KΕΦΑΛΑΙΟ 21* ΜΟΝΟ ΙΑΣΤΑΤΗ ΜΟΝΙΜΗ ΡΟΗ ΣΥΜΠΙΕΣΤΟΥ ΜΗ ΣΥΝΕΚΤΙΚΟΥ ΡΕΥΣΤΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KΕΦΑΛΑΙΟ 21* ΜΟΝΟ ΙΑΣΤΑΤΗ ΜΟΝΙΜΗ ΡΟΗ ΣΥΜΠΙΕΣΤΟΥ ΜΗ ΣΥΝΕΚΤΙΚΟΥ ΡΕΥΣΤΟΥ"

Transcript

1 KΕΦΑΛΑΙΟ * ΜΟΝΟ ΙΑΣΤΑΤΗ ΜΟΝΙΜΗ ΡΟΗ ΣΥΜΠΙΕΣΤΟΥ ΜΗ ΣΥΝΕΚΤΙΚΟΥ ΡΕΥΣΤΟΥ. Ισεντοπική οή Στο έκτο κεφάλαιο το βιβλίο απεδείχθη ότι στο µη σνεκτικό εστό οι διαφοικές εξισώσεις το πεδίο οής οδηούν στο σµπέασµα ότι η οή είναι ισεντοπική, το οποίο σηµαίνει ότι η εντοπία των σωµατιδίων πααµένει σταθεή. Εάν η εντοπία όλων των σωµατιδίων είναι σταθεή η οή λέεται οµοιεντοπική. Επίσης στο ίδιο κεφάλαιο απεδείχθη ότι εάν η οή είναι µόνιµη και δεν έχοµε πεδίο εξωτεικών δνάµεων (π.χ βαύτητας) τότε επάνω στις αµµές οής το πεδίο ισχύει η ενεειακή εξίσωση πό την κάτωθι µοφή: + i = i, i = e (.) + όπο η ταχύτητα, η πκνότητα, η πίεση, e η ειδική εσωτεική ενέεια, i η ειδική ενθαλπία και i ο η ειδική ολική ενθαλπία. Ως ολικά µεέθη χαακτηίζονται τα µεέθη στο σηµείο ανακοπής (=).Λαµβάνοντας εποµένως πόψη, ότι η οή είναι ισεντοπική στην ποηούµενη σχέση τα µεέθη πίεσης θεµοκασίας (Τ), πκνότητας και ενθαλπίας ποκειµένο ια τέλειο αέιο σταθεών ειδικών θεµοτήτων ( c, c v ) σνδέονται µεταξύ τος µε τις σχέσεις: c = R T, i = c T, e = c T, =, =, = R T v cv (.) όπο,, T η ολική πίεση, πκνότητα και θεµοκασία. Για αέα είναι =,4, R=87J/kg K.. Ταχύτητα διαδόσεως το ήχο Η ταχύτητα διαδόσεως το ήχο σε εστό αποτελεί βασική έννοια στην οή το σµπιεστού εστού. Ως ταχύτητα διαδόσεως το ήχο εννοούµε την ταχύτητα µε την οποία διαδίδονται τα κύµατα πο ποκαλούνται από µικές διατααχές. Σχνά λέονται και ακοστικά κύµατα ή ηχητικά κύµατα. Εάν χάιν απλούστεσης θεωήσοµε την µονοδιάστατη οή κατά τον άξονα x οή µε ταχύτητα, πκνότητα, πίεση, και ειδική εσωτεική ενέεια e, τότε εάν δηµιοηθεί µία µική διατααχή στο εστό (du, d, d, de), η διατααχή ατή θα διαδίδεται στο χώο κινούµενη µε ταχύτητα w διαφοετική εν ένει από την ταχύτητα των στοιχείων το εστού, σχήµα.. w,, e + d + d, + d, e + de x Σχήµα.: Μική διατααχή κινούµενη σε κινούµενο σµπιεστό εστό *Σµπλήωµα στο βιβλίο: Σ. Τσαάη «Μηχανική των Ρεστών», Εκδ. Σµεών

2 Εάν θεωήσοµε επιφάνεια ελέχο εκατέωθεν της επιφάνειας διατααχής (επιφάνεια το ακοστικού κύµατος) τότε εφαµόζοντας τα θεωήµατα διατήησης µάζας, οµής και ενέειας, ποκύπτει Θ ( w) = ( + d )( + d w) (.3) Θ = Θ( + d ) + (+ d) (.4) ( + d ) Θ (e + ) =Θ [e + de + ] + ( + d)( + d ) (.5), όπο Θ είναι η παοχή µάζας το εστού ανά µονάδα επιφάνειας. Πααλείποντας όος πο πειέχον ινόµενα διαφοικών από την πώτη και δεύτεη εξίσωση ποκύπτον αντίστοιχα: d+θd= (.6) Από τις εξισώσεις (.6) (.7) ποκύπτει µε απαλειφή το d: Θd+ d= (.7) Θ (de +d ) + d + d= (.8) d ( w) d = (.9) Από την εξίσωση Gibbs ποκύπτει, µε χήση των σχέσεων (.6.8): Tds de d = + = (.) Η οή είναι ισεντοπική το οποίο µας επιτέπει να άψοµε την σχέση (.9) πό την σνήθη µοφή: s= cnst = ( w) c (.) όπο c είναι η σχετική ταχύτητα κίνησης το µετώπο κύµατος της διατααχής ως πος το στοιχείο το εστού, ονοµαζόµενη και ταχύτητα το ήχο: c w (.) Με χήση της σχέσης (.) η ταχήτητα το ήχο πολοίζεται σνατήσει των θεµοδναµικών µεεθών ως: (.3) c= RT = Η εισαωή της ταχύτητας το ήχο µας οδηεί στην εισαωή το αιθµού ach, οποίος οίζεται ως

3 = c (.4) Εάν η οή έχει Μ> η οή ονοµάζεται πεηχητική, εάν Μ< ποηχητική και εάν Μ= ηχητική. Μετά από την εισαωή της έννοιας της ταχύτητας το ήχο από τις σχέσεις (.) και (.) ια την ισεντοπική οή µποούν να ποκύψον αλεβικά οι σχέσεις των θεµοδναµικών µεεθών,, T, c ως πος τα αντίστοιχα ολικά µεέθη σνατήσει το αιθµού ach: = + ( ), (.5) = + ( ), (.6) c T = = + ( ) c T, (.7) Σχνά στη βιβλιοαφία αντί το ολικού µεέθος εµφανίζεται το αντίστοιχο µέεθος στην θέση το πεδίο οής όπο επικατεί η ηχητική ταχύτητα (Μ=). Τα θεµοδναµικά µεέθη στη σκεκιµένη θέση * * * * σµβολίζονται µε αστείσκο:,,t,c και εύκολα µποεί να αποδειχθεί ότι σνδέονται µε τα ολικά µεέθη από τις ακόλοθες σχέσεις: + = ( ) +, + = ( ), c T + = = c T (.8) Εάν οισθεί η αδιάστατη ταχύτητα Μ * µε την ταχύτητα το ήχο στην ηχητική κατάσταση τότε ποκύπτει + = c +, (.9) Μιά ακόµη ισεντοπική σχέση η οποία ενδιαφέει στην οή σε ακοφύσια είναι η σχέση η οποία δίνει την οή µάζας ανά µονάδα επιφάνειας, και η οποία ποκύπτει από τις ισεντοπικές σχέσεις.7 σνατήσει το αιθµού Μ: Θ, Θ = (+ ) c + ( ), (.) Στο σχήµα. της ισεντοπικής οής παίστανται οι µεταβολές όλων των µεεθών σνατήσει το αιθµού ach (πίνακας.). 3

4 .5. * c ο T T c c Σχήµα.: Ισεντοπικές µεταβολές µεεθών σνατήσει το αιθµού ach της οής.3 Κάθετο στάσιµο κύµα κούσης ια µη σνεκτικό εστό χωίς θεµική αωιµότητα Στην παάαφο 6.4. καταλήξαµε στις ενικές εξισώσεις το στάσιµο κύµατος κούσης ια µη σνεκτικό εστό και χωίς θεµική αωιµότητα. Ως κάθετο κύµα κούσης ονοµάζοµε την ασνέχεια όπο το διάνσµα της ταχύτητας εκατέωθεν της ασνέχειας είναι κάθετο σ' ατήν, εποµένως: και άα: t = t = (.), = (.) = n n Σχήµα.3: Καταστάσεις πίν και µετά το κάθετο κύµα κούσης Εφαµόζοντας τις εξισώσεις (6.66) διατήησης µάζας, οµής, ενέειας και το δεύτεο αξίωµα της θεµοδναµικής ια την πείπτωση το καθέτο κύµατος κούσης στην πείπτωση το τελείο αείο σταθεών ειδικών θεµοτήτων, ( i = ) ποκύπτον οι εξισώσεις: 4

5 = + = + + = + (.3) (.4) (.5) ( ) s s (.6) Οι εξισώσεις (.3-.5) αποτελούν σύστηµα 3 εξισώσεων µε τείς ανώστος (,, ). εδοµένης δηλαδή της κατάστασης, οι τιµές των µεεθών ια την κατάσταση καθοίζονται µε την επίλση το αλεβικού σστήµατος των εξισώσεων (.3-.5). Η επίλση το δετεοβαθµίο στήµατος δίνει δύο λύσεις από τις οποίες η µία είναι η τατοτική: = = + (.7) = + + (.8) Εισάοντας τον αιθµό ach της οής ποκύπτον οι εξισώσεις το καθέτο κύµατος κούσης, πο σνδέον την κατάσταση µετά το κύµα κούσης (σµβολίζεται στη σνέχεια µε ) µε την κατάσταση πίν το κύµα κούσης µε παάµετο τον αιθµό ach της οής Μ πίν το κύµα κούσης: $ = = $ + = + + $ = + ( ) + $ T c$ = = + ( ) + + T c + ( ) $ + = + ( ) + ( ) (.9) (.3) (.3) (.3) 5

6 Ολες οι πααπάνω σχέσεις ισχύον ακιβώς στην ίδια µοφή εάν τα µεέθη µετά το κύµα κούσης ( ) αντικατασταθούν µε τα µεέθη πιν το κύµα κούσης. Ατό οφείλεται στη σµµετία των αχικών εξισώσεων. Η µεταβολή της εντοπίας πολοίζεται από ολοκλήωση το νόµο το Gibbs Td s= de+ d(/ ), πο στην πείπτωση το τελείο αείο σταθεών ειδικών θεµοτήτων, άφεται στη µοφή: ds c d c d = v (.33) ή $ ln $ s s= c c ln $ v (.34) Αντικαθιστώντας τις µεταβολές της πίεσης και πκνότητας στην ποηούµενη σχέση σνατήσει το αιθµού ach ποκύπτει: s$ s ln $ = c $ v ln = + + ( ) + (.35) Η µεταβολή το µεέθος της εντοπίας παίσταται στο σχήµα.4 σνατήσει το αιθµού ach (Μ) πίν το κύµα κούσης. Από το διάαµµα ατό παατηούµε ότι η µεταβολή της εντοπίας είναι θετική ( $ss ) όταν η οή είναι πεηχητική (Μ>). εδοµένο ότι από τις δναµικές σνθήκες σµβατότητας η µεταβολή της εντοπίας δεν µποεί να είναι ανητική, ποκύπτει ότι κάθετο, στάσιµο κύµα κούσης είναι δνατό µόνο σε πεηχητική οή. Από την σχέση.3 ποκύπτει ότι µετά το κύµα κούσης η οή µεταβαίνει σε ποηχητική ( $ <) Σχήµα.4: Μεταβολή της εντοπίας εκατέωθεν ενός καθέτο κύµατος κούσης σνατήσει το αιθµού Μach () πιν το κύµα κούσης Ο λόος των µεεθών εκατέωθεν το κύµατος κούσης παοσιάζονται στα σχήµατα.5 και.6 σνατήσει το αιθµού ach () πιν το κύµα κούσης. Οπως φαίνεται και από το σχήµα, τα µεέθη πίεσης, θεµοκασίας και πκνότητας αξάνονται µετά το κύµα κούσης ενώ η ταχύτητα µειώνεται. 6

7 ^ ^ T T + - ^ c^ c Σχήµα.5: Λόος των µεεθών εκατέωθεν το καθέτο κύµατος κούσης σνατήσει το αιθµού ach () πιν το κύµα κούσης Ενδιαφέοσα είναι επίσης η µεταβολή των ολικών µεεθών (µεεθών ανακοπής) σε κάθετο κύµα κούσης: T$ T = $ $ ( ) = = s$ s ( c c ) ln $ ( c c ) ln $ = v = v (.36) (.37) (.38) ^ ^ ο ο ^ ( - ) / - + Σχήµα.6: Μεταβολή το αιθµού ach, το λόο των ολικών πιέσεων και το λόο των ταχτήτων πίν και µετά το κύµα κούσης σνατήσει το αιθµού ach στο στάσιµο, κάθετο κύµα κούσης. 7

8 Στο σχήµα.6 παίσταται η µεταβολή το λόο των ολικών πιέσεων πο ισούται µε τον λόο των ολικών πκνοτήτων, πιν και µετά το κύµα κούσης, σνατήσει το αιθµού ach. Παατηούµε απώλεια της ολικής πίεσης και πκνότητας στο κύµα κούσης πο είναι εντονώτεα όσο ο αιθµός ach είναι µεαλύτεος, δηλαδή το κύµα κούσης ισχότεο. Οι µεταβολές των µεεθών εκατέωθεν το καθέτο κύµατος κούσης δίνονται στον πίνακα. Τονίζοµε ότι δεν πάχει µεταβολή της ολικής θεµοκασίας στο κάθετο κύµα κούσης..4 Μόνιµη σχεδόν µονοδιάστατη µη σνεκτική οή σε αωό µεταβλητής διατοµής Θα θεωήσοµε τώα την πείπτωση της σχεδόν µονοδιάστατης οή ή όπως σχνά ονοµάζεται οή σε σωλήνα οής. Σ ατή την πείπτωση θεωούµε ότι οι µεταβολές της διατοµής το σωλήνα οής είναι µικές κατά µήκος το τόξο και η ακτίνα καµπλότητας το είναι µεάλη, ώστε η κατανοµή της ταχύτητας στην διατοµή να µποεί να θεωηθεί σταθεή, ποθέτοντας το εστό ως µη σνεκτικό. Εφαµόζοντας το θεώηµα διατήησης της µάζας σε ολοκληωµατική µοφή µεταξύ των διατοµών και ια επιφάνεια ελέχο πο πειέχεται µέσα στο σωλήνα ποκύπτει, σχήµα.7: i E i E Σχήµα.7 : Σωλήνας οής µεταβλητής διατοµής E = E (.39) ( + E ) = ( + ) E + csφdeσ i + = i + Eσ (.4) (.4) Στην εξίσωση της οµής πεισέχεται στο δεύτεο µέλος η ποβολή το ολοκληώµατος των δνάµεων πίεσης στην επιφάνεια επαφής µε το πείβληµα σ, λόω της µεταβολής της διατοµής Ε(x). Υποθέτοντας τις µεταβολές της διατοµής και πίεσης σνεχείς τότε ισχύει: cs φdeσ = de = ( E E ) (.4) Eσ E όπο η µέση πίεση µεταξύ των θέσεων και. Θα µποούσε χωίς άλλο ιά τη µέση πίεση να θέταµε: = ( + ). Από τις σχέσεις (.39-.4) ποκύπτον, ποσείζοντας σε κοντινές διατοµές, διαφοικά µεέθη: 8

9 d( E) = (.43) d[( + ) E] = de (.44) di ( + ) = (.45) Πιν ποχωήσοµε στην διαπαµάτεση ατών των εξισώσεων θα έπεπε να κάνοµε τις επόµενες σηµαντικές παατηήσεις: Χησιµοποιώντας κατάλληλα τις σχέσεις (.43), (.44) καταλήοµε στην ισοδύναµη σχέση: d = d (.46) η οποία είναι η εξίσωση Euler η το ίδιο η εξίσωση το Bernulli ια το σµπιεστό εστό κατά µήκος µιας αµµής οής, το οποίο ανεµένετο. Από την εξίσωση (.45) µε την βοήθεια της εξίσωσης το Bernulli ποκύπτει από την εξίσωση της εντοπίας το Gibbs, οτι η οή είναι ισεντοπική, το οποίο είναι επίσης αναµενόµενο. Σκεκιµένα είχε αποδειχθεί στο έκτο κεφάλαιο κάνοντας χήση της εξίσωσης της σνέχειας και των εξισώσεων Euler ότι ενικά ισχύει ισεντοπία κατά µήκος των αµµών οής. Η επίλση το σστήµατος των εξισώσεων (.43) και (.46) µαζί µε την εξίσωση της ισεντοπίας ( ) ια τέλειο αέιο σταθεού λόο ειδικών θεµοτήτων, είναι απλή. Αποτελούν σύστηµα τιών εξισώσεων από τις οποίες οι δύο είναι αλεβικές και η µία διαφοικής µοφής, µε τέσσεις ανώστος,,, και Ε. Εισάοντας τον αιθµό ach της οής Μ=/c ποκύπτον εύκολα οι παακάτω εξισώσεις: de E d d = = d d( ) d = = ( ) (.47) (.48) Από τις πααπάνω σχέσεις µποούν να εξαχθούν τα ποιοτικά σµπεάσµατα πο σνοψίζονται στο σχήµα.8 αύξηση µείωση < µείωση αύξηση αύξηση µείωση > µείωση αύξηση Σχήµα.8: Ποιοτικές µεταβολές µεεθών σε σκλίνοντες και αποκλίνοντες αωούς σνατήσει το αιθµού ach της οής 9

10 Από τον πίνακα είναι σαφές ότι ια να έχοµε επιτάχνση της οής απαιτείται σκλίνων αωός ια ποηχητική οή και αποκλίνων αωός ια πεηχητική οή. Τα αντίστοφα απαιτούνται ια επιβάδνση της οής. Είναι επίσης φανεό από την σχέση (.3) οτι σε θέση ελαχίστο της διατοµής (λαιµός) έχοµε ηχητική οή ή ακότατο της ταχύτητας (µέιστο ια ποηχητική ταχύτητα και ελάχιστο ια πεηχητική ταχύτητα). Από την επίλση το σστήµατος (.47), (.48), είτε το ίδιο από τις ισεντοπικές σχέσεις µαζί µε την εξίσωση διατήησης µάζας ποκύπτει η εξάτηση το Ε µε τον αιθµό ach: E = [ (+ )] E + + ( ) (.49) όπο Ε * η διατοµή το αωού (σωλήνα οής) στην οποία επικατεί ηχητική ταχύτητα (Μ=). 3 E E* Emin E* = Σχήµα.9 : Μεταβολή της διατοµής σνατήσει το αιθµού ach ια την ισεντοπική οή σε σωλήνες οής. Η σχέση ατή σνοδεύεται και από όλες τις ισεντοπικές σχέσεις πο σνδέον τα µεέθη,, Τ και µε τον αιθµό Μach..5 Ροή σε ακοφύσια και διαχύτες.5. Γενικά Ακοφύσιο (nzzle) ονοµάζεται το διαµοφωµένο άκο αωού, στο οποίο η πίεση, η δναµική ενέεια ή η θεµική ενέεια το έοντος εστού µετατέπονται σε κινητική ενέεια. Η διαµόφωση τµήµατος αωού, όπο επιτελείται η αντίστοφη µετατοπή λέεται σνήθως διαχύτης (diffusr). Στην πείπτωση ασµπίεστων εστών (πχ νεό) το ακοφύσιο απαιτείται να έχει ια την επιτάχνση της οής σκλίνοσα µοφή.

11 Στην πείπτωση το σµπιεστού εστού (αέας-αέια) ια την επιτάχνση της ποηχητικής οής σε ψηλότεες ποηχητικές ταχύτητες απαιτείται σκλίνοσα µοφή ακοφσίο. Εάν απαιτείται να επιταχνθεί πεαιτέω η οή σε ηχητική και πεηχητική ταχύτητα απαιτείται αποκλίνον ακοφύσιο. Στο λαιµό το σκλίνοντος-αποκλίνοντος ακοφσίο επικατεί η ηχητική ταχύτητα (Μ=). Το σκλίνον - αποκλίνον ακοφύσιον ονοµάζεται και ακοφύσιο-laval, διότι επινοήθηκε και χησιµοποιήθηκε ια πώτη φοά από τον Σοηδό µηχανικό G.P. de Laval (883), ια την επιτάχνση της οής το ατµού στος ατµοστοβίλος. Τα ακοφύσια χησιµοποιούνται, εκτός των ατµοστοβίλων, στη σύχονη τεχνολοία των κινητήων αεοσκαφών και στην παλική τεχνολοία ως ποωθητική µηχανή. Η ώση δηµιοείται µε την δηµιοία δέσµης αείων, η οποία εξέχεται από το ακοφύσιο µε µεάλη ταχύτητα. Τα ακοφύσια αποτελούν επίσης τµήµατα των πεηχητικών αεοδναµικών σηάων. Θα έπεπε επίσης χάιν ενικότητας να αναφεθούν εδώ και οι µη πεηχητικές εφαµοές το ακοφσίο. Ετσι στις δοδναµικές µηχανές χησιµοποείται βελονωτό - σκλίνον ακοφύσιο στος δοστοβίλος δάσης (Peltn) ια την µετατοπή το δναµικού βαύτητας σε κινητική ενέεια πίν από την είσοδο της πτεωτής (σκαφίδια Peltn). Το αποκλίνον ακοφύσιο χησιµοποιείται στην έξοδο των δοστοβίλων τύπο Francis ως διαχύτης ια την ανάκτηση της πίεσης και βελτίωση το βαθµού απόδοσής τος. Εξάλλο στη τεχνική των µετήσεων χησιµοποιείται το σλίνον - αποκλίνον ακοφύσιο ια την µέτηση της παοχής το εστού µέσω µέτησης της πίεσης (όανο Venturi). Τελικά στην τεχνολοία των καστήων (εξαειωτής) και τεχνολοία ψεκασµού (srays) χησιµοποιείται το ακοφύσιο ια την απόσπαση σταονιδίων από ή µάζα..5. Ακοφύσιο Laval Στην παάαφο ατή εξετάζεται η οή αείο µέσω ενός ακοφσίο Laval. Το σύστηµα, το οποίο εξετάζεται, αποτελείται από δοχείο πιέσεως σταθεής πίεσης και ακοφύσιο Laval µε έξοδο στον εξωτεικό απέατο χώο σταθεής πίεσης π (σχήµα.). E(x) E* οή x Ε e π Σχήµα.: Ροή σε ακοφύσιο Laval Εάν η οή θεωηθεί µη σνεκτική και πείπο µονοδιάστατη (µικές µεταβολές της διατοµής το ακοφσίο Laval) τότε ισχύον οι ποϋποθέσεις και σχέσεις των ποηοµένων πααάφων. Η µεταβολή των καταστάσεων οής κατά µήκος το ακοφσίο εξατώνται από τη µεταβολή της διατοµής το ακοφσίο αλλά και από τη σχέση των πιέσεων π /. Βασικό ια την κατανόηση των διαφόων καταστάσεων οής πο είναι δνατές στο ακοφύσιο είναι τα διαάµµατα της ισεντοπικής οής σωλήνων

12 οής, πο παίστανται στα σχήµατα. και.9 καθώς και τα διαάµµατα των σχηµάτων.5 και.6 ια τις µεταβολές των µεεθών στο κάθετο κύµα κούσης. Oλες οι δνατές καταστάσεις οής στο ακοφύσιο και οι σναφείς µεταβολές της πίεσης και αιθµού ach παοσιάζονται στο σχήµα.. Σχήµα. : Επίδαση το λόο πιέσεων στην οή σε ακοφύσιο Laval Aπό το σχήµα. είναι σαφές ότι ια δεδοµένη σχέση διατοµής εξόδο πός διατοµή λαιµού (Ε e /Ε * ) πάχον δύο πλήως καθοισµένες δνατές πιέσεις στην διατοµή εξόδο ( e / ) µιά ψηλή ( c / ) και µιά χαµηλή ( j / ). Για την ψηλή πίεση πειβάλλοντος π = c ποκύπτει ποηχητική οή καθόλο το µήκος το ακοφσίο επιταχνόµενη στο σκλίνον τµήµα το φθάνοντας την ηχητική στο λαιµό και ακολούθως επιβαδνόµενη οή µέχι την έξοδό στο πειβάλλον µε πίεση την e = c = π (σχήµα.). Για την χαµηλή πίεση πειβάλλοντος π = j ποκύπτει επιταχνόµενη ποηχητική οή στο σκλίνον τµήµα το ακοφσίο, ηχητική ταχύτητα στον λαιµό και σνεχώς επιταχνόµενη πεηχητική οή στο αποκλίνον τµήµα το µε πίεση στην διατοµή εξόδο e = j = π (σχήµα.). Για εξωτεικές πιέσεις π διαφοετικές από τις c και j έχοµε τις παακάτω πειπτώσεις: Γιά c < π < η οή είναι καθόλο το µήκος ποηχητική (καµπύλες a, b), η δε πίεση στη διατοµή εξόδο είναι η πίεση το πειβάλλοντος ( e = π ). Γιά < π < j η οή είναι ποηχητική-πεηχητική (καµπύλη k) και η ποσαµοή της πίεσης στην έξοδο ( e = j ) σε εκείνη το πειβάλλοντος ίνεται µε πεηχητική αποτόνωση. Για j < π < c η οή δεν µποεί να πααµείνει καθόλο το µήκος το ακοφσίο ισεντοπική.ετσι σκεκιµένα: Για f < π < c η οή εµφανίζει κάθετο κύµα κούσης στο αποκλίνον τµήµα το ακοφσίο (καµπύλη d), το οποίο µειοµένης της εξωτεικής πίεσης αποµακύνεται από το λαιµό στην έξοδο ( e = π ) και ια πίεση π = f είσκεται ακιβώς στην έξοδο (καµπύλη f). Για j < π < f η οή διατηεί τον πεηχητικό της χαακτήα στο αποκλίνον τµήµα το ακοφσίο και η ποσαµοή της πίεσης εξόδο ( e = j ) ίνεται εξωτεικά το ακοφσίο µε πλάιο κύµα κούσης (καµπύλες g, h). Oι διάφοες σνθήκες οής απεικονίζονται ωαία µε οπτικοποίηση της οής σε φωτοαφίες το σχήµατος..

13 Σχήµα.: Φωτοαφίες Schlieren της οής σε πεηχητικό ακοφύσιο σε διαφοετικές πιέσεις (καταστάσεις d, g, h, j, k. (Lieman-Rsk)) 3

Υπολογισμός γεωστροφικών ρευμάτων με τη χρήση δεδομένων από CTD. Σύγκριση με αποτελέσματα από A.D.C.P. & Drifters.

Υπολογισμός γεωστροφικών ρευμάτων με τη χρήση δεδομένων από CTD. Σύγκριση με αποτελέσματα από A.D.C.P. & Drifters. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΘΑΛΑΣΣΑΣ Υπολογισμός γεωστοφικών ευμάτων με τη χήση δεδομένων από CTD. Σύγκιση με αποτελέσματα από A.D.C.P. & Drifters. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ (Επιβλέπων:

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 ΜΜΚ 3 Μεταφοά Θεμότητας Φυσική Συναγωγή ΜΜΚ 3 Μεταφοά Θεμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Πααγωγής ΜΜK 3 Μεταφοά Θεμότητας Φυσική Συναγωγή (r convction) Στα ποηγούμενα ύο κεφάλαια ασχοληθήκαμε

Διαβάστε περισσότερα

3. Μετρήσεις GPS Προβλήµατα

3. Μετρήσεις GPS Προβλήµατα . Μετήσεις GPS Ποβλήµατα.. Μετήσεις G.P.S. και ποβλήµατα. Οι παατηήσεις που παγµατοποιούνται µε το σύστηµα GPS, όπως έχουµε άλλωστε ήδη αναφέει, διακίνονται σε δύο κατηγοίες: α) σε µετήσεις ψευδοαποστάσεων

Διαβάστε περισσότερα

ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 5 ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Εισαωή Η αυξημέη αησυχία τω σύχοω κοιωιώ ια τις καταστοφικές επιπτώσεις στη ποιότητα του πειβάλλοτος από τη ααία και άαχη αάπτυξη, που παατηείται τα τελευταία χόια,

Διαβάστε περισσότερα

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ. Αρµονικό κύµα διαδίδεται σε ένα εθύγραµµο ελαστικό µέσο. Όλα τα σηµεία το µέσο διάδοσης, πο ταλαντώνονται λόγω της διέλεσης

Διαβάστε περισσότερα

ΘΕΜΑ A 1. (ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ A 1. (ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΗΜΕΡΗΣΙΩΝ Φαινόμενο Doppler ΘΕΜΑ. (ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΗΜΕΡΗΣΙΩΝ 006) Ηχητική πηγή και παρατηρητής βρίσκονται σε σχετική κίνηση. Ο παρατηρητής ακούει ήχο μεγαλύτερης σχνότητας από ατόν πο παράγει η πηγή, μόνο όταν α.

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΒΟΛΗ ΣΕ ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΠΟ ΥΨΟΣ. Οι καμπλόγραμμες βολές θεωρούνται σύνθετες κινήσεις. Έτσι κάθε ανσματικό μέγεθος όπως ταχύτητα, επιτάχνση κλ.π θα αναλύεται σε δύο άξονες έναν οριζόντιο

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΕΝΟ ΑΘΗΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

3. Αρμονικά Κύματα Χώρου και Επιφανείας. P, S, Rayleigh και Love

3. Αρμονικά Κύματα Χώρου και Επιφανείας. P, S, Rayleigh και Love 3. Αμονικά Κύματα Χώου και Επιφανείας P, S, Rayleigh και Lve ΠΕΡΙΕΧΟΜΕΝΑ 3. Κύματα (P & S) σε ομοιογενή χώο 3. Κύματα σε ανομοιογενή μέσα με δι-επιφάνεια 3.3. Επιφανειακά κύματα Πόσθετο ιάβασμα Steven

Διαβάστε περισσότερα

, όµως z ΚΑ =3.5 cm, αστάθεια

, όµως z ΚΑ =3.5 cm, αστάθεια Άσκηση : Ένας ξύλινος κύος µε πλευά 0cm και ειδικό άος SG0.7 επιπλέει σε νεό. Να υπολογισθούν:. Το ύψος του τµήµατος του κύου που είναι υθισµένο στο νεό. Το µετακεντικό ύψος. Να µελετηθεί η ισοοπία του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ κ Θέµα ο Οδηγία: Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση.. Ένα κύκλωµα LC εκτελεί αµείωτες ηλεκτρικές ταλαντώσεις: α.

Διαβάστε περισσότερα

Επανέλεγχος ηλεκτρικής εγκατάστασης

Επανέλεγχος ηλεκτρικής εγκατάστασης Επανέλεγχος ηλεκτικής εγκατάστασης Οδηγίες διεξαγωγής μετήσεων και δοκιμών για επανελέγχους ηλεκτικών εγκαταστάσεων με τη χήση σύγχονων ογάνων 1. Εισαγωγή στις απαιτήσεις των επανελέγχων Τα οφέλη του τακτικού

Διαβάστε περισσότερα

ΑΣΥΜΠΙΕΣΤΗ, ΑΤΡΙΒΗ (INVISCID) ΡΟΗ

ΑΣΥΜΠΙΕΣΤΗ, ΑΤΡΙΒΗ (INVISCID) ΡΟΗ ΑΣΥΜΠΙΕΣΤΗ, ΑΤΡΙΒΗ (INISCID) ΡΟΗ X Ολα τα παγµατικά ευστά έχουν ιξώδες. Οµως τα ευστά συχνά συµπειφέονται σαν ανιξώδη ή άτιβα (inviscid), π.χ. έχουν αµελητέο ιξώδες. Αυτή η πααδοχή απλοποιεί κατά πολύ

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΙΚΗΣ ΚΑΙ ΕΧΝΟΛΟΓΙΚΗΣ ΚΑΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΑ Η διάδοση μιας διαταραχής μέσα σ' ένα μέσο ονομάζεται κύμα. Για τη δημιοργία ενός μηχανικού κύματος

Διαβάστε περισσότερα

Η ΜΕΘΟ ΟΣ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΕ ΑΠΛΕΣ ΠΕΡΙΠΤΩΣΕΙΣ

Η ΜΕΘΟ ΟΣ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΕ ΑΠΛΕΣ ΠΕΡΙΠΤΩΣΕΙΣ Κεφάλαιο Η ΜΕΘΟ ΟΣ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΕ ΑΠΛΕΣ ΠΕΡΙΠΤΩΣΕΙΣ.. ΕΙΣΑΓΩΓΗ Η µέθοδος των πεπερασµένων στοιχείων όπως γνωρίζοµε προήλθε από µια γενίκεση των µεθόδων επίλσης των ραβδωτών φορέων, σε προβλήµατα

Διαβάστε περισσότερα

Υπάρχει σηµείο χ 0 τέτοιο ώστε να ισχύει..

Υπάρχει σηµείο χ 0 τέτοιο ώστε να ισχύει.. Υπάχει σηµείο χ 0 τέτοιο ώστε να ισχύει.. ( ή διαφοετικά πεί ιζών εξίσωσης ) I. Για να δείξουµε ότι µια εξίσωση f(χ)=0 έχει µία τουλάχιστον ίζα στο διάστηµα (α, β) µποούµε να εγασθούµε ως εξής: 1 0ς τόπος:

Διαβάστε περισσότερα

9 Φαινόµενο Ντόµπλερ(Doppler)

9 Φαινόµενο Ντόµπλερ(Doppler) Φσική Γ Λκείο 9 Φαινόµενο Ντόµπλερ(Doppler) Στεκόµαστε ακίνητοι στην αποβάθρα ενός σταθµού. Ενα τραίνο µε ανοικτή τη σειρήνα το, κινούµενο µε σταθερή ταχύτητα µας πλησιάζει και στη σνέχεια µας προσπερνά.

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ. 1.1 Ερευνητικό ενδιαφέρον. 1.2 Επισηµάνσεις από τη βιβλιογραφία. 1.3 Προσέγγιση λύσης προβληµάτων:

1. ΕΙΣΑΓΩΓΗ. 1.1 Ερευνητικό ενδιαφέρον. 1.2 Επισηµάνσεις από τη βιβλιογραφία. 1.3 Προσέγγιση λύσης προβληµάτων: . Εευνητικό ενδιαφέον. ΕΙΣΑΓΩΓΗ. Επισηµάνσεις από τη βιβλιογαφία α) Ελλιπείς γνώσεις των πολύπλοκων φυσικών διεγασιών β) Ελάχιστα εφαµόζονται οι νόµοι της Μηχανικής των Ρευστών γ)ελάχιστα βιβλία διεθνώς

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί στη ράση η οποία τη

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα

Διαβάστε περισσότερα

Φυσική Θετικής-Τεχνολογικής Κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1. Θέµα 1 ο

Φυσική Θετικής-Τεχνολογικής Κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1. Θέµα 1 ο Φσική Θετικής-Τεχνολογικής Κατεύθνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΤΑΙΧΙΟ 1 Θέµα 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-3 και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

τοπικοί συντελεστές αντίστασης στο σηµείο εισόδου, στην καµπύλη και στο ακροφύσιο είναι αντίστοιχα Κ in =1,0, K c =0,7 και K j =0,5.

τοπικοί συντελεστές αντίστασης στο σηµείο εισόδου, στην καµπύλη και στο ακροφύσιο είναι αντίστοιχα Κ in =1,0, K c =0,7 και K j =0,5. Υ ΡΑΥΛΙΚΗ Ι Εφαρµοή Ισοζυίου Υδραυλικής Ενέρειας - Εξίσωση ernoulli Άσκηση. Σε ένα συντριβάνι, νερό αντλείται από τη δεξαµενή µε ρυθµό Q5,0 lt/ και εκτοξεύεται κατακόρυφα, όπως στο σκαρίφηµα. Όλα τα τµήµατα

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ. Ηλεκτρικές & μηχανικές ταλαντώσεις

1 Ο ΚΕΦΑΛΑΙΟ. Ηλεκτρικές & μηχανικές ταλαντώσεις ΦΥΣΙΚΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΘΕΤΙΚΗΣ & & ΤΕΧΝΟΛΟΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ 3 ΗΣ ΛΥΚΕΙΟΥ Περιοδικά φαινόμενα. N N F -D Όταν 0 0 και 0 >0 Όταν 0 0 Ο ΚΕΦΑΛΑΙΟ. Ηεκτρικές & μηχανικές τααντώσεις

Διαβάστε περισσότερα

2. Στο σύστηµα αξόνων του πιο πάνω σχήµατος, να προσδιορίσετε τις συντεταγµένες. 3. Να βρεθεί το µέτρο της τελικής ταχύτητας υ Τ

2. Στο σύστηµα αξόνων του πιο πάνω σχήµατος, να προσδιορίσετε τις συντεταγµένες. 3. Να βρεθεί το µέτρο της τελικής ταχύτητας υ Τ ιονύσης Μητρόπολος Β κείο Οριζόντια βολή Άσκηση στην οριζόντια βολή ο (0,0) x Η h Τ φ Μεταλλική σφαίρα µάζας m = 0,4kg εκτοξεύεται οριζόντια από την άκρη της ταράτσας κτιρίο ύψος Η = 0m, µε ταχύτητα µέτρο

Διαβάστε περισσότερα

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις

Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις Μάθηα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ 7 ου εξαήνου ΣΕΜΦΕ ΘΕΩΡΙΑ ΑΝΑΜΟΝΗΣ - ΑΝΑΛΥΣΗ ΕΠΙ ΟΣΗΣ ΙΚΤΥΩΝ Ασκήσεις Αποστέλλονται πακέτα σταθεού ήκους ytes από τον κόβο # στον κόβο #4 έσω των κόβων # και #3 σε σειά, όπως

Διαβάστε περισσότερα

Physica by Chris Simopoulos

Physica by Chris Simopoulos ΜΗΧΑΝΙΚΗ ΕΝΕΡΓΕΙΑ - ΘΜΚΕ Η μηχανική ενέργεια είναι το άθροισμα της κινητικής και της δναμικής ενέργειας το σώματος. Όπως είναι γνωστό οι σχέσεις πο δίνον τις ενέργειες ατές είναι: E = 1.m. (7) και Ε Δ

Διαβάστε περισσότερα

Κινηματική σε 3 διαστάσεις. r = x x + y y +z z P. Η έννοια της παραγώγου στις 3 διαστάσεις

Κινηματική σε 3 διαστάσεις. r = x x + y y +z z P. Η έννοια της παραγώγου στις 3 διαστάσεις Κινηματική σε 3 διαστάσεις = + + P παριστάνεται με την επιβατική ακτίνα κάθε σημείο P το χώρο (t τροχιά = Δ Δ (t+ διάνσμα θέσης d v= d μοναδιαία διανύσματα Η έννοια της παραγώγο στις 3 διαστάσεις Μέση

Διαβάστε περισσότερα

Ενδεικτική θεωρία (Θεωρία της Σχετικότητας) για τους υποψήφιους ΠΕ0401 του ΑΣΕΠ

Ενδεικτική θεωρία (Θεωρία της Σχετικότητας) για τους υποψήφιους ΠΕ0401 του ΑΣΕΠ Ενδεικτική θεωρία (Θεωρία της Σχετικότητας) για τος ποψήφιος ΠΕ41 το ΑΣΕΠ Α Το πείραμα Mihelson Morley. Κ Κ3 Κ1 Σύμφωνα με τις εξισώσεις το Mawell, η ταχύτητα το φωτός είναι ένα 1 σταθερό μέγεθος ίσο με

Διαβάστε περισσότερα

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών

Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς

Διαβάστε περισσότερα

ΑΠΘ ΠΟΛ. ΜΗΧ. Π. ΠΡΙΝΟΣ 2. Υ ΡΟΣΤΑΤΙΚΗ 2.1 ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. F=mα P y =P s P z =P s. -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης

ΑΠΘ ΠΟΛ. ΜΗΧ. Π. ΠΡΙΝΟΣ 2. Υ ΡΟΣΤΑΤΙΚΗ 2.1 ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. F=mα P y =P s P z =P s. -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης . ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. Υ ΡΟΣΤΑΤΙΚΗ Fmα y s z s -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης . ΜΕΤΑΒΟΛΗ ΤΗΣ ΠΙΕΣΗΣ -Επιφανειακές δυνάµεις (λόω πίεσης) - υνάµεις σώµατος (π.χ. βάρος) Για ακίνητο

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου Σεµινάριο Ατοµάτο Ελέγχο Μάθηµα 7 Εκτίµηση Esimaion στοχαστικών µεγεθών και παραµέτρων µε σνεχείς και διακριτούς αλγόριθµος Καλλιγερόπολος 7 Εκτίµηση Esimaion στοχαστικών µεγεθών και παραµέτρων Σνεχή και

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Ισχύον ότι έχομε αφέρει στις κινήσεις σωμάτων με τη διαφορά ότι στη θέση της επιτάχνσης α τοποθετούμε την επιτάχνση βαρύτητας..γενικα Οι βολές είναι κινήσεις μεταβαλλόμενες (επιταχνόμενες

Διαβάστε περισσότερα

Συχνότητα και µήκος κύµατος στο φαινόµενο Doppler

Συχνότητα και µήκος κύµατος στο φαινόµενο Doppler Σχνότητα και µήκος κύµατος στο φαινόµενο Doppler ύο ατοκίνητα και Β κινούνται σε εθύγραµµο δρόµο µε την ίδια ταχύτητα Β 0m/, πλησιάζοντας προς ακίνητο παρατηρητή Γ, όπως στο σχήµα. Στο ατοκίνητο Β έχει

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

α. f A = f s β. f A = f s υ + υ γ. f A = f s δ. f A =

α. f A = f s β. f A = f s υ + υ γ. f A = f s δ. f A = ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 8 ΣΕΠΤΕΜΒΡΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΜΑΚΡΟΣΚΟΠΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ, ΟΡΜΗΣ ΚΑΙ ΕΝΕΡΓΕΙΑΣ

ΜΑΚΡΟΣΚΟΠΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ, ΟΡΜΗΣ ΚΑΙ ΕΝΕΡΓΕΙΑΣ XXI ΜΑΚΡΟΣΚΟΠΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ, ΟΡΜΗΣ ΚΑΙ ΕΝΕΡΓΕΙΑΣ Θεωούµε ένα σύστηµα µε µία είσοδο (πολλές εισόδοι είναι πιθανές ) και µία έξοδο (πολλές έξοδοι είναι επίσης πιθανές). Για να υπολογίσουµε µικολεπτοµέειες

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών η εξεταστική περίοδος από 9/0/ έως 6// γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σποδών Τάξη: Β Λκείο Τμήμα: Βαθμός: Ημερομηνία: 09//0 Ύλη: Ονοματεπώνμο: Καθηγητής: Οριζόντια βολή Ομαλή κκλική κίνηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ» Τι καλείται εμαδόν επίπεδης επιφάνειας; Το εμαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, πο εκφράζει την έκταση πο καταλαμάνει η επιφάνεια

Διαβάστε περισσότερα

υ = 21 s ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Εφαρμογές του φαινομένου Doppler)

υ = 21 s ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Εφαρμογές του φαινομένου Doppler) ΕΚΦΩΝΗΣΕΙΣ ΣΚΗΣΕΩΝ Άσκηση 1. (Εφαρμογές το φαινομένο Doppler) Ένας παρατηρητής πλησιάζει με ταχύτητα ακίνητη πηγή ήχο, η οποία εκπέμπει ήχο σχνότητας f s. Ο παρατηρητής ακούει ήχο σχνότητας f η οποία είναι

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο 1. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ 1. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση

Διαβάστε περισσότερα

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ; 45 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 107601470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 006 ΘΕΜΑ 1 1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΡΓΟΥ-ΕΝΕΡΓΕΙΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΡΓΟΥ-ΕΝΕΡΓΕΙΑΣ ΠΡΟΒΛΗΜΑΤΑ ΕΡΓΟΥ-ΕΝΕΡΓΕΙΑΣ Σώμα μάζας m βρίσκεται πάνω στη λεία τροχιά το σχήματος. Να βρεθούν: α) η ταχύτητα στο Α και, β) η κάθετη αντίδραση στο Α. R Θέτομε ως επίπεδο μηδενικής δναμικής ενέργειας το

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

A Εάν το «κύκλωμα» μέσα από το οποίο μεταβάλλεται η μαγνητική ροή έχει Ν όμοιες σπείρες τότε: ε

A Εάν το «κύκλωμα» μέσα από το οποίο μεταβάλλεται η μαγνητική ροή έχει Ν όμοιες σπείρες τότε: ε ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι (Υποχρεωτικό 3 ο Εξαμήνο) Διδάσκων : Δ.Σκαρλάτος Προβλήματα Σειρά # 8: Ηλεκτρομαγνητική Επαγωγή Αντιστοιχεί στα Κεφάλαια (α) Η.9 και Η.10

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να ράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το ράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

Κεφάλαιο T3. Ηχητικά κύµατα

Κεφάλαιο T3. Ηχητικά κύµατα Κεφάλαιο T3 Ηχητικά κύµατα Εισαγωγή στα ηχητικά κύµατα Τα κύµατα µπορούν να διαδίδονται σε µέσα τριών διαστάσεων. Τα ηχητικά κύµατα είναι διαµήκη κύµατα. Διαδίδονται σε οποιοδήποτε υλικό. Είναι µηχανικά

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Δ. Χαάλαπος Π. Στουθόπουλος Καθηγητής ΣΕΡΡΕΣ, ΔΕΚΕΜΒΡΙΟΣ 9 ΠΕΡΙΕΧΟΜΕΝΑ.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΡΕΘΥΜΝΟΥ ΤΜΗΜΑ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΑΚΟΥΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΡΕΘΥΜΝΟΥ ΤΜΗΜΑ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΑΚΟΥΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Τ.Ε.Ι. ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΡΕΘΥΜΝΟΥ ΤΜΗΜΑ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΑΚΟΥΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΥΠΕΡΒΟΛΙΚΩΝ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ. ΕΦΑΡΜΟΓΗ ΤΗΣ ΜΕΘΟΔΟΥ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α A1 α Α2 β Α3 β Α4 α Α5. α Σ β Σ γ Λ δ Λ ε Σ

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α A1 α Α2 β Α3 β Α4 α Α5. α Σ β Σ γ Λ δ Λ ε Σ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΡΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΘΕΜΑ Α α Α β Α β Α α Α5. α Σ β Σ γ Λ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑ 1 ο (βαθµοί 2) Σώµα µε µάζα m=5,00 kg είναι προσαρµοσµένο στο ελεύθερο άκρο ενός κατακόρυφου ελατηρίου και ταλαντώνεται εκτελώντας πέντε (5) πλήρης ταλαντώσεις σε χρονικό

Διαβάστε περισσότερα

Aνάλυση του 10 ου Βιβλίου των Στοιχείων του Ευκλείδη και τεκµηρίωση της παλινδροµικής περιοδικότητας της ανθυφαίρεσης των τετραγωνικών αρρήτων

Aνάλυση του 10 ου Βιβλίου των Στοιχείων του Ευκλείδη και τεκµηρίωση της παλινδροµικής περιοδικότητας της ανθυφαίρεσης των τετραγωνικών αρρήτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟ ΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΚΑΙ ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΠΑΙ ΑΓΩΓΙΚΗΣ & ΨΥΧΟΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Θέµα ο ΚΕΦΑΛΑΙΟ 2 ο : ΚΥΜΑΤΑ Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες; α Η υπέρυθρη ακτινοβολία έχει µήκη κύµατος µεγαλύτερα από

Διαβάστε περισσότερα

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων Μαθηµατική Παροσίαση των FM και PM Σηµάτων Ένα γωνιακά διαµορφωµένο σήµα, πο αναφέρεται επίσης και ως εκθετικά διαµορφωµένο σήµα, έχει τη µορφή u os j [ ] { π + jφ π + φ Re e } Σεραφείµ Καραµπογιάς Ορίζοµε

Διαβάστε περισσότερα

ΜΕΣΑ ΑΤΟΜΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ

ΜΕΣΑ ΑΤΟΜΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ TEE TKM ΣΕΜΙΝΑΡΙΑ ΜΙΚΡΗΣ ΙΑΡΚΕΙΑ ΣΤ ΚΥΚΛΟΣ2005 ΥΓΕΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΕΡΓΑΖΟΜΕΝΩΝ ΣΤΗΝ ΒΙΟΜΗΧΑΝΙΑ ΜΕΣΑ ΑΤΟΜΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ Ν. Μαραγκός Μηχανολόγος Mηχ. Msc ΚΙΛΚΙΣ 2005 ΜΕΣΑ ΑΤΟΜΙΚΗΣ ΠΡΟΣΤΑΣΙΑΣ ΝΙΚΟΣ ΜΑΡΑΓΚΟΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1.

ΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1. ΑΣΚΗΣΗ η Σε κύκλο ισόοκης καύσης (OO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. q R q q tot ΑΣΚΗΣΗ η Δ tot q q q ( ) cv ( ) cv q q q ΑΣΚΗΣΗ η q q Από αδιαβατικές

Διαβάστε περισσότερα

1) Στην επιφάνεια ενός υγρού ηρεµούν δύο πηγές κυµάτων Ο 1 και Ο 2, οι οποίες

1) Στην επιφάνεια ενός υγρού ηρεµούν δύο πηγές κυµάτων Ο 1 και Ο 2, οι οποίες Θοδωρής Παπασγορίδης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΣΥΜΒΟΛΗ ΚΑΙ ΤΟ ΣΤΑΣΙΜΟ (στις παρφές το σχοικού) 1) Στην επιφάνεια ενός γρού ηρεµούν δύο πηγές κµάτων Ο 1 και Ο, οι οποίες µπορούν να εκτεέσον κατακόρφες αρµονικές

Διαβάστε περισσότερα

Ηχητικά κύματα Διαμήκη κύματα

Ηχητικά κύματα Διαμήκη κύματα ΦΥΣ 131 - Διαλ.38 1 Ηχητικά κύματα Διαμήκη κύματα Τα ηχητικά κύματα χρειάζονται ένα μέσο για να μεταδοθούν π.χ. αέρας Δεν υπάρχει ήχος στο κενό Ηχητικές συχνότητες 20Ηz 20ΚΗz Τα ηχητικά κύματα διαδίδονται

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

Η ιδανική Δίοδος. Ορθή πόλωση Χαρακτηριστική τάσης ρεύματος της ιδανικής διόδου. Ανάστροφη πόλωση

Η ιδανική Δίοδος. Ορθή πόλωση Χαρακτηριστική τάσης ρεύματος της ιδανικής διόδου. Ανάστροφη πόλωση Δίοδοι Η ιδανική Δίοδος Ορθή πόλωση Χαρακτηριστική τάσης ρεύματος της ιδανικής διόδο. Ανάστροφη πόλωση Εφαρμογή: Ο ιδανικός Ανορθωτής Κύκλωμα Ανορθωτή Κματομορφή μ Εισόδο Ορθή πόλωση Ανάστροφη πόλωση Ημιανόρθωση:

Διαβάστε περισσότερα

ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Στις εωτήσεις 1-2, να γάψετε στο τετάδιό σας τον αιθό της εώτησης και δίπλα το γάα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΚΕΦΑΛΑΙΟ 3. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 3. Παραδοχές Σήραγγα κυκλικής διατοµής (ακτίνα ) Συνθήκες επίπεδης παραµόρφωσης (κατά τον άξονα της σήραγγας z) Ισότροπη γεωστατική

Διαβάστε περισσότερα

λ, όπου λ το µήκος κύµατος των κυµάτων που δηµιουργούν το στάσιµο.

λ, όπου λ το µήκος κύµατος των κυµάτων που δηµιουργούν το στάσιµο. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ 9/04/05 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Νικήτα Μ Ριζόπολο «Ασκήσεις Φσικής» ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Ιδανικό αέριο έχει θερμοκρασία 7 ο C και όγκο 3L Θερμαίνομε το αέριο με σταθερή πίεση στος 7 ο C Πόσος είναι ο νέος όγκος Ιδανικό αέριο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 13 η Ερωπαϊκή Ολµπιάδα Επιστηµών EUSO 2015 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες πο σµµετέχον: (1) (2) (3) Σέρρες 13/12/2014 Σύνολο

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΙΑ. Ημερομηνία Παράδοσης: 1/7/2007

6 η ΕΡΓΑΣΙΑ. Ημερομηνία Παράδοσης: 1/7/2007 6 η ΕΡΓΑΣΙΑ Ημομηνία Παάδοσης: /7/7 Τα θέματα ίναι βαθμολογικά ισοδύναμα Άσκηση Θτικό φοτίο Q κατανέμται ομοιόμοφα κατά μήκος του θτικού άξονα y μταξύ των σημίων y και y α. Ένα ανητικό σημιακό φοτίο -

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 5 ΑΠΡΙΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ κ Θέµα ο Στις ερωτήσεις -4 να επιλέξετε τη σωστή απάντηση.. Για ένα σώµα πο κάνει α.α.τ στη διάρκεια µιας περιόδο, η κινητική ενέργεια είναι ίση µε τη δναµική ενέργεια:

Διαβάστε περισσότερα

Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ

Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Φσική Θετικής & Τεχνολογικής Κατεύθνσης Γ Λκείο 00 ΕΚΦΩΝΗΣΕΙΣ. Η εξίσωση της αποµάκρνσης σε έναν απλό αρµονικό ταλαντωτή, πλάτος χ 0 και κκλικής σχνότητας ω, δίνεται από τη σχέση: χ χ 0 ηµωt.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σε

Διαβάστε περισσότερα

Το πλάτος της ταλάντωσης του σημείου Σ, μετά τη συμβολή των δυο. α. 0 β. Α γ. 2Α δ. Μονάδες 5

Το πλάτος της ταλάντωσης του σημείου Σ, μετά τη συμβολή των δυο. α. 0 β. Α γ. 2Α δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 04-01-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ-ΠΟΥΛΗ Κ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 7 ΙΟΥΛΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-5 να

Διαβάστε περισσότερα

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 25 ΜΑÏΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 6 Απριλίου 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1

Διαβάστε περισσότερα

ιακριτά Αντίστροφα Προβλήµατα

ιακριτά Αντίστροφα Προβλήµατα Πανεπιστήµιο Κρήτης Τµήµα Μαθηµατικών ιακριτά Αντίστροφα Προβλήµατα Σηµειώσεις του Μαθήµατος βασισµένες κυρίως στο Βιβλίο : Geophyscal Data Analyss : Dscrete Inverse Theory του Wllam Menke Μιχάλης Ταρουδάκης

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 (ΚΥΜΑΤΑ) ΚΥΡΙΑΚΗ 27 ΙΑΝΟΥΑΡΙΟΥ 2013 ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Να γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2013 ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να

Διαβάστε περισσότερα

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno. Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου Κβάντωση ηλεκτρικού φορτίου ( q ) Q=Ne Ολικό

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεών σας τον αριθµό

Διαβάστε περισσότερα

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ 1 ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ.. Αν δοκιµαστικό φορτίο q βρεθεί κοντά σε αγωγό που διαρρέεται από ρεύµα, υφίσταται δύναµη κάθετη προς την διεύθυνση της ταχύτητάς του και µε µέτρο ανάλογο της ταχύτητάς του, F qυ Β (νόµος

Διαβάστε περισσότερα

ÈÅÌÁÔÁ 2011 ÏÅÖÅ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β. Α1. δ. Α2. γ. Α3. β. Α4. γ

ÈÅÌÁÔÁ 2011 ÏÅÖÅ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β. Α1. δ. Α2. γ. Α3. β. Α4. γ Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΤΕΥΘΥΝΗ ΦΥΙΚΗ ΘΕΜ. δ. γ 3. β 4. γ 5. α - Λ β - γ - δ - ε - Λ ΘΕΜ Β Β. I. ωστ απάντηση: β II. ΠΝΤΗΕΙ Οι εξωτερικές δνάµεις πο ασκούνται στον δίσκο

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα