ΠΑΡΑΣΚΕΥΗ ΕΥΡΩΠΑΪΚΟ ΠΟΛΙΤΙΣΤΙΚΟ ΚΕΝΤΡΟ ΔΕΛΦΩΝ. Προεδρεύων: Θ.Κάκουλλος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΡΑΣΚΕΥΗ 9.6.1995 ΕΥΡΩΠΑΪΚΟ ΠΟΛΙΤΙΣΤΙΚΟ ΚΕΝΤΡΟ ΔΕΛΦΩΝ. Προεδρεύων: Θ.Κάκουλλος"

Transcript

1 ΠΡΟΓΡΑΜΜΑ ΣΥΝΕΔΡΙΟΥ ΠΑΡΑΣΚΕΥΗ ΕΥΡΩΠΑΪΚΟ ΠΟΛΙΤΙΣΤΙΚΟ ΚΕΝΤΡΟ ΔΕΛΦΩΝ Εγγραφή Συνέδρων Χαιρετισμοί - Έναρξη Διάλειμμα Γενικές Ομιλίες Προεδρεύων: Θ.Κάκουλλος Β.Καρασμάνης, Διευθυντής Πολιτιστικού Κέντρου Δελφών Το πιθανόν κατά Πλάτωνα Θ.Κάκουλλος, Παν/μιο Αθηνών Στοχαστικότητα και Στατιστικότητα των Ελλήνων Ο.Δαφνή, Παν/μιο Harvard Evaluating Surrogate Markers of Clinical outcome when measured with Error Λευκοπούλειο Βραβείο Άριστης Διατριβής Θ.Κάκουλλος, Παν/μιο Αθηνών Η Στατιστική στα Α.Ε.Ι. Στατιστική Ορολογία - Συζήτηση

2 Σάββατο 10 Ιουνίου 1995 ΑΙΘΟΥΣΑ Α ΣΤΑΤΙΣΤΙΚΗ Προεδρεύων: Σ. Κουρούκλης Τ.Παπαϊωάννου και Μ.Κατέρη, Παν/μιο Ιωαννίνων Μοντέλα Ασυμμετρίας f - Απόκλισης Γ. Πετράκος, UNIV. Wyoming Συνδυασμός Πληροφοριών: Η γεωμετρία της μικτής εκτιμήτριας Φ. Αλεβίζος και Δ. ιωαννίδης, Παν/μιο Πατρών-Παν/μιο Μακεδονίας Μη Παραμετρική Εκτίμηση της Συνάρτησης Κατανομής με Σφάλματα Αννα Νικολάου, Παν/μιο Μακεδονίας Συμπερασματολογία σε Σύμπλοκα Μοντέλα Μετασχηματισμού Ι.Παπαγεωργίου, Κ.Καρακώστας, Παν/μιο Ιωαννίνων Βέλτιστα Δείγματα για Πεπερασμένους Πληθυσμούς με Κυρτή Συνάρτηση Αυτοσυσχέτισης Διάλειμμα ΑΙΘΟΥΣΑ Α ΣΤΑΤΙΣΤΙΚΗ Προεδρεύων: Θ.Χατζηπαντελής Γ. Κοκολάκης,Π.Δελλαπόρτας: ΕΜΠ Οικονομικό Παν/μιο Γενικευμένη Dirichlet Κατανομή και Ιεραρχικά Μοντέλα Ταξινόμησης Δυαδικών Δεδομένων Α.Παπαδόπουλος: Univ. of N.Carolina at Charlotte Το μοντέλο της αυτοπαλινδρόμησης από την άποψη του Bayes Ken-Wei Chen: Univ. of N.Carolina at Charlotte A new decision rule for assessing equivalence in variability of bioavailability

3 Π.Βλάχος, A.Gelfand: Univ. of Connecticut Bayesian Clinical Trial Design for Categorical Endpoint Models Κ.Φωκιανός: Univ. of Maryland Predicting Precipitation Level: A Partial Likehood Approach Επίσκεψη Μουσείου και Αρχαιολογικών χώρων Γεύμα στο Πολιτιστικό Κέντρο Δελφών Σάββατο 10 Ιουνίου 1995 ΑΙΘΟΥΣΑ Β ΣΤΑΤΙΣΤΙΚΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Προεδρεύων: Κ. Κιουλάφας Γ.Δονάτος, Σ.Μεϊντάνης: Παν/μιο Αθηνών Μελέτη Προσομοίωσης Ανθεκτικών (Robust) εκτιμητών Γραμμικού Υποδείγματος με Εναλλακτικές ως προς την Κύρτωση Κατανομές Διαταρακτικών όρων Γ. Παπαδημητρίου, Γ.Φλώρου: Παν/μιο Μακεδονίας Ανασκόπηση των Αποστάσεων στην Ταξινόμηση Μεταβλητών Κ. Συριόπουλος: Παν/μιο Μακεδονίας Εφαρμογές Τεχνητών Νευρωνικών Δικτύων στην Πρόβλεψη Χρηματοοικονομικών Χρονοσειρών Α.Καράκος, Μ.Γιαννοπούλου: Παν/μιο Θράκης Εφαρμογή μεθόδων ανάλυσης δεδομένων στην περιφερειακή Ανάπτυξη και στον χωροταξικό Σχεδιασμό Α.Καράκος, Θ.Κουτρουμανίδης, Θ.Παπαβασιλείου:Παν/μιο Θράκης Η Μέθοδος της Απόκλισης-Συμμετοχής σαν Εργαλείο Ανάλυσης και Προτάσεων

4 Διάλειμμα ΑΙΘΟΥΣΑ Β ΑΞΙΟΠΙΣΤΙΑ ΣΥΣΤΗΜΑΤΩΝ - ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Προεδρεύων: Κ. Φερεντίνος Μ. Σφακιανάκης:ΚΕΠΕ Οικονομικό Παν/μιο Αθηνών Βέλτιστη τοποθέτηση εξαρτημάτων σε γενικευμένα συστήματα αξιοπιστίας Ζ. Ψυλλάκης, Φ.Μακρή: Παν/μιο Πατρών Αξιοπιστία 2-Διάστατων Συνεχόμενων r-από n Συστημάτων Αποτυχίας Β.Αλεξάνδρου, Μ.Κούτρας: Παν/μιο Αθηνών Μελέτη χρόνου αναμονής έως την 1 η εμφάνιση συγκεκριμένου σχηματισμού συμβόλων Σ.Παπασταυρίδης, Θ.Τσάπελας, Ο. Χρυσαφίνου: Παν/μιο Αθηνών Γενικευμένο σύστημα επιδιορθωσίμων μονάδων με Ν τύπους μερικών βλαβών, Ν τύπους ολικών βλαβών και k δυνατότητες επιδιόρθωσης Γ. Παπαδόπουλος, Μ. Κούτρας: Παιδ. Ινστιτούτο-Παν/μιο Αθηνών Η Αξιοπιστία των συνεχόμενα Συνδεδεμένων Συστημάτων Επίσκεψη Μουσείου και Αρχαιολογικών χώρων Γεύμα στο Πολιτιστικό Κέντρο Δελφών

5 ΑΙΘΟΥΣΑ Α ΠΙΘΑΝΟΤΗΤΕΣ Προεδρεύων: Γ.Κοκολάκης Θ. Κάκουλλος: Παν/μιο Αθηνών Οριακές κατανομές και ΚΟΘ μέσω πυρήνων συνδιακύμανσης Β. Παπαθανασίου: Παν/μιο Αθηνών Μια νέα απόδειξη (LI-σύγκλιση) του πολυδιάστατου ΚΟΘ Ν. Παπαδάτος: Παν/μιο Αθηνών Τάξη Σύγκλισης στο Κεντρικό Οριακό Θεώρημα Τ. Χριστοφίδης: Παν/μιο Κύπρου Ρυθμός Σύγκλισης στον Ισχυρό Νόμο των Μεγάλων Αριθμών για Στατιστικές Συναρτήσεις U με Πολυδιάστατους Δείκτες Π. Μαυρικίου, Τ. Χριστοφίδης: Παν/μιο Κύπρου Ανισότητες Πιθανότητας για Σταθμισμένες Στατιστικές Συναρτήσεις U ΑΙΘΟΥΣΑ Α ΠΙΘΑΝΟΤΗΤΕΣ Προεδρεύων: Χ.Μωϋσιάδης Σ.Κουνιάς: Παν/μιο Αθηνών Προσέγγιση Poisson και φράγματα Bonferroni Α. Κυριακούσης: Παν/μιο Αθηνών Οριακή κανονική κατανομή του αριθμού των συνιστωσών βασικών συνδυαστικών δομών Μ. Βαμβακάρη, Α. Κυριακούσης: Παν/μιο Αθηνών Οριακή κανονική κατανομή του αριθμού των ανα δύο δυνατών συνδέσεων συνδρομητών τηλεφωνικού κέντρου Σ.Κουρούκλης: Παν/μιο Πατρών Μια νέα ιδιότητα της Inverse Gaussian κατανομής με εφαρμογές

6 19.40 Γ. Ηλιόπουλος, Σ. Κουρούκλης: Παν/μιο Πατρών Εκτίμηση γενικευμένης διασποράς και λόγου γενικευμένων διασπορών ΑΝΟΙΚΤΗ ΣΥΖΗΤΗΣΗ Προεδρεύων: Τ. Παπαϊωάννου Ανοικτή συζήτηση με θέμα: Στατιστική, Μαθηματικά Τμήματα και Οικονομικές Σχολές. Συμμετοχή Προέδρων Τμημάτων Μαθηματικών Ελληνικών Α.Ε.Ι. ΑΙΘΟΥΣΑ Β ΣΤΑΤΙΣΤΙΚΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Προεδρεύων: Γ.Παπαδημητρίου Δ. Καραπιστόλης, Γ. Παπαδημητρίου: ΤΕΙ Θες/νίκης Παν/μιο Μακεδονίας Κατανομή Μετοχών που απαρτίζουν το φερέγγυο Χαρτοφυλάκιο Κ. Κιουλάφας: Παν/μιο Αθηνών Η Ανάγκη Στατιστικής Ανάλυσης στοιχείων για υποστήριξη Εθνικής Τηλεπικοινωνιακής Πολιτικής Χ. Βασιλειάδης, Α. Νικολάου: Παν/μιο Μακεδονίας Αεροδρόμιο Μακεδονίας: Μια διερεύνηση τμημάτων αγοράς στον τουρισμό Πακέτου Γ.Καραγιάννης, Γ. Μέργος: Παν/μιο Saskatchewan Παν/μιο Αθηνών Μέτρηση και Ανάλυση της Συνολικής Παραγωγικότητας με την Παραμετρική Μέθοδο: Η Περίπτωση του Ελληνικού Αγροτικού Τομέα Κ.Λαρεντζάκης: Hellenic Research House Μελέτη δομής του Λιανικού Εμπορίου στην Ελλάδα Διάλειμμα

7 ΑΙΘΟΥΣΑ Β : ΣΤΑΤΙΣΤΙΚΗ Προεδρεύων: Χ. Δαμιανού Α. Καραγρηγορίου: Παν/μιο Κύπρου Θέματα Ασυμπτωτικής Αποδοτικότητας μη Κανονικών Αυτοπαλινδρομικών Διαδικασιών Κ. Μάτης, Μ. Διαμαντοπούλου: Παν/μιο Θες/νίκης Μέγεθος Δείγματος για τη Σχέση Υψους-Διαμέτρου Δέντρων Οξιάς Αριδαίας Σ. Παπαδόπουλος: Iowa State Univ. Η Ασυμπτωτική Ανθεκτικότητα της Ανάλυσης πολλών Πληθυσμών με Δομικές Εξισώσεις Α. Χαρίτου: Παν/μιο Μακεδονίας Εναλλακτική μορφή Μοντέλου Απροσδιόριστης Κατάταξης(Latent Class) Α.Χαρίτου, Ν. Κουβάτση: Παν/μιο Μακεδονίας Απαλοιφή Μεταβλητής σε Γενικευμένα Γραμμικά Μοντέλα ΑΝΟΙΚΤΗ ΣΥΖΗΤΗΣΗ Προεδρεύων: Τ. Παπαϊωάννου Ανοικτή συζήτηση με θέμα: Στατιστική, Μαθηματικά Τμήματα και Οικονομικές Σχολές. Συμμετοχή Προέδρων Τμημάτων Μαθηματικών Ελληνικών Α.Ε.Ι.

8 Κυριακή 11 Ιουνίου 1995 ΑΙΘΟΥΣΑ Α ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ Προεδρεύων: Τ. Χριστοφίδης Κ.Μηλολιδάκης, Τ. Ferguson: Πολυτεχνείο Κρήτης Univ. of California Στοιχηματίζοντας κατά τον τελευταίο γύρο Ι. Δημητρίου: Παν/μιο Αθηνών Αμοιβαίος Διαχωρισμός Ακροτάτων Αριστων κατά τμήματα Μονότονων Προσεγγίσεων Α. Βογιατζής, Ζ. Γεωργαντά: Παν/μιο Μακεδονίας Σύγκριση συστημάτων διαρθρωτικών εξισώσεων με αφανείς μεταβλητές και οικονομετρικών συστημάτων ταυτόχρονων εξισώσεων Λ. Αγγελής, Α. γεωργίου, Α. Παπαδοπούλου: Παν/μιο Θες/νίκης Διερεύνηση Προϋπολογισμού με Monte Carlo Τεχνικές Θ.Χατζηπαντελής, Π. Γκάσπαρης: Παν/μιο Θες/νίκης Εσφαλμένες αντιλήψεις των παιδιών στην κατανόηση εννοιών της Θεωρίας Πιθανοτήτων και της Στατιστικής ΑΙΘΟΥΣΑ Β Πειραματικοί σχεδιασμοί Έλεγχος Ποιότητας Προεδρεύων: Σ. Κουνιάς Χ. Κουκουβίνος: Ε.Μ.Π. Ορθογώνιοι Παραγοντικοί Σχεδιασμοί σε Γραμμικά Μοντέλα Παλινδρόμησης και Ακολουθίες με Αυτοσυσχέτιση Μηδέν Χ. Κίτσος, Μ. Σωτηρόπουλος: Οικονομικό Παν/μιο Υπ. Παιδείας Quality Control through Concept Lattice Theory Χ. Μωϋσιάδης: Παν/μιο Θες/νίκης Αντιστοίχιση και Κάλυψη στη Συνδυαστική Βελτιστοποίηση

9 10.30 Κ. Σωτηράκογλου, Σ. Χατζηκωνσταντινίδης: Γεωπονικό Παν/μιο Πάντειο Παν/μιο Ο Α-βέλτιστος κορεσμένος σχεδιασμός πρώτης τάξης με Ν=21 παρατηρήσεις Κλείσιμο Εργασιών

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

16 ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

16 ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΕΛΛΗΝΙΚΟ ΣΤΑΤΙΣΤΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΑΒΑΛΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ 16 ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Στατιστική Θεωρία & Ανάλυση εδοµένων στις Κοινωνικές & Οικονοµικές Επιστήµες

Διαβάστε περισσότερα

Μάστερ στην Εφαρµοσµένη Στατιστική

Μάστερ στην Εφαρµοσµένη Στατιστική Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Παρασκευή 5 Ιουνίου 1998. Εγγραφή Συνέδρων Διανομή φακέλου και του προγράμματος του Συνεδρίου

Παρασκευή 5 Ιουνίου 1998. Εγγραφή Συνέδρων Διανομή φακέλου και του προγράμματος του Συνεδρίου ΠΡΟΓΡΑΜΜΑ ΣΥΝΕΔΡΙΟΥ Παρασκευή 5 Ιουνίου 1998 ΣΥΝΕΔΡΙΑΚΌ ΚΈΝΤΡΟ MAIX 18:00-19:00 Εγγραφή Συνέδρων Διανομή φακέλου και του προγράμματος του Συνεδρίου 19:00-20:00 Χαιρετισμοί 20:00-20:30 Χ. Σκιαδάς Στοχαστικά

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Παρασκευή, 4 Ιουνίου 1993. ΕΝΑΡΞΗ Πρόεδρος: Γ. Παπαδημητρίου. Χαιρετισμοί Εναρκτήριες ομιλίες. Θ. Κάκουλλος Επαγγελματική Αναγνώριση του Στατιστικού

Παρασκευή, 4 Ιουνίου 1993. ΕΝΑΡΞΗ Πρόεδρος: Γ. Παπαδημητρίου. Χαιρετισμοί Εναρκτήριες ομιλίες. Θ. Κάκουλλος Επαγγελματική Αναγνώριση του Στατιστικού ΠΡΟΓΡΑΜΜΑ ΣΥΝΕΔΡΙΟΥ Παρασκευή, 4 Ιουνίου 1993 15:00-17:00 Εγγραφή Συνέδρων -καφές ΑΜΦΙΘΕΑΤΡΟ 3 17:00-18:00 ΕΝΑΡΞΗ Πρόεδρος: Γ. Παπαδημητρίου Χαιρετισμοί Εναρκτήριες ομιλίες 18:00-18:30 Διάλειμμα - καφές

Διαβάστε περισσότερα

α/α ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΤΜΗΜΑ ΒΑΘΜΙΔΑ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ ΦΕΚ ΔΙΟΡΙΣΜΟΥ ΒΙΟΓΡΑΦΙΚΟ (ηλεκτρονική διεύθυνση) ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ

α/α ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΤΜΗΜΑ ΒΑΘΜΙΔΑ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ ΦΕΚ ΔΙΟΡΙΣΜΟΥ ΒΙΟΓΡΑΦΙΚΟ (ηλεκτρονική διεύθυνση) ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ α/α ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΣΧΟΛΗ ΤΜΗΜΑ ΒΑΘΜΙΔΑ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ ΦΕΚ ΔΙΟΡΙΣΜΟΥ ΒΙΟΓΡΑΦΙΚΟ (ηλεκτρονική διεύθυνση) 1 ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 2 ΖΑΖΑΝΗΣ ΜΙΧΑΛΗΣ 3 ΚΩΝΣΤΑΝΤΙΝΙΔΗΣ ΔΗΜΗΤΡΙΟΣ ΑΙΓΑΙΟΥ ΘΕΤΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Πέμπτη, 15 Απριλίου 1999. Εγγραφή Συνέδρων Διανομή φακέλου και του προγράμματος του Συνεδρίου. ΣΤΑΤΙΣΤΙΚΗ Προεδρεύων: Χ.

Πέμπτη, 15 Απριλίου 1999. Εγγραφή Συνέδρων Διανομή φακέλου και του προγράμματος του Συνεδρίου. ΣΤΑΤΙΣΤΙΚΗ Προεδρεύων: Χ. ΠΡΟΓΡΑΜΜΑ ΣΥΝΕΔΡΙΟΥ Πέμπτη, 15 Απριλίου 1999 ΑΝΑΡΓΥΡΕΙΟΣ ΚΟΡΓΙΑΛΕΝΕΙΟΣ ΣΧΟΛΗ ΣΠΕΤΣΩΝ 16:00-17:00 Εγγραφή Συνέδρων Διανομή φακέλου και του προγράμματος του Συνεδρίου 17:00-17:15 Έναρξη του συνεδρίου Χαιρετισμοί:

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

3 Ετεροσκεδαστικότητα και Αυτοσυσχέτιση

3 Ετεροσκεδαστικότητα και Αυτοσυσχέτιση 3 Ετεροσκεδαστικότητα και Αυτοσυσχέτιση 3. Αιτίες που προκαλούν την ετεροσκεδαστικότητα Η ετεροσκεδαστικότητα οφείλεται σε διάφορες αιτίες. Οι πιο σημαντικές από αυτές είναι: Η ετεροσκεδαστικότητα μπορεί

Διαβάστε περισσότερα

σε συνεργασία µε το 18 ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Στατιστική & Εκπαίδευση 4-7 Μαΐου 2005 Ρόδος εύτερη Ανακοίνωση

σε συνεργασία µε το 18 ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Στατιστική & Εκπαίδευση 4-7 Μαΐου 2005 Ρόδος εύτερη Ανακοίνωση ΕΛΛΗΝΙΚΟ ΣΤΑΤΙΣΤΙΚΟ ΙΝΣΤΙΤΟΥΤΟ σε συνεργασία µε το ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΙΓΑΙΟΥ 18 ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Στατιστική & Εκπαίδευση 4-7 Μαΐου 2005 Ρόδος εύτερη

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τετάρτη, 18 Απριλίου 2001. Εγγραφή Συνέδρων Διανομή του φακέλου και του προγράμματος του Συνεδρίου

Τετάρτη, 18 Απριλίου 2001. Εγγραφή Συνέδρων Διανομή του φακέλου και του προγράμματος του Συνεδρίου ΠΡΟΓΡΑΜΜΑ ΣΥΝΕΔΡΙΟΥ Τετάρτη, 18 Απριλίου 2001 SKIATHOS PALACE HOTEL 17:00-18:00 Εγγραφή Συνέδρων Διανομή του φακέλου και του προγράμματος του Συνεδρίου 18:00-18:15 Χαιρετισμοί, καλωσόρισμα των συνέδρων

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΘΗΓΗΤΗΣ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 81/17.04.02 τ.νπδδ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΘΗΓΗΤΗΣ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 81/17.04.02 τ.νπδδ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ α/α ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΣΧΟΛΗ ΤΜΗΜΑ ΒΑΘΜΙΔΑ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ ΦΕΚ ΔΙΟΡΙΣΜΟΥ 1 ΑΓΓΕΛΗΣ ΒΑΣΙΛΕΙΟΣ (συνταξιοδοτήθηκε στις 31.8.2015) 2 ΑΔΑΜΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΠΑΤΡΩΝ 3 ΑΘΑΝΑΣΙΑΔΗΣ ΧΡΙΣΤΟΔΟΥΛΟΣ ΑΙΓΑΙΟΥ ΔΙΟΙΚΗΣΗΣ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ : ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 1. ΜΗΤΡΩΟ ΕΣΩΤΕΡΙΚΩΝ ΜΕΛΩΝ ΣΥΓΚΡΟΤΗΣΗΣ ΕΚΛΕΚΤΟΡΙΚΩΝ ΣΩΜΑΤΩΝ Α/Α ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΙΔΡΥΜΑ - ΤΜΗΜΑ ΒΑΘΜΙΔΑ ΕΥΡΥΤΕΡΟ ΗΛΕΚΤΡΟΝΙΚΟ ΤΑΧΥΔΡΟΜΕΙΟ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

19 ο ΕΛΛΗΝΙΚΟ ΣΤΑΤΙΣΤΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΗΜΟΣΚΟΠΗΣΕΙΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ. σε συνεργασία µε το

19 ο ΕΛΛΗΝΙΚΟ ΣΤΑΤΙΣΤΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΗΜΟΣΚΟΠΗΣΕΙΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ. σε συνεργασία µε το ΕΛΛΗΝΙΚΟ ΣΤΑΤΙΣΤΙΚΟ ΙΝΣΤΙΤΟΥΤΟ σε συνεργασία µε το ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ 19 ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΗΜΟΣΚΟΠΗΣΕΙΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ 26-29 Απριλίου 2006 Καστοριά εύτερη Ανακοίνωση Πρόσκληση για υποβολή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress.

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress. ΣΤΑΤΙΣΤΙΚΗ Ι Η Ύλη του µαθήµατος είναι στις διαφάνειες (slides) τα οποία καλύφθηκαν στην τάξη και βρίσκονται στην ιστοσελίδα: ανεξάρτητα µε το πιο βιβλίο που χρησιµοποιείται. Μερικά από τα θέµατα καλύπτονται

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

Τρίτη 01/09/2015 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΜΑΘΗΜΑΤΑ ΔΙΔΑΣΚΟΝΤΕΣ ΕΞΑΜΗΝΟ. 09:00-12:00 Νο1, Νο3 Πιθανότητες ΙI Χατζησπύρος Γ. Τετάρτη 02/09/2015

Τρίτη 01/09/2015 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΜΑΘΗΜΑΤΑ ΔΙΔΑΣΚΟΝΤΕΣ ΕΞΑΜΗΝΟ. 09:00-12:00 Νο1, Νο3 Πιθανότητες ΙI Χατζησπύρος Γ. Τετάρτη 02/09/2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Σ.Α.Χ.Μ. ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 2015 Τρίτη 01/09/2015 09:00-12:00 Νο1, Νο3 Πιθανότητες ΙI Χατζησπύρος

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Τετάρτη, 3 Μαΐου 2000. Χρήση στατιστικού λογισμικού για την κατανόηση εννοιών και μεθόδων της στατιστικής στην διδακτική πράξη

Τετάρτη, 3 Μαΐου 2000. Χρήση στατιστικού λογισμικού για την κατανόηση εννοιών και μεθόδων της στατιστικής στην διδακτική πράξη ΠΡΟΓΡΑΜΜΑ ΣΥΝΕΔΡΙΟΥ Τετάρτη, 3 Μαΐου 2000 Αίθουσα Συλλόγου «Αριστοτέλης» 17:30-18:00 Προσέλευση συνέδρων 18:00-18:45 Χαιρετισμοί 19:00-20:20 ΣΤΑΤΙΣΤΙΚΗ Προεδρεύων: Θ. Κάκουλλος Π.Μωυσιάδης, Ν.Τσάντας 19:00-19:20

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. 09:00-11:00 204 3 Eπιλ ΣΑΔΙΚ03-ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ επ. Α - Ω ΣΑΔΙΚ03 ΣΙΝΑΝΙΩΤΗ Α. ΕΠΙΧΕΙΡΗΣΕΩΝ επ. ΠΑΛΙΝΔΡΟΜΗΣΗΣ (ΤΜΗΜΑ Β:Μ-Ω)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. 09:00-11:00 204 3 Eπιλ ΣΑΔΙΚ03-ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ επ. Α - Ω ΣΑΔΙΚ03 ΣΙΝΑΝΙΩΤΗ Α. ΕΠΙΧΕΙΡΗΣΕΩΝ επ. ΠΑΛΙΝΔΡΟΜΗΣΗΣ (ΤΜΗΜΑ Β:Μ-Ω) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ 2013-2014 ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Πειραιάς:4/7/2014 ΩΡΕΣ ΑΙΘΟΥΣΕΣ ΕΞ.-ΤΥΠΟΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων

Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Στοχαστικότητα: μελέτη, μοντελοποίηση και πρόβλεψη φυσικών φαινομένων Δρ. Τακβόρ Σουκισιάν Κύριος Ερευνητής ΕΛΚΕΘΕ Forecasting is very dangerous, especially about the future --- Samuel Goldwyn 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

5ο Επιστημονικό Πεδίο ΕΠΙΣΤΗΜΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ

5ο Επιστημονικό Πεδίο ΕΠΙΣΤΗΜΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ 3ο Επιστημονικό Πεδίο 3 5ο Επιστημονικό Πεδίο ΕΠΙΣΤΗΜΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Οι πτυχιούχοι της Σχολής: Στατιστικής του Πειραιά εγγράφονται στο Οικονομικό Επιμελητήριο, ενώ του Αιγαίου (2ο Πεδίο) δεν

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

Σύγχρονες Μορφές Χρηματοδότησης

Σύγχρονες Μορφές Χρηματοδότησης Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 13: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού

Προγραμματισμού...34 1.4 Λύση Προβλήματος Γραμμικού Προγραμματισμού ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...11 1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Linear Programming) 1.1 Εισαγωγή...29 1.2 Γεωμετρική Προσέγγιση Λύσης Απλών Προβλημάτων LP... 30 1.3 Η Μέθοδος Simplex Λύσης Προβλημάτων Γραμμικού

Διαβάστε περισσότερα

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών. Κουτσογιάννης Α. Ευστρατιάδης Φεβρουάριος 2002 Εισαγωγή

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΥΛΗ ΕΞΕΤΑΣΕΩΝ. zxcvbnmσγqwφertyuioσδφpγρaηsό ΕΑΡΙΝΟ 2011-2012 ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ & ΠΡΟΝΟΙΑΣ

ΥΛΗ ΕΞΕΤΑΣΕΩΝ. zxcvbnmσγqwφertyuioσδφpγρaηsό ΕΑΡΙΝΟ 2011-2012 ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ & ΠΡΟΝΟΙΑΣ qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghς jklzxcvλοπbnαmqwertyuiopasdfghjkl ΥΛΗ ΕΞΕΤΑΣΕΩΝ ΕΑΡΙΝΟ 2011-2012 zxcvbnmσγqwφertyuioσδφpγρaηsό

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΘΕΜΑ A A Απόδειξη Σελ 53 Α Ορισμός Σελ 9 Α3 Ορισμός Σελ 58 Α4 α) Σ β) Σ γ) Λ δ) Λ ε) Λ ΘΕΜΑ Β Β 4 4 4 Άρα ο γεωμετρικός τόπος των εικόνων των μιγαδικών

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1, Εισαγωγή στη θεωρία ακραίων τιμών

ΚΕΦΑΛΑΙΟ 1, Εισαγωγή στη θεωρία ακραίων τιμών ΚΕΦΑΛΑΙΟ 1, Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:

Διαβάστε περισσότερα

415 Μαθηματικών και Στατιστικής Κύπρου

415 Μαθηματικών και Στατιστικής Κύπρου 415 Μαθηματικών και Στατιστικής Κύπρου Το "Τμήμα Μαθηματικών και Στατιστικής" ιδρύθηκε το έτος 1989, ανήκει στη Σχολή Θετικών και Εφαρμοσμένων Επιστημών του Πανεπιστημίου Κύπρου (με έδρα του τη Λευκωσία)

Διαβάστε περισσότερα

Περιεχόμενα. 1. Σχέσεις μεταξύ δύο μεταβλητών... 21

Περιεχόμενα. 1. Σχέσεις μεταξύ δύο μεταβλητών... 21 Περιεχόμενα 1. Σχέσεις μεταξύ δύο μεταβλητών... 21 1.1 Παραδείγματα διμεταβλητών σχέσεων... 21 1.1.1 Διμεταβλητές κατανομές συχνοτήτων... 25 1.2 Ο συντελεστής συσχέτισης... 27 1.2.1 Ο συντελεστής συσχέτισης

Διαβάστε περισσότερα

ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ

ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ ΔΙΑΣΠΟΡΑ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΕΣ ΑΝΙΣΟΤΗΤΕΣ Τα μέτρα διασποράς χρησιμεύουν για τη μέτρηση των περιφερειακών ανισοτήτων. Τα περιφερειακά χαρακτηριστικά που χρησιμοποιούνται

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ Ι. ΠΑΝΑΡΕΤΟΥ & Ε. ΞΕΚΑΛΑΚΗ Καθηγητών του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ (Εισαγωγή στις Πιθανότητες και την Στατιστική Συμπερασματολογία)

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Λήψη αποφάσεων κατά Bayes

Λήψη αποφάσεων κατά Bayes Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

gretl: Ένα εργαλείο οικονομετρικής ανάλυσης για την ελληνική τριτοβάθμια εκπαίδευση http://gretl.sourceforge.net/

gretl: Ένα εργαλείο οικονομετρικής ανάλυσης για την ελληνική τριτοβάθμια εκπαίδευση http://gretl.sourceforge.net/ gretl: Ένα εργαλείο οικονομετρικής ανάλυσης για την ελληνική τριτοβάθμια εκπαίδευση http://gretl.sourceforge.net/ Ιωάννης Βενέτης, Μανώλης Τζαγκαράκης Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Περιεχόμενα

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης

Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Ηράκλειο Κρήτης, Τ.Κ. 71004, Τηλ.2810379610 Fax.2810379680 ΑΝΑΚΟΙΝΩΣΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Ηράκλειο Κρήτης, Τ.Κ. 71004, Τηλ.2810379610 Fax.2810379680 ΑΝΑΚΟΙΝΩΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Ηράκλειο Κρήτης, Τ.Κ. 71004, Τηλ.2810379610 Fax.2810379680 ΑΝΑΚΟΙΝΩΣΗ Χρόνος κατάθεσης δικαιολογητικών Η αίτηση και τα δικαιολογητικά

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

Εκπαίδευση στη διαχείριση ασθενών με ΣΔ Τ2 1 Ο Σεμινάριο ΕΛ.Ε.ΓΕ.ΙΑ. 15-17 Ιανουαρίου 2010, Ναύπλιο

Εκπαίδευση στη διαχείριση ασθενών με ΣΔ Τ2 1 Ο Σεμινάριο ΕΛ.Ε.ΓΕ.ΙΑ. 15-17 Ιανουαρίου 2010, Ναύπλιο Ο Σεμινάριο ΕΛ.Ε.ΓΕ.ΙΑ. 5-7 Ιανουαρίου 200, Ναύπλιο ΗΜΕΡΑ η Παρασκευή 5 Ιανουαρίου 200 Συνεδρία Εισαγωγή 9:00-9:5 Οι σκοποί του σεμιναρίου 9:5-20:00 20:00-2:00 Διατροφή και άσκηση ΗΜΕΡΑ 2 η Σάββατο 6 Ιανουαρίου

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα