Ανασκόπηση Κβαντικής Μηχανικής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανασκόπηση Κβαντικής Μηχανικής"

Transcript

1 Ανασκόπηση Κβαντικής Μηχανικής I. Τα 3 χρόνια που άλλαξαν τη Φυσική II. Αξιώματα Κβαντικής Μηχανικής III. Η χρονικώς ανεξάρτητη εξίσωση του Scödg IV. Αρχή αβεβαιότητας V. Συμβολισμός Dac ba-kt VI. Παραδείγματα λύσης εξίσωσης του Scödg διάστατο φρεάτιο δυναμικού - περιστροφή σε και 3 διαστάσεις - το άτομο του υδρογόνου VII. Πολυ-ηλεκτρονικά άτομα Aufbau απαγορευτική αρχή Pau VIII. Ατομική φασματοσκοπία φασμ. όροι κανόνες επιλογής IX. Θεωρία διαταραχών X. Πιθανότητες μεταπτώσεων

2 Τα 3 χρόνια που άλλαξαν τη Φυσική * Υπόθεση Pack 9: Κβάντωση της ενέργειας του φωτός Nob Φυσικής 98 ν - Ακτινοβολία μέλανος σώματος είναι η σταθερά του Pack Js st 95: Nob Φυσικής 9 Δυαδική φύση του φωτός. ΦΩΣ : η/μ κύμα σωματίδιο φωτόνιο ν p - Ερμηνεία φωτοηλεκτρικού φαινομένου - Θερμοχωρητικότητα στερεών κβάντωση ενέργειας ύλης λ G. Gaow T 3 yas tat sook Pyscs Dov d. Σ. Τραχανάς Κβαντομηχανική Ι ΠΕΚ

3 Τα 3 χρόνια που άλλαξαν τη Φυσική Rutfod : Πλανητικό μοντέλο ατόμου Κίνηση ηλεκτρονίων σε καθορισμένες τροχιές γύρω από τον πυρήνα. Ns Bo 93-6: Οι ενεργειακές καταστάσεις των ατόμων είναι κβαντισμένες Κβάντωση της στροφορμής του ηλεκτρονίου Nob Φυσικής 4 9 μ 8 ε o - Ερμηνεία φάσματος εκπομπής υδρογόνου ν ttp://obp.og/ob_ps/sts/a/ 3

4 Τα 3 χρόνια που άλλαξαν τη Φυσική Lous d Bog 94: Η ύλη έχει δυαδική μορφή δηλ συμπεριφέρεται ως κύμα με μήκος κύματος λ και ως σωματίδιο με μάζα Nob Φυσικής και ταχύτητα u. Οι δύο μορφές συνδέονται με την 99 σχέση: λ p u είναι η σταθερά του Pack Js. Scödg 96 : Περιγραφή συστήματος σωματιδίων με βάση την κυματική εξίσωση Nob Φυσικής ΚΥΜΑΤΟΜΗΧΑΝΙΚΗ 933 W. Hsbg 96 : KBANTOMHXANIKH Nob Φυσικής 93 H y t y t 4

5 Αξιώματα της Κβαντικής Μηχανικής. ΣυνάρτησηκαταστάσεωςήΚυματοσυνάρτηση Όλη η πληροφορία σχετικά με την κατάσταση ενός φυσικού συστήματος περιγράφεται πλήρως από την κυματοσυνάρτηση : t Η t είναι η πεπερασμένη και συνεχής Η t είναι μονότιμη. Τελεστές Σε κάθε μετρήσιμη/παρατηρήσιμη φυσική ιδιότητα Α αντιστοιχεί ένας τελεστής Â ο οποίος ικανοποιεί μια εξίσωση ιδιοτιμής : Â α : ιδιοσυνάρτηση α : ιδιοτιμή 5

6 Αξιώματα της Κβαντικής Μηχανικής 3. Μέσοςόροςφυσ. ιδιότητας Αναμενόμενη τιμή τελεστή Η μέση τιμή παρατηρήσιμης ιδιότητας συστήματος το οποίο περιγράφεται από δεδομένη κυματοσυνάρτηση ισούται με την αναμενόμενη τιμή του αντίστοιχου τελεστή. Ω * Ω d * Ω d 4. Αξίωμα του Bo 97 Εάν t είναι η κυματοσυνάρτηση που περιγράφει κάποιο σωματίδιο / κύμα τότε *ttd είναι η πιθανότητα ότι την χρονική στιγμή t σωματίδιο βρίσκεται μεταξύ της θέσεως και d. 5. Χρονική εξέλιξη κυματοσυνάρτησης Η χρονική εξέλιξη της κυματοσυνάρτηση ενός συστήματος περιγράφεται από την εξίσωση του Scödg : Ω Ω t H V 6

7 Έστω σωματίδιο που περιγράφεται από την κυματοσυνάρτηση : Η πιθανότητα το σωματίδιο να βρίσκεται στη θέση d είναι γενικά : Στις θέσεις και : Παράδειγμα / / P P P π * a Η πιθανότητα το σωματίδιο να βρίσκεται σε όλο το χώρο είναι : Ρ π.67p / * / P d d π Κανονικοποίηση κυματοσυνάρτησης 7

8 Κατανομή πιθανότητας της συνάρτησης Gauss P P P * a π.67p / D.C. Has M. D. Btoucc Syty ad Spctoscopy Dov 978 8

9 Παράδειγμα Έστω σωματίδιο που περιγράφεται από την κυματοσυνάρτηση : / / π Να υπολογιστούν:. η μέση τιμή της θέσης του. η μέση τιμή του τετραγώνου της θέσης του π π / / d d... π π / / d d... 9

10 Ω Ω Μέσος όρος ή αναμενόμενη τιμή ενός τελεστή Ε Η Ε Η Η ή * * λύσεις με ή d d V Η χρονικώς χρονικώς ανεξάρτητη ανεξάρτητη εξίσωση εξίσωση του του Sc Scödg dg Μεταθέτης: [ΑΒ]ΑΒ ΒΑ t t t p p p δ δ ] [ δ δ δ δ ] [ δ δ Αρχή Αρχή του του Hbg Hbg δ ] [ δ δ Α Α A B A B A

11 Η χρονικώς ανεξάρτητη εξίσωση του Scödg Η Ε Λύση της εξίσωσης : - Κυματοσυνάρτηση y ιδιοσυνάρτηση - Ενέργεια Ε ιδιοτιμές - Κάθε φυσική ιδιότητα Α που περιγράφεται από αντίστοιχο τελεστή Â * A d < A > * d Ĥ : Χαμιλτωνιανή του συστήματος Hato Κλασσική Μηχανική : Η Κ.Ε. Δ.Ε. Κβαντική Μηχανική : Ĥ [ p ] V [ p ] V

12 Η χρονικώς ανεξάρτητη εξίσωση του Scödg Η Ε Λύση της εξίσωσης : - Κυματοσυνάρτηση y ιδιοσυνάρτηση - Ενέργεια Ε ιδιοτιμές - Κάθε φυσική ιδιότητα Α που περιγράφεται από αντίστοιχο τελεστή Â. Άπειρες ιδιοσυναρτήσεις με αντίστοιχες ιδιοτιμές Ε. j και j τότε οι και j ονομάζονται εκφυλισμένες 3. c : αποτελεί επίσης λύση της εξίσωσης 4. a b j : αποτελούν λύση της εξίσωσης όταν και j : εκφυλισμένες 5. Οι μη εκφυλισμένς ιδιοσυναρτήσεις είναι ορθογώνιες * j d * j d

13 Διασπορά μέτρησης - Αρχή της αβεβαιότητας Μέσοςόροςφυσ. ιδιότητας Αναμενόμενη τιμή τελεστή Η μέση τιμή παρατηρήσιμης ιδιότητας Α συστήματος το οποίο περιγράφεται από δεδομένη κυματοσυνάρτηση ισούται με την αναμενόμενη τιμή του αντίστοιχου τελεστή. A * A d * d Διασπορά τυπική απόκλιση της μέσης τιμής σ A δa Α Α 3

14 4 Αρχή Αρχή της της αβεβαιότητας αβεβαιότητας W. Hsbg Δεν είναι δυνατή η ταυτόχρονη μέτρηση δύο φυσικών ποσοτήτων χωρίς πεπερασμένη αβεβαιότητα. t t t p p p δ δ ] [ δ δ δ δ ] [ δ δ

15 Συμβολισμός Dac ή Ba-Kt backt Συμβολίζουμε το ολοκλήρωμα του γινομένου δύο καταστατικών συναρτήσεων και Φ ως εξής : Φ < : ba-vcto * Φ d Φ> : kt-vcto Έστω α : μιγαδικός αριθμός και * Φ d < Ισχύουν οι κανόνες :. aφ a Φ. a Φ a * Φ 3. Φ * Φ 4. Φ Φ 5. Φ Φ Φ Φ Φ Φ Φ Φ 5

16 Συμβολισμός Dac ή Ba-Kt backt Η Ε V Η χρονικώς ανεξάρτητη εξίσωση του Scödg Ε Η Αναμενόμενη τιμή τελεστή Κανονικοποίση j Ορθογωνικότητα j j δ j δ δ j j για για j j Συνθήκη ορθοκανονικότητας δ j : δέλτα Kock 6

17 Εφαρμογές. Σωματίδιο σε μονoδιάστατο φρεάτιο δυναμικού D V <<L V < >L d d 6 4 L 8L L π s L 3... Ενέργεια X Παρατηρήσεις. Πιθανότητα θέσης του σωματιδίου για 3. Επίδραση εύρους φρέατος L στις ενεργειακές στάθμες * V s L 7 π L

18 Εφαρμογές. Σωματίδιο σε μονoδιάστατο φρεάτιο δυναμικού D Αρχή της αβεβαιότητας. Να υπολογιστούν : <> < > <p > <p > δδp Τι παρατηρείτε για τον τελεστή p?. Έστω : 4 Να υπολογιστεί η αναμενόμενη τιμή της ενέργειας <Ε> Τι παρατηρείτε? 3. Γενίκευση για : Σc 4. Να δείξετε οτι οι ιδιοσυναρτήσεις και j είναι ορθογώνιες για j 8

19 9 Εφαρμογές Εφαρμογές. Σωματίδιο σε τρισδιάστατο φρεάτιο 3D y y y L L L y y y y y y Εάν οι το φρεάτιο είναι κυβικό τότε έχουμε εκφυλισμένα με την ίδια ενέργεια ενεργειακά επίπεδα π.χ. Ε 3 Ε 3 Ε 3 Συμμετρία φρεατίου και εκφυλισμός Προβλήματα. Στην περίπτωση φρεατίου D με διαστάσεις y y5 και y4 να προσδιοριστεί η ενέργεια που αντιστοιχεί στις χαμηλότερες καταστάσεις και να παρασταθεί διγραμματικά. Μελέτη φασμάτων απορρόφησης και χρώματος γραμμικών ακόρεστων υδρογονανθράκων της οικογένειας του καροτένιου ως συνάρτηση του αριθμού των ατόμων άνθρακα y y y

20 3. Σωματίδιο σε δακτύλιο Περιστροφή D d Φ ϕ dϕ Φ ϕ Φ φ π φ και I ± ±... Κβάντωση ενέργειας περιστροφής Φ φ Φ φ π Συνοριακή συνθήκη Ι είναι η Ροπή Αδράνειας RΦφ Φ φ Φ * φ π 4

21 4. Σωματίδιο Σωματίδιο σε σε επιφάνεια επιφάνεια σφαίρας σφαίρας Περιστροφή Περιστροφή 3D 3D s s s θ θ θ θ φ θ Λ Λ y y y y y Για τη λύση : θφθθφφ d : Τελεστής Lapac Λ : Lgda

22 4. Σωματίδιο σε επιφάνεια σφαίρας Περιστροφή 3D Y Θ Φ θ ϕ Θ θ Φ ϕ! θ P cosθ! ϕ ϕ ± ±... ± π Υ : Σφαιρικές αρμονικές Θ : Πολυώνυμα Lgd Y Y Y Y Y

23 4. Σωματίδιο σε επιφάνεια σφαίρας Περιστροφή 3D Y Θ Φ θ ϕ Θ θ Φ ϕ! θ P cosθ! ϕ ϕ ± ±... ± π Υ : Σφαιρικές αρμονικές Θ : Πολυώνυμα Lgd... Κβάντωση ενέργειας περιστροφής I L... L ± ±... Κβάντωση στροφορμής LLcosθ 3

24 5. Το άτομο του Υδρογόνου κίνηση σωματιδίου σε κεντρικό δυναμικό Σύστημα σωματιδίων Πυρήνας ατόμου πρωτόνιο φορτίο Ηλεκτρόνιο φορτίο - Χαμιλτωνιανή Κινητική ενέργεια πυρήνα Κινητική ενέργεια ηλεκτρονίου Ηλεκτροστατική αλληλεπίδραση Couob H T T N V -N Η p p N N V N V N Z 4πε o N 4

25 5 5. Το Το άτομο άτομο του του Υδρογόνου Υδρογόνου Z: Ατομικός Αριθμός : 6 9 C ε : 8854 C /J μ: ανηγμένη μάζα {πρωτονίου } V V M V c p p μ μ p o Z V 4 μ πε ξίσωση του Scödg για την εσωτερική δομή του ατόμου y και y p κέντρο μάζας και y εσ [ ] !! / Z a a Z L a Z R Y R o o < ε π μ πε μ πε ρ ρ ρ ϕ θ ϕ θ ρ

26 5. Το Το άτομο άτομο του του Υδρογόνου Υδρογόνου V V M V c p p μ μ ξίσωση του Scödg για την εσωτερική δομή του ατόμου ε γ ε γ ε γ ε γ μ πε μ Λ Λ Λ Y Y R R RY RY Y R Y R Z o y θφ θφ RYθφ διαχωρισμός μεταβλητών επί /RY p p o M Z V 4 μ πε Z: Ατομικός Αριθμός : 6 9 C ε : 8854 C /J μ: ανηγμένη μάζα {πρωτονίου } y και y p κέντρο μάζας και y εσ

27 5. Το άτομο του Υδρογόνου R R Y γ Λ Y ε R Λ Y γ ε R Y Λ Y C Y R γ ε C R γ d R R εr d επί Γωνιακή συνιστώσα Σφαιρικές αρμονικές C Ακτινική συνιστώσα ξίσωση του Scödg με δυναμικό Z V 4πε o μ 7

28 8 5. Το Το άτομο άτομο του του Υδρογόνου Υδρογόνου Z: Ατομικός Αριθμός : 6 9 C ε : 8854 C /J μ: ανηγμένη μάζα {πρωτονίου } V p p [ ] !! / R Z a a Z L a Z R Y R H o o o < ε π μ πε μ πε ρ ρ ρ ϕ θ ϕ θ ρ Ακτίνα Bo 5.9Ǻ R H : Σταθερά Rydbg 3.6 V ή c -

29 5. Το άτομο του Υδρογόνου Z R a Z ρ a a o o 4πε μ θ ϕ 3 4 4μZ 3π ε o R p V Καλοί Κβαντικοί Αριθμοί: : Κύριος Κβαντικός Αριθμός : Τροχιακή Στροφορμή : Στροφορμή ως προς τον άξονα s : Sp p Y 4πε [! ] θ ϕ! 3 Z: Ατομικός Αριθμός : 6 9 C ε : 8854 C /J μ: ανηγμένη μάζα {πρωτονίου } R H ρ L ρ ρ / 3... < 4π R s s p Αρχή του Pau: Σε ένα άτομο δύο ηλεκτρόνια δεν μπορούν να ταυτίζουν και τους 4 καλούς 9 κβαντικούς αριθμούς.

30 5. Το άτομο του Υδρογόνου Κβαντικοί αριθμοί κύριος Ενέργεια τροχιακού Μέγεθος τροχιακού τροχιακός - Στροφορμή Σχήμα τροχιακού μαγνητικός ± ±... ± Προσανατολισμός τροχιακού s μαγνητικός sp / Προσανατολισμός sp 3

31 5. Το άτομο του Υδρογόνου s ατομικά τροχιακά / s / s s p 3 / s s p 3s 3p 3d / s s p 3s 3p 3d 4s 4p 4d 4f s /πα ο3 / -/α ο Πιθανότητα να ευρίσκεται το στο χώρο: ddθdφ : d : s * s /πα ο3 -/α ο Pd με P 4π /πα ο3 -/α ο ΓιατοάτομοΗναυπολογισθείημέσηακτίνατωντροχιακώνs και s Να υπολογισθεί η ακτίνα στην οποία η ακτινική πιθανότητα παρουσιάζει μέγιστο για τα στοιχεία Η H L B B C N O F N Να θεωρήσετε υδρογονοειδή κυματοσυνάρτηση του s 3

32 y R ttp://wt.goup.sf.ac/obto 3

33 y R ttp://wt.goup.sf.ac/obto 33

34 5. Το άτομο του Υδρογόνου. Φάσμα απορρόφησης-εκπομπής Κανόνες επιλογής ηλεκτρονιακών μεταπτώσεων στο άτομο του Η Διάγραμμα Gota για το H Δ ακέραιος Δ αρχή διατήρησης στροφορμής Lya Ba Pasc 3 34

35 5. Το άτομο του Υδρογόνου LIBS Itsty Couts Φάσμα εκπομπής παραγόμενο κατά την ακτινοβόληση H O με λέιζερ fs υπό συνθήκες φωτοαποδόμησης as abato Las-ducd bakdow spctoscopy NH OH Hδ 4.7 Hγ Hβ N O 65.8 N O N 8.3 O N W avgt Hα

36 36 Ατομική Ατομική Φασματοσκοπία Φασματοσκοπία Φασματοσκοπικοί Όροι: S L J όπου Για δύο ηλεκτρόνια η συνολική στροφορμή και το συνολικό sp προσδιορίζεται από διανυσματικό άθροισμα δηλ s s s s s s s s S L H συνολική στροφορμή ως προς τον άξονα προσδιορίζεται από το αλγεβρικό άθροισμα δηλ. L Π.χ. Για sp: J S L J S L S S s s L Οι όροι που προκύπτουν είναι: 3 P P S L S L S L S L J...

37 s p s s M L M S Γράφουμε όλους τους δυνατούς συνδυασμού των ζευγών s Υπολογίζουμε τα αθροίσματα Μ L M S Προσδιορίζουμε αριθμό των ισοδύναμων ζευγών Μ L M S και σχηματίζουμε πίνακα Από τις μέγιστες τιμές των Μ L M S προσδιορίζουμε σχηματίζουμε τον μέγιστο φασματοσκοπικό όρο εδώ είναι 3 P και αφαιρούμε τα ζεύγη που αντιστοιχούν στο όρο αυτό από τον πίνακα. L \ s 37

38 L \ s Αφαιρούμε τις 3 P καταστάσεις 3 L \ s L \ s Αφαιρούμε τις P καταστάσεις Οι τιμές του J υπολογίζονται από την σχέση J L S L S L S... L S Δηλ. έχουμε 3 P και P Για κλειστά τροχιακά πλήρως συμπληρωμένα π.χ. s p 6 d ο φασματοσκοπικός όρος που αντιστοιχεί είναι το S 38

39 - s s L S ud 5-5 u u u d u u u d d u d d d u d d ud 5-5 u u u d d d d u ud p L\S Αφαιρούμε τις D καταστάσεις Για G καταστάσεις και Ν ηλεκτρόνια ο αριθμός των συνδυασμών είναι # G! N! G N! G!3 G!! Π.χ. Για το p G6 και Ν δηλ #5 L\S Αφαιρούμε τις S καταστάσεις L\S Αφαιρούμε τις 3 P καταστάσεις 3 L\S Οι φασματοσκοπικοί όροι είναι S D 3 P Ενώ με την σύντομη μέθοδο θα είχαμε L και S δηλ. S D 3 P P 3 S 3 D 39

40 Κανόνες Επιλογής Το φωτόνια είναι Bosos και έχουν Sp s p s ± Για γραμμικά πολωμένο φως s Για κυκλικά πολωμένο φως s ± Επομένως η αρχή διατήρησης της στροφορμής επιβάλει ότι για τις μεταπτώσεις που επιτρέπονται κατά την απορρόφηση ή εκπομπή ενός φωτονίου ισχύει 3s{ S / } s{ S / } Δ ± Δ ± ΔJ ± 3p{ P 3/ } 3p{ P / } s{ S / } p{ P 3/ } p{ P / } 3d{ D 5/ } d{ D 3/ } Μονάδες c ν c ~ ν λ Ενέργεια V J... ~ - ν κυματάριθμοι c V 8655 c 4 V λ 4

41 Χρονικώς ανεξάρτητη θεωρία Διαταραχών Όταν οι διαταραχές Η Η...στην Hatoa το συστήματος Η είναι σχετικά μικρές τότε οι νέα μορφή της Hatoa είναι H H H H... Η μεταβολή στην ενέργεια και κυματοσυνάρτηση του συστήματος για πρώτης τάξης διαταραχή δίνονται από την σχέση k H H k ~ k ν Όπου οι k είναι ιδιοσυναρτήσεις του μηδιαταραγμένου συστήματος k H k k k Ε Δε /ΔΕ Η μεταβολή στην ενέργεια του συστήματος για δευτέρας τάξης διαταραχή δίνεται από την σχέση H H k k k k H ΔΕ Ε Δε /ΔΕ Παρατηρούμε ότι η μέση ενέργεια του συστήματος δεν μεταβάλλεται 4

42 Εκφυλισμένα Ενεργειακά Επίπεδα Για εκφυλισμένα επίπεδα η ενέργεια του συστήματος δίδεται από την λύση της εξίσωσης dt k H k Για ορθοκανονικές βάσεις H... k δ k Ε Ε Ε Ε Ε 3 ε Ε Ε ε H H H H Ε 3 ε Παρατηρούμε ότι η μέση ενέργεια του συστήματος δεν μεταβάλλεται 4

43 Το φαινόμενο Stak Εφαρμόζεται ένα ομοιογενές ηλεκτρικό πεδίο με διεύθυνση κατά μήκος του άξονα την οποία θεωρούμε ως διατάραξη πρώτης τάξης δηλ. H μ Ε Στην περίπτωση των ατομικών τροχιακών s και p που απουσία του πεδίου είναι εκφυλισμένα εφαρμόζοντας το ηλεκτρικό πεδίο έχουμε μ p ε 3a H s H p 3a ε p ε p ε ± 3α s H H s s ε p p s p ε p s s s ε p s Και οι κυματοσυναρτήσεις είναι: 3a ε 3a 3a 3a ε 3a 3a 3a p 3a s 3a p 3a s p s p s p s 3a 3a p s 43

44 Χρονικώς εξαρτημένη θεωρία Διαταραχών a f t H t aψ t f H t / t ω f ω t dt f Π.χ. Εάν Η th kt και ησταθεράk είναι πολύ μικρή δηλ. οχρόνοςτης διατάραξης είναι πολύ μεγάλος αργή διαταραχή H t ω f H f ω t a f t όταν t >> ω f ω k t Παρατηρούμε ότι το αποτέλεσμα είναι το ίδιο με αυτό της πρώτης τάξης χρονικώς ανεξάρτητης διαταραχής. 44

45 Π.χ. Εάν Η th cosωt P f t V ω f f a ω f H f t ω f ω ω f f H V f s ω ω f t Όταν ω f τότε λέμε ότι έχουμε συντονισμό και παρατηρούμε ότι η πιθανότητα της μετάπτωσης είναι P f t V t f Ρυθμός Μετάπτωσης W f dp f dt t V f t 45

46 f ρν f είναι πυκνότητα καταστάσεων κοντάστηντελικήμέση ενέργεια της ζώνης Για μεταπτώσεις σε ζώνη ενεργειών bad ισχύει ο Χρυσός Κανών του F dpf t W f πv f ρ Ν dt f Παρατηρούμε ότι ο Ρυθμός είναι Χρονικώς ανεξάρτητος! Ο ρυθμός είναι ανάλογος της πυκνότητας των καταστάσεων! Πιθανότητες Μεταπτώσεων st Εξαναγκασμένη Απορρόφηση Εξαναγκασμένη Εκπομπή Αυθόρμητη Εκπομπή f W f f B f ρ W B ρ W f A f B f B f B f ρ A f B f ρ f 46

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό

Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöding για το κεντρικό δυναμικό Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 3 k V ) Αποδεικνύεται ότι οι λύσεις της ακτινικής εξίσωσης

Διαβάστε περισσότερα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση

Διαβάστε περισσότερα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης

Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Κεφάλαιο 1 Ηλεκτρονιακή δομή των ατόμων 1 Εισαγωγή Δομή του ατόμου Δημόκριτος Αριστοτέλης Dalton Thomson 400 π.χ. 350π.χ. 1808 1897 Απειροελάχιστα τεμάχια ύλης (τα

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins

Διαβάστε περισσότερα

Ηλεκτρονική φασματοσκοπία ατόμων

Ηλεκτρονική φασματοσκοπία ατόμων Ηλεκτρονική φασματοσκοπία ατόμων Εξίσωση του chrodger H H H µ µ m e e 4πε r Ζe 4πε r για το άτοµο του υδρογόνου για τα υδρογονοειδή άτοµα He Ζe 4πε r < j Ζe 4πε r j για πολυηλεκτρονικά άτοµα µ m m m e

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7. stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 01. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ Στέλιος Τζωρτζάκης ΚΕΦ. 2. ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ΚΕΦ.

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία

Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία Μάθημα 7ο Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία h m U(x,y,z, t) ih t (x, y,z,t) (x, y,z)e iet / h H E Γενική & Ανόργανη Χημεία 06-7 Ewin Schöinge Η ανεξάρτητη από τον χρόνο εξίσωση Schöinge U m H E E

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

Κβαντομηχανική εικόνα του ατομικού μοντέλου

Κβαντομηχανική εικόνα του ατομικού μοντέλου Κβαντομηχανική εικόνα του ατομικού μοντέλου 1. Ερώτηση: Τι είναι η κβαντομηχανική; H κβαντομηχανική, είναι η σύγχρονη αντίληψη μιας νέας μηχανικής που μπορεί να εφαρμοστεί στο μικρόκοσμο του ατόμου. Σήμερα

Διαβάστε περισσότερα

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012

ETY-202. Εκπομπή και απορρόφηση ακτινοβολίας ETY-202 ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ. Στέλιος Τζωρτζάκης 21/12/2012 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 Εκπομπή και απορρόφηση ακτινοβολίας ΎΛΗ & ΦΩΣ 12. ΎΛΗ & ΦΩΣ Στέλιος Τζωρτζάκης 1 3 4 Ηλεκτρομαγνητικά πεδία Απορρόφηση είναι Σε αυτή τη διαδικασία το ηλεκτρόνιο

Διαβάστε περισσότερα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη

Διαβάστε περισσότερα

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)

Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ) Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια

Διαβάστε περισσότερα

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:

Διαβάστε περισσότερα

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη

Διαβάστε περισσότερα

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Το άτομο του Υδρογόνου Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cetive

Διαβάστε περισσότερα

Κβαντικές Καταστάσεις

Κβαντικές Καταστάσεις Κβαντικές Καταστάσεις Δομή Διάλεξης Σύντομη ιστορική ανασκόπηση Ανασκόπηση Πιθανότητας Το Πλάτος Πιθανότητας Πείραμα διπλής οπής Κβαντικές καταστάσεις (ket) Ο δυίκός χώρος (bra) Σύνοψη Κβαντική Φυσική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Συμπέρασμα: η Η/Μ ακτινοβολία έχει διπλή φύση, κυματική και σωματιδιακή.

Συμπέρασμα: η Η/Μ ακτινοβολία έχει διπλή φύση, κυματική και σωματιδιακή. ΑΤΟΜΙΚΗ ΦΥΣΙΚΗ Άτομα μόρια Από 10-10 m ως 10-6 m Συνήθεις μονάδες: 1 Å (Angstrom) = 10-10 m (~ διάμετρος ατόμου Υδρογόνου) 1 nm = 10-9 m 1 μm = 10-6 m Διαστάσεις βιομορίων. Πχ διάμετρος σφαιρικής πρωτεΐνης

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 7 Ατομική Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 7 Ατομική Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 7 Ατομική Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. D Paula (Atkins

Διαβάστε περισσότερα

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί Κβαντικοί αριθμοί Στην κβαντομηχανική εισάγονται τρεις κβαντικοί αριθμοί για τον καθορισμό της κατανομής του ηλεκτρονιακού νέφους (ατομικού τροχιακού). Οι κβαντικοί αυτοί αριθμοί προκύπτουν από την επίλυση

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ Ένα επαναλαμβανόμενο περιοδικά φαινόμενο, έχει μία συχνότητα επανάληψης μέσα στο χρόνο και μία περίοδο. Επειδή κάθε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Μηχανική ΙΙ. Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ενότητα 6: Άτομα σε μαγνητικά πεδία Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 25 Περιεχόµενα 6ης ενότητας Φαινόµενο

Διαβάστε περισσότερα

Κβαντομηχανική σε μία διάσταση

Κβαντομηχανική σε μία διάσταση vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική

Διαβάστε περισσότερα

Η Αναπαράσταση της Θέσης (Position Representation)

Η Αναπαράσταση της Θέσης (Position Representation) Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης

Διαβάστε περισσότερα

Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς

Διάλεξη 5: Ατομική Δομή. Σύζευξη Σπιν-Τροχιάς Σύζευξη Σπιν-Τροχιάς Θεωρούμε το άτομο του υδρογόνου με το ηλεκτρόνιο να «περιστρέφεται» γύρω από τον πυρήνα. Ισοδύναμα θεωρούμε τον πυρήνα να περιστρέφεται γύρω από το ηλεκτρόνιο. Στο σύστημα αυτό η μαγνητική

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1 ο Κεφάλαιο Χημείας Θετικής Κατεύθυνσης Γ Λυκείου 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις 1. Η εξίσωση E = h v μας δίνει την ενέργεια μιας ηλεκτρομαγνητικής ακτινοβολίας 2. H κβαντική

Διαβάστε περισσότερα

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19)

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19) Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

Βασικές αρχές της Φασµατοσκοπίας NMR

Βασικές αρχές της Φασµατοσκοπίας NMR Βασικές αρχές της Φασµατοσκοπίας NMR Φώτης Νταής Καθηγητής Πανεπιστηµίου Κρήτης, Τµήµα Χηµείας Φασµατοσκοπία NMR Ο Πυρηνικός µαγνητικός Συντονισµός (NMR) είναι ένα φαινόµενο που συµβαίνει όταν πυρήνες

Διαβάστε περισσότερα

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής REF: Σ. Δεδούσης, Μ.Ζαμάνη, Δ.Σαμψωνίδης Σημειώσεις Πυρηνικής Φυσικής Πυρηνικά μοντέλα Βασικός σκοπός της Πυρηνικής Φυσικής είναι η περιγραφή των

Διαβάστε περισσότερα

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για

Διαβάστε περισσότερα

Κβαντομηχανική ή κυματομηχανική

Κβαντομηχανική ή κυματομηχανική Κβαντομηχανική ή κυματομηχανική Ποια ήταν τα αναπάντητα ερωτήματα της θεωρίας του Bohr; 1. Φάσματα πολυηλεκτρονικών ατόμων 2. Κυκλικές τροχιές 3. Γιατί η ενέργεια του e είναι κβαντισμένη; Κβαντομηχανική

Διαβάστε περισσότερα

ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ

ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ Πολλά πυρηνικά φαινόµενα δεν µπορούν να εξηγηθούν µε το µοντέλο της υγρής σταγόνας, ούτε το µοντέλο των ανεξαρτήτων σωµατίων. Η εξήγησή τους απαιτεί την συλλογική

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J.

Διαβάστε περισσότερα

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης

Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 2-1 Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης Εδάφια: 2.a. Η σύσταση των ατόμων 2.b. Ατομικά φάσματα 2.c. Η Θεωρία του Bohr 2.d. Η κυματική συμπεριφορά των σωμάτων: Υλικά

Διαβάστε περισσότερα

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005 ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΣΤΕΡΕΩΝ

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΣΤΕΡΕΩΝ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΣΤΕΡΕΩΝ Η κλασσική μηχανική είναι σε θέση να περιγράψει με σχετική ακρίβεια τις κινήσεις σωμάτων όπως πλανήτες, δορυφόροι και γενικά σώματα μεγάλου μεγέθους. Στην περίπτωση όμως

Διαβάστε περισσότερα

Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα

Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα Πολυατομικά μόρια περιστροφική ενέργεια περιστροφικά φάσματα Σκέδαση φασματοσκοπία n συνεισφορά του πυρηνικού σπιν Δονητικά περιστροφικά

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να επαναληφθούν βασικές έννοιες της Σύγχρονης Φυσικής,

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 2: Κβαντομηχανική προσέγγιση του ατόμου

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 2: Κβαντομηχανική προσέγγιση του ατόμου Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 2: Κβαντομηχανική προσέγγιση του ατόμου Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p University of Ioannina Deartment of Materials Science & Engineering Comutational Materials Science τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, elidorik@cc.uoi.gr cmsl.materials.uoi.gr/elidorik

Διαβάστε περισσότερα

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου Οργανική Χημεία Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου 1. Γενικά Δυνατότητα προσδιορισμού δομών με σαφήνεια χρησιμοποιώντας τεχνικές φασματοσκοπίας Φασματοσκοπία μαζών Μέγεθος, μοριακός τύπος

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται

Διαβάστε περισσότερα

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ ΑΤΟΜΙΚΑ ΠΡΟΤΥΠΑ Thomson (σταφιδόψωμο) Rutherford (πλανητικό μοντέλο) Bohr (επιτρεπόμενες τροχιές ενεργειακές στάθμες) Κβαντομηχανική β ή (τροχιακό) ρχ 24/9/2008 1 ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ Bohr 1η Συνθήκη (Μηχανική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Common.

Διαβάστε περισσότερα

Γραμμικά φάσματα εκπομπής

Γραμμικά φάσματα εκπομπής Γραμμικά φάσματα εκπομπής Η Ηe Li Na Ca Sr Cd Οι γραμμές αντιστοιχούν σε ορατό φως που εκπέμπεται από διάφορα άτομα. Ba Hg Tl 400 500 600 700 nm Ποιο φάσμα χαρακτηρίζεται ως γραμμικό; Σχισμή Πρίσμα Φωτεινή

Διαβάστε περισσότερα

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Δεύτερη Φάση) Κυριακή, 13 Απριλίου 2014 Ώρα: 10:00-13:00 Οδηγίες: Το δοκίμιο αποτελείται από έξι (6) σελίδες και έξι (6) θέματα. Να απαντήσετε

Διαβάστε περισσότερα

H εικόνα του ατόμου έχει αλλάξει δραστικά

H εικόνα του ατόμου έχει αλλάξει δραστικά Δομή Ατόμου και Ατομικά Τροχιακά Α Τα κλασσικά πρότυπα Η ιστορία της δομής του ατόμου (1/2) ατομική θεωρία Δημόκριτου (άτομοι) ατομική θεωρία Dalton Πλανητικό πρότυπο Rutherford πρότυπο Schrodinger 460

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paua

Διαβάστε περισσότερα

http://mathesis.cup.gr/courses/physics/phys1.1/2016_t3/about http://mathesis.cup.gr/courses/course-v1:physics+phys1.2+2016_t4/about f atomic orbitals http://www.orbitals.com/orb/orbtable.htm g atomic orbitals

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Φλοιώδης Δομή των Πυρήνων Η σύζευξη Spin Τροχιάς (L S)( Διέγερση και Αποδιέγερση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Μοριακά Τροχιακά ιατοµικών Μορίων

Μοριακά Τροχιακά ιατοµικών Μορίων Μοριακά Τροχιακά ιατοµικών Μορίων Για την περιγραφή της ηλεκτρονικής δοµής των µορίων θα χρησιµοποιήσουµε µοριακά τροχιακά που θα είναι γραµµικοί συνδυασµοί ατοµικών τροχιακών. Τα µοριακά τροχιακά θα αποτελούν

Διαβάστε περισσότερα

John Bardeen, William Schockley, Walter Bratain, Bell Labs τρανζίστορ σημειακής επαφής Γερμανίου, Bell Labs

John Bardeen, William Schockley, Walter Bratain, Bell Labs τρανζίστορ σημειακής επαφής Γερμανίου, Bell Labs Ψηφιακή τεχνολογία Ε. Λοιδωρίκης Δ. Παπαγεωργίου Η εφεύρεση του τρανζίστορ Το πρώτο τρανζίστορ John rn, Willi Schocl Wltr rtin, ll Ls 948 τρανζίστορ σημειακής επαφής Γερμανίου, ll Ls 4 Τεχνολογία πυριτίου

Διαβάστε περισσότερα

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται

Διαβάστε περισσότερα

Σχ. 1: Τυπική μορφή μοριακού δυναμικού.

Σχ. 1: Τυπική μορφή μοριακού δυναμικού. ΤΕΤΥ - Σύγχρονη Φυσική Κεφ. 6-1 Κεφάλαιο 6. Μόρια Εδάφια: 6.a. Μόρια και μοριακοί δεσμοί 6.b. Κβαντομηχανική περιγραφή του χημικού δεσμού 6.c. Περιστροφή και ταλάντωση μορίων 6.d. Μοριακά φάσματα 6.a.

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή φράση, η οποία

Διαβάστε περισσότερα

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Τελεστές Δομή Διάλεξης Ορισμός-Παραδείγματα Τελεστών Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Ερμητειανοί τελεστές Στοιχεία πίνακα τελεστών Μεταθέτες

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ ΚΑΙ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ Απεικόνιση ηλεκτρονίων ατόμων σιδήρου ως κύματα, διατεταγμένων κυκλικά σε χάλκινη επιφάνεια, με την τεχνική μικροσκοπικής σάρωσης σήραγγας. Δημήτρης

Διαβάστε περισσότερα

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.. Το έτος 2005 ορίστηκε ως έτος Φυσικής

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α. Στις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 10/11/2013 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Κύριος κβαντικός αριθμός (n)

Κύριος κβαντικός αριθμός (n) Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: n = 1, 2, 3, Καθορίζει: το μέγεθος του ηλεκτρονιακού νέφους κατά μεγάλο μέρος, την ενέργεια του τροχιακού τη στιβάδα στην οποία κινείται το ηλεκτρόνιο Όσομεγαλύτερηείναιητιμήτουn

Διαβάστε περισσότερα

Αφορά τη συμπλήρωση των τροχιακών με ηλεκτρόνια, στα πολυηλεκτρονικά άτομα. Γίνεται λαμβάνοντας υπόψη μας τρεις αρχές (aufbeau)

Αφορά τη συμπλήρωση των τροχιακών με ηλεκτρόνια, στα πολυηλεκτρονικά άτομα. Γίνεται λαμβάνοντας υπόψη μας τρεις αρχές (aufbeau) Ηλεκτρονιακή δόμηση Αφορά τη συμπλήρωση των τροχιακών με ηλεκτρόνια, στα πολυηλεκτρονικά άτομα. Γίνεται λαμβάνοντας υπόψη μας τρεις αρχές (aufbeau) Απαγορευτική αρχή Pauli Αρχή ελάχιστης ενέργειας Κανόνας

Διαβάστε περισσότερα

Περιβαλλοντική Χημεία - Γεωχημεία. Διαφάνειες 1 ου Μαθήματος Γαλάνη Απ. Αγγελική, Χημικός Ph.D. Ε.ΔΙ.Π.

Περιβαλλοντική Χημεία - Γεωχημεία. Διαφάνειες 1 ου Μαθήματος Γαλάνη Απ. Αγγελική, Χημικός Ph.D. Ε.ΔΙ.Π. Περιβαλλοντική Χημεία - Γεωχημεία Διαφάνειες 1 ου Μαθήματος Γαλάνη Απ. Αγγελική, Χημικός Ph.D. Ε.ΔΙ.Π. Πλαίσιο Περιβαλλοντικής Γεωχημείας Η μελέτη των φυσικών διεργασιών, (χημικών, βιολογικών, γεωλογικών)

Διαβάστε περισσότερα

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2016-17) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο

Διαβάστε περισσότερα

Σωματιδιακή φύση της ύλης

Σωματιδιακή φύση της ύλης Uivsity of Ioaia Dpatt of Matials Scic & Egiig Coputatioal Matials Scic ντική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π, 76, lidoik@cc.uoi.g csl.atials.uoi.g/lidoik λης η της Ύλ Σωματιδια ς Ύλης:

Διαβάστε περισσότερα

Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ

Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ Μέρος πρώτο ΣΚΟΠΟΣ ΜΑΘΗΜΑΤΟΣ Να εξηγηθούν βασικές έννοιες της φυσικής, που θα βοηθήσουν τον φοιτητή να μάθει: Τι είναι οι ακτίνες Χ Πως παράγονται Ποιες είναι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΘΕΜΑ A ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Παρασκευή, 0 Μαΐου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ Στις ερωτήσεις Α -Α να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 204 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ

ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 9 Ηλεκτρονική Φασματοσκοπία Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins,

Διαβάστε περισσότερα

1.1. Ιστορική Εξέλιξη των Αντιλήψεων για τα Άτομα

1.1. Ιστορική Εξέλιξη των Αντιλήψεων για τα Άτομα Περιεχόμενα 1.1. Ιστορική εξέλιξη των αντιλήψεων για τα άτομα 1.2. Η φύση του φωτός. Τα φάσματα των στοιχείων 1.3. Κυματομηχανική θεώρηση 1.4. Η εξίσωση Schröedinger 1.5. Πολυηλεκτρονικά άτομα 1.6. Ηλεκτρονική

Διαβάστε περισσότερα

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2-1 Ένας φύλακας του ατομικού ρολογιού καισίου στο Γραφείο Μέτρων και Σταθμών της Ουάσιγκτον. 2-2 Άτομα στην επιφάνεια μιας μύτης βελόνας όπως φαίνονται μεηλεκτρονικόμικροσκό 2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ

Διαβάστε περισσότερα

το ένα με ηλεκτρικό φορτίο Ζe και το άλλο με e. Η χαμιλτονιανή του συστήματος (στο πλαίσιο της προσέγγισης Coulomb) μπορεί να έλθει στη μορφή

το ένα με ηλεκτρικό φορτίο Ζe και το άλλο με e. Η χαμιλτονιανή του συστήματος (στο πλαίσιο της προσέγγισης Coulomb) μπορεί να έλθει στη μορφή ΚΕΦΑΛΑΙΟ 9: ΑΤΟΜΑ, Σελ. 19 έως 14 του βιβλίου ΚΣ ENOTHTA 1 Η, 13 ο VIDEO, 15/11/013, Από 55λ έως 1ω,5λ (τέλος), Σελ. 19 έως 13 του βιβλίου ΚΣ: ΙΔΙΟΤΗΤΕΣ Της ΒΑΣΙΚΉΣ ΚΑΤΑΣΤΑΣΗΣ ΥΔΡΟΓΟΝΟΕΙΔΟΥΣ ΔΥΝΑΜΙΚΟΥ

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ατομική φυσική Εφαρμογές της κβαντικής μηχανικής

Διαβάστε περισσότερα

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s.

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Κεφάλαιο 1 Το Φως Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s. Το φως διαδίδεται στο κενό με ταχύτητα περίπου 3x10 8 m/s. 3 Η ταχύτητα του φωτός μικραίνει, όταν το φως

Διαβάστε περισσότερα

1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί

1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί 1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί Ο Lewis πρότεινε το μοντέλο του κοινού ηλεκτρονιακού ζεύγους των δεσμών το 1916, σχεδόνμιαδεκαετίαπριναπότηθεωρίατουde Broglie τηςδυαδικότηταςκύματος-σωματιδίου.

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Β. ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States

ΠΑΡΑΡΤΗΜΑ Β. ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States ΠΑΡΑΡΤΗΜΑ Β ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States Στατιστική Φυσική Διαφάνεια 1 DOS H DOS περιγράφει τον αριθμό των καταστάσεων που είναι προσιτές σε ένα σύστημα

Διαβάστε περισσότερα