ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ"

Transcript

1 ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των ελέγχων: έλεγχος πρόσηµου (sign-test), ο έλεγχος προσηµασµένης διάταξης του Wilcoxon (signed-rank test), ο έλεγχος αθροίσµατος διατάξεων του Wilcoxon (rank sum test) ή Wilcoxon Mann Whitney. Να σκιαγραφηθούν άλλοι γνωστοί µη-παραµετρικοί έλεγχοι. Τέλος να κατανοηθεί µε βάση τα πλεονεκτήµατα και µειονεκτήµατα των µεθόδων πότε γίνεται η χρήση τους. 1 ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ Στους παραµετρικούς ελέγχους (π.χ. t-test ανεξάρτητων δειγµάτων) η κατανοµή της/των µεταβλητών είναι κανονική ή τουλάχιστον προσεγγίζει την κανονική και εκτιµούνται οι άγνωστοι παράµετροι (π.χ. µ) Οι µη-παραµετρικοί εφαρµόζονται όταν δεν γνωρίζουµε την κατανοµή στις µετρήσεις. Για τα παραπάνω καλούνται και µέθοδοι ελεύθερης κατανοµής (distribution-free-methods). Οι έλεγχοι που θα εξετασθούν βασίζονται κυρίως στην διάταξη των µετρήσεων και όχι στις ίδιες τις µετρήσεις. Οι µη παραµετρικοί έλεγχοι που εξετάζονται είναι σε αντιστοιχία όπως και στα t-test ως ανεξάρτητων και ζευγαρωτών µετρήσεων. 2 1

2 Ο προσηµικός έλεγχος (Sign test) Εφαρµόζεται όταν οι µετρήσεις είναι κατά ζεύγη (αν και µπορεί να εφαρµοσθεί σε ένα δείγµα). Στη µηδενική υπόθεση δεχόµαστε ότι η διάµεσος διαφορά είναι 0. ιαφορετικά αν οι τιµές των µεταβλητών προέρχονται από την ίδια κατανοµή ότι ο αριθµός των θετικών διαφορών είναι ίσο µε τον αριθµό των αρνητικών διαφορών. εχόµαστε ότι ο αριθµός των θετικών (αρνητικών) προσήµων του δείγµατος ακολουθεί τη ιωνυµική κατανοµή µε Bi(n, p1/2). ιαφορετικά ότι αναµένουµε µε βάση τη Ho npn/2 θετικά πρόσηµα. Χρησιµοποιούµε την προσέγγιση της κανονικής κατανοµής + n D 2 n /4 D αριθµός θετικών διαφορών Αλλιώς υπολογίζουµε µε βάση τη διωνυµική κατανοµή. 3 Έλεγχος προσηµασµένης διάταξης Wilcoxon (Wilcoxon signed-rank test) Εφαρµόζεται όταν οι µετρήσεις είναι κατά ζεύγη. Στη µηδενική υπόθεση δεχόµαστε ότι η διάµεσος διαφορά είναι 0. Ίδια υπόθεση µε τον προσηµικό έλεγχο. Οι διατάξεις ορίζονται µε βάση την απόλυτη τιµή της διαφοράς, ενώ οι προσηµασµένες διατάξεις προκύπτουν από τη διάταξη επί το πρόσηµο της διαφοράς. Το άθροισµα των θετικών προσηµασµένων διατάξεων προσεγγίζει την κανονική κατανοµή. T T σ Τ µ τ T: άθροισµα προσηµασµένων διατάξεων n (n+1) nn ( + 1)(2n+ 1) µ Τ σ Τ 4 24 Αλλιώς υπολογίζουµε µε βάση στατιστικούς πίνακες. 4 2

3 Παράδειγµα 1. Μια µελέτη διεξήχθη για να διερευνήσει εάν η βρόµη βοηθάει να ελαττωθεί το επίπεδο χοληστερόλης στον ορό σε άνδρες µε υψηλή χοληστερόλη. Σε ένα τυχαίο δείγµα από 14 άνδρες χορηγήθηκαν δύο δίαιτες. Η µία αφορούσε την κατανάλωση πρωινού µε βάση τη βρόµη και η άλλη τον αραβόσιτο. Στη µελέτη καταγράφονται τα επίπεδα χαµηλής πυκνότητας λιποπρωτείνης (LDL) χοληστερόλης, µετά από δύο εβδοµάδες. Στη συνέχεια ο κάθε άνδρας ακολούθησε την άλλη δίαιτα. Μετά από άλλες δύο εβδοµάδες καταγράφηκαν και πάλι τα LDL επίπεδα. Άτο µο Αραβόσιτο ς 4,61 6,42 5,40 4,54 3,98 3,82 5,01 Βρώµη 3,84 5,57 5,85 4,80 3,68 2,96 4,41 Άτο µο Αραβόσιτο ς 4,34 3,80 4,56 5,35 3,89 2,25 4,24 Βρώµη 3,72 3,49 3,84 5,26 3,73 1,84 4,14 5 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (ΠΡΟΣΗΜΙΚΟ ΤΕΣΤ) Βήµα 1ο. Ηο: µ 1 µ 2 (n + n ) Ηα: µ 1 µ 2 (n + µ 2 ) Βήµα 2ο. Εκτίµηση του αριθµού των πρόσηµων, του DΣ+ D Σ+12 Αναµενόµενα θετικά πρόσηµα: np14/27. Βήµα 3ο. Χρήση του προσεγγιστικού -στατιστικού για τη διωνυµική κατανοµή Βήµα 4ο. Σύγκριση µε την κρίσιµη z τιµή 1,96. + n D n /4 14/4 Βήµα 5ο. Επειδή Ζ >1,96 η Ηο απορρίπτεται. υπάρχει διαφορά στις δύο δίαιτες. ιαφορετικά P(D 12)2*(P(D12)+P(D13)+P(D14)) * * 0,

4 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (Wilcoxon ΠΡΟΣΗΜΑΣΜΕΝΗΣ ΙΑΤΑΞΗΣ ) Βήµα 1ο. Ηο: µ χ -µ y 0 εναντίον Ηα: µ χ -µ υ 0 Βήµα 2ο. Εκτίµηση του αθροίσµατος των θετικών προσηµασµένων διατάξεων T 94 µ Τ 52,5 σ15,9 Βήµα 3ο. Χρήση του προσεγγιστικού -στατιστικού T µ Τ 94 52,5 2,54 σ 15,9 Βήµα 4ο. Σύγκριση µε την κρίσιµη z τιµή 1,96. Βήµα 5ο. Επειδή Ζ 2,54 >1,96 η Ηο απορρίπτεται. υπάρχει διαφορά στις δύο δίαιτες. ιαφορετικά ελέγχω από Πίνακες για Wilcoxon Τ 7 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (EXCEL) Προσηµικό test. Χρήση των συναρτήσεων RANK, NORMSINV, NORMSDIST, BINOMDIST 8 4

5 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (EXCEL) Wilcoxon test. Χρήση των συναρτήσεων RANK, NORMSINV, NORMSDIST. 9 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (SPSS) Επιλογή από Analyze-Non Parametric Tests-2 Related Samples 10 5

6 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (SPSS) Descriptive Statistics CORN OATS N Mean Std. Deviation Minimum Maximum 14 4,44,97 2,25 6, ,08 1,06 1,84 5,85 Frequencies OATS - CORN a. OATS < CORN b. OATS > CORN c. OATS CORN Negative Differences Positive Differences Ties c Total b a N Test Statistics b NPAR TEST /WILCOXONcorn WITH oats (PAIRED) /SIGN corn WITH oats (PAIRED) /STATISTICS DESCRIPTIVES /MISSING ANALYSIS. Exact Sig. (2-tailed) OATS - CORN,013 a a. Binomial distribution used. b. Sign Test 11 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (SPSS) Ranks OATS - CORN a. OATS < CORN b. OATS > CORN c. OATS CORN Negative Ranks Positive Ranks Ties Total N Mean Rank Sum of Ranks 12 a 7,75 93,00 2 b 6,00 12,00 0 c 14 Test Statistics b OATS - CORN -2,542 a Asymp. Sig. (2-tailed),011 a. Based on positive ranks. b. Wilcoxon Signed Ranks Test 12 6

7 Έλεγχος Αθροίσµατος διατάξεων του Wilcoxon (Wilcoxon rank sum test) ή (Wilcoxon-Mann-Whitney) Εφαρµόζεται όταν οι µετρήσεις είναι από ανεξάρτητα δείγµατα Προϋπόθεση εφαρµογής είναι οι κατανοµές των δύο δειγµάτων να έχουν την ίδια γενική µορφή. Μηδενική υπόθεση: Οι διάµεσοι των ηλικιών είναι ίδιες Όλες οι τιµές των δειγµάτων διατάσσονται κατά αύξουσα σειρά. Το µικρότερο άθροισµα διατάξεων (W) ακολουθεί προσεγγιστικά κανονική κατανοµή W µ n w S( ns + nl + 1) nn s L( ns + nl + 1) w µ W σ W σ όπου 2 12 w Όπου n S, n L οι αριθµοί των δειγµάτων µε το µικρότερο και µεγαλύτερο άθροισµα διατάξεων αντίστοιχα. Αλλιώς υπολογίζουµε µε βάση στατιστικούς πίνακες. 13 Παράδειγµα 2. Εξετάστηκαν και για τα δύο φύλα, τα χαρακτηριστικά των βρεφών µε χαµηλό βάρος κατά τη γέννηση που πέθαναν από σύνδροµο αιφνίδιου θανάτου. Οι ηλικίες κατά το χρόνο θανάτου για δείγµατα 11 κοριτσιών και 16 αγοριών, παρουσιάζονται στον παρακάτω πίνακα. Ελέγξτε εάν διαφοροποιούνται οι διάµεσοι χρόνοι επιβίωσης. Ηλικία (Ηµέρες) Αγό ρια Κο ρίτσ ια

8 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 2 (Wilcoxon Μann - Whitney) Βήµα 1ο. Ηο: X και Υ έχουν την ίδια κατανοµή Ηα: Χ και Υ δεν έχουν την ίδια κατανοµή Βήµα 2ο. Εκτίµηση του αθροίσµατος των θετικών διατάξεων W L 221 W k 157 N s 11 N L 16 µ W 154 s w 20,265 Βήµα 3ο. Υπολογισµός του w W µ w ,148 σ 20,265 w Βήµα 4ο. Υπολογισµός της κρίσιµης τιµής crit. crit Βήµα 5o. H Ho είναι αποδεκτή. Η κατανοµή των Χ, Υ είναι ίδια. Συνεπώς οι διάµεσοι χρόνοι επιβίωσης για τα δύο φύλα είναι ίδιοι. 15 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 2 (EXCEL) Συναρτήσεις που χρησιµοποιήθηκαν RANK Π.χ. RANK(B2; $B$2:$B$28; 1) NORMSINV NORMSDIST 16 8

9 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 2 (SPSS) Επιλογή από Analyze-Non Parametric Tests-2 Independent Samples 17 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 2 (SPSS) Ranks SURV GENDER Female Male Total N Mean Rank Sum of Ranks 11 14,27 157, ,81 221,00 27 Test Statistics b Mann-Whitney U Wilcoxon W Asymp. Sig. (2-tailed) Exact Sig. [2*(1-tailed Sig.)] a. Not corrected for ties. SURV 85, ,000 -,148,882,904 a b. Grouping Variable: GENDER SURV GENDER Descriptive Statistics N Mean Std. DeviationMinimumMaximum ,48 51, ,59, NPAR TESTS /M-W surv BY gender(0 1) /STATISTICS DESCRIPTIVES /MISSING ANALYSIS. 18 9

10 ΓΝΩΣΤΟΙ ΜΗ ΠΑΡΑΜΕΤΡΙΚΟΙ ΕΛΕΓΧΟΙ Kruskal-Wallis. Μη παραµετρικός έλεγχος αντίστοιχος της ανάλυσης διασποράς. Εξετάζει αν τα δείγµατα προέρχονται από την ίδια κατανοµή. Friedman. Μη παραµετρικός έλεγχος. Γενίκευση του προσηµικού test για περισσότερα από 2 συσχετισµένα δείγµατα. Kolmogorov-Smirnov 2 δειγµάτων. Χρησιµοποιείται για ανεξάρτητα δείγµατα και ελέγχει εάν προέρχονται από την ίδια κατανοµή χ 2 -καλής προσαρµογής. Ελέγχει εάν οι πειραµατικές τιµές ακολουθούν µια γνωστή κατανοµή. χ 2 -για πίνακες συνάφειας. Ελέγχει εάν υπάρχει συσχέτιση σε ένα πίνακα συνάφειας µεταξύ δύο µεταβλητών Mc-Nemar. Ελέγχει εάν υπάρχει µεταβολή σε πίνακες συνάφειας 2x2. Εφαρµόζεται σε επαναληπτικές διαδικασίες. 19 ΣΥΖΗΤΗΣΗ Ποιους ελέγχους θα πρέπει να χρησιµοποιώ; Παραµετρικούς ή µη παραµετρικούς; ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ εν απαιτούν περιοριστικές υποθέσεις. Μεγαλύτερη ταχύτητα στους υπολογισµούς. Είναι λιγότερο ευαίσθητοι στις ακραίες τιµές ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ Όταν ισχύουν οι προϋποθέσεις για τους παραµετρικούς παρουσιάζουν µικρότερη ισχύ. Πως θα ελέγξω την κανονικότητα των δεδοµένων; Άλλη αντιµετώπιση Μετασχηµατισµός των µετρήσεων 20 10

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια Κεφάλαιο 7 Μη Παραµετρικά Κριτήρια Παραµετρικά Κριτήρια Τα παραµετρικά κριτήρια είναι στατιστικά κριτήρια που απαιτούν την ικανοποίηση συγκεκριµένων προϋποθέσεων είτε αναφορικά µε συγκεκριµένες παραµέτρους

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

έρευνας και στατιστική» παραμετρικές συγκρίσεις»

έρευνας και στατιστική» παραμετρικές συγκρίσεις» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Μεθοδολογία έρευνας και στατιστική» Μάθημα μεταπτυχιακού κύκλου σπουδών Διάλεξη: «Μη παραμετρικές συγκρίσεις» ΔΙΔΑΣΚΩΝ: Δρ. Αθανάσιος

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙO 5 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ Στο προηγούμενο κεφάλαιο εξετάσαμε διάφορες μορφές ελέγχου της υπόθεσης ότι ένα δείγμα παρατηρήσεων προέρχεται από κάποια συγκεκριμένη κατανομή. Στην

Διαβάστε περισσότερα

Μη Παραµετρικοί Έλεγχοι

Μη Παραµετρικοί Έλεγχοι Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα

Διαβάστε περισσότερα

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance) ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ

Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ Ονοματεπώνυμο: ΜΟΙΡΑΣΓΕΤΗ ΦΩΤΕΙΝΗ Σειρά: 10 Επιβλέπων Καθηγητής: ΑΔΑΜ ΒΡΕΧΟΠΟΥΛΟΣ Δεκέμβριος 2013 ΕΙΣΑΓΩΓΗ Σκοπός της έρευνας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

ΑΡΧΙΜΙ ΗΣ ΙΙΙ. Ενίσχυση Ερευνητικών Οµάδων στο ΤΕΙ Πάτρας ΓΙΩΡΓΟΣ ΒΛΑΧΟΠΟΥΛΟΣ 28/05/2015

ΑΡΧΙΜΙ ΗΣ ΙΙΙ. Ενίσχυση Ερευνητικών Οµάδων στο ΤΕΙ Πάτρας ΓΙΩΡΓΟΣ ΒΛΑΧΟΠΟΥΛΟΣ 28/05/2015 ΑΡΧΙΜΙ ΗΣ ΙΙΙ Ενίσχυση Ερευνητικών Οµάδων στο ΤΕΙ Πάτρας ΓΙΩΡΓΟΣ ΒΛΑΧΟΠΟΥΛΟΣ 8/05/05. Εισαγωγή Τοµείς Στατιστικής. Περιγραφική Στατιστική. Επαγωγική Στατιστική Περιγραφική Στατιστική Ασχολείται µε την

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Έλεγχος κανονικότητας P-P Plot και Q-Q Plot Τεστ Κανονικότητας Τεστ Κανονικότητας

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΘΗΝΑ, 2001 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ iii ix ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1 1.1

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Διπλωματική Εργασία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Διπλωματική Εργασία ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Διπλωματική Εργασία Σχολική Αποτυχία Η περίπτωση του Νομού Λέσβου Επιβλέπων Καθηγητής : Τσομπάνογλου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21

ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 Πίνακας Περιεχομένων Πρόλογος... 17 ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 (Basic Sampling Techniques and Questionnaire Analysis using

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών

Διαβάστε περισσότερα

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39 41 Περιεχόμενα Ξενάγηση στο βιβλίο 25 Ξενάγηση στο συνοδευτικό CD 27 Εισαγωγή 29 Ευχαριστίες 33 Οι βασικές διαφορές μεταξύ του SPSS 16 και των προηγούμενων εκδόσεων 35 Μέρος 1 Εισαγωγή στο SPSS 37 1 Βασικές

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

if code='1' then type='fixed'; else if code='2' then type='variable'; else type='unknown'; ΚΕΦΑΛΑΙΟ 2

if code='1' then type='fixed'; else if code='2' then type='variable'; else type='unknown'; ΚΕΦΑΛΑΙΟ 2 Πολλές φορές, αντί να χρησιμοποιούμε μια σειρά από IF-THEN εντολές, μπορούμε να χρησιμοποιήσουμε την εντολή ELSE, για να δηλώσουμε μια εναλλακτική ενέργεια όταν η συνθήκη στην IF-THEN εντολή δεν ικανοποιείται.

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1

Διαβάστε περισσότερα

Ενότητα 4: Πίνακες συνάφειας (Contingency tables)

Ενότητα 4: Πίνακες συνάφειας (Contingency tables) Ενότητα 4: Πίνακες συνάφειας (Cotigecy tables Σε αρκετές εφαρµογές παρουσιάζεται η ανάγκη ελέγχου της σχέσης µεταξύ δυο κατηγορικών µεταβλητών (Ordial ή omial. Π.χ. θέλουµε να διερευνήσουµε τη σχέση µεταξύ

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Α/Α ΗΛΙΚΙΑ ΦΥΛΟ ΕΠΙΔΟΣΗ ΕΚΠΑΙΔΕΥΣΗ Α/Α ΗΛΙΚΙΑ ΦΥΛΟ ΕΠΙΔΟΣΗ ΕΚΠΑΙΔΕΥΣΗ

Α/Α ΗΛΙΚΙΑ ΦΥΛΟ ΕΠΙΔΟΣΗ ΕΚΠΑΙΔΕΥΣΗ Α/Α ΗΛΙΚΙΑ ΦΥΛΟ ΕΠΙΔΟΣΗ ΕΚΠΑΙΔΕΥΣΗ Στον πίνακα που ακολουθεί δίδονται οι επιδόσεις 30 ατόμων σε ένα ψυχομετρικό test, που προσήλθαν ως υποψήφιοι για πρόσληψη σε τραπεζικό οργανισμό. Οι επιδόσεις αυτές συνοδεύονται και από το φύλο κάθε ατόμου,

Διαβάστε περισσότερα

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011

ROEHAMPTON UNIVERSITY MA IN EDUCATION Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 Ι.Τ.Ε. ROEHAMPTON UNIVERSITY MA IN EDUCATION ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΤΟ SPSS Ρ ΚΟΡΡEΣ ΚΩΝΣΤΑΝΤIΝΟΣ ΑΘΗΝΑ 2011 ΕΚΚΙΝΗΣΗ ΤΟΥ SPSS Από την Έναρξη των Windows, επιλέγουµε: Προγράµµατα SPSS for Windows SPSS *.*

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress.

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress. ΣΤΑΤΙΣΤΙΚΗ Ι Η Ύλη του µαθήµατος είναι στις διαφάνειες (slides) τα οποία καλύφθηκαν στην τάξη και βρίσκονται στην ιστοσελίδα: ανεξάρτητα µε το πιο βιβλίο που χρησιµοποιείται. Μερικά από τα θέµατα καλύπτονται

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

ΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΑΣΙΣΜΕΝΕΣ ΣΤΙΣ ΤΑΞΕΙΣ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΕΝΟΣ Ή ΔΥΟ ΔΕΙΓΜΑΤΩΝ (Methods Based on Ranks)

ΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΑΣΙΣΜΕΝΕΣ ΣΤΙΣ ΤΑΞΕΙΣ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΕΝΟΣ Ή ΔΥΟ ΔΕΙΓΜΑΤΩΝ (Methods Based on Ranks) ΚΕΦΑΛΑΙΟ 3 ΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΑΣΙΣΜΕΝΕΣ ΣΤΙΣ ΤΑΞΕΙΣ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΕΝΟΣ Ή ΔΥΟ ΔΕΙΓΜΑΤΩΝ (Methods Based on Ranks) Στο κεφάλαιο αυτό, εξετάζονται ορισμένες τεχικές ανάλυσης δεδομένων, οι

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΔΟΚΙΜΑΣΙΑ ΕΚΦΡΑΣΗΣ. ΔΟΚΙΜΑΣΙΑ ΚΑΤΑΝΟΗΣΗΣ ΛΕΞΙΛΟΓΙΟΥ ΑΠΟ ΕΙΚΟΝΑ 3 η ΕΚΔΟΣΗ ΕΚΔΟΣΗ

ΔΟΚΙΜΑΣΙΑ ΕΚΦΡΑΣΗΣ. ΔΟΚΙΜΑΣΙΑ ΚΑΤΑΝΟΗΣΗΣ ΛΕΞΙΛΟΓΙΟΥ ΑΠΟ ΕΙΚΟΝΑ 3 η ΕΚΔΟΣΗ ΕΚΔΟΣΗ Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ & ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ ΔΟΚΙΜΑΣΙΑ ΚΑΤΑΝΟΗΣΗΣ ΛΕΞΙΛΟΓΙΟΥ ΑΠΟ ΕΙΚΟΝΑ 3 η ΕΚΔΟΣΗ ΔΟΚΙΜΑΣΙΑ ΕΚΦΡΑΣΗΣ ΛΕΞΙΛΟΓΙΟΥ ΑΠΟ ΕΙΚΟΝΑ 3 η ΕΚΔΟΣΗ ROWPVT & EOWPVT (ΜΙΑ ΣΥΝΔΥΑΣΤΙΚΗ

Διαβάστε περισσότερα

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή 4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙΟ 4

ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΓΧΟΙ ΚΑΤΑΝΟΜΩΝ Οι πληθυσμοί, ανεξάρτητα από το αν έχουν ίδιες θέσεις (ίσες μέσες τιμές) ή ίσες διασπορές, ενδέχεται να διαφέρουν πάρα πολύ ως προς άλλα χαρακτηριστικά τους. Έτσι, οι έλεγχοι

Διαβάστε περισσότερα

6.4. LOGLINEAR 90 8.5 (MANOVA) 121

6.4. LOGLINEAR 90 8.5 (MANOVA) 121 Φ Γ SPSS Dr. υ υ α α Θ α 2012 2 1. Γ SPSS 19.0 1.1 Φ Γ SPSS 4 1.2 Φ Γ 7 1.3 9 1.4 Φ 10 1.5 Pτ ΘHKH IAΓPAΦH 16 1.6 16 1.7 17 1.8 20 1.9 22 1.10 Γ 23 1.11 Γ Φ 25 1.12 Γ 27 1.13 Θ 28 2. Γ Φ 2.1 Θ, Γ, Γ 29

Διαβάστε περισσότερα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή

Διαβάστε περισσότερα

ROWPVT & EOWPVT (ΜΙΑ ΣΥΝΔΥΑΣΤΙΚΗ ΠΙΛΟΤΙΚΗ ΜΕΤΑΦΟΡΑ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥΣ ΣΤΗΝ ΗΛΙΚΙΑΚΗ ΟΜΑΔΑ ΤΩΝ ΕΞΙ ΕΤΩΝ ΕΩΣ ΕΞΙ ΕΤΩΝ ΚΑΙ 11 ΜΗΝΩΝ)

ROWPVT & EOWPVT (ΜΙΑ ΣΥΝΔΥΑΣΤΙΚΗ ΠΙΛΟΤΙΚΗ ΜΕΤΑΦΟΡΑ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥΣ ΣΤΗΝ ΗΛΙΚΙΑΚΗ ΟΜΑΔΑ ΤΩΝ ΕΞΙ ΕΤΩΝ ΕΩΣ ΕΞΙ ΕΤΩΝ ΚΑΙ 11 ΜΗΝΩΝ) Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ & ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ ΔΟΚΙΜΑΣΙΑ ΚΑΤΑΝΟΗΣΗΣ ΛΕΞΙΛΟΓΙΟΥ ΑΠΟ ΕΙΚΟΝΑ 3 η ΕΚΔΟΣΗ ΔΟΚΙΜΑΣΙΑ ΕΚΦΡΑΣΗΣ ΛΕΞΙΛΟΓΙΟΥ ΑΠΟ ΕΙΚΟΝΑ 3 η ΕΚΔΟΣΗ ROWPVT & EOWPVT (ΜΙΑ ΣΥΝΔΥΑΣΤΙΚΗ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΥΗΣΕΩΝ ΚΑΙ ΝΕΟΓΝΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΥΗΣΕΩΝ ΚΑΙ ΝΕΟΓΝΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 17 ου Πανελληνίου Συνεδρίου Στατιστικής (2004), σελ. 399-408 ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΥΗΣΕΩΝ ΚΑΙ ΝΕΟΓΝΩΝ Γεωργία Στεφάνου και Τάσος Χριστοφίδης Τµήµα Μαθηµατικών και

Διαβάστε περισσότερα

Π Α Ρ Α Ρ Τ Η Μ Α. Πίνακας 9. p ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon

Π Α Ρ Α Ρ Τ Η Μ Α. Πίνακας 9. p ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon ΠΙΝΑΚΕΣ Π Α Ρ Α Ρ Τ Η Μ Α Πίνακας 1. Διωνυμική Κατανομή Πίνακας 2. Τυποποιημένη Κανονική Κατανομή Πίνακας 3. Oρια Εμπιστοσύνης για την Πιθανότητα p της Διωνυμικής Κατανομής Πίνακας 4. Ποσοστιαία Σημεία

Διαβάστε περισσότερα

Στατιστική Επαγωγή με τα Οφθαλμολογικά Δεδομένα

Στατιστική Επαγωγή με τα Οφθαλμολογικά Δεδομένα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οπτική και Όραση Στατιστική Επαγωγή με τα Οφθαλμολογικά Δεδομένα Καρακώστα Άννα Επιβλέπουσα καθηγήτρια : Ιωάννα Μοσχανδρέα ΓΕΝΙΚΑ Εισαγωγή Σκοπός και στόχοι της έρευνας Ανασκόπηση δημοσιευμένων

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Μάθηµα 3 ο. Περιγραφική Στατιστική

Μάθηµα 3 ο. Περιγραφική Στατιστική Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι

= p 20 1 p 18. 1 p Το σημείο στο οποίο μηδενίζεται η παραπάνω μερική παράγωγος είναι Άσκηση 1 i) Σε κάθε παρατήρηση περιλαμβάνεται ένας έλεγχος (ο τελευταίος) κατά τον οποίο εμφανίστηκε το πρώτο ελαττωματικό της παραγωγικής διαδικασίας. Επομένως, ο αριθμός ελέγχων που έγιναν πριν εμφανιστεί

Διαβάστε περισσότερα

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Πως μπορούμε να συγκρίνουμε μεταβλητές μεταξύ τους? Διαφορά συγκρίνοντας το μέσο μιας μεταβλητής (λόγος ή διάστημα) στις ομάδες πχ. t-test

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Εργαστήριο Μαθηματικών & Στατιστικής 2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Ας θεωρήσουμε ότι είναι γνωστό από στοιχεία της Παγκόσμιας Οργάνωσης Υγείας ότι οι τιμές χοληστερίνης στον πληθυσμό έχουν

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ROWPVT & EOWPVT 3 rd Edition (Μια συνδυαστική πιλοτική μεταφορά και αξιολόγηση τους στην ηλικιακή ομάδα των 2 ετών έως 2 ετών και 11 μηνών)

ROWPVT & EOWPVT 3 rd Edition (Μια συνδυαστική πιλοτική μεταφορά και αξιολόγηση τους στην ηλικιακή ομάδα των 2 ετών έως 2 ετών και 11 μηνών) ΠΑΡΟΥΣΙΑΣΗ ΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ: ROWPVT & EOWPVT 3 rd Edition (Μια συνδυαστική πιλοτική μεταφορά και αξιολόγηση τους στην ηλικιακή ομάδα των 2 ετών έως 2 ετών και 11 μηνών) Κουμούλλη Τσαμπίκα (Α.Μ.: 10155)

Διαβάστε περισσότερα

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Το πρώτο βήμα στην ανάλυση ενός συνόλου δεδομένων, που αποτελούν μετρήσεις ενός δείγματος είναι η παρουσίαση και σύνοψη των πληροφοριών

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ

ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΑΝΑΓΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ Μελέτη ποιοτικών χαρακτηριστικών ξενοδοχείων Συμβουλευτικές υπηρεσίες από εσωτερικούς

Διαβάστε περισσότερα

Στατιστικές μέθοδοι ανάλυσης δεδομένων

Στατιστικές μέθοδοι ανάλυσης δεδομένων ΕΦΑΡΜΟΣΜΕΝΗ ΙΑΤΡΙΚΗ ΕΡΕΥΝΑ APPLIED MEDICAL RESEARCH ÁÑ ÅÉÁ ÅËËÇÍÉÊÇÓ ÉÁÔÑÉÊÇÓ 2009, 26(5):699-711 Στατιστικές μέθοδοι ανάλυσης δεδομένων 1. Εισαγωγή 2. Επίπεδο στατιστικής σημαντικότητας 3. Είδη δεδομένων

Διαβάστε περισσότερα

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ

Σύντομο Εγχειρίδιο SPSS 16.0. Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ Πέτρος Ρούσσος & Γιώργος Ευσταθίου Πρόγραμμα Ψυχολογίας, Τμήμα ΦΠΨ, ΕΚΠΑ ΑΘΗΝΑ 2008 [2] Περιεχόμενα Δυο λόγια εισαγωγικά... 3 1.0 Το περιβάλλον του SPSS... 3 2.0 Εισαγωγή και διαχείριση δεδομένων... 6

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 249-258 Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Μανώλης Μανατάκης Τμήμα Μηχανολόγων και Αεροναυπηγών

Διαβάστε περισσότερα

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes:

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes: ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 6 ΙΑΓΝΩΣΤΙΚΟΙ ΕΛΕΓΧΟΙ 1.β ιαγνωστικοί Έλεγχοι Πολύ σηµαντικό το θεώρηµα

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., -) (Επιµέλεια: Ελευθεράκη Αναστασία) Άσκηση (Εργαστήριο #) Στις εξετάσεις Φεβρουαρίου του µαθήµατος

Διαβάστε περισσότερα