KΕΦΑΛΑΙΟ 21* ΜΟΝΟ ΙΑΣΤΑΤΗ ΜΟΝΙΜΗ ΡΟΗ ΣΥΜΠΙΕΣΤΟΥ ΜΗ ΣΥΝΕΚΤΙΚΟΥ ΡΕΥΣΤΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KΕΦΑΛΑΙΟ 21* ΜΟΝΟ ΙΑΣΤΑΤΗ ΜΟΝΙΜΗ ΡΟΗ ΣΥΜΠΙΕΣΤΟΥ ΜΗ ΣΥΝΕΚΤΙΚΟΥ ΡΕΥΣΤΟΥ"

Transcript

1 KΕΦΑΛΑΙΟ * ΜΟΝΟ ΙΑΣΤΑΤΗ ΜΟΝΙΜΗ ΡΟΗ ΣΥΜΠΙΕΣΤΟΥ ΜΗ ΣΥΝΕΚΤΙΚΟΥ ΡΕΥΣΤΟΥ. Ισεντοπική οή Στο έκτο κεφάλαιο το βιβλίο απεδείχθη ότι στο µη σνεκτικό εστό οι διαφοικές εξισώσεις το πεδίο οής οδηούν στο σµπέασµα ότι η οή είναι ισεντοπική, το οποίο σηµαίνει ότι η εντοπία των σωµατιδίων πααµένει σταθεή. Εάν η εντοπία όλων των σωµατιδίων είναι σταθεή η οή λέεται οµοιεντοπική. Επίσης στο ίδιο κεφάλαιο απεδείχθη ότι εάν η οή είναι µόνιµη και δεν έχοµε πεδίο εξωτεικών δνάµεων (π.χ βαύτητας) τότε επάνω στις αµµές οής το πεδίο ισχύει η ενεειακή εξίσωση πό την κάτωθι µοφή: + i = i, i = e (.) + όπο η ταχύτητα, η πκνότητα, η πίεση, e η ειδική εσωτεική ενέεια, i η ειδική ενθαλπία και i ο η ειδική ολική ενθαλπία. Ως ολικά µεέθη χαακτηίζονται τα µεέθη στο σηµείο ανακοπής (=).Λαµβάνοντας εποµένως πόψη, ότι η οή είναι ισεντοπική στην ποηούµενη σχέση τα µεέθη πίεσης θεµοκασίας (Τ), πκνότητας και ενθαλπίας ποκειµένο ια τέλειο αέιο σταθεών ειδικών θεµοτήτων ( c, c v ) σνδέονται µεταξύ τος µε τις σχέσεις: c = R T, i = c T, e = c T, =, =, = R T v cv (.) όπο,, T η ολική πίεση, πκνότητα και θεµοκασία. Για αέα είναι =,4, R=87J/kg K.. Ταχύτητα διαδόσεως το ήχο Η ταχύτητα διαδόσεως το ήχο σε εστό αποτελεί βασική έννοια στην οή το σµπιεστού εστού. Ως ταχύτητα διαδόσεως το ήχο εννοούµε την ταχύτητα µε την οποία διαδίδονται τα κύµατα πο ποκαλούνται από µικές διατααχές. Σχνά λέονται και ακοστικά κύµατα ή ηχητικά κύµατα. Εάν χάιν απλούστεσης θεωήσοµε την µονοδιάστατη οή κατά τον άξονα x οή µε ταχύτητα, πκνότητα, πίεση, και ειδική εσωτεική ενέεια e, τότε εάν δηµιοηθεί µία µική διατααχή στο εστό (du, d, d, de), η διατααχή ατή θα διαδίδεται στο χώο κινούµενη µε ταχύτητα w διαφοετική εν ένει από την ταχύτητα των στοιχείων το εστού, σχήµα.. w,, e + d + d, + d, e + de x Σχήµα.: Μική διατααχή κινούµενη σε κινούµενο σµπιεστό εστό *Σµπλήωµα στο βιβλίο: Σ. Τσαάη «Μηχανική των Ρεστών», Εκδ. Σµεών

2 Εάν θεωήσοµε επιφάνεια ελέχο εκατέωθεν της επιφάνειας διατααχής (επιφάνεια το ακοστικού κύµατος) τότε εφαµόζοντας τα θεωήµατα διατήησης µάζας, οµής και ενέειας, ποκύπτει Θ ( w) = ( + d )( + d w) (.3) Θ = Θ( + d ) + (+ d) (.4) ( + d ) Θ (e + ) =Θ [e + de + ] + ( + d)( + d ) (.5), όπο Θ είναι η παοχή µάζας το εστού ανά µονάδα επιφάνειας. Πααλείποντας όος πο πειέχον ινόµενα διαφοικών από την πώτη και δεύτεη εξίσωση ποκύπτον αντίστοιχα: d+θd= (.6) Από τις εξισώσεις (.6) (.7) ποκύπτει µε απαλειφή το d: Θd+ d= (.7) Θ (de +d ) + d + d= (.8) d ( w) d = (.9) Από την εξίσωση Gibbs ποκύπτει, µε χήση των σχέσεων (.6.8): Tds de d = + = (.) Η οή είναι ισεντοπική το οποίο µας επιτέπει να άψοµε την σχέση (.9) πό την σνήθη µοφή: s= cnst = ( w) c (.) όπο c είναι η σχετική ταχύτητα κίνησης το µετώπο κύµατος της διατααχής ως πος το στοιχείο το εστού, ονοµαζόµενη και ταχύτητα το ήχο: c w (.) Με χήση της σχέσης (.) η ταχήτητα το ήχο πολοίζεται σνατήσει των θεµοδναµικών µεεθών ως: (.3) c= RT = Η εισαωή της ταχύτητας το ήχο µας οδηεί στην εισαωή το αιθµού ach, οποίος οίζεται ως

3 = c (.4) Εάν η οή έχει Μ> η οή ονοµάζεται πεηχητική, εάν Μ< ποηχητική και εάν Μ= ηχητική. Μετά από την εισαωή της έννοιας της ταχύτητας το ήχο από τις σχέσεις (.) και (.) ια την ισεντοπική οή µποούν να ποκύψον αλεβικά οι σχέσεις των θεµοδναµικών µεεθών,, T, c ως πος τα αντίστοιχα ολικά µεέθη σνατήσει το αιθµού ach: = + ( ), (.5) = + ( ), (.6) c T = = + ( ) c T, (.7) Σχνά στη βιβλιοαφία αντί το ολικού µεέθος εµφανίζεται το αντίστοιχο µέεθος στην θέση το πεδίο οής όπο επικατεί η ηχητική ταχύτητα (Μ=). Τα θεµοδναµικά µεέθη στη σκεκιµένη θέση * * * * σµβολίζονται µε αστείσκο:,,t,c και εύκολα µποεί να αποδειχθεί ότι σνδέονται µε τα ολικά µεέθη από τις ακόλοθες σχέσεις: + = ( ) +, + = ( ), c T + = = c T (.8) Εάν οισθεί η αδιάστατη ταχύτητα Μ * µε την ταχύτητα το ήχο στην ηχητική κατάσταση τότε ποκύπτει + = c +, (.9) Μιά ακόµη ισεντοπική σχέση η οποία ενδιαφέει στην οή σε ακοφύσια είναι η σχέση η οποία δίνει την οή µάζας ανά µονάδα επιφάνειας, και η οποία ποκύπτει από τις ισεντοπικές σχέσεις.7 σνατήσει το αιθµού Μ: Θ, Θ = (+ ) c + ( ), (.) Στο σχήµα. της ισεντοπικής οής παίστανται οι µεταβολές όλων των µεεθών σνατήσει το αιθµού ach (πίνακας.). 3

4 .5. * c ο T T c c Σχήµα.: Ισεντοπικές µεταβολές µεεθών σνατήσει το αιθµού ach της οής.3 Κάθετο στάσιµο κύµα κούσης ια µη σνεκτικό εστό χωίς θεµική αωιµότητα Στην παάαφο 6.4. καταλήξαµε στις ενικές εξισώσεις το στάσιµο κύµατος κούσης ια µη σνεκτικό εστό και χωίς θεµική αωιµότητα. Ως κάθετο κύµα κούσης ονοµάζοµε την ασνέχεια όπο το διάνσµα της ταχύτητας εκατέωθεν της ασνέχειας είναι κάθετο σ' ατήν, εποµένως: και άα: t = t = (.), = (.) = n n Σχήµα.3: Καταστάσεις πίν και µετά το κάθετο κύµα κούσης Εφαµόζοντας τις εξισώσεις (6.66) διατήησης µάζας, οµής, ενέειας και το δεύτεο αξίωµα της θεµοδναµικής ια την πείπτωση το καθέτο κύµατος κούσης στην πείπτωση το τελείο αείο σταθεών ειδικών θεµοτήτων, ( i = ) ποκύπτον οι εξισώσεις: 4

5 = + = + + = + (.3) (.4) (.5) ( ) s s (.6) Οι εξισώσεις (.3-.5) αποτελούν σύστηµα 3 εξισώσεων µε τείς ανώστος (,, ). εδοµένης δηλαδή της κατάστασης, οι τιµές των µεεθών ια την κατάσταση καθοίζονται µε την επίλση το αλεβικού σστήµατος των εξισώσεων (.3-.5). Η επίλση το δετεοβαθµίο στήµατος δίνει δύο λύσεις από τις οποίες η µία είναι η τατοτική: = = + (.7) = + + (.8) Εισάοντας τον αιθµό ach της οής ποκύπτον οι εξισώσεις το καθέτο κύµατος κούσης, πο σνδέον την κατάσταση µετά το κύµα κούσης (σµβολίζεται στη σνέχεια µε ) µε την κατάσταση πίν το κύµα κούσης µε παάµετο τον αιθµό ach της οής Μ πίν το κύµα κούσης: $ = = $ + = + + $ = + ( ) + $ T c$ = = + ( ) + + T c + ( ) $ + = + ( ) + ( ) (.9) (.3) (.3) (.3) 5

6 Ολες οι πααπάνω σχέσεις ισχύον ακιβώς στην ίδια µοφή εάν τα µεέθη µετά το κύµα κούσης ( ) αντικατασταθούν µε τα µεέθη πιν το κύµα κούσης. Ατό οφείλεται στη σµµετία των αχικών εξισώσεων. Η µεταβολή της εντοπίας πολοίζεται από ολοκλήωση το νόµο το Gibbs Td s= de+ d(/ ), πο στην πείπτωση το τελείο αείο σταθεών ειδικών θεµοτήτων, άφεται στη µοφή: ds c d c d = v (.33) ή $ ln $ s s= c c ln $ v (.34) Αντικαθιστώντας τις µεταβολές της πίεσης και πκνότητας στην ποηούµενη σχέση σνατήσει το αιθµού ach ποκύπτει: s$ s ln $ = c $ v ln = + + ( ) + (.35) Η µεταβολή το µεέθος της εντοπίας παίσταται στο σχήµα.4 σνατήσει το αιθµού ach (Μ) πίν το κύµα κούσης. Από το διάαµµα ατό παατηούµε ότι η µεταβολή της εντοπίας είναι θετική ( $ss ) όταν η οή είναι πεηχητική (Μ>). εδοµένο ότι από τις δναµικές σνθήκες σµβατότητας η µεταβολή της εντοπίας δεν µποεί να είναι ανητική, ποκύπτει ότι κάθετο, στάσιµο κύµα κούσης είναι δνατό µόνο σε πεηχητική οή. Από την σχέση.3 ποκύπτει ότι µετά το κύµα κούσης η οή µεταβαίνει σε ποηχητική ( $ <) Σχήµα.4: Μεταβολή της εντοπίας εκατέωθεν ενός καθέτο κύµατος κούσης σνατήσει το αιθµού Μach () πιν το κύµα κούσης Ο λόος των µεεθών εκατέωθεν το κύµατος κούσης παοσιάζονται στα σχήµατα.5 και.6 σνατήσει το αιθµού ach () πιν το κύµα κούσης. Οπως φαίνεται και από το σχήµα, τα µεέθη πίεσης, θεµοκασίας και πκνότητας αξάνονται µετά το κύµα κούσης ενώ η ταχύτητα µειώνεται. 6

7 ^ ^ T T + - ^ c^ c Σχήµα.5: Λόος των µεεθών εκατέωθεν το καθέτο κύµατος κούσης σνατήσει το αιθµού ach () πιν το κύµα κούσης Ενδιαφέοσα είναι επίσης η µεταβολή των ολικών µεεθών (µεεθών ανακοπής) σε κάθετο κύµα κούσης: T$ T = $ $ ( ) = = s$ s ( c c ) ln $ ( c c ) ln $ = v = v (.36) (.37) (.38) ^ ^ ο ο ^ ( - ) / - + Σχήµα.6: Μεταβολή το αιθµού ach, το λόο των ολικών πιέσεων και το λόο των ταχτήτων πίν και µετά το κύµα κούσης σνατήσει το αιθµού ach στο στάσιµο, κάθετο κύµα κούσης. 7

8 Στο σχήµα.6 παίσταται η µεταβολή το λόο των ολικών πιέσεων πο ισούται µε τον λόο των ολικών πκνοτήτων, πιν και µετά το κύµα κούσης, σνατήσει το αιθµού ach. Παατηούµε απώλεια της ολικής πίεσης και πκνότητας στο κύµα κούσης πο είναι εντονώτεα όσο ο αιθµός ach είναι µεαλύτεος, δηλαδή το κύµα κούσης ισχότεο. Οι µεταβολές των µεεθών εκατέωθεν το καθέτο κύµατος κούσης δίνονται στον πίνακα. Τονίζοµε ότι δεν πάχει µεταβολή της ολικής θεµοκασίας στο κάθετο κύµα κούσης..4 Μόνιµη σχεδόν µονοδιάστατη µη σνεκτική οή σε αωό µεταβλητής διατοµής Θα θεωήσοµε τώα την πείπτωση της σχεδόν µονοδιάστατης οή ή όπως σχνά ονοµάζεται οή σε σωλήνα οής. Σ ατή την πείπτωση θεωούµε ότι οι µεταβολές της διατοµής το σωλήνα οής είναι µικές κατά µήκος το τόξο και η ακτίνα καµπλότητας το είναι µεάλη, ώστε η κατανοµή της ταχύτητας στην διατοµή να µποεί να θεωηθεί σταθεή, ποθέτοντας το εστό ως µη σνεκτικό. Εφαµόζοντας το θεώηµα διατήησης της µάζας σε ολοκληωµατική µοφή µεταξύ των διατοµών και ια επιφάνεια ελέχο πο πειέχεται µέσα στο σωλήνα ποκύπτει, σχήµα.7: i E i E Σχήµα.7 : Σωλήνας οής µεταβλητής διατοµής E = E (.39) ( + E ) = ( + ) E + csφdeσ i + = i + Eσ (.4) (.4) Στην εξίσωση της οµής πεισέχεται στο δεύτεο µέλος η ποβολή το ολοκληώµατος των δνάµεων πίεσης στην επιφάνεια επαφής µε το πείβληµα σ, λόω της µεταβολής της διατοµής Ε(x). Υποθέτοντας τις µεταβολές της διατοµής και πίεσης σνεχείς τότε ισχύει: cs φdeσ = de = ( E E ) (.4) Eσ E όπο η µέση πίεση µεταξύ των θέσεων και. Θα µποούσε χωίς άλλο ιά τη µέση πίεση να θέταµε: = ( + ). Από τις σχέσεις (.39-.4) ποκύπτον, ποσείζοντας σε κοντινές διατοµές, διαφοικά µεέθη: 8

9 d( E) = (.43) d[( + ) E] = de (.44) di ( + ) = (.45) Πιν ποχωήσοµε στην διαπαµάτεση ατών των εξισώσεων θα έπεπε να κάνοµε τις επόµενες σηµαντικές παατηήσεις: Χησιµοποιώντας κατάλληλα τις σχέσεις (.43), (.44) καταλήοµε στην ισοδύναµη σχέση: d = d (.46) η οποία είναι η εξίσωση Euler η το ίδιο η εξίσωση το Bernulli ια το σµπιεστό εστό κατά µήκος µιας αµµής οής, το οποίο ανεµένετο. Από την εξίσωση (.45) µε την βοήθεια της εξίσωσης το Bernulli ποκύπτει από την εξίσωση της εντοπίας το Gibbs, οτι η οή είναι ισεντοπική, το οποίο είναι επίσης αναµενόµενο. Σκεκιµένα είχε αποδειχθεί στο έκτο κεφάλαιο κάνοντας χήση της εξίσωσης της σνέχειας και των εξισώσεων Euler ότι ενικά ισχύει ισεντοπία κατά µήκος των αµµών οής. Η επίλση το σστήµατος των εξισώσεων (.43) και (.46) µαζί µε την εξίσωση της ισεντοπίας ( ) ια τέλειο αέιο σταθεού λόο ειδικών θεµοτήτων, είναι απλή. Αποτελούν σύστηµα τιών εξισώσεων από τις οποίες οι δύο είναι αλεβικές και η µία διαφοικής µοφής, µε τέσσεις ανώστος,,, και Ε. Εισάοντας τον αιθµό ach της οής Μ=/c ποκύπτον εύκολα οι παακάτω εξισώσεις: de E d d = = d d( ) d = = ( ) (.47) (.48) Από τις πααπάνω σχέσεις µποούν να εξαχθούν τα ποιοτικά σµπεάσµατα πο σνοψίζονται στο σχήµα.8 αύξηση µείωση < µείωση αύξηση αύξηση µείωση > µείωση αύξηση Σχήµα.8: Ποιοτικές µεταβολές µεεθών σε σκλίνοντες και αποκλίνοντες αωούς σνατήσει το αιθµού ach της οής 9

10 Από τον πίνακα είναι σαφές ότι ια να έχοµε επιτάχνση της οής απαιτείται σκλίνων αωός ια ποηχητική οή και αποκλίνων αωός ια πεηχητική οή. Τα αντίστοφα απαιτούνται ια επιβάδνση της οής. Είναι επίσης φανεό από την σχέση (.3) οτι σε θέση ελαχίστο της διατοµής (λαιµός) έχοµε ηχητική οή ή ακότατο της ταχύτητας (µέιστο ια ποηχητική ταχύτητα και ελάχιστο ια πεηχητική ταχύτητα). Από την επίλση το σστήµατος (.47), (.48), είτε το ίδιο από τις ισεντοπικές σχέσεις µαζί µε την εξίσωση διατήησης µάζας ποκύπτει η εξάτηση το Ε µε τον αιθµό ach: E = [ (+ )] E + + ( ) (.49) όπο Ε * η διατοµή το αωού (σωλήνα οής) στην οποία επικατεί ηχητική ταχύτητα (Μ=). 3 E E* Emin E* = Σχήµα.9 : Μεταβολή της διατοµής σνατήσει το αιθµού ach ια την ισεντοπική οή σε σωλήνες οής. Η σχέση ατή σνοδεύεται και από όλες τις ισεντοπικές σχέσεις πο σνδέον τα µεέθη,, Τ και µε τον αιθµό Μach..5 Ροή σε ακοφύσια και διαχύτες.5. Γενικά Ακοφύσιο (nzzle) ονοµάζεται το διαµοφωµένο άκο αωού, στο οποίο η πίεση, η δναµική ενέεια ή η θεµική ενέεια το έοντος εστού µετατέπονται σε κινητική ενέεια. Η διαµόφωση τµήµατος αωού, όπο επιτελείται η αντίστοφη µετατοπή λέεται σνήθως διαχύτης (diffusr). Στην πείπτωση ασµπίεστων εστών (πχ νεό) το ακοφύσιο απαιτείται να έχει ια την επιτάχνση της οής σκλίνοσα µοφή.

11 Στην πείπτωση το σµπιεστού εστού (αέας-αέια) ια την επιτάχνση της ποηχητικής οής σε ψηλότεες ποηχητικές ταχύτητες απαιτείται σκλίνοσα µοφή ακοφσίο. Εάν απαιτείται να επιταχνθεί πεαιτέω η οή σε ηχητική και πεηχητική ταχύτητα απαιτείται αποκλίνον ακοφύσιο. Στο λαιµό το σκλίνοντος-αποκλίνοντος ακοφσίο επικατεί η ηχητική ταχύτητα (Μ=). Το σκλίνον - αποκλίνον ακοφύσιον ονοµάζεται και ακοφύσιο-laval, διότι επινοήθηκε και χησιµοποιήθηκε ια πώτη φοά από τον Σοηδό µηχανικό G.P. de Laval (883), ια την επιτάχνση της οής το ατµού στος ατµοστοβίλος. Τα ακοφύσια χησιµοποιούνται, εκτός των ατµοστοβίλων, στη σύχονη τεχνολοία των κινητήων αεοσκαφών και στην παλική τεχνολοία ως ποωθητική µηχανή. Η ώση δηµιοείται µε την δηµιοία δέσµης αείων, η οποία εξέχεται από το ακοφύσιο µε µεάλη ταχύτητα. Τα ακοφύσια αποτελούν επίσης τµήµατα των πεηχητικών αεοδναµικών σηάων. Θα έπεπε επίσης χάιν ενικότητας να αναφεθούν εδώ και οι µη πεηχητικές εφαµοές το ακοφσίο. Ετσι στις δοδναµικές µηχανές χησιµοποείται βελονωτό - σκλίνον ακοφύσιο στος δοστοβίλος δάσης (Peltn) ια την µετατοπή το δναµικού βαύτητας σε κινητική ενέεια πίν από την είσοδο της πτεωτής (σκαφίδια Peltn). Το αποκλίνον ακοφύσιο χησιµοποιείται στην έξοδο των δοστοβίλων τύπο Francis ως διαχύτης ια την ανάκτηση της πίεσης και βελτίωση το βαθµού απόδοσής τος. Εξάλλο στη τεχνική των µετήσεων χησιµοποιείται το σλίνον - αποκλίνον ακοφύσιο ια την µέτηση της παοχής το εστού µέσω µέτησης της πίεσης (όανο Venturi). Τελικά στην τεχνολοία των καστήων (εξαειωτής) και τεχνολοία ψεκασµού (srays) χησιµοποιείται το ακοφύσιο ια την απόσπαση σταονιδίων από ή µάζα..5. Ακοφύσιο Laval Στην παάαφο ατή εξετάζεται η οή αείο µέσω ενός ακοφσίο Laval. Το σύστηµα, το οποίο εξετάζεται, αποτελείται από δοχείο πιέσεως σταθεής πίεσης και ακοφύσιο Laval µε έξοδο στον εξωτεικό απέατο χώο σταθεής πίεσης π (σχήµα.). E(x) E* οή x Ε e π Σχήµα.: Ροή σε ακοφύσιο Laval Εάν η οή θεωηθεί µη σνεκτική και πείπο µονοδιάστατη (µικές µεταβολές της διατοµής το ακοφσίο Laval) τότε ισχύον οι ποϋποθέσεις και σχέσεις των ποηοµένων πααάφων. Η µεταβολή των καταστάσεων οής κατά µήκος το ακοφσίο εξατώνται από τη µεταβολή της διατοµής το ακοφσίο αλλά και από τη σχέση των πιέσεων π /. Βασικό ια την κατανόηση των διαφόων καταστάσεων οής πο είναι δνατές στο ακοφύσιο είναι τα διαάµµατα της ισεντοπικής οής σωλήνων

12 οής, πο παίστανται στα σχήµατα. και.9 καθώς και τα διαάµµατα των σχηµάτων.5 και.6 ια τις µεταβολές των µεεθών στο κάθετο κύµα κούσης. Oλες οι δνατές καταστάσεις οής στο ακοφύσιο και οι σναφείς µεταβολές της πίεσης και αιθµού ach παοσιάζονται στο σχήµα.. Σχήµα. : Επίδαση το λόο πιέσεων στην οή σε ακοφύσιο Laval Aπό το σχήµα. είναι σαφές ότι ια δεδοµένη σχέση διατοµής εξόδο πός διατοµή λαιµού (Ε e /Ε * ) πάχον δύο πλήως καθοισµένες δνατές πιέσεις στην διατοµή εξόδο ( e / ) µιά ψηλή ( c / ) και µιά χαµηλή ( j / ). Για την ψηλή πίεση πειβάλλοντος π = c ποκύπτει ποηχητική οή καθόλο το µήκος το ακοφσίο επιταχνόµενη στο σκλίνον τµήµα το φθάνοντας την ηχητική στο λαιµό και ακολούθως επιβαδνόµενη οή µέχι την έξοδό στο πειβάλλον µε πίεση την e = c = π (σχήµα.). Για την χαµηλή πίεση πειβάλλοντος π = j ποκύπτει επιταχνόµενη ποηχητική οή στο σκλίνον τµήµα το ακοφσίο, ηχητική ταχύτητα στον λαιµό και σνεχώς επιταχνόµενη πεηχητική οή στο αποκλίνον τµήµα το µε πίεση στην διατοµή εξόδο e = j = π (σχήµα.). Για εξωτεικές πιέσεις π διαφοετικές από τις c και j έχοµε τις παακάτω πειπτώσεις: Γιά c < π < η οή είναι καθόλο το µήκος ποηχητική (καµπύλες a, b), η δε πίεση στη διατοµή εξόδο είναι η πίεση το πειβάλλοντος ( e = π ). Γιά < π < j η οή είναι ποηχητική-πεηχητική (καµπύλη k) και η ποσαµοή της πίεσης στην έξοδο ( e = j ) σε εκείνη το πειβάλλοντος ίνεται µε πεηχητική αποτόνωση. Για j < π < c η οή δεν µποεί να πααµείνει καθόλο το µήκος το ακοφσίο ισεντοπική.ετσι σκεκιµένα: Για f < π < c η οή εµφανίζει κάθετο κύµα κούσης στο αποκλίνον τµήµα το ακοφσίο (καµπύλη d), το οποίο µειοµένης της εξωτεικής πίεσης αποµακύνεται από το λαιµό στην έξοδο ( e = π ) και ια πίεση π = f είσκεται ακιβώς στην έξοδο (καµπύλη f). Για j < π < f η οή διατηεί τον πεηχητικό της χαακτήα στο αποκλίνον τµήµα το ακοφσίο και η ποσαµοή της πίεσης εξόδο ( e = j ) ίνεται εξωτεικά το ακοφσίο µε πλάιο κύµα κούσης (καµπύλες g, h). Oι διάφοες σνθήκες οής απεικονίζονται ωαία µε οπτικοποίηση της οής σε φωτοαφίες το σχήµατος..

13 Σχήµα.: Φωτοαφίες Schlieren της οής σε πεηχητικό ακοφύσιο σε διαφοετικές πιέσεις (καταστάσεις d, g, h, j, k. (Lieman-Rsk)) 3

Υπολογισμός γεωστροφικών ρευμάτων με τη χρήση δεδομένων από CTD. Σύγκριση με αποτελέσματα από A.D.C.P. & Drifters.

Υπολογισμός γεωστροφικών ρευμάτων με τη χρήση δεδομένων από CTD. Σύγκριση με αποτελέσματα από A.D.C.P. & Drifters. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΘΑΛΑΣΣΑΣ Υπολογισμός γεωστοφικών ευμάτων με τη χήση δεδομένων από CTD. Σύγκιση με αποτελέσματα από A.D.C.P. & Drifters. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ (Επιβλέπων:

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 ΜΜΚ 3 Μεταφοά Θεμότητας Φυσική Συναγωγή ΜΜΚ 3 Μεταφοά Θεμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Πααγωγής ΜΜK 3 Μεταφοά Θεμότητας Φυσική Συναγωγή (r convction) Στα ποηγούμενα ύο κεφάλαια ασχοληθήκαμε

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 10. Aεροδυναµική Στερεών Σωµάτων

ΠΕΙΡΑΜΑ 10. Aεροδυναµική Στερεών Σωµάτων ΠΕΙΡΑΜΑ 10 Aεοδυναµική Στεεών Σωµάτων Σκοπός του πειάµατος Σκοπός του πειάµατος αυτού είναι η µελέτη της αντίστασης που αναπτύσσεται κατά τη σχετική κίνηση ενός αντικειµένου µέσα σε ένα αέιο. Οι εξισώσεις

Διαβάστε περισσότερα

Μαθηματι ά ατεύθυνσης

Μαθηματι ά ατεύθυνσης Β Λυκείου Μαθηματι ά ατεύθυνσης Ο Κύκλος Θεωία Μεθοδολογία -Ασκήσεις Σ υ ν ο π τ ι κ ή Θ ε ω ί α Ονομασία Διατύπωση Σχόλια Σχήμα Α. Κύκλος Οισμός: Ονομάζεται κύκλος με κέντο Ο και ακτίνα το σύνολο των

Διαβάστε περισσότερα

ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 5 ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Εισαωή Η αυξημέη αησυχία τω σύχοω κοιωιώ ια τις καταστοφικές επιπτώσεις στη ποιότητα του πειβάλλοτος από τη ααία και άαχη αάπτυξη, που παατηείται τα τελευταία χόια,

Διαβάστε περισσότερα

3. Μετρήσεις GPS Προβλήµατα

3. Μετρήσεις GPS Προβλήµατα . Μετήσεις GPS Ποβλήµατα.. Μετήσεις G.P.S. και ποβλήµατα. Οι παατηήσεις που παγµατοποιούνται µε το σύστηµα GPS, όπως έχουµε άλλωστε ήδη αναφέει, διακίνονται σε δύο κατηγοίες: α) σε µετήσεις ψευδοαποστάσεων

Διαβάστε περισσότερα

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ. Αρµονικό κύµα διαδίδεται σε ένα εθύγραµµο ελαστικό µέσο. Όλα τα σηµεία το µέσο διάδοσης, πο ταλαντώνονται λόγω της διέλεσης

Διαβάστε περισσότερα

ΘΕΜΑ A 1. (ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ A 1. (ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΗΜΕΡΗΣΙΩΝ Φαινόμενο Doppler ΘΕΜΑ. (ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΗΜΕΡΗΣΙΩΝ 006) Ηχητική πηγή και παρατηρητής βρίσκονται σε σχετική κίνηση. Ο παρατηρητής ακούει ήχο μεγαλύτερης σχνότητας από ατόν πο παράγει η πηγή, μόνο όταν α.

Διαβάστε περισσότερα

Σχήµα ΒΣ-6. Προφίλ πάχους, ταχύτητας και θερµοκρασίας υµένα κατά την συµπύκνωση

Σχήµα ΒΣ-6. Προφίλ πάχους, ταχύτητας και θερµοκρασίας υµένα κατά την συµπύκνωση υθµοί µετάοσης θεµότητας παουσιάζονται πολύ µεγαλύτεοι από τους αντίστοιχους στην συµπύκνωση τύπου υµένα. Κατά την συµπύκνωση υµένα, το υγό συµπύκνωµα ηµιουγείται αχικά στην επιφάνεια, από την οποία στην

Διαβάστε περισσότερα

r dr r r r r r r T F B B r r 2 r

r dr r r r r r r T F B B r r 2 r Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ. Γενικές αρχές. Η αντιληπτική µας ικανότητα το Φσικού Χώρο, µας οδηεί στον προσδιορισµό των σηµείων το, µέσω τριών ανεξαρτήτων παραµέτρων. Είναι, λοιπόν, αποδεκτή η απεικόνισή το,

Διαβάστε περισσότερα

, όµως z ΚΑ =3.5 cm, αστάθεια

, όµως z ΚΑ =3.5 cm, αστάθεια Άσκηση : Ένας ξύλινος κύος µε πλευά 0cm και ειδικό άος SG0.7 επιπλέει σε νεό. Να υπολογισθούν:. Το ύψος του τµήµατος του κύου που είναι υθισµένο στο νεό. Το µετακεντικό ύψος. Να µελετηθεί η ισοοπία του

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΒΟΛΗ ΣΕ ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΠΟ ΥΨΟΣ. Οι καμπλόγραμμες βολές θεωρούνται σύνθετες κινήσεις. Έτσι κάθε ανσματικό μέγεθος όπως ταχύτητα, επιτάχνση κλ.π θα αναλύεται σε δύο άξονες έναν οριζόντιο

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό

Διαβάστε περισσότερα

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΠΕΙΡΑΜΑΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΠΕΙΡΑΜΑΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ Υ ΡΑΥΛΙΚΗΣ Ακ. Έτος 0-. ΜΕΤΡΗΣΕΙΣ ΑΠΩΛΕΙΩΝ ΕΝΕΡΓΕΙΑΣ ΣΕ ΑΓΩΓΟΥΣ ΥΠΟ ΠΙΕΣΗ. Γενικά - αντικείµενο του πειάµατος Οι αγωγοί υπό πίεση αποτελούν ένα από τα βασικά αντικείµενα των Πολιτικών

Διαβάστε περισσότερα

3. Αρμονικά Κύματα Χώρου και Επιφανείας. P, S, Rayleigh και Love

3. Αρμονικά Κύματα Χώρου και Επιφανείας. P, S, Rayleigh και Love 3. Αμονικά Κύματα Χώου και Επιφανείας P, S, Rayleigh και Lve ΠΕΡΙΕΧΟΜΕΝΑ 3. Κύματα (P & S) σε ομοιογενή χώο 3. Κύματα σε ανομοιογενή μέσα με δι-επιφάνεια 3.3. Επιφανειακά κύματα Πόσθετο ιάβασμα Steven

Διαβάστε περισσότερα

= = σταθ. Ι. που είναι. Η ροπή αδράνειας ενός σώματος μετρά την κατανομή της μάζας γύρω από τον άξονα περιστροφής, έτσι όσο

= = σταθ. Ι. που είναι. Η ροπή αδράνειας ενός σώματος μετρά την κατανομή της μάζας γύρω από τον άξονα περιστροφής, έτσι όσο Απαντήσεις ΘΕΜΑ Α Α. γ, Α. α, Α3. γ, Α4. α, Α5. Σ, Λ, Λ, Λ, Σ. ΘΕΜΑ Β Β. Σωστή απάντηση είναι η γ. Σε μία τυχαία θέση θα έχουμε: Στ = τf τ w = F g ηµθ θ F Στ = ( c + 0,5g ηµθ) g ηµ θ = c = σταθ. g Άα λοιπό

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΕΝΟ ΑΘΗΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 8/6/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Ατοκίνητο μάζας 1 Kg ξεκινώντας με μηδενική ταχύτητα επιταχύνει ομαλά σε οριζόντιο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας. ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας. ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΓΕΩΜΕΤΡΙΚΗ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ κ Θέµα ο Οδηγία: Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση.. Ένα κύκλωµα LC εκτελεί αµείωτες ηλεκτρικές ταλαντώσεις: α.

Διαβάστε περισσότερα

Η ΜΕΘΟ ΟΣ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΕ ΑΠΛΕΣ ΠΕΡΙΠΤΩΣΕΙΣ

Η ΜΕΘΟ ΟΣ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΕ ΑΠΛΕΣ ΠΕΡΙΠΤΩΣΕΙΣ Κεφάλαιο Η ΜΕΘΟ ΟΣ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΕ ΑΠΛΕΣ ΠΕΡΙΠΤΩΣΕΙΣ.. ΕΙΣΑΓΩΓΗ Η µέθοδος των πεπερασµένων στοιχείων όπως γνωρίζοµε προήλθε από µια γενίκεση των µεθόδων επίλσης των ραβδωτών φορέων, σε προβλήµατα

Διαβάστε περισσότερα

Επανέλεγχος ηλεκτρικής εγκατάστασης

Επανέλεγχος ηλεκτρικής εγκατάστασης Επανέλεγχος ηλεκτικής εγκατάστασης Οδηγίες διεξαγωγής μετήσεων και δοκιμών για επανελέγχους ηλεκτικών εγκαταστάσεων με τη χήση σύγχονων ογάνων 1. Εισαγωγή στις απαιτήσεις των επανελέγχων Τα οφέλη του τακτικού

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 Ε_3.ΦλΓΘ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κριακή 19 Απριλίο 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΙΚΗΣ ΚΑΙ ΕΧΝΟΛΟΓΙΚΗΣ ΚΑΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΑ Η διάδοση μιας διαταραχής μέσα σ' ένα μέσο ονομάζεται κύμα. Για τη δημιοργία ενός μηχανικού κύματος

Διαβάστε περισσότερα

ΑΣΥΜΠΙΕΣΤΗ, ΑΤΡΙΒΗ (INVISCID) ΡΟΗ

ΑΣΥΜΠΙΕΣΤΗ, ΑΤΡΙΒΗ (INVISCID) ΡΟΗ ΑΣΥΜΠΙΕΣΤΗ, ΑΤΡΙΒΗ (INISCID) ΡΟΗ X Ολα τα παγµατικά ευστά έχουν ιξώδες. Οµως τα ευστά συχνά συµπειφέονται σαν ανιξώδη ή άτιβα (inviscid), π.χ. έχουν αµελητέο ιξώδες. Αυτή η πααδοχή απλοποιεί κατά πολύ

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ. 1.1 Ερευνητικό ενδιαφέρον. 1.2 Επισηµάνσεις από τη βιβλιογραφία. 1.3 Προσέγγιση λύσης προβληµάτων:

1. ΕΙΣΑΓΩΓΗ. 1.1 Ερευνητικό ενδιαφέρον. 1.2 Επισηµάνσεις από τη βιβλιογραφία. 1.3 Προσέγγιση λύσης προβληµάτων: . Εευνητικό ενδιαφέον. ΕΙΣΑΓΩΓΗ. Επισηµάνσεις από τη βιβλιογαφία α) Ελλιπείς γνώσεις των πολύπλοκων φυσικών διεγασιών β) Ελάχιστα εφαµόζονται οι νόµοι της Μηχανικής των Ρευστών γ)ελάχιστα βιβλία διεθνώς

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα πο αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Υπάρχει σηµείο χ 0 τέτοιο ώστε να ισχύει..

Υπάρχει σηµείο χ 0 τέτοιο ώστε να ισχύει.. Υπάχει σηµείο χ 0 τέτοιο ώστε να ισχύει.. ( ή διαφοετικά πεί ιζών εξίσωσης ) I. Για να δείξουµε ότι µια εξίσωση f(χ)=0 έχει µία τουλάχιστον ίζα στο διάστηµα (α, β) µποούµε να εγασθούµε ως εξής: 1 0ς τόπος:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Doppler Ακίνητη πηγή ομαλά κινούμενος παρατηρητής

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Doppler Ακίνητη πηγή ομαλά κινούμενος παρατηρητής A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Dopple Ακίνητη πηγή ομαλά κινούμενος παρατηρητής Η ακίνητη πηγή ταλαντώνεται με σχνότητα και παράγει εγκάρσια κύματα στην επιφάνεια γρού. Τα κύματα διαδίδονται

Διαβάστε περισσότερα

9 Φαινόµενο Ντόµπλερ(Doppler)

9 Φαινόµενο Ντόµπλερ(Doppler) Φσική Γ Λκείο 9 Φαινόµενο Ντόµπλερ(Doppler) Στεκόµαστε ακίνητοι στην αποβάθρα ενός σταθµού. Ενα τραίνο µε ανοικτή τη σειρήνα το, κινούµενο µε σταθερή ταχύτητα µας πλησιάζει και στη σνέχεια µας προσπερνά.

Διαβάστε περισσότερα

Φυσική Θετικής-Τεχνολογικής Κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1. Θέµα 1 ο

Φυσική Θετικής-Τεχνολογικής Κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1. Θέµα 1 ο Φσική Θετικής-Τεχνολογικής Κατεύθνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΤΑΙΧΙΟ 1 Θέµα 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-3 και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Ε_3.Φλ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α. β και ζ Α. γ και ζ Α3. β και ε Α4. α και ι Α5. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κριακή 4

Διαβάστε περισσότερα

( ) ( ) ( ) 1 ( ) ( ) Μάθηµα 8 ο ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN

( ) ( ) ( ) 1 ( ) ( ) Μάθηµα 8 ο ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN Γαµµική Άλγεβα ΙΙ Σελίδα από Μάθηµα 8 ο ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDN Έστω λ είναι ιδιοτιµή του ν ν πίνακα, αλγεβικής πολλαπλότητας ν > Ένα διάνυσµα τάξης x, διάφοο του µηδέν, ονοµάζεται γενικευµένο ιδιοδιάνυσµα,,

Διαβάστε περισσότερα

τοπικοί συντελεστές αντίστασης στο σηµείο εισόδου, στην καµπύλη και στο ακροφύσιο είναι αντίστοιχα Κ in =1,0, K c =0,7 και K j =0,5.

τοπικοί συντελεστές αντίστασης στο σηµείο εισόδου, στην καµπύλη και στο ακροφύσιο είναι αντίστοιχα Κ in =1,0, K c =0,7 και K j =0,5. Υ ΡΑΥΛΙΚΗ Ι Εφαρµοή Ισοζυίου Υδραυλικής Ενέρειας - Εξίσωση ernoulli Άσκηση. Σε ένα συντριβάνι, νερό αντλείται από τη δεξαµενή µε ρυθµό Q5,0 lt/ και εκτοξεύεται κατακόρυφα, όπως στο σκαρίφηµα. Όλα τα τµήµατα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί στη ράση η οποία τη

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα

Διαβάστε περισσότερα

1 r ολοκληρώνοντας αυτή τη σχέση έχουµε:

1 r ολοκληρώνοντας αυτή τη σχέση έχουµε: Σελ-- ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΣΤΟΝ ΙΑΓΩΝΙΣΜΟ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ Α.Σ.Ε.Π 998 ΕΡΩΤΗΜΑ ο Με βάση τα χαακτηιστικά των βαυτικών δυνάµεων, ποια µεγέθη συµπεαίνετε ότι διατηούνται κατά τη κίνηση των πλανητών υπό την επίδαση

Διαβάστε περισσότερα

2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s

2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 15 ΣΕΠΤΕΜΒΡΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ. Ηλεκτρικές & μηχανικές ταλαντώσεις

1 Ο ΚΕΦΑΛΑΙΟ. Ηλεκτρικές & μηχανικές ταλαντώσεις ΦΥΣΙΚΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΘΕΤΙΚΗΣ & & ΤΕΧΝΟΛΟΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ 3 ΗΣ ΛΥΚΕΙΟΥ Περιοδικά φαινόμενα. N N F -D Όταν 0 0 και 0 >0 Όταν 0 0 Ο ΚΕΦΑΛΑΙΟ. Ηεκτρικές & μηχανικές τααντώσεις

Διαβάστε περισσότερα

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις Μάθηα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ 7 ου εξαήνου ΣΕΜΦΕ ΘΕΩΡΙΑ ΑΝΑΜΟΝΗΣ - ΑΝΑΛΥΣΗ ΕΠΙ ΟΣΗΣ ΙΚΤΥΩΝ Ασκήσεις Αποστέλλονται πακέτα σταθεού ήκους ytes από τον κόβο # στον κόβο #4 έσω των κόβων # και #3 σε σειά, όπως

Διαβάστε περισσότερα

Επειδή ο παρατηρητής άργησε ή βιάστηκε να µηδενίσει το χρονόµετρο

Επειδή ο παρατηρητής άργησε ή βιάστηκε να µηδενίσει το χρονόµετρο Επειδή ο παρατηρητής άργησε ή βιάστηκε να µηδενίσει το χρονόµετρο Όταν µας ζητούν να γράψοµε την εξίσωση ενός κύµατος, το σηµαντικό είναι να αναγνωρίσοµε το «σηµείο αναφοράς». Σηµείο αναφοράς είναι το

Διαβάστε περισσότερα

όµως κινείται εκτρέπεται από την πορεία του, ένδειξη ότι το σωµατίδιο δέχονται δύναµη, από τα στατικά µαγνητικά πεδία. ανάλογη:

όµως κινείται εκτρέπεται από την πορεία του, ένδειξη ότι το σωµατίδιο δέχονται δύναµη, από τα στατικά µαγνητικά πεδία. ανάλογη: Φσικός ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ( Fields) 47 ΥΝΑΜΗ ΠΟΥ ΑΣΚΕΙ ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΣΕ ΚΙΝΟΥΜΕΝΟ ΦΟΡΤΙΟ ύναµη Lorentz Ένα ακίνητο φορτισµένο σωµατίδιο (0) δεν αντιδρά µέσα σε ένα στατικό µαγνητικό πεδίο. ηλαδή δεν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΙΦΑΣΙΚΗΣ ΡΟΗΣ ΑΕΡΑ ΚΑΙ ΣΩΜΑΤΙ ΙΩΝ ΣΕ ΕΣΩΤΕΡΙΚΟΥΣ ΧΩΡΟΥΣ

ΠΡΟΣΟΜΟΙΩΣΗ ΙΦΑΣΙΚΗΣ ΡΟΗΣ ΑΕΡΑ ΚΑΙ ΣΩΜΑΤΙ ΙΩΝ ΣΕ ΕΣΩΤΕΡΙΚΟΥΣ ΧΩΡΟΥΣ ΠΡΟΣΟΜΟΙΩΣΗ ΙΦΑΣΙΚΗΣ ΡΟΗΣ ΑΕΡΑ ΚΑΙ ΣΩΜΑΤΙ ΙΩΝ ΣΕ ΕΣΩΤΕΡΙΚΟΥΣ ΧΩΡΟΥΣ. Π. Κααδήµου, Ν.Χ Μακάτος Εθνικό Μετσόβιο Πολυτεχνείο, Σχολή Χηµικών Μηχανικών, Τοµέας ΙΙ, Πολυτεχνειούπολη Ζωγάφου 15780 Αθήνα ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

2. Στο σύστηµα αξόνων του πιο πάνω σχήµατος, να προσδιορίσετε τις συντεταγµένες. 3. Να βρεθεί το µέτρο της τελικής ταχύτητας υ Τ

2. Στο σύστηµα αξόνων του πιο πάνω σχήµατος, να προσδιορίσετε τις συντεταγµένες. 3. Να βρεθεί το µέτρο της τελικής ταχύτητας υ Τ ιονύσης Μητρόπολος Β κείο Οριζόντια βολή Άσκηση στην οριζόντια βολή ο (0,0) x Η h Τ φ Μεταλλική σφαίρα µάζας m = 0,4kg εκτοξεύεται οριζόντια από την άκρη της ταράτσας κτιρίο ύψος Η = 0m, µε ταχύτητα µέτρο

Διαβάστε περισσότερα

Κινηματική σε 3 διαστάσεις. r = x x + y y +z z P. Η έννοια της παραγώγου στις 3 διαστάσεις

Κινηματική σε 3 διαστάσεις. r = x x + y y +z z P. Η έννοια της παραγώγου στις 3 διαστάσεις Κινηματική σε 3 διαστάσεις = + + P παριστάνεται με την επιβατική ακτίνα κάθε σημείο P το χώρο (t τροχιά = Δ Δ (t+ διάνσμα θέσης d v= d μοναδιαία διανύσματα Η έννοια της παραγώγο στις 3 διαστάσεις Μέση

Διαβάστε περισσότερα

Ενδεικτική θεωρία (Θεωρία της Σχετικότητας) για τους υποψήφιους ΠΕ0401 του ΑΣΕΠ

Ενδεικτική θεωρία (Θεωρία της Σχετικότητας) για τους υποψήφιους ΠΕ0401 του ΑΣΕΠ Ενδεικτική θεωρία (Θεωρία της Σχετικότητας) για τος ποψήφιος ΠΕ41 το ΑΣΕΠ Α Το πείραμα Mihelson Morley. Κ Κ3 Κ1 Σύμφωνα με τις εξισώσεις το Mawell, η ταχύτητα το φωτός είναι ένα 1 σταθερό μέγεθος ίσο με

Διαβάστε περισσότερα

Επανάληψη Θεωρίας και Τυπολόγιο

Επανάληψη Θεωρίας και Τυπολόγιο ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επανάληψη Θεωρίας και Τπολόγιο ΕΞΙΣΩΣΕΙΣ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ Γενικές έννοιες Περιοδική ονομάζεται η κίνηση πο επαναλαμβάνεται κατά τον

Διαβάστε περισσότερα

Physica by Chris Simopoulos

Physica by Chris Simopoulos ΜΗΧΑΝΙΚΗ ΕΝΕΡΓΕΙΑ - ΘΜΚΕ Η μηχανική ενέργεια είναι το άθροισμα της κινητικής και της δναμικής ενέργειας το σώματος. Όπως είναι γνωστό οι σχέσεις πο δίνον τις ενέργειες ατές είναι: E = 1.m. (7) και Ε Δ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 5 Ε_3.ΦλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κριακή 9 Απριλίο 5 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. β Α5. α-σωστο Α. γ β-λαθοσ Α3. δ γ-λαθοσ

Διαβάστε περισσότερα

α. f A = f s β. f A = f s υ + υ γ. f A = f s δ. f A =

α. f A = f s β. f A = f s υ + υ γ. f A = f s δ. f A = ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 8 ΣΕΠΤΕΜΒΡΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

- Ομοιότητα με βάση τις εξισώσεις Νavier-Stokes - 2- διάστατη ασυμπίεστη Ροή

- Ομοιότητα με βάση τις εξισώσεις Νavier-Stokes - 2- διάστατη ασυμπίεστη Ροή ΚΕΦΑΛΑΙΟ 8 ΡΟΗ ΠΡΑΓΜΑΤΙΚΟΥ ΡΕΥΣΤΟΥ-ΣΥΝΕΚΤΙΚΗ ΡΟΗ - Ιξώδες - Ομοιόηα με βάση ις εξισώσεις Νaier-Stkes - - διάσαη ασυμπίεση Ροή ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ 0 ΕΞΙΣΩΣΕΙΣ ΟΡΜΗΣ t 1 μ 1 g μ t - Οιακές Συνθήκες B σο -

Διαβάστε περισσότερα

ΣΑΒΒΑΤΟ 09/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΣΑΒΒΑΤΟ 09/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9/4/216 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο. 7.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ω ΜΕ

ΚΕΦΑΛΑΙΟ 2 Ο. 7.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ω ΜΕ ΚΕΦΛΙΟ Ο ΤΡΙΓΩΝΟΜΕΤΡΙ 7.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΓΩΝΙΣ ω ΜΕ o ω 18 o 1. Πώς οίζονται οι τιγωνομετικοί αιθμοί μίας οξείας γωνίας σε οθογώνιο τίγωνο; ΠΝΤΗΣΗ Γ β α γ Το ημίτονο της οξείας γωνίας σε οθογώνιο

Διαβάστε περισσότερα

ΑΠΘ ΠΟΛ. ΜΗΧ. Π. ΠΡΙΝΟΣ 2. Υ ΡΟΣΤΑΤΙΚΗ 2.1 ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. F=mα P y =P s P z =P s. -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης

ΑΠΘ ΠΟΛ. ΜΗΧ. Π. ΠΡΙΝΟΣ 2. Υ ΡΟΣΤΑΤΙΚΗ 2.1 ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. F=mα P y =P s P z =P s. -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης . ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. Υ ΡΟΣΤΑΤΙΚΗ Fmα y s z s -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης . ΜΕΤΑΒΟΛΗ ΤΗΣ ΠΙΕΣΗΣ -Επιφανειακές δυνάµεις (λόω πίεσης) - υνάµεις σώµατος (π.χ. βάρος) Για ακίνητο

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

1. Ανατοκισμός. 2. Ονομαστικό επιτόκιο

1. Ανατοκισμός. 2. Ονομαστικό επιτόκιο Ε5. ΣΥΝΕΧΗΣ ΑΝΑΤΟΚΙΣΜΟΣ-ΠΑΡΟΥΣΕΣ ΑΞΙΕΣ.Ανατοισμός.Ονομαστιό επιτόιο 3.Παγματιό επιτόιο 4.Χόνος διπλασιασμού 5.Συνεχής ανατοισμός 6.Παούσα αξία οής 7.Εξέλιξη δημόσιου χέους 8.Νεολασσιό υπόδειγμα ανάπτυξης

Διαβάστε περισσότερα

5. Μετασχηµατισµοί συντεταγµένων

5. Μετασχηµατισµοί συντεταγµένων 5. Μετασχηµατισµοί συντεταγµένν 5. Στοιχεία από την ελλειψοειδή Γεδαισία Η γήινη επιφάνεια έχει πολύπλοκη µοφή και δεν είναι δυνατό να πειγαφή µε µαθηµατικές εξισώσεις. Στην ποσπάθεια να πειγάψουν την

Διαβάστε περισσότερα

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς

Διαβάστε περισσότερα

Συχνότητα και µήκος κύµατος στο φαινόµενο Doppler

Συχνότητα και µήκος κύµατος στο φαινόµενο Doppler Σχνότητα και µήκος κύµατος στο φαινόµενο Doppler ύο ατοκίνητα και Β κινούνται σε εθύγραµµο δρόµο µε την ίδια ταχύτητα Β 0m/, πλησιάζοντας προς ακίνητο παρατηρητή Γ, όπως στο σχήµα. Στο ατοκίνητο Β έχει

Διαβάστε περισσότερα

University of Crete. School of Science Department of Mathematics. Master Thesis. Lie Groups, Lie Algebras and the Hydrogen Atom

University of Crete. School of Science Department of Mathematics. Master Thesis. Lie Groups, Lie Algebras and the Hydrogen Atom Πανεπιστήµιο Κήτης Σχολή Θετικών Επιστηµών Τµήµα Μαθηµατικών Μεταπτυχιακή εγασία Le οµάδες, Le άλγεβες και το Άτοµο του Υδογόνου Νίκος Κωνσταντίνου Ανδιανός Επιβλέπων καθηγητής Μιχάλης Κολουντζάκης Ηάκλειο

Διαβάστε περισσότερα

Μεταίχµιο Φροντιστήριο ιαγώνισµα Φυσικής Κατεύθυνσης Γ Λυκείου 1 ΘΕΜΑ 1

Μεταίχµιο Φροντιστήριο ιαγώνισµα Φυσικής Κατεύθυνσης Γ Λυκείου 1 ΘΕΜΑ 1 εταίχµιο Φροντιστήριο ιαγώνισµα Φσικής Κατεύθνσης Γ κείο 1 ΘΕΑ 1 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών η εξεταστική περίοδος από 9/0/ έως 6// γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σποδών Τάξη: Β Λκείο Τμήμα: Βαθμός: Ημερομηνία: 09//0 Ύλη: Ονοματεπώνμο: Καθηγητής: Οριζόντια βολή Ομαλή κκλική κίνηση

Διαβάστε περισσότερα

PN Papanicolaou, PhD ΔΠΜΣ Επιστήμη & Τεχνολογία Υδατικών Πόρων Ακ. Έτος

PN Papanicolaou, PhD ΔΠΜΣ Επιστήμη & Τεχνολογία Υδατικών Πόρων Ακ. Έτος PN Ppiclu, PhD ΔΠΜΣ Επιστήμη & Τεχνολογία Υδατικών Πόων Ακ. Έτος 009-0 7. ΠΔIO AΠOBΛHTΩN 7. Γενικά O τελικός σχεδιασμός ενός συστήματος διάθεσης αποβλήτων, αποβλέπει στην καλή αχική ααίωση ή διάλυση όπως

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ Θεμελιώσεις με πασσάλους : Ομάδες πασσάλων.05.005. Κατηγοίες πασσάλων. Αξονική φέουσα ικανότητα μεμονωμένου πασσάλου.

Διαβάστε περισσότερα

Μακροσκοπική ανάλυση ροής

Μακροσκοπική ανάλυση ροής Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΜΑΚΡΟΣΚΟΠΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ, ΟΡΜΗΣ ΚΑΙ ΕΝΕΡΓΕΙΑΣ

ΜΑΚΡΟΣΚΟΠΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ, ΟΡΜΗΣ ΚΑΙ ΕΝΕΡΓΕΙΑΣ XXI ΜΑΚΡΟΣΚΟΠΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ, ΟΡΜΗΣ ΚΑΙ ΕΝΕΡΓΕΙΑΣ Θεωούµε ένα σύστηµα µε µία είσοδο (πολλές εισόδοι είναι πιθανές ) και µία έξοδο (πολλές έξοδοι είναι επίσης πιθανές). Για να υπολογίσουµε µικολεπτοµέειες

Διαβάστε περισσότερα

«Αποκαλυπτικά διαγράμματα ταχύτητας χρόνου»

«Αποκαλυπτικά διαγράμματα ταχύτητας χρόνου» Υλικό Φσικής-Χημείας «Αποκαλπτικά διαγράμματα ταχύτητας χρόνο» Οι πληροφορίες πο σνήθως αναζητούμε από ένα διάγραμμα ταχύτητας χρόνο για την λύση ενός προβλήματος ή μιας απάντησης σε ερώτηση κινηματικής

Διαβάστε περισσότερα

α. f A = f s β. f A = f s υ + υ γ. f A = f s δ. f A =

α. f A = f s β. f A = f s υ + υ γ. f A = f s δ. f A = ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 8 ΣΕΠΤΕΜΒΡΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Ατοµάτο Ελέγχο Μάθηµα 7 Εκτίµηση Esimaion στοχαστικών µεγεθών και παραµέτρων µε σνεχείς και διακριτούς αλγόριθµος Καλλιγερόπολος 7 Εκτίµηση Esimaion στοχαστικών µεγεθών και παραµέτρων Σνεχή και

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Ισχύον ότι έχομε αφέρει στις κινήσεις σωμάτων με τη διαφορά ότι στη θέση της επιτάχνσης α τοποθετούμε την επιτάχνση βαρύτητας..γενικα Οι βολές είναι κινήσεις μεταβαλλόμενες (επιταχνόμενες

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 016 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 016 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο 1. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ 1. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΡΓΟΥ-ΕΝΕΡΓΕΙΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΡΓΟΥ-ΕΝΕΡΓΕΙΑΣ ΠΡΟΒΛΗΜΑΤΑ ΕΡΓΟΥ-ΕΝΕΡΓΕΙΑΣ Σώμα μάζας m βρίσκεται πάνω στη λεία τροχιά το σχήματος. Να βρεθούν: α) η ταχύτητα στο Α και, β) η κάθετη αντίδραση στο Α. R Θέτομε ως επίπεδο μηδενικής δναμικής ενέργειας το

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ» Τι καλείται εμαδόν επίπεδης επιφάνειας; Το εμαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, πο εκφράζει την έκταση πο καταλαμάνει η επιφάνεια

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Αγωγός Venturi 1η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Αγωγός Venturi 1η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Αγωγός Venturi 1η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός των πιέσεων (ολικών και στατικών)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΙΙ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ

ΦΥΣΙΚΗ ΙΙ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ Επαναληπτικά Θέµατα ΟΕΦΕ 0 Π.Λ. Β ΟΜ ΦΥΙΚΗ ΙΙ ΘΕΜ. δ. γ 3. β 4. γ 5. α - Λ β - γ - δ - ε - Λ ΘΕΜ Β Β. I. ωστή απάντηση: β II. ΠΝΗΕΙ Οι εξωτερικές δνάµεις πο ασκούνται στον δίσκο και στο παιδί είναι τα

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ 1. ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ 1. ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ. ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά µεγέθη περιοδικών φαινοµένων Περίοδος Τ (s) Σχνότητα f (Hz) Σχέση περιόδο και σχνότητας

Διαβάστε περισσότερα

Κεφάλαιο 9 Θερμικές στροβιλομηχανές

Κεφάλαιο 9 Θερμικές στροβιλομηχανές Κεφάλαιο 9 Θερμικές στροβιλομηχανές Σύνοψη Θεωρία ροής βαθμίδας αξονικού στροβιλοσυμπιεστή Επίδοση πολυβάθμιων στροβιλομηχανών Ακτινικοί συμπιεστές / Γενικά χαρακτηριστικά / Μορφολοία βαθμίδας / Η αύξηση

Διαβάστε περισσότερα

Κλάσεις καθολικών και Αμφιμονοσήμαντων Συναρτήσεων

Κλάσεις καθολικών και Αμφιμονοσήμαντων Συναρτήσεων ΑΝΝΑ ΚΟΥΤΡΟΥΜΠΟΥΧΟΥ ΜΑΘΗΜΑΤΙΚΟΣ Κλάσεις καθολικών και Αμφιμονοσήμαντων Συνατήσεων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Επιβλέπουσα: Β Βλάχου, Λέκτοας ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ-ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

Διαβάστε περισσότερα

υ = 21 s ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Εφαρμογές του φαινομένου Doppler)

υ = 21 s ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Εφαρμογές του φαινομένου Doppler) ΕΚΦΩΝΗΣΕΙΣ ΣΚΗΣΕΩΝ Άσκηση 1. (Εφαρμογές το φαινομένο Doppler) Ένας παρατηρητής πλησιάζει με ταχύτητα ακίνητη πηγή ήχο, η οποία εκπέμπει ήχο σχνότητας f s. Ο παρατηρητής ακούει ήχο σχνότητας f η οποία είναι

Διαβάστε περισσότερα

A Εάν το «κύκλωμα» μέσα από το οποίο μεταβάλλεται η μαγνητική ροή έχει Ν όμοιες σπείρες τότε: ε

A Εάν το «κύκλωμα» μέσα από το οποίο μεταβάλλεται η μαγνητική ροή έχει Ν όμοιες σπείρες τότε: ε ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι (Υποχρεωτικό 3 ο Εξαμήνο) Διδάσκων : Δ.Σκαρλάτος Προβλήματα Σειρά # 8: Ηλεκτρομαγνητική Επαγωγή Αντιστοιχεί στα Κεφάλαια (α) Η.9 και Η.10

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να ράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το ράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Δ. Χαάλαπος Π. Στουθόπουλος Καθηγητής ΣΕΡΡΕΣ, ΔΕΚΕΜΒΡΙΟΣ 9 ΠΕΡΙΕΧΟΜΕΝΑ.

Διαβάστε περισσότερα

Κεφάλαιο T3. Ηχητικά κύµατα

Κεφάλαιο T3. Ηχητικά κύµατα Κεφάλαιο T3 Ηχητικά κύµατα Εισαγωγή στα ηχητικά κύµατα Τα κύµατα µπορούν να διαδίδονται σε µέσα τριών διαστάσεων. Τα ηχητικά κύµατα είναι διαµήκη κύµατα. Διαδίδονται σε οποιοδήποτε υλικό. Είναι µηχανικά

Διαβάστε περισσότερα

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ; 45 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 107601470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 006 ΘΕΜΑ 1 1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ Επαναληπτικά Θέµατα ΟΕΦΕ 0 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ ο. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση µόνο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 ΘΕΜΑ 1 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α A1 α Α2 β Α3 β Α4 α Α5. α Σ β Σ γ Λ δ Λ ε Σ

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α A1 α Α2 β Α3 β Α4 α Α5. α Σ β Σ γ Λ δ Λ ε Σ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΡΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΘΕΜΑ Α α Α β Α β Α α Α5. α Σ β Σ γ Λ

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΓΩΝΙΣΜ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡ: ΗΜΕΡΟΜΗΝΙ: 6/03/04 ΘΕΜ Οδηγία: Να γράψετε στ τετράδιό σας τν αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα τ γράμμα π

Διαβάστε περισσότερα

Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 2014:

Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 2014: ΔΙΔΑΣΚΩΝ: ΚΧ ΓΙΑΝΝΑΚΟΓΛΟΥ, Καθηητής ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 04 Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 04: ΘΕΜΑ (6 μονάδες) Συμπιέζουμε αέρα (τέλειο αέριο) από τις συνθήκες (Τ t, t ) στις

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Κεφάλαιο 3 ο Ενότητα 1 η : Στροφική κίνηση Κύλιση τροχού Θεωρία Γ Λυκείου

Κεφάλαιο 3 ο Ενότητα 1 η : Στροφική κίνηση Κύλιση τροχού Θεωρία Γ Λυκείου Κεφάλαιο 3 ο Ενότητα 1 η : Στροφική κίνηση Κύλιση τροχού Θερία Γ Λκείο Φσική Κατεύθνσης Γ Λκείο: Στροφική κίνηση Κύλιση τροχού Μηχανική Στερεού σώματος Στη μεταφορική κίνηση κάθε στιγμή όλα τα σημεία το

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑ 1 ο (βαθµοί 2) Σώµα µε µάζα m=5,00 kg είναι προσαρµοσµένο στο ελεύθερο άκρο ενός κατακόρυφου ελατηρίου και ταλαντώνεται εκτελώντας πέντε (5) πλήρης ταλαντώσεις σε χρονικό

Διαβάστε περισσότερα