩ +1 bĩ +ˆ βˆ,+1 =0 bγ i,d = ω i γ i,mi (1 η i ) bγ mi,d ˆ,+1 = ρ μz ˆ μ 2 zs 00 ( ) βbĩ +1 = μ 2 zs 00 ( )(1+β)bĩ μ 2 zs 00 ( )bĩ 1 ˆP k +ω i γ i,mi (1 η i ) bγ mi,d + μ 2 zs 00 ( ) 1 βρ μz ˆ ˆΥ bĩ +1 : H (8, 8) = μ 2 zs 00 ( ) β bĩ : A 22 (8, 8) = μ 2 zs 00 ( )(1+β) bĩ 1 : A 21 (8, 52) = μ 2 zs 00 ( ) ˆP k : A 22 (8, 10) = 1 bγ mi,d : A 22 (8, 18) = ω i γ i,mi (1 η i ) ˆ : A 21 (8, 3) = μ 2 zs 00 ( ) 1 βρ μz Resaling of ˆΥ o give i he same oeffiien as bĩ ˆΥ : A 21 (8, 13) = μ 2 zs 00 ( )(1+β) 14

15 Row 9 - Lagrange muliplier (firs order ondiion wih respe o m +1 ) E μˆψ z + μˆψ z,+1 μˆπ d +1 μˆ,+1 + μ k βτ ˆR + τ k 1 τ k (β μ)ˆτ k +1 = 0 ˆ,+1 = ρ μz ˆ μˆψ z,+1 μˆπ d +1 = μˆψ z μ k βτ ˆR + μˆ,+1 τ k 1 τ k (β μ)ˆτ k +1 ˆ,+1 = ρ μz ˆ 0 = μˆψ z + μˆψ z,+1 μˆ,+1 + μ k βτ ˆR μˆπ d +1 + τ k 1 τ k (β μ)ˆτ k +1 ˆ,+1 = ρ μz ˆ ˆτ k +1 = Θ 1 (1, 1) ˆτ k + Θ 1 (1, 2) ˆτ y + Θ 1 (1, 3) ˆτ + Θ 1 (1, 4) ˆτ w + Θ 1 (1, 5) ĝ + Θ 2 (1, 1) ˆτ k 1 + Θ 2 (1, 2) ˆτ y 1 + Θ 2 (1, 3) ˆτ 1 + Θ 2 (1, 4) ˆτ w 1 + Θ 2 (1, 5) ĝ 1 k μˆψ z,+1 μˆπ d +1 = μˆψ z + μρ μz ˆ μ βτ ˆR τ k 1 τ k (β μ) Θ 1 (1, 1) ˆτ k τ k 1 τ k (β μ) Θ 1 (1, 2) ˆτ y τ k 1 τ k (β μ) Θ 1 (1, 3) ˆτ τ k 1 τ k (β μ) Θ 1 (1, 4) ˆτ w τ k 1 τ k (β μ) Θ 1 (1, 5) ĝ τ k 1 τ k (β μ) Θ 2 (1, 1) ˆτ k 1 τ k 1 τ k (β μ) Θ 2 (1, 2) ˆτ y 1 τ k 1 τ k (β μ) Θ 2 (1, 3) ˆτ 1 τ k 1 τ k (β μ) Θ 2 (1, 4) ˆτ w 1 τ k 1 τ k (β μ) Θ 2 (1, 5) ĝ 1 ˆπ d +1 : H (9, 1) = μ ˆψ z,+1 : H (9, 9) = μ ˆψ z : A 22 (9, 9) = μ ˆR : B 2 (9, 1) = μ k βτ 15

16 Row 10 - Prie of apial ˆ : A 21 (9, 3) = μρ μz ˆτ k : A 21 (9, 20) = τ k 1 τ k (β μ) Θ 1 (1, 1) ˆτ y : A 21 (9, 21) = τ k 1 τ k (β μ) Θ 1 (1, 2) ˆτ : A 21 (9, 22) = τ k 1 τ k (β μ) Θ 1 (1, 3) ˆτ w : A 21 (9, 23) = τ k 1 τ k (β μ) Θ 1 (1, 4) ĝ : A 21 (9, 24) = τ k 1 τ k (β μ) Θ 1 (1, 5) ˆτ k 1 : A 21 (9, 25) = τ k 1 τ k (β μ) Θ 2 (1, 1) ˆτ y 1 : A 21 (9, 26) = τ k 1 τ k (β μ) Θ 2 (1, 2) ˆτ 1 : A 21 (9, 27) = τ k 1 τ k (β μ) Θ 2 (1, 3) ˆτ w 1 : A 21 (9, 28) = τ k 1 τ k (β μ) Θ 2 (1, 4) ĝ 1 : A 21 (9, 29) = τ k 0 = ˆψ z +ˆ,+1 ˆψ β(1 δ) z,+1 + τ k β(1 δ) 1 τ k ˆτ k +1 μ, z ˆr k +1 = ρ μz ˆ + b w τ k (β μ) Θ 2 (1, 5) ˆPk,+1 + ˆP k β(1 δ) ˆr +1 k νr v(r 1) + 1 ˆR ν(r 1) + v(r 1) + 1 ρ νˆν + Ĥ+1 ˆk +1 ˆτ k +1 = Θ 1 (1, 1) ˆτ k + Θ 1 (1, 2) ˆτ y + Θ 1 (1, 3) ˆτ + Θ 1 (1, 4) ˆτ w + Θ 1 (1, 5) ĝ + Θ 2 (1, 1) ˆτ k 1 + Θ 2 (1, 2) ˆτ y 1 + Θ 2 (1, 3) ˆτ 1 + Θ 2 (1, 4) ˆτ w 1 + Θ 2 (1, 5) ĝ 1 16

17 β(1 δ) ˆψ z,+1 + β(1 δ) ˆk+1 ˆPk,+1 + β(1 δ) " = ˆψ z + ρ μz β(1 δ) # ρ μ μz z β(1 δ) ν(r 1) v(r 1) + 1 ρ νˆν b w +1 + β(1 δ) Ĥ μ +1 z ˆ + ˆP k β(1 δ) νr v(r 1) + 1 ˆR τ k β(1 δ) 1 τ k Θ1 (1, 1) ˆτ k + τ k β(1 δ) 1 τ k Θ1 (1, 2) ˆτ y + τ k β(1 δ) 1 τ k Θ1 (1, 3) ˆτ + τ k β(1 δ) 1 τ k Θ1 (1, 4) ˆτ w + τ k β(1 δ) 1 τ k Θ1 (1, 5) ĝ + τ k β(1 δ) 1 τ k Θ2 (1, 1) ˆτ k 1 + τ k β(1 δ) 1 τ k Θ2 (1, 2) ˆτ y 1 μ + τ k β(1 δ) z 1 τ k Θ2 (1, 3) ˆτ 1 + τ k β(1 δ) 1 τ k Θ2 (1, 4) ˆτ w 1 + τ k β(1 δ) 1 τ k Θ2 (1, 5) ĝ 1 b w +1 : H (10, 6) = β(1 δ) ˆψ z,+1 : H (10, 9) = 1 β(1 δ) ˆP k,+1 : H (10, 10) = Ĥ +1 : H (10, 12) = β(1 δ) û +1 : H (10, 13) = β(1 δ) ˆψ z : A 22 (10, 9) = 1 ˆψ z : A 22 (10, 9) = 1 ˆP k : A 22 (10, 10) = 1 17

18 ˆR : B 2 (10, 1) = β(1 δ) νr v(r 1) + 1 ˆ : A 21 (10, 3) = ρ μz β(1 δ) ρ μ μz z ˆν : A 21 (10, 5) = β(1 δ) ν(r 1) v(r 1) + 1 ρ ν ˆτ k : A 21 (10, 20) = τ k ˆτ y : A 21 (10, 21) = τ k ˆτ : A 21 (10, 22) = τ k ˆτ w : A 21 (10, 23) = τ k ĝ : A 21 (10, 24) = τ k ˆτ k 1 : A 21 (10, 25) = τ k ˆτ y 1 : A 21 (10, 26) = τ k ˆτ 1 : A 21 (10, 27) = τ k ˆτ w 1 : A 21 (10, 28) = τ k ĝ 1 : A 21 (10, 29) = τ k 1 τ k β(1 δ) Θ1 (1, 1) 1 τ k β(1 δ) Θ1 (1, 2) 1 τ k β(1 δ) Θ1 (1, 3) 1 τ k β(1 δ) Θ1 (1, 4) 1 τ k β(1 δ) Θ1 (1, 5) 1 τ k β(1 δ) Θ2 (1, 1) 1 τ k β(1 δ) Θ2 (1, 2) 1 τ k β(1 δ) Θ2 (1, 3) 1 τ k β(1 δ) Θ2 (1, 4) 1 τ k β(1 δ) Θ2 (1, 5) Row 11 - Change in nominal exhange rae (UIP) 1 s φ E Ŝ+1 = φ s Ŝ + ˆR ˆR + φ a â b φ Ŝ+1 : H (11, 11) = 1 s φ Ŝ : A 22 (11, 11) = φ s â : A 22 (11, 16) = φ a ˆR : B 2 (11, 1) = 1 b φ : A 21 (11, 12) = 1 ˆR : A 21 (11, 32) = 1 18

19 Row 12 - Hours worked (aggregae resoure onsrain) (1 ω ) γ d η ĉ + η y ˆγ d +(1 ω i ) γ id η i ĩ b ĩ + η y iˆγ id + g y ĝ + y y i = λ d hˆε + α ˆk ˆ +(1 α) Ĥ 1 k τ r k k y ĉ + η y ˆγ d i λ d hˆε + α ˆk ˆ +(1 α) Ĥ 0 = (1 ω ) γ d η 0 = (1 ω ) γ d η +(1 ω i ) γ id η i ĩ +(1 ω i ) γ id η i ĩ y + 1 k τ r k k y bγ d = ω (γ m ) (1 η ) bγ md bγ i,d = ω i γ i,mi (1 η i ) bγ mi,d y ĉ +(1 ω ) γ d η y η iω i γ i,mi (1 η i ) bγ mi,d λ d α λ dˆε + λ d αˆ λ d (1 α) Ĥ 1 ˆk b k b ĩ + η iˆγ id + g y ĝ + y y 1 ˆk b k ŷ η f ˆγ x + b z ŷ η f ˆγ x + b z y η ω (γ m ) (1 η ) bγ md +(1 ω i ) γ id η i ĩ y b ĩ y ĉ : A 22 (12, 7) = (1 ω ) γ d η y η f ˆγ x + g y ĝ + y y ŷ + y y b z 1 ˆk 1 τ k r k k y bĩ : A 22 (12, 8) = (1 ω i ) γ id η i ĩ y Ĥ : A 22 (12, 12) = λ d (1 α) ˆk : A 22 (12, 13) = λ d α 1 k τ r k k 1 y μ z γ d η bγ md : A 22 (12, 17) = (1 ω ) bγ mi,d : A 22 (12, 18) = (1 ω i ) ˆγ x : A 22 (12, 19) = y y η f ˆε : A 21 (12, 1) = λ d ˆ : A 21 (12, 3) = λ d α b z : A 21 (12, 14) = y y ĝ : A 21 (12, 24) = g y ŷ : A 21 (12, 31) = y y b k : A 21 (12, 42) = 1 k τ r k k 1 y y y η ω (γ m ) (1 η ) γ id η i ĩ y η iω i γ i,mi (1 η i ) 1 τ k r k k y 1 b k 19

20 Row 13 - Capial-servies flow û = 1 ˆr k 1 τ k σ a σ a (1 τ k ) ˆτ k, û ˆk b k, ˆr k = ˆ + b w + ˆR f + Ĥ ˆk. 0= (1 + σ a ) ˆk + σ a b k +ˆ + b w + ˆR f + Ĥ 0= (1 + σ a ) ˆk + σ a b k + b w + Ĥ + νr v(r 1) + 1 ˆR 1 +ˆ + b w : A 22 (13, 6) = 1 Ĥ : A 22 (13, 12) = 1 ˆk : A 22 (13, 13) = (1 + σ a ) τ k (1 τ k ) ˆτ k ν(r 1) v(r 1) + 1 ˆν τ k (1 τ k ) ˆτ k ˆ : A 21 (13, 3) = 1 ˆν : ν(r 1) A 21 (13, 5) = v(r 1) + 1 ˆτ k : A 21 (13, 20) = τ k (1 τ k ) b k : A 21 (13, 42) = σ a ˆR =1 : νr A 21 (13, 44) = v(r 1) + 1 Row 14 - Real money balanes ˆq = 1 ˆζ q + τ k σ q 1 τ k ˆτ k ˆψ z R R 1 ˆR 1, 0= σ q ˆq ˆψ z R R 1 ˆR 1 + ˆζ q + τ k 1 τ k ˆτ k, ˆψ z : A 22 (14, 9) = 1 ˆq : A 22 (14, 14) = σ q ˆζ q : A 21 (14, 8) = 1 ˆτ k : A 21 (14, 20) = τ k 1 τ k ˆR 1 : A 21 (14, 44) = R R 1 20

21 Row 15 - Loan marke learing ν wh ˆν + b w + Ĥ = μ m π d ˆμ + b m ˆπ d ˆ qˆq, 0= ν whˆν ν wh b w ν whĥ + μ m π d ˆμ + μ m π d b m μ m π d ˆπ d μ m π d ˆ qˆq, Row 16 - Ne foreign asses ˆπ d : A 22 (15, 1) = μ m π d b w : A 22 (15, 6) = ν wh Ĥ : A 22 (15, 12) = ν wh ˆq : A 22 (15, 14) = q ˆμ : A 22 (15, 15) = μ m π d ˆν : A 21 (15, 5) = ν wh ˆ : A 21 (15, 3) = μ m π d b m : A 21 (15, 43) = μ m π d â = y m x η f y ˆγ x + y ŷ + y b z +( m +ĩ m )ˆγ f m ĉ + m η (1 ω ) γ d (1 η ) ˆγ md ĩ m bĩ +ĩ m η i (1 ω i ) γ id (1 η i ) ˆγ mid + R â 1, π ˆγ f = m x +ˆγ x, 0 = â [ y ( m +ĩ m )] m x η f y ( m +ĩ m ) ˆγ x, + y ŷ + y b z m ĉ + m η (1 ω ) γ d (1 η ) ˆγ md ĩ m bĩ +ĩ m η i (1 ω i ) γ id (1 η i ) ˆγ mid + R â 1, π 21

22 ĉ : A 22 (16, 7) = m bĩ : A 22 (16, 8) = ĩ m â : A 22 (16, 16) = 1 ˆγ md : A 22 (16, 17) = m η (1 ω ) γ d (1 η ) ˆγ mid : A 22 (16, 18) = ĩ m η i (1 ω i ) γ id (1 η i ) ˆγ x : A 22 (16, 19) = η f y +( m +ĩ m ) m x : A 22 (16, 21) = [ y +( m +ĩ m )] b z : A 21 (16, 14) = y ŷ : A 21 (16, 31) = y â 1 : A 21 (16, 60) = R π Row 17 - Relaive prie - impored ons vs. domesi 0= ˆγ md +ˆγ md 1 +ˆπ m ˆπ d ˆπ d : A 22 (17, 1) = 1 ˆπ m : A 22 (17, 2) = 1 ˆγ md : A 22 (17, 17) = 1 ˆγ md 1 : A 21 (17, 61) = 1 Row 18 - Relaive prie - impored invesmen vs. domesi 0= ˆγ mid +ˆγ mid 1 +ˆπ mi ˆπ d ˆπ d : A 22 (18, 1) = 1 ˆπ mi : A 22 (18, 3) = 1 ˆγ mid : A 22 (18, 18) = 1 ˆγ mid 1 : A 21 (18, 62) = 1 Row 19 - Relaive prie - expor vs. foreign 0= ˆγ x +ˆγ x 1 +ˆπ x ˆπ ˆπ x : A 22 (19, 5) = 1 ˆγ x : A 22 (19, 19) = 1 ˆπ : A 21 (19, 30) = 1 ˆγ x 1 : A 21 (19, 63) = 1 22

23 Row 20 - Real exhange rae b x = ω (γ m ) (1 η md )ˆγ ˆγ x, m x 0 = b x ω (γ m ) (1 η md )ˆγ ˆγ x, m x m x = m x 1 + bπ d bπ x S b ˆγ x = ˆγ x 1 +ˆπ x ˆπ ˆγ md = ˆγ md 1 +ˆπ m ˆπ d Row 21 - Marginal os expor ˆγ md : A 22 (20, 17) = ω (γ m ) (1 η ) ˆγ x, : A 22 (20, 19) = 1 b x : A 22 (20, 20) = 1 m x : A 22 (20, 21) = 1 0= m x + m x 1 + bπ d bπ x b S bπ d : A 22 (21, 1) = 1 bπ x : A 22 (21, 5) = 1 S b : A 22 (21, 11) = 1 m x : A 22 (21, 21) = 1 m x 1 : A 21 (21, 65) = 1 Row 22 - Physial apial sok (noe ha b k+1 is predeermined variable no. 42 in period +1and forward-looking variable no. 22 in period ): 0= b k+1 +(1 δ) 1 b k (1 μ δ) 1 ˆμ z + 1 (1 δ) 1μz ˆΥ + 1 (1 δ) 1μz bĩ, z b k+1 : A 22 (22, 22) = 1, b k : A 21 (22, 42) = (1 δ) 1, ˆ : A 21 (22, 3) = (1 δ) 1, ˆΥ : A 21 (22, 13) = 1 (1 δ) 1μz, ˆΥ : A 21 (22, 13) = S 00 μ 2 z (1 + β) µ1 (1 δ) 1μz (resaled shok!) bĩ : A 22 (22, 8) = 1 (1 δ) 1. 23

24 Row 23 - Finanial asses (noe ha b m +1 is predeermined variable no. 43 in period +1 and forward-looking variable no. 23 in period ) 1.3. Speifying D 0= b m +1 +ˆμ ˆ ˆπ d + b m b m +1 : A 22 (23, 23) = 1 ˆ : A 21 (23, 3) = 1 b m : A 21 (23, 43) = 1 ˆπ d : A 22 (23, 1) = 1 ˆμ : A 22 (23, 15) = 1 We also speify he arge variables, for onveniene inluding some variables of ineres whih may have zero weigh in he loss funion. They are he quarerly and four-quarerly CPI inflaion gaps relaive o seady-sae inflaion, whih equals he offiial inflaion arge; he oupu gap relaive o seady-sae oupu (we may also use he gap relaive o poenial oupu, meaning he flexprie and flexwage oupu level); he quarerly ineres rae; he quarerly ineres-rae differenial; and he real exhange rae. The inflaion and ineres raes are all measured a an annual rae. Then he veor of arge variables, Y, and he orresponding marix D saisfy where Y [4ˆπ pi Quarerly CPI inflaion gap: 4ˆπ pi, ˆπ pi, ŷ, 4 ˆR, 4( ˆR ˆR 1 ), b x ] 0 D ˆπ pi =ˆπ pi +ˆπ pi 1 +ˆπpi 2 +ˆπpi 3. =4[(1 ω )(γ d ) (1 η ) bπ d + ω (γ m ) (1 η ) bπ m ], (1.4) X x i, bπ d : D(1,n X +1)=4(1 ω )(γ d ) (1 η ), bπ m : D(1,n X +2)=4ω (γ m ) (1 η ). Four-quarer CPI inflaion gap: ˆπ pi =ˆπ pi +ˆπ pi 1 +ˆπpi 2 +ˆπpi 3. (1.5) ˆπ d : D(2,n X +1)=(1 ω )(γ d ) (1 η ), ˆπ d 1 : D(2, 45) = (1 ω )(γ d ) (1 η ), ˆπ d 2 : D(2, 68) = (1 ω )(γ d ) (1 η ), ˆπ d 3 : D(2, 70) = (1 ω )(γ d ) (1 η ), bπ m : D(2,n X +2)=ω (γ m ) (1 η ), bπ m 1 : D(2, 46) = ω (γ m ) (1 η ), bπ m 2 : D(2, 69) = ω (γ m ) (1 η ), bπ m 3 : D(2, 71) = ω (γ m ) (1 η ). 24

25 Alernaively, we ould inorporae he exogenous ime-varying inflaion arge in he inflaion gap, 1 Y [4(ˆπ pi b π ), ˆπ pi 4b π, ŷ, 4 ˆR, 4( ˆR ˆR X 1 ), b x ] 0 D x i, in whih ase b π : D(1, 18) = 4, b π : D(2, 18) = 4. Oupu gap, Ineres rae, ŷ : D(3,n X +4)=1. ˆR : D(4,n X + n x + n i )=4. Ineres-rae differenial, ˆR : D(5,n X + n x + n i )=4, ˆR 1 : D(5, 44) = 4. Real exhange rae, b x : D(6,n X + 20) = Defining f X and f x - Ineres rae rule i = f X X + f x x h i ˆR = ρ R ˆR 1 +(1 ρ R ) b π + r π ˆπ 1 b π + ry ŷ 1 + r x b x 1 +r π ˆπ ˆπ 1 + r y (ŷ ŷ 1 )+ε R ˆR = ρ R ˆR 1 +(1 ρ R ) b π +(1 ρ R ) r πˆπ 1 (1 ρ R ) r π b π +(1 ρ R ) r y ŷ 1 +(1 ρ R ) r x b x 1 + r πˆπ r πˆπ 1 + r y ŷ r y ŷ 1 + ε R = ρ R ˆR 1 +(1 ρ R )[1 r π ] b π + r π (1 ω )(γ d ) (1 η ) bπ d +r π (ω )(γ m ) (1 η ) bπ m +[(1 ρ R ) r π r π ](1 ω )(γ d ) (1 η ) bπ d 1 +[(1 ρ R ) r π r π ] ω (γ m ) (1 η ) bπ m 1 +r y ŷ +[(1 ρ R ) r y r y ]ŷ 1 +(1 ρ R ) r x b x 1 + ε R 1 Noe ha one ould alernaive replae 4 π by π + π 1 + π 2 + π 3 and onsider he laer he ime-varying four-quarer inflaion arge. 25

26 ˆR 1 : f X (1, 44) = ρ R b π : f X (1, 18) = (1 ρ R )[1 r π ] bπ d : f x (1, 1) = r π (1 ω )(γ d ) (1 η ) bπ m : f x (1, 2) = r π ω (γ m ) (1 η ) bπ d 1 : f X (1, 45) = [(1 ρ R ) r π r π ](1 ω )(γ d ) (1 η ) bπ m 1 : f X (1, 46) = [(1 ρ R ) r π r π ](ω )(γ m ) (1 η ) ŷ : f x (1, 4) = r y ŷ flex : f x (1,n x +4)= r y ŷ 1 : f X (1, 48) = (1 ρ R ) r y r y ŷ flex 1 : f X (1,n X +48)= ((1 ρ R ) r y r y ) b x 1 : f X (1, 64) = (1 ρ R ) r x ε R : f X (1, 17) = 1 2. Poenial oupu under flexible pries and wages - expanding he sae The flexible prie and wage model is parameerized under i) ξ d = ξ m = ξ mi = ξ x = ξ w =0,ii) seing he four markup as well as he fisal shoks o zero (σ ελ = σ ελ m = σ = σ ελ mi ε λ x =0, and Θ 1 0 S τ =0 5x5, respeively), and iii) we solve he sysem under he assumpion ha ˆπ pi =0.The flexprie model an be wrien where, and X +1 H f x +1 H f This implies he following soluion where x flex = " x flex i flex # H 0 1 nx = A f X x i, A f + C 0 nx n ε 0 ni n ε A 11 A 12 B 1 A 21 A 22 B nx e 1 0 bπ d : e 1 (1, 1) = (1 ω )(γ d ) (1 η ), bπ m : e 1 (1, 2) = ω (γ m ) (1 η ). X flex = M flex X flex 1 + Cflex ε, x flex = F flex Xflex, = F flex M flex X flex 1 + F flex C flex ε, ε +1, (2.1) and F flex =[ Fx flex F flex i ] 0. We expand he sae of he disored eonomy wih he predeermined sae variables in he flexprie model so ha Ẋ =(X 0,X flex0 ) 0, whih implies Ẋ +1 = A 11 Ẋ + Ȧ12x + Ḃ1i + Ċε +1, 26,

27 Ḣx +1 = Ȧ21Ẋ + Ȧ22x + Ḃ2i, A where Ȧ11 = 11 0 nx nx A 0 nx nx M flex, Ȧ12 = 12, 0 nx nx Ȧ 21 = B A 21 0 nx nx, Ȧ22 = A 22, Ḃ 1 = 1, Ḃ 0 2 = B 2, nx ni C Ċ = C flex, and Ḣ = H. We also need o hange he arge variable marix o inlude he flexprie oupu gap X Y [4ˆπ pi, ˆπ pi, ˆπ d, (y y flex ), 4 ˆR, 4( ˆR ˆR 1 ), b x ] 0 Ḋ X flex x i. Ḋ = D X D X flex D x 0 D i, where D above has been pariioned suh ha D = D X D x 0 D i and D X flex is defined so ha ŷ flex : D X flex(4,n X +4)= F flex x,4. 3. The measuremen equaion and he definiion of he maries D 0, D, and D s Le s (X, 0 Ξ 0 1,x0,i 0 ) 0 and all s he sae of he eonomy (alhough i inludes nonpredeermined variables). The soluion o he model under opimal poliy under ommimen an be wrien in Klein form as s +1 X +1 x +1 i +1 = M 0 0 f x M 0 0 f i M 0 0 s + I f x f i Cε+1. As noed in Adolfson e al. [1, Appendix C], i an also be wrien in AIM form as s +1 = Bs + Cε +1, (3.1) where C ΦΨ and he innovaion Cε has he disribuion N(0,Q) wih Q E[ Cε +1 ( Cε +1 ) 0 ]= C C 0.Consider he sae unobservable, le Z denoe he n Z -veor of observable variables, and le he measuremen equaion be Z = D 0 + D s s + η, (3.2) where η is an n Z -veor of measuremen errors wih disribuion N(0, Σ η ) (he veor η here should no be onfused wih veor η of oeffiiens speified in (1.3)). We assume ha he marix R is diagonal wih very small elemens. 2 Equaions (3.1) and (3.2) orrespond o he sae-spae form for he derivaion of he Kalman filer in Hamilon [3]. Noe ha he marix D s is relaed o he marix D [ D X Dx Di ] (pariioned onformably wih X, x,andi )as D s =[ D X 0 D x Di ], sine s inludes he veor of predeermined variables Ξ 1. 2 The role of he measuremen errors in he esimaion of he model and he sae of he eonomy is furher disussed in Adolfson e al. [2]. 27

28 3.1. Differene speifiaion The veor of observable variables is π d ln(w /P ) ln C ln I b x R Ĥ... Z = y ln X ln M π pi π def,i ln Y π R and orresponds o he daa used in esimaing Ramses. Nex, we need speify how he daa orresponds o he model variables: 0 (3.3) π d = 400(π 1)π +4πˆπ d, ln(w /P ) = 100ln + b w +ˆ, ln C = 100ln + ĉ + d + m η d m h (γ m ) 1 (γ d ) 1i bγ md +ˆμ z, ĩ ln I = 100ln + bĩ + ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 bγ mi,d ĩ ĩ + 1 k τ r k k 1 û +ˆμ, z b x = b x, R = 400(R 1)R +4R ˆR, Ĥ = Ĥ, y = 100ln + ŷ +ˆ, ln X = 100ln + h ŷ η f bγ x, + b z ln M = 100ln + m m +ĩ m ĉ + ĩm m +ĩ m bĩ m i +ˆ, m +ĩ m η (1 ω )(γ d ) (1 η ) bγ md γ i,d (1 η i ) bγ mi,d +ˆ, ĩm m +ĩ m η i(1 ω i ) π pi 400(π 1)π +4πˆπ pi +4π τ 1+τ ˆτ (3.4) = 400(π 1)π +4π(1 ω )(γ d ) (1 η ) bπ d +4πω (γ m ) (1 η ) bπ m +4π τ 1+τ ˆτ, π def,i = 400(π 1)π +4πĩ π d ˆπ d +4πĩ π m ˆπ mi ĩ +4π π d Id η I d +I m i ω i γ i,mi (1 η i ) ĩ π m Im η I d +I m i (1 ω i ) γ i,d (1 η i ) ln Y = 100ln + ŷ + b z +ˆ, π = 400(π 1)π +4πˆπ, R = 400(R 1)R +4R ˆR. bγ mi,d, Domesi inflaion π d = 400(π 1)π +4πˆπ d, 28

29 D 0 (1, 1) = 400(π 1)π D s 1,n X +1 = 4π Change in real wage ln(w /P ) = 100 ln + b w b w 1 +ˆ, Change in real onsumpion ln C = 100 ln +ĉ ĉ 1 + d + m η d m D 0 (2, 1) = 100 ln μ z b w : Ds 2,n X +6 =1 b w 1 : Ds (2, 50) = 1 ˆ : Ds (2, 3) = 1 d + m η d m h (γ m ) 1 (γ d ) 1i bγ md h (γ m ) 1 (γ d ) 1i bγ md 1 +ˆ, D 0 (3, 1) = 100 ln ĉ : Ds 3,n X +7 =1 ĉ 1 : Ds (3, 51) = 1 bγ md : Ds 3,n X +17 = d + m η d m h(γ m ) 1 (γ d ) 1i bγ md 1 : D s (3, 61) = d + m η d m h(γ m ) 1 (γ d ) 1i ˆ : Ds (3, 3) = 1 Change in real invesmen ĩ ln I = 100 ln +bĩ bĩ 1 + ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 ĩ ĩ ĩ ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 bγ mi,d 1 ĩ ĩ + 1 k τ r k k 1 ˆk 1 k τ r k k 1 b k û = ˆk b k bγ mi,d 1 τ k r k k 1 û 1 +ˆ, 29

30 D 0 (4, 1) = 100 ln μ z bĩ : Ds 4,n X +8 =1 bĩ 1 : Ds (4, 52) = 1 bγ mi,d : Ds 4,n X +18 = bγ mi,d 1 : Ds (4, 62) = ĩ ˆk : Ds 4,n X +13 = b k : Ds (4, 42) = 1 k τ r k k 1 ĩ ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 ĩ ĩ ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 ĩ ĩ 1 k τ r k k 1 û 1 : Ds (4, 67) = 1 k τ r k k 1 ˆ : Ds (4, 3) = 1 Real exhange rae b x = b x b x : D s 5,n X +20 =1 Ineres rae R = 400(R 1)R +4R ˆR, D 0 (6, 1) = 400(R 1)R ˆR : Ds 6,n X + n x + n i =4R Hours worked Ĥ = Ĥ, Ĥ : Ds 7,n X +12 =1 Change in oupu (GDP) y = 100 ln +ŷ ŷ 1 +ˆ, D 0 (8, 1) = 100 ln ŷ : Ds 8,n X +4 =1 ŷ 1 : Ds (8, 48) = 1 ˆ : Ds (8, 3) = 1 30

31 Change in real expors ln X = 100 ln +ŷ ŷ 1 η f bγ x, + η f bγ x, 1 + b z b z 1 +ˆ, Change in real impors ln M = 100 ln + m m +ĩ m ĉ + m D 0 (9, 1) = 100 ln ŷ : Ds (9, 31) = 1 ŷ 1 : Ds (9, 34) = 1 bγ x, : Ds 9,n X +19 = η f bγ x, 1 : Ds (9, 63) = η f b z : Ds (9, 14) = 1 b z 1 : Ds (9, 15) = 1 ˆ : Ds (9, 3) = 1 m m +ĩ m ĉ m +ĩ m η (1 ω )(γ d ) (1 η ) bγ md ĩm m +ĩ m η i(1 ω i ) m m +ĩ m η (1 ω )(γ d ) (1 η ) bγ md ĩm m +ĩ mb ĩ ĩm m +ĩ mb ĩ 1 γ i,d (1 η i ) bγ mi,d + ĩm m +ĩ m η i(1 ω i ) γ i,d (1 η i ) bγ mi,d 1 +ˆ, CPI inflaion D 0 (10, 1) = 100 ln ĉ : Ds 10,n X +7 = m m +ĩ m ĉ 1 : Ds (10, 51) = m m +ĩ m bγ md : D s 10,n X +17 = m m +ĩ m η (1 ω )(γ d ) (1 η ) bγ md 1 : Ds (10, 61) = m m +ĩ m η (1 ω )(γ d ) (1 η ) bĩ : Ds 10,n X +8 = ĩm m +ĩ m bĩ 1 : Ds (10, 52) = ĩm m +ĩ m bγ mi,d : Ds 10,n X +18 = ĩm m +ĩ m η i(1 ω i ) bγ mi,d 1 : Ds (10, 62) = ĩm m +ĩ m η i(1 ω i ) ˆ : Ds (10, 3) = 1 γ i,d (1 η i ) π pi = 400(π 1)π +4π(1 ω )bπ d +4πω bπ m +4π τ 1+τ ˆτ 4π τ 1+τ ˆτ 1, 31 γ i,d (1 η i )

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

is the home less foreign interest rate differential (expressed as it

is the home less foreign interest rate differential (expressed as it The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9. 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7

Διαβάστε περισσότερα

A Suite of Models for Dynare Description of Models

A Suite of Models for Dynare Description of Models A Suie of Models for Dynare Descripion of Models F. Collard, H. Dellas and B. Diba Version. Deparmen of Economics Universiy of Bern A REAL BUSINESS CYCLE MODEL A real Business Cycle Model The problem of

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

INTERTEMPORAL PRICE CAP REGULATION UNDER UNCERTAINTY By Ian M. Dobbs The Business School University of Newcastle upon Tyne, NE1 7RU, UK.

INTERTEMPORAL PRICE CAP REGULATION UNDER UNCERTAINTY By Ian M. Dobbs The Business School University of Newcastle upon Tyne, NE1 7RU, UK. INTERTEPORAL PRICE CAP REGULATION UNDER UNCERTAINTY By Ian. Dobbs The Bsiness Shool Universiy of Newasle on Tyne, NE 7RU, U. Eqaion Seion ADDITIONAL NOTES AND DERIVATIONS The blished aer omis deailed derivaions.

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR EVA M, SWEEEY R 3,. ;. McDonough ; 3., 3006 ; ; F4.0 A Levin Lin(99) Im, Pesaran Shin(996) Levin Lin(99) Oh(996),Wu(996) Paell(997) Im, Pesaran Shin(996) Canzoner Cumby Diba(999) Levin Lin(99) Coe Helman(995)

Διαβάστε περισσότερα

Technical Appendix for DSGE Models for Monetary Policy Analysis

Technical Appendix for DSGE Models for Monetary Policy Analysis Technical Appendix for DSGE Models for Moneary Policy Analysis by Larence J Chrisiano, Mahias Traband, Karl Walenin A Daa Appendix A Daa Sources FRED2: Daabase of he Federal Reserve Bank of S Louis available

Διαβάστε περισσότερα

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation A noe on deriving he New Keynesian Phillips Curve under posiive seady sae inflaion Hashma Khan Carleon Univerisiy Barbara Rudolf Swiss Naional Bank Firs version: February 2005 This version: July 2005 Absrac

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

Notes on New-Keynesian Models

Notes on New-Keynesian Models Noes on New-Keynesian Models Marco Del Negro, Frank Schorfheide, FRBNY DSGE Group Sepember 4, 202 Please do no circulae Smes & Wouers Chrisiano, Eichenbaum, & Evans. Define he problem, FOCs, and equilibrium

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

NATIONAL BANK OF POLAND WORKING PAPER No. 86

NATIONAL BANK OF POLAND WORKING PAPER No. 86 NATIONAL BANK OF POLAND WORKING PAPER No. 86 Compeiiveness channel in Poland and Slovakia: a pre-emu DSGE analysis Andrzej Torój Warsaw 2 Andrzej Torój Minisry of Finance in Poland andrzej.oroj@mofne.gov.pl)

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

TRM +4!52# 6!#!-!2&'!5$27!842//22&'9&2:1*;832< TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Fourier Transform. Fourier Transform

Fourier Transform. Fourier Transform ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

A Baseline DSGE Model

A Baseline DSGE Model A Baseline DSGE Moel Jesús Fernánez-Villavere Duke Universiy, NBER, an CEPR Juan F. Rubio-Ramírez Duke Universiy an Feeral Reserve Bank of Alana Ocober 10, 2006 1 1. Inroucion In hese noes, we presen a

Διαβάστε περισσότερα

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Global energy use: Decoupling or convergence?

Global energy use: Decoupling or convergence? Crawford School of Public Policy Centre for Climate Economics & Policy Global energy use: Decoupling or convergence? CCEP Working Paper 1419 December 2014 Zsuzsanna Csereklyei Geschwister Scholl Institute

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication Mark-up lucuaions and iscal Policy Sabilizaion in a Moneary Union: Technical appendices no for publicaion M. W. J. B Universiy of Amserdam and CEP J Universiy of Copenhagen, CEP and EPU July, 003 Mailing

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square Appendix A3 Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS F Value Pr > F Model 107 374.68 3.50 8573.07

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα