ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΑΝΑΠΤΥΞΗ ΠΑΙΧΝΙΔΙΟΥ ΣΤΡΑΤΗΓΙΚΗΣ ΜΕΡΙΚΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΑΝΑΠΤΥΞΗ ΠΑΙΧΝΙΔΙΟΥ ΣΤΡΑΤΗΓΙΚΗΣ ΜΕΡΙΚΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΑΠΤΥΞΗ ΠΑΙΧΝΙΔΙΟΥ ΣΤΡΑΤΗΓΙΚΗΣ ΜΕΡΙΚΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ Δ Ι Π Λ Ω Μ Α Τ Ι Κ Η Ε Ρ Γ Α Σ Ι Α ΜΑΡΘΑΣ Γ. ΒΛΑΧΟΥ-ΚΟΓΧΥΛΑΚΗ ΕΠΙΒΛΕΠΩΝ: Κ. ΣΓΑΡΜΠΑΣ ΠΑΤΡΑ - ΟΚΤΩΒΡΙΟΣ 2012

2

3 ΠΙΣΤΟΠΟΙΗΣΗ Πιστοποιείται ότι η διπλωματική εργασία με θέμα: Ανάπτυξη Παιχνιδιού Στρατηγικής Μερικής Πληροφόρησης Της φοιτήτριας του τμήματος Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Μάρθας Βλάχου-Κογχυλάκη (Α.Μ. 6485) παρουσιάστηκε δημόσια και εξετάστηκε στο Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών στις 10/10/2012 Ο Επιβλέπων Ο Διευθυντής του Τομέα Κ. Σγάρμπας Επ. Καθηγητής Ν. Φακωτάκης Καθηγητής

4

5 ΤΙΤΛΟΣ: Ανάπτυξη Παιχνιδιού Στρατηγικής Μερικής Πληροφόρησης ΣΥΓΓΡΑΦΕΑΣ: Μάρθα Βλάχου-Κογχυλάκη (Α.Μ. 6485) ΠΕΡΙΛΗΨΗ: Στην παρούσα διπλωματική εργασία αναπτύσσεται ένα πρόγραμμα για τη δημιουργία ενός έξυπνου παίκτη του παιχνιδιού Tichu. Εισάγονται διάφορες τεχνικές Τεχνικής Νοημοσύνης όπως τα δένδρα αναζήτησης και οι ευρετικές συναρτήσεις οι οποίες ενσωματώνονται με τέτοιο τρόπο έτσι ώστε να ταιριάξουν στις απαιτήσεις του παιχνιδιού. Το πρόγραμμα περιλαμβάνει τρία στάδια: τη δημιουργία ενός δένδρου αναζήτησης το οποίο περιέχει όλους τους δυνατούς συνδυασμούς Tichu που μπορούν να προκύψουν από μία λίστα φύλλων, την αξιολόγησή του και τη λήψη αποφάσεων μέσα στο παιχνίδι βάση αυτού. Λόγω του πλήθους των παραμέτρων που μπορούμε να ορίσουμε για κάθε παίκτη προέκυψαν παίκτες με διαφορετικές συμπεριφορές και παιχνίδια με ίδιο μοίρασμα φύλλων αλλά διαφορετικά αποτελέσματα. Το πρόγραμμα είναι γραμμένο στην αντικειμενοστραφή γλώσσα Java λόγω της ευκολίας της γλώσσας για τον χειρισμό αντικειμένων. Τέλος, η μελέτη αυτή πρόκειται για μία από τις πρώτες προσεγγίσεις του παιχνιδιού από την πλευρά της Τεχνητής Νοημοσύνης, λόγος που ήταν καθοριστικός για την απόφαση εκπόνησής της. ABSTRACT: This diploma dissertation demonstrates the creation of an artificial player for the game of Tichu. It includes various techniques, such as search trees and heuristic functions, that we use in AI problems in such a way that these techniques correspond to our needs, according to the format of the game. The program is composed of three parts: the construction of a search tree that includes all the possible Tichu combinations that can be found in a list of cards, the evaluation of this search tree and finally the way this artificial player takes its decisions, accordingly to the outcome of the evaluation function, during the game play. Since the parameters which define the way an artificial player plays can differ for each player, we have resulted in creating players that act differently; thus, not only do our results vary according to the cards the player has, but also because of the way the player reaches a decision. In addition, the program was developed in the object-oriented language Java which gives us the chance to handle objects easily. Finally, the crucial reason why we decided to develop this project was the fact that this approach would be one of the first approaches of this game from the aspect of Artificial Intelligence.

6

7 Ευχαριστίες Η εργασία αυτή δεν θα είχε ολοκληρωθεί χωρίς τη βοήθεια και καθοδήγηση του επιβλέποντα επίκουρου καθηγητή στο τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Πανεπιστημίου Πατρών κ. Σγάρμπα Κυριάκου, καθώς και του επίκουρου καθηγητή του Πανεπιστημίου Sapienza University of Rome κ. Βάσσου Σταύρου. Θα ήθελα επίσης να ευχαριστήσω τους φίλους μου Αντωνάδο Κωνσταντίνο (Voldroni), Βρυώνη Νίκο, Καραβέντζα Βασίλη (BillKa), Κόγια Μαρία, Κοκόγια Στέφανο (stevegeno), Κυριάκο Ρωμαίο (R1ddl3), και Παπανδρέου Ελένη για τον κοινό προβληματισμό που μοιραστήκαμε πάνω σε θέματα της εργασίας καθώς και για την συνεχή ενθάρρυνσή τους καθ όλη τη διάρκεια εκπόνησης της εργασίας. Τέλος, θα ήθελα να ευχαριστήσω όλους τους φίλους μου που μοιράστηκαν χρόνο μαζί μου παίζοντας Tichu και ένας προς έναν συντέλεσαν στην απόφασή μου για επιλογή του παρόντος θέματος, καθώς και την οικογένειά μου για την υποστήριξη που μου έχει προσφέρει όλα αυτά τα χρόνια.

8 Π ε ρ ι ε χ ό μ ε ν α ΚΕΦΑΛΑΙΟ 1 Εισαγωγή Η εργασία Στόχος Δυσκολίες Δομή... 9 ΚΕΦΑΛΑΙΟ 2 Γενικές Γνώσεις Το Tichu Τι είναι το Tichu; Η Τράπουλα Κανόνες Τακτικές Mini Tichu Τεχνητή Νοημοσύνη Δένδρα αναζήτησης Συναρτήσεις Αναζήτησης και Ευρετικές Συναρτήσεις Λήψη Αποφάσεων Java Ιστορία της Java Τι είναι ο αντικειμενοστραφής προγραμματισμός; Γιατί χρησιμοποιήσαμε Java; Συνδυαστική Ανάλυση και Πιθανότητες Τι είναι συνδυασμός και γιατί τον χρειαζόμαστε εδώ; Πλήθος όλων των συνδυασμών Πιθανότητα εμφάνισης ενός συνδυασμού ΚΕΦΑΛΑΙΟ 3 Υλοποίηση Οι κλάσεις Card, Deck, Combination και Hand Card Deck Combination Hand Η κλάση CombList Οι κλάσεις Game, Round, Table και Rules... 31

9 3.3.1 Game Round Table Rules Δημιουργία δένδρου αναζήτησης Κλάσεις Node και Search Εμφωλευμένες κέντες Διαγραφή ίδιων κόμβων Αναζήτηση για φουλ Πρόσθεση μονών συνδυασμών Συναρτήσεις αξιολόγησης φύλλου Κλάσεις Evaluation και Possibilities Απλή συνάρτηση αξιολόγησης Κανονικοποίηση ως προς το πλήθος των καρτών Κανονικοποίηση ως προς τον αριθμό των συνδυασμών Συνάρτηση με μέτρηση των συνδυασμών που απομένουν στο παιχνίδι Αξιολόγηση λιστών χωρίς συνδυασμό Ο παίκτης Κλάση Player Ανταλλαγή φύλλων Συνεργατικότητα Πάσο ή όχι; Ορισμός νέου συνδυασμού Ο τυχαίος παίκτης ΚΕΦΑΛΑΙΟ 4 Παραδείγματα Χρήσης Εγκατάσταση Java Εκτέλεση προγράμματος Λειτουργία προγράμματος ΚΕΦΑΛΑΙΟ 5 Γενικές Μετρήσεις Βάρη συνδυασμών Επιθετικότητα Συναρτήσεις Αξιολόγησης Αποτελέσματα κάθε ομάδας Συνολικές νίκες κάθε συνάρτησης ΚΕΦΑΛΑΙΟ 6 Συμπεράσματα και Μελλοντικές Βελτιώσεις Συμπεράσματα Μελλοντικές Βελτιώσεις Βιβλιογραφία... 81

10 ΠΑΡΑΡΤΗΜΑ Α Δοκιμαστικά Φύλλα ΠΑΡΑΡΤΗΜΑ Β Πίνακες ΠΑΡΑΡΤΗΜΑ Γ Κώδικας... 87

11 ΚΕΦΑΛΑΙΟ 1 Εισαγωγή 1.1 Η εργασία Η εργασία αυτή ξεκίνησε με σκοπό την ανάπτυξη ενός έξυπνου παίκτη Tichu αφού πρώτα παρατηρήθηκε ότι δεν έχουν ακόμα αναπτυχθεί πολλές εφαρμογές που να δίνουν στο χρήστη τη δυνατότητα να παίζει με τεχνητό αντίπαλο, συμπαίκτη ή και τους δύο. Παράλληλα και με τη δημοτικότητα του παιχνιδιού στην Ελλάδα η ιδέα προσέγγισής του από την πλευρά της Τεχνητής Νοημοσύνης φάνηκε αρκετά ενδιαφέρουσα ώστε να ξεκινήσει η υλοποίησή της. Η συγγραφή του προγράμματος ξεκίνησε τον Δεκέμβριο του 2011 με την καθοριστική βοήθεια του επιβλέποντα επίκουρου καθηγητή στο τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών του Πανεπιστημίου Πατρών κ. Σγάρμπα Κυριάκου και του επίκουρου καθηγητή του Πανεπιστημίου Sapienza University of Rome, κ. Βάσσου Σταύρου. Το πρόγραμμα και ο στόχος της εργασίας ολοκληρώθηκε τον Σεπτέμβριο του Στόχος Στην εργασία αυτή έγινε μία αρχική προσπάθεια μελέτης του παιχνιδιού από την πλευρά της Τεχνητής Νοημοσύνης. Στόχος μας ήταν να δημιουργήσουμε έναν παίκτη ικανό για λήψη αποφάσεων σύμφωνων με τους κανόνες καθώς και να του δώσουμε στοιχεία από την ανθρώπινη εμπειρία έτσι ώστε οι αποφάσεις αυτές να συγκλίνουν με αυτές που θα έπαιρνε ένας παίκτης άνθρωπος. Προσπαθήσαμε επίσης να δημιουργήσουμε δομές οι οποίες να ευνοούν την διόρθωση καθώς και την βελτίωση του προγράμματος. Στόχος μας ήταν να γίνει αυτή η αρχική προσέγγιση του θέματος με τέτοιο τρόπο ώστε να θεωρηθεί, τουλάχιστον κάποιο μέρος της, σαν βάση για περεταίρω μελέτη και ανάπτυξη. Η τελική μορφή του προγράμματος αντιστοιχεί σε μία υλοποίηση διαφορετικών παικτών οι οποίοι χρησιμοποιούν διαφορετικές συναρτήσεις και συσχετίσεις μεταβλητών για τη λήψη αποφάσεων. 1.3 Δυσκολίες Ένας έμπειρος παίκτης Tichu μπορεί να διαπιστώσει ότι πρόκειται για ένα παιχνίδι το οποίο εμπλέκει τεχνικές και στρατηγικές από πολλά διαφορετικά είδη παιχνιδιών πράγμα που το κάνει δύσκολο και πολύπλοκο προς πλήρη υλοποίηση. Όπως θα αναφερθεί και στους κανόνες στο Κεφάλαιο 2 ο παίκτης πρέπει σε κάθε κίνηση να λαμβάνει υπ όψιν τους πόντους της εκάστοτε μπάζας, τα tichu και large tichu από τον

12 8 συμπαίκτη ή/και τον αντίπαλο, την κατάσταση των κρυφών φύλλων, την χρήση των ειδικών φύλλων καθώς και να είναι σε θέση να αξιολογεί τα φύλλα του και να παίζει ή να δηλώνει πάσο αναλόγως. Λόγω αυτής της πολυπλοκότητας αντιμετωπίσαμε αρκετές δυσκολίες κατά την ανάπτυξή του. Καθώς δεν υπάρχει κάποια προηγούμενη δουλειά ανοιχτή προς το ευρύ κοινό πάνω σε αυτό το θέμα η υλοποίηση ξεκίνησε χωρίς κάποια προηγούμενα δεδομένα προς ανάπτυξη. Οι κύριες όμως δυσκολίες που έπρεπε να αντιμετωπίσουμε ήταν: η πολυπλοκότητα των συνδυασμών οι διαφορετικές προσεγγίσεις προς τους υπόλοιπους παίκτες (ομάδα ή αντίπαλοι) η χρήση των ειδικών φύλλων ο τρόπος ενσωμάτωσης της εμπειρίας του ανθρώπινου παράγοντα στις συναρτήσεις του τεχνητού παίκτη Λόγω αυτών των δυσκολιών αποφασίσαμε να κάνουμε κάποιες παραλείψεις από την υλοποίηση, των οποίων οι λόγοι εξηγούνται παρακάτω: Η πρώτη παράλειψη αφορά στην σχέση μεταξύ συμπαικτών. Στο τελικό πρόγραμμα υπάρχει, βέβαια, μία στοιχειώδης μορφή ομαδικότητας, πολύ γενικά ορισμένη, έτσι ώστε να μην καταργείται ο ρόλος των ομάδων και κατ επέκταση η ροή του παιχνιδιού. Αποφασίσαμε επιπλέον να παραλείψουμε τα ειδικά φύλλα της τράπουλας Tichu για να επιστήσουμε την προσοχή στις στρατηγικές που μπορούν να αναπτυχθούν κατά τη διάρκεια του παιχνιδιού. Βεβαίως και οι στρατηγικές μορφοποιούνται με την εισαγωγή των ειδικών φύλλων αλλά θεωρήσαμε πιο σωστό να γίνει πρώτα η υλοποίηση χωρίς αυτά για να δημιουργηθεί ένα πιο δομημένο και διαρθρωμένο πρόγραμμα. Στην υλοποίηση του προγράμματος και κατά τη διάρκεια μίας παρτίδας καταμετρούνται οι πόντοι κάθε ομάδας αλλά οι παίκτες δεν λαμβάνουν αποφάσεις σύμφωνα με αυτούς. Άλλωστε υπάρχουν άνθρωποι-παίκτες Tichu όλων των επιπέδων οι οποίοι δεν λαμβάνουν, αντίστοιχα, αποφάσεις σύμφωνα με τους πόντους της μπάζας. Επιπλέον ο «σωστός», εάν θα μπορούσε να οριστεί έτσι, παίκτης δε λαμβάνει αποφάσεις σύμφωνα με τους πόντους παρά μόνο σε κάποια συγκεκριμένα σημεία του παιχνιδιού. Τελευταία παράλειψη που έγινε είναι η δήλωση tichu και large tichu από τον παίκτη. Οι δηλώσεις αυτές προϋποθέτουν πολύ καλή συνεργασία ανάμεσα στην ομάδα η οποία δεν είναι ακόμα η βέλτιστη. Η τεχνική των αντιπάλων αλλάζει αντίστοιχα. Συνεπώς η επιλογή ενός παίκτη να πει tichu ή large tichu θα αλλοίωνε τα αποτελέσματα των στρατηγικών που αναπτύχθηκαν. Σημειώνουμε ότι οι παραπάνω παραλείψεις δεν είναι παρά μόνο στάδια του προγράμματος που δεν αναπτύχθηκαν ακόμα. Η δομή που δημιουργήσαμε είναι τέτοια έτσι ώστε να υπάρχουν περιθώρια βελτίωσής του προς όλες τις κατευθύνσεις.

13 9 1.4 Δομή Στα κεφάλαια που ακολουθούν έχουμε προσπαθήσει να δώσουμε μια καλή εικόνα της εργασίας, τα στάδια από τα οποία πέρασε καθώς και το τελικό αποτέλεσμα στο οποίο φτάσαμε. Πιο συγκεκριμένα, στο Κεφάλαιο 1 περιγράψαμε ήδη το στόχο της εργασίας και πώς ξεκίνησε η υλοποίησή της. Προχωρώντας στο Κεφάλαιο 2 θα παραθέσουμε όλες τις γενικές γνώσεις τις οποίες χρειάζεται ο αναγνώστης για να κατανοήσει την υλοποίηση του προγράμματος και το τελικό αποτέλεσμα. Η υλοποίηση γίνεται σαφής στο Κεφάλαιο 3 όπου περιγράφονται λεπτομερώς και με τη χρήση σχημάτων τα κομβικά σημεία λειτουργίας του προγράμματος πάνω στα οποία είναι βασισμένη η λήψη αποφάσεων του παίκτη. Το Κεφάλαιο 4 που ακολουθεί περιέχει μία ανάλυση του προγράμματος από την πλευρά του χρήστη καθώς και τις οδηγίες λειτουργίας του. Στο Κεφάλαιο 5 έχουμε παραθέσει όλες τις μετρήσεις και τα στατιστικά που προέκυψαν από το πρόγραμμά μας σημείο που είναι κομβικό για τις μελλοντικές βελτιώσεις του προγράμματος. Αυτές εξηγούνται στο Κεφάλαιο 6 μαζί με όλο το πλάνο βελτίωσης της εργασίας καθώς και τα συμπεράσματα που βγάλαμε από τη μελέτη αυτή.

14 10

15 ΚΕΦΑΛΑΙΟ 2 Γενικές Γνώσεις 2.1 Το Tichu Τι είναι το Tichu; Το Tichu είναι ένα παιχνίδι καρτών που παίζεται με τέσσερεις παίκτες. Υπάρχουν βεβαίως και παραλλαγές των τριών ή έξι παικτών αλλά εδώ θα ασχοληθούμε με την κλασσική μορφή του παιχνιδιού. Οι παίκτες χωρίζονται σε δύο ομάδες των δύο (κάθονται αντικριστά μεταξύ τους) και κερδίζει η ομάδα που θα μαζέψει πρώτη 1000 ή παραπάνω πόντους. Οι πόντοι καταμετρούνται στο τέλος του κάθε γύρου αναλόγως με τις μπάζες της κάθε ομάδας. Στόχος του κάθε γύρου για κάθε παίκτη είναι να «βγει», δηλαδή να μείνει χωρίς φύλλα στα χέρια του, έχοντας μαζέψει ταυτόχρονα και πόντους. Εικόνα 2.1 Το παιχνίδι αυτό προέρχεται από ένα κινέζικο παραδοσιακό παιχνίδι και πρόκειται για μία παραλλαγή του παιχνιδιού Choi Dai Di ή Big Two ή Da Lao Er σε συνδυασμό με το Zheng Fen (ανταγωνίζομαι για τους πόντους) [1]. Σήμερα διανέμεται από την ελβετική εταιρία παιχνιδιών Fata Morgana [2]. Το παιχνίδι εντάσσεται στην κατηγορία των Climbing Games η οποία χαρακτηρίζεται από το γεγονός ότι κάθε παίκτης, στη σειρά του, πρέπει να παίξει ένα υψηλότερο φύλλο (ή συνδυασμό φύλλων) από τον προηγούμενο. Όποιος παίκτης δεν μπορεί ή δεν επιθυμεί να «χτυπήσει» το προηγούμενο φύλλο ή συνδυασμό μπορεί να δηλώσει «πάσο». Τα Climbing Games είναι ιδιαίτερα διαδεδομένα στην ανατολή και κυριότερα στην Κίνα. Σχήμα 2.1 Οι ομάδες του παιχνιδιού Η συνεχώς αυξανόμενη διάδοσή του στην Ελλάδα φαίνεται και από την πληθώρα ιστοσελίδων που περιγράφουν το παιχνίδι καθώς και τις διαδικτυακές πλατφόρμες που δίνουν τη δυνατότητα στους χρήστες να παίζουν, διαδικτυακά, με άλλους παίκτες. Η πολυπληθέστερη μέχρι στιγμής πλατφόρμα είναι η γερμανική BrettspielWelt [3]. Δημοφιλής είναι όμως και η ελληνική εφαρμογή του παιχνιδιού στο Facebook μέσω της ιστοσελίδας

16 Η Τράπουλα Η Τράπουλα Τichu αποτελείται από 56 φύλλα. Τα 52 από αυτά είναι τέσσερεις «σειρές» δεκατριών φύλλων με αξίες από 2 έως Άσσο, όπως δηλαδή μία κανονική τράπουλα των 52 φύλλων. Οι «σειρές» είναι τα παρακάτω τέσσερα σύμβολα : Σπαθί (Sword): Αστέρι (Star): Διαμάντι (Diamond): Παγόδα (Pagoda): Εικόνα 2.2: Μία τράπουλα Tichu Υπάρχουν επίσης τέσσερεις επιπλέον ειδικές κάρτες που είναι το Mah-Jong, ο Δράκος, ο Φοίνικας και τα Σκυλιά Κανόνες Στην ενότητα αυτή θα αναπτυχθούν πλήρως όλοι οι κανόνες του παιχνιδιού. Γενικοί Κανόνες [2] Όπως περιγράφτηκε και στην ενότητα ο γενικός κανόνας του παιχνιδιού αυτού είναι ότι ο κάθε παίκτης στη σειρά του μπορεί είτε να παίξει ένα φύλλο ή συνδυασμό μεγαλύτερο του προηγούμενού του είτε - εάν δεν επιθυμεί να παίξει ή δεν έχει να δηλώσει «πάσο». Αυτό συνεχίζεται όσες φορές χρειάζεται μέχρις ότου κάποιος παίκτης παίξει ένα φύλλο ή συνδυασμό τον οποίο δεν θα «χτυπήσει» κανείς (ακουστούν, δηλαδή, τρία διαδοχικά πάσο). Ο παίκτης αυτός κερδίζει την «μπάζα» και ορίζει μία καινούρια. Στόχος του παιχνιδιού είναι για τον κάθε παίκτη να απαλλαγεί από όλα τα φύλλα του μαζεύοντας, ταυτόχρονα, και τους περισσότερους πόντους. Ένα παράδειγμα αυτής της λογικής φαίνεται και στο σχήμα 2.2. Σχήμα 2.2 Η ροή του παιχνιδιού Αρχή του Γύρου Ανταλλαγές Τα φύλλα μοιράζονται όλα στους τέσσερεις παίκτες. Στα πρώτα 8 φύλλα γίνεται μία

17 13 παύση για να δοθεί το δικαίωμα σε κάθε παίκτη να δηλώσει Large Tichu (βλ Tichu και Large Tichu). Στο τέλος του μοιράσματος ο κάθε παίκτης έχει στο χέρι του 14 φύλλα. Πριν ξεκινήσει το παιχνίδι κάθε παίκτης πρέπει να δώσει στους δύο αντιπάλους και στον συμπαίκτη του από ένα φύλλο. Αφού δώσει τα επιλεγμένα φύλλα μπορεί να σηκώσει τα αντίστοιχα που έχει λάβει από τους άλλους τρεις παίκτες. Ο παίκτης που αρχίζει πρώτος είναι αυτός που έχει το Mah-Jong. Μπορεί να ρίξει οποιονδήποτε συνδυασμό φύλλων θέλει. Οι υπόλοιποι παίκτες πρέπει είτε να ρίξουν τον ίδιο συνδυασμό σε μεγαλύτερη αξία είτε να πουν «πάσο». Συνδυασμοί Οι επιτρεπτοί συνδυασμοί είναι οι παρακάτω: ΣΥΝΔΥΑΣΜΟΣ ΠΕΡΙΓΡΑΦΗ ΠΑΡΑΔΕΙΓΜΑ Μονό Φύλλο: Ένα μονό φύλλο Το Mah-Jong είναι η μοναδική «μονάδα» στο παιχνίδι. Ο Άσσος είναι η επόμενη αξία μετά τον Ρήγα (Κ). Ο Δράκος έχει τη μεγαλύτερη αξία από όλα 7 τα μονά φύλλα και μπορεί να χτυπηθεί μόνο με βόμβα Ζευγάρι: Δύο ίδια φύλλα 7,7 Τρία Όμοια: Τρία ίδια φύλλα 7,7,7 Κέντα: Πέντε ή παραπάνω διαδοχικά φύλλα Η κέντα ορίζεται από το πλήθος των φύλλων της και την αξία του μεγαλύτερου φύλλου. Π.χ. μια κέντα έξι φύλλων είναι μεγαλύτερης αξίας από μία 5,6,7,8,9,+ κέντα έξι φύλλων Μια κέντα ν φύλλων μπορεί να «χτυπηθεί» μόνο από μια κέντα ν φύλλων μεγαλύτερης αξίας. Φουλ: Τρία όμοια φύλλα μαζί με ένα ζευγάρι Η αξία του φουλ ορίζεται από την αξία των τριών όμοιων φύλλων. Ένα φουλ δηλαδή είναι 7,7,7,3,3 μεγαλύτερης αξίας ενός φουλ 666ΚΚ. Διαδοχικά Ζευγάρια: Δύο ή και παραπάνω ζευγάρια στη σειρά Τα διαδοχικά ζευγάρια ορίζονται και αυτά από το πλήθος των ζευγαριών και την αξία του μεγαλύτερου ζευγαριού. Π.χ. τα διαδοχικά ζεύγη 8899 έχουν μεγαλύτερη αξία από τα διαδοχικά ζεύγη 4,4,5,5, Όπως και στην κέντα, διαδοχικά ζευγάρια ν στο πλήθος μπορούν να χτυπηθούν μόνο από ν στο Βόμβες: πλήθος διαδοχικά ζευγάρια μεγαλύτερης αξίας. 4 όμοια φύλλα (καρέ) ή κέντα πέντε ή και παραπάνω φύλλων ίδιου χρώματος (κέντα - χρώμα) Η βόμβα είναι η δυνατότερη από οποιοδήποτε συνδυασμό φύλλων. Μπορεί να παιχτεί οποιαδήποτε στιγμή πάνω σε οποιονδήποτε συνδυασμό οποιασδήποτε αξίας. (Εκτός φυσικά πάνω από βόμβα μεγαλύτερης αξίας) Η βόμβα καρέ ορίζεται από την αξία των φύλλων της. Μία βόμβα π.χ είναι δυνατότερη από μία βόμβα Η βόμβα κέντα - χρώμα είναι δυνατότερη από την βόμβα καρέ. Όσον αφορά στην βόμβα κέντα - χρώμα Καρέ: 7,7,7,7 Κέντα - Χρώμα: 5, 6, 7, 8, 9, +

18 14 ανάμεσα σε δύο βόμβες ν πλήθους φύλλων η αξία ορίζεται από το μεγαλύτερο σε αξία φύλλο. Μία βόμβα με πλήθος φύλλων μεγαλύτερο του ν όμως υπερτερεί σε αξία μίας βόμβας με ν φύλλα (Π.χ. ανάμεσα στις δύο βόμβες χρώματος 10JQKA και η δεύτερη είναι πιο ισχυρή). Πίνακας 2.1: Συνδυασμοί του Tichu Ειδικές Κάρτες Το Mah-Jong Το Mah-Jong είναι το μικρότερο φύλλο της τράπουλας και η μοναδική μονάδα στο παιχνίδι. Μπορεί δηλαδή να παιχτεί είτε στην αρχή μιας κέντας πριν από το 2 (12345) είτε σαν μονό φύλλο. Αυτός που έχει το Mah-Jong στα φύλλα του είναι αυτός που ξεκινάει το γύρο. Μπορεί να ρίξει οποιονδήποτε συνδυασμό θέλει. Εικόνα 2.3 Το Mah-Jong Επιθυμία του Mah-Jong: Τη στιγμή που παίζεται το Mah-Jong ο παίκτης που το ρίχνει (είτε ως μονό φύλλο είτε ως κέντα) δικαιούται να ζητήσει ένα φύλλο (έναν «αριθμό» δηλαδή από το 2 έως τον Άσσο). Η επιθυμία του Mah-Jong πρέπει να εκπληρωθεί όταν βέβαια αυτό είναι δυνατόν. Για παράδειγμα έστω ότι το Mah-Jong παίζεται ως μονό φύλλο και ο παίκτης που το ρίχνει αποφασίζει να ζητήσει 6. Ο επόμενος παίκτης είναι υποχρεωμένος να ρίξει 6 εάν έχει. Εάν δεν έχει τότε μπορεί να ρίξει ό,τι θέλει ή να πάει πάσο. Ο τρίτος στη σειρά πρέπει τώρα αυτός να ρίξει 6 εάν έχει και μπορεί (δηλαδή προηγουμένως δεν έχει πέσει φύλλο μεγαλύτερο του 6) κοκ. Σε περίπτωση που το Mah-Jong πέφτει σε κέντα και ζητείται ένα φύλλο τότε αυτό το φύλλο πρέπει να πέσει σε κέντα ίδιου αριθμού φύλλων εάν φυσικά αυτό είναι δυνατόν. ΠΡΟΣΟΧΗ: Η επιθυμία του Mah-Jong παραμένει έως ότου είναι δυνατόν να εκπληρωθεί. Να θυμίσουμε ότι οι βόμβες μπορούν να παιχτούν ανά πάσα στιγμή και πάνω σε οποιονδήποτε συνδυασμό πράγμα που σημαίνει ότι εάν κάποιος έχει βόμβα στο ζητούμενο φύλλο είναι υποχρεωμένος είτε να τη ρίξει είτε να τη «σπάσει» εάν αυτό είναι δυνατό. Τα σκυλιά Τα σκυλιά μπορούν να παιχτούν από τον παίχτη που έχει «πάρει χέρι» δηλαδή ορίζει τον συνδυασμό που πρόκειται να παιχτεί. Αντί λοιπόν να ορίσει ένα καινούριο συνδυασμό μπορεί να ρίξει τα σκυλιά δίνοντας το λόγο στο συμπαίκτη του να ορίσει αυτός το συνδυασμό που επιθυμεί. Εάν ο συμπαίκτης έχει βγει τότε αυτός που «μιλάει» είναι ο επόμενος παίκτης του κύκλου. Σε περίπτωση που και αυτός έχει βγει τότε «μιλάει» πάλι ο παίχτης που τα έπαιξε. Εικόνα 2. 4 Τα Σκυλιά ΠΡΟΣΟΧΗ: Τα σκυλιά είναι το μόνο φύλλο πάνω στο οποίο δεν μπορεί να πέσει βόμβα.

19 15 Ο δράκος Ο δράκος είναι το υψηλότερο μονό φύλλο και μπορεί να παιχτεί μόνο όταν παίζονται μονά φύλλα. Μπορεί να χτυπηθεί μόνο από βόμβα. Όταν κάποιος παίχτης παίρνει τη μπάζα με το δράκο τότε την μπάζα αυτή την δίνει σε έναν από τους αντίπαλους παίχτες, αυτόν που πιθανολογεί ότι θα βγει τελευταίος (σε αυτόν, δηλαδή, που θα είναι ο μόνος στο τέλος του γύρου έχοντας φύλλα στα χέρια του). Ο φοίνικας Εικόνα 2. 5 Ο Δράκος Ο φοίνικας χρησιμοποιείται ως μπαλαντέρ. Μπορεί να χρησιμοποιηθεί στη θέση οποιουδήποτε κλασσικού φύλλου (όχι δηλαδή ειδικού) και να συμπληρώσει οποιονδήποτε συνδυασμό εκτός από βόμβα. Όταν παίζεται ως μονό φύλλο τότε η αξία του είναι μισή παραπάνω από το τελευταίο μονό φύλλο που έχει παιχτεί. Εάν δηλαδή παιχτεί πάνω από 6 τότε η αξία του είναι 6+½, εάν παιχτεί πάνω από Άσσο τότε η αξία του είναι Α+½. Ο φοίνικας δεν μπορεί να παιχτεί πάνω από τον Δράκο. Εικόνα 2. 6 Ο Φοίνικας Τέλος του γύρου Πόντοι Ο γύρος σταματάει σε δύο περιπτώσεις: Όταν οι τρείς από τους τέσσερεις παίχτες παίξουν όλα τους τα φύλλα. Τότε μετριούνται οι πόντοι των φύλλων της συνολικής μπάζας της κάθε ομάδας. Οι πόντοι είναι 100 και είναι οι παρακάτω: Πεντάρι (5) Δεκάρι (10) Ρήγας (Κ) Δράκος Φοίνικας 5 πόντοι 10 πόντοι 10 πόντοι 25 πόντοι -25 πόντοι Όλα τα υπόλοιπα φύλλα δεν έχουν πόντους. Ο τελευταίος παίκτης δίνει τους πόντους που έχει στο χέρι του στην αντίπαλη ομάδα και τους πόντους που έχει στη μπάζα του στην ομάδα που ανήκει ο παίκτης που έμεινε πρώτος χωρίς φύλλα (μπορεί δηλαδή να είναι και η δική του ομάδα) Όταν βγουν πρώτος και δεύτερος οι δύο παίκτες μίας ομάδας (ονομάζεται και ένα δύο). Τότε δεν μετριούνται οι πόντοι και η ομάδα αυτή παίρνει αυτόματα 200 πόντους ενώ η άλλη 0. Tichu και Large Tichu Κάθε παίκτης οποιαδήποτε στιγμή πριν ρίξει το πρώτο του φύλλο μπορεί να ανακοινώσει Τichu. Αυτό σημαίνει ότι πιθανολογεί πως θα είναι αυτός ο οποίος θα μείνει πρώτος χωρίς φύλλα. Εάν αυτό γίνει τότε η ομάδα του κερδίζει επιπλέον 100 πόντους. Σε αντίθετη περίπτωση η ομάδα του χάνει 100 πόντους.

20 16 Large Tichu μπορεί να ανακοινώσει κάποιος παίχτης αφού έχει δει μόνο τα 8 πρώτα φύλλα. Όπως και στο απλό Tichu πάλι πιθανολογεί ότι θα είναι ο πρώτος που θα μείνει χωρίς φύλλα. Εδώ οι πόντοι που προσθέτονται ή αφαιρούνται εάν το «βγάλει» ή όχι αντίστοιχα είναι 200. ΠΡΟΣΟΧΗ: Οι πόντοι του Tichu και Large Tichu είναι επιπλέον πόντοι στο γύρο Τακτικές Παρακάτω θα περιγραφούν οι βασικές τακτικές για έναν παίκτη tichu. Αυτές οι τακτικές χρησιμοποιήθηκαν έως ένα βαθμό στην υλοποίηση του προγράμματος. Ένας παίκτης πρέπει κατά τη διάρκεια του παιχνιδιού να προσπαθεί να «ξεφορτωθεί» πρώτα τα αδύναμα μονά φύλλα και συνδυασμούς και στη συνέχεια τους πιο ισχυρούς. Το παιχνίδι παίζεται σε δύο ομάδες γι αυτό καλό είναι οι παίκτες της κάθε ομάδας να συνεργάζονται. Αυτό σημαίνει ότι ένας παίκτης δηλώνει συχνά πάσο σε ισχυρά μονά φύλλα ή συνδυασμούς του συμπαίκτη του. Σκοπός του παιχνιδιού είναι μεν οι πόντοι αλλά αυτό δεν πρέπει να γίνεται αυτοσκοπός. Εξ άλλου υπάρχουν και άλλοι παράμετροι που προσθέτουν πόντους σε μία ομάδα όπως τα large tichu και απλό tichu, το «ένα - δύο» ή η «μπάζα» του τελευταίου παίκτη Mini Tichu Στην παρούσα εργασία ασχοληθήκαμε με μία μικρότερη μορφή του tichu το οποίο και ονομάσαμε Mini Tichu. Η έκδοση αυτή διαφέρει από την αρχική στο ότι δεν περιλαμβάνει τις τέσσερεις ειδικές κάρτες. Αυτό μας άφησε να εστιάσουμε περισσότερο στις συναρτήσεις αξιολόγησης του φύλλου και στον τρόπο παιξίματος ενός παίκτη σε ένα -λίγο πιο πολύπλοκο λόγω πλήθος διαφορετικών συνδυασμών - παιχνίδι με μπάζες. Ο παίκτης που παίζει πρώτος ορίζεται από μία τυχαία συνάρτηση. 2.2 Τεχνητή Νοημοσύνη Δένδρα αναζήτησης Τι είναι δένδρο; - Ορισμός Στην επιστήμη των υπολογιστών το δέντρο είναι μία ευρέως διαδεδομένη δομή δεδομένων η οποία αναπαριστά μία ιεραρχημένη δομή δένδρου δημιουργημένη από ένα σύνολο κόμβων. Ένα δένδρο είναι ένας γράφος G=(V,E) τέτοιος ώστε για κάθε κόμβο κ1, κ2 V υπάρχει ένα μοναδικό απλό μονοπάτι από τον κόμβο κ 1, στον κόμβο κ 2. Διαφορετικά μπορούμε να ορίσουμε ένα δένδρο σαν έναν συνεκτικό γράφο ο οποίος δεν περιέχει κύκλους (είναι άκυκλος) [4] αλλά μπορεί να σχηματιστεί ένας απλός κύκλος εάν προστεθεί μια οποιαδήποτε ακμή στον γράφο. Ένα ακόμα χαρακτηριστικό του γράφου αυτού είναι ότι παύει να είναι συνεκτικός εάν αφαιρεθεί έστω και μία ακμή του.

21 17 A B C I D J K E F G H Σχήμα 2.3 Η δομή ενός δένδρου Παρακάτω παρουσιάζονται τα βασικά στοιχεία ενός δένδρου: Ρίζα δένδρου : Ο μοναδικός κόμβος στο δένδρο που δεν έχει γονείς. Για παράδειγμα στο σχήμα 2.3 ο κόμβος A είναι η ρίζα του δένδρου. Γονέας κόμβου κ : Είναι ο αμέσως προηγούμενος κόμβος της διαδρομής από τη ρίζα του δένδρου στον κόμβο κ. Όπως φαίνεται και στο σχήμα 2.3 ο κόμβος C έχει ως γονέα τον κόμβο B. Παιδί κόμβου κ : Παιδί ενός κόμβου θεωρείται ο κόμβος για τον οποίο ο κ είναι πατέρας. Για παράδειγμα στο σχήμα 2.3 ο κόμβος E έχει παιδιά τους κόμβους F και G. Φύλλα Δένδρου : Οποιοσδήποτε τερματικός κόμβος (κόμβος βαθμού 1) ορίζεται ως φύλλο δένδρου. Πιο απλά, ένα φύλλο δένδρου είναι οποιοσδήποτε κόμβος δεν έχει παιδί. Στο δένδρο του σχήματος 2.3 φύλλα είναι οι κόμβοι I, C, K, H και G Βάθος κόμβου : Η απόσταση (αριθμός κλαδιών) μεταξύ του κόμβου και της ρίζας του δένδρου. Παράδειγμα: ο κόμβος E έχει βάθος 3. Βάθος Δένδρου (d) : Η μεγαλύτερη απόσταση κόμβου και ρίζας στο δένδρο. Το βάθος του δένδρου του σχήματος 2.3 είναι ίσο με 5 γιατί ο κόμβος H ο οποίος και βρίσκεται πιο μακριά από τη ρίζα έχει βάθος ίσο με 5. Μέγεθος Δένδρου : Ο συνολικός αριθμός των κόμβων ενός δένδρου Παράγοντας Διακλάδωσης b : Ο αριθμός παιδιών κάθε κόμβου d Κόμβοι στο επίπεδο d 2d(για b=2) Συνολικός αριθμός κόμβων

22 Πίνακας 2.2 Κόμβοι δένδρου Κατασκευή δένδρου αναζήτησης Το δένδρο αναζήτησης παράγεται από την αρχική κατάσταση (κόμβος ρίζα) μέσω ορισμένων ενεργειών οι οποίοι δημιουργούν τους κόμβους φύλλα [5]. Μετά το πέρας της κατασκευής του δένδρου αναζήτησης έχει οριστεί ένα σύνολο καταστάσεων το οποίο ορίζεται και ως χώρος καταστάσεων. Η ρίζα του δένδρου είναι ένας κόμβος ο οποίος αντιστοιχεί στην αρχική κατάσταση και τα φύλλα του δένδρου θεωρούνται οι τελικές καταστάσεις ή στόχοι. Για να φτάσουμε από την αρχική κατάσταση σε μία κατάσταση στόχου πρέπει να επεκτείνουμε τον κάθε τον κάθε κόμβο-προς-αναζήτηση με κάποια ενέργεια. Ξεκινώντας, δηλαδή, από την αρχική κατάσταση και εφαρμόζοντας μία συνάρτηση διαδόχων παράγουμε ένα καινούριο σύνολο καταστάσεων οι οποίες αντιστοιχούν στα παιδιά της αρχικής κατάστασης. Συνεχίζοντας αυτή τη διαδικασία κατασκευάζουμε ολόκληρο το δένδρο αναζήτησης έως ότου φτάσουμε στις τερματικές καταστάσεις οι οποίες αντιστοιχούν στις καταστάσεις στόχου ή φύλλα του δένδρου. Ο τρόπος κατασκευής του δένδρου, και πιο συγκεκριμένα η επιλογή του κόμβου για τον οποίο θα γίνει επέκταση προσδιορίζεται από την στρατηγική αναζήτησης που έχει επιλεχθεί Συναρτήσεις Αναζήτησης και Ευρετικές Συναρτήσεις Παρακάτω θα περιγράψουμε μία απλή απληροφόρητη συνάρτηση αναζήτησης καθώς και μία ευρετική συνάρτηση με συνδυασμό των οποίων έγινε η υλοποίηση του προγράμματος. Οι απληροφόρητες συναρτήσεις αναζήτησης έχουν σαν μοναδικό τους γνώρισμα την ικανότητά τους να διακρίνουν καταστάσεις ως καταστάσεις στόχου. Αυτό σημαίνει ότι οι κόμβοι προς επέκταση επιλέγονται με κάποιον αλγόριθμο ο οποίος δεν λαμβάνει υπ όψιν το περιεχόμενο του κόμβου παρά μόνο εάν αυτός αποτελεί κατάσταση στόχου ή όχι. Αντίθετα, οι ευρετικές συναρτήσεις είναι στρατηγικές επέκτασης του δένδρου αναζήτησης οι οποίες χρησιμοποιούν μία συνάρτηση αξιολόγησης του κόμβου και επιλέγουν τον επόμενο κόμβο προς επέκταση με βάση αυτή την αξία. Οι συναρτήσεις αυτές κατά κύριο λόγο βρίσκουν τη λύση ενός προβλήματος πολύ πιο γρήγορα από τις απληροφόρητες συναρτήσεις αναζήτησης χωρίς όμως αυτό τους το γνώρισμα να είναι εγγυημένο. Υπάρχουν περιπτώσεις όπου ο ευρετικός μηχανισμός μπορεί να απαιτήσει πολύ περισσότερο χρόνο ή ακόμα και να μην οδηγήσει σε κάποια λύση. Η συνάρτηση αξιολόγησης συνήθως χρησιμοποιεί την ανθρώπινη γνώση και εμπειρία για να είναι βέλτιστη [5] [6]. Η αναζήτηση πρώτα σε βάθος Η αναζήτηση πρώτα σε βάθος είναι ένα είδος απληροφόρητης συνάρτησης αναζήτησης. Η επιλογή του επόμενου κόμβου προς επέκταση προκύπτει από τους απογόνους (παιδιά) του προηγούμενου κόμβου που αναζητήθηκε. Μετά την επέκταση ενός κόμβου γίνεται αυτόματα επέκταση του πρώτου απογόνου του κόμβου αυτού. Όταν ο κόμβος δεν έχει απογόνους τότε η αναζήτηση προχωρά στον επόμενο απόγονο του

23 19 προηγούμενου κόμβου (στον αδελφό-κόμβο). Στο σχήμα 2.4 φαίνεται ένα παράδειγμα αναζήτησης πρώτα σε βάθος με τα νούμερα στους κόμβους να ορίζουν τη σειρά επέκτασής τους [5] [6] Σχήμα 2.4 Αναζήτηση πρώτα σε βάθος Η αναζήτηση Α* Η αναζήτηση Α* είναι μία ευρετική αναζήτηση και εμπίπτει στην κατηγορία αναζητήσεων πρώτα στο καλύτερο. Για να βρεθεί ο καλύτερος κόμβος χρησιμοποιείται μία συνάρτηση αξιολόγησης κόστους του κάθε κόμβου. Ο κόμβος με το μικρότερο συνήθως κόστος επιλέγεται για επέκταση. Η συνάρτηση αυτή χρησιμοποιεί το άθροισμα τιμών που προκύπτουν καθ όλη τη διαδρομή. Για να γίνει πιο εύκολα κατανοητή η αναζήτηση Α* μπορούμε να θεωρήσουμε ότι το πρόβλημα προς εξερεύνηση είναι η εύρεση της γρηγορότερης διαδρομής από μία πόλη σε μία άλλη. Στο παράδειγμα του σχήματος 2.6 η πόλη αναχώρησης είναι η πόλη Α και η πόλη άφιξης είναι η πόλη Η. Στο σχήμα 2.5 φαίνεται η διαδικασία αναζήτησης του αλγορίθμου. Πιο συγκεκριμένα ο αλγόριθμος αρχικά επεκτείνει τον κόμβο Πόλη Α όπου προκύπτουν οι δύο κοντινές του πόλεις Β και Γ. Επιλέγει στη συνέχεια να επεκτείνει τον κόμβο με τη μικρότερη απόσταση, δηλαδή τον κόμβο Β. Από την ενέργεια αυτή προκύπτουν οι κόμβοι Γ και Δ που αντιπροσωπεύουν τις πόλεις Γ και Δ αντίστοιχα. Επιλέγεται για επέκταση η πόλη Δ η οποία και προκύπτει ότι είναι η πόλη με τη μικρότερη απόσταση από την αρχική. Στη συνέχεια επεκτείνεται ο κόμβος Δ και προκύπτουν οι κόμβοι Ε και Ζ οι οποίοι όμως βρίσκονται πιο «μακριά» από την αρχική πόλη από τον κόμβο Γ. Γι αυτόν το λόγο ο αλγόριθμος επιλέγει να αναπτύξει αυτόν από τον οποίο προκύπτει ο κόμβος Η ο οποίος και είναι ο κόμβος στόχος. Με αυτή τη διαδικασία βρίσκεται η γρηγορότερη διαδρομή από τον κόμβο Α στον Η η οποία (όπως φαίνεται και από τα σχήματα 2.5 και 2.6) γίνεται μέσω της πόλης Γ [5] [6]. Στο Κεφάλαιο 3 θα περιγραφεί αναλυτικά ο συνδυασμός των δύο αυτών αναζητήσεων για τη χρήση του δένδρου αναζήτησης έτσι ώστε ο τεχνητός παίκτης tichu να είναι ικανός στη λήψη αποφάσεων.

2.2 Ειδικά Φύλλα... 4 2.2.1 Mahjong... 4 2.2.2 Phoenix - Φοίνικας... 4 2.2.3 Hund - Σκυλάκια... 4 2.2.4 Drache - Δράκος... 5

2.2 Ειδικά Φύλλα... 4 2.2.1 Mahjong... 4 2.2.2 Phoenix - Φοίνικας... 4 2.2.3 Hund - Σκυλάκια... 4 2.2.4 Drache - Δράκος... 5 ΗΥ-252 Αντικειμενοστρεφής Προγραμματισμός Προγραμματιστική Εργασία Χειμερινού Εξαμήνου 2012 Παράδοση 1 ης Φάσης: 7/12/2012 Παράδοση 2 ης Φάσης: 13/01/2013 Στην εργασία αυτή καλείστε να σχεδιάσετε και να

Διαβάστε περισσότερα

Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι.

Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι. Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι. Βασικοί Κανόνες Τα πλακίδια ανακατεύονται και τοποθετούνται με την όψη προς τα κάτω στο

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

NOVA PRODUCTIONS. by GDTronics

NOVA PRODUCTIONS. by GDTronics NOVA PRODUCTIONS by GDTronics Πώς παίζεις Τέξας Χόλντεµ. Σε κάθε παίκτη µοιράζονται δύο κλειστά φύλλα και ο πρώτος γύρος πονταρίσµατος ξεκινάει, µε τους δύο πρώτους παίκτες στα αριστερά του Ντήλερ να κάνουν

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

Οδηγίες. Θα το παίξεις... και θα πεις κι ένα τραγούδι!

Οδηγίες. Θα το παίξεις... και θα πεις κι ένα τραγούδι! Οδηγίες To Sing It! είναι ένα νέο παιχνίδι παρέας που δοκιμάζει τις γνώσεις σας στο ελληνικό τραγούδι! Μέσα από λέξεις που σας δίνονται, καλείστε να βρείτε τραγούδια που τις περιέχουν. Θα πείτε εσείς τα

Διαβάστε περισσότερα

Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω.

Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω. Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω. Σκοπός σας είναι να είστε ο πρώτος παίκτης που θα ξεφωρτωθεί όλες του τις κάρτες. Το τοτέμ τοποθετείται

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται

Διαβάστε περισσότερα

ΕΠΙΣΗΜΟΙ ΚΑΝΟΝΕΣ ΤΟΥ ΟΙ ΚΑΡΤΕΣ

ΕΠΙΣΗΜΟΙ ΚΑΝΟΝΕΣ ΤΟΥ ΟΙ ΚΑΡΤΕΣ ΕΠΙΣΗΜΟΙ ΚΑΝΟΝΕΣ ΤΟΥ Το SLEUTH είναι ένα φανταστικό παιχνίδι έρευνας για 3 έως 7 παίκτες. Μέσα από έξυπνες ερωτήσεις προς τους αντιπάλους του, κάθε παίκτης συλλέγει στοιχεία και έπειτα, χρησιμοποιώντας

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Το Κ2 είναι ένα παιχνίδι για 1 έως 5 παίκτες, ηλικίας 8 ετών και άνω, με διάρκεια περίπου 60 λεπτά.

Το Κ2 είναι ένα παιχνίδι για 1 έως 5 παίκτες, ηλικίας 8 ετών και άνω, με διάρκεια περίπου 60 λεπτά. ΟΔΗΓΙΕΣ Το Κ2 είναι το δεύτερο ψηλότερο βουνό στον κόσμο (μετά το Έβερεστ) με ύψος 8.611 μέτρα από τη στάθμη της θάλασσας. Θεωρείται, επίσης, ένα από τα δυσκολότερα βουνά άνω των 8.000 μέτρων. Το Κ2 ποτέ

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Στατικές μέθοδοι και μεταβλητές Εσωτερικές κλάσεις

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Στατικές μέθοδοι και μεταβλητές Εσωτερικές κλάσεις ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Στατικές μέθοδοι και μεταβλητές Εσωτερικές κλάσεις Στατικές μέθοδοι Τι σημαίνει το keyword static στον ορισμό της main μεθόδου? Τι είναι μια στατική μέθοδος?

Διαβάστε περισσότερα

Το Μπαούλο του κυρ Γιάννη

Το Μπαούλο του κυρ Γιάννη Εισαγωγή Το Μπαούλο του κυρ Γιάννη Ο κυρ Γιάννης έχει κληρονομιά ένα παλιό μπαούλο με ό,τι αντικείμενα μπορείς να φανταστείς! Τα ανίψια του, ο Λευτεράκης και η Βασούλα, θέλουν να τα δουν, αλλά για να τα

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες Μαριάνος Νίκος Αυτόνομοι Πράκτορες. Χειμερινό Εξάμηνο 2016 Κωδικός Μαθήματος ΠΛΗ513 Πρότζεκτ Μαθήματος

Αυτόνομοι Πράκτορες Μαριάνος Νίκος Αυτόνομοι Πράκτορες. Χειμερινό Εξάμηνο 2016 Κωδικός Μαθήματος ΠΛΗ513 Πρότζεκτ Μαθήματος Αυτόνομοι Πράκτορες Χειμερινό Εξάμηνο 2016 Κωδικός Μαθήματος ΠΛΗ513 Πρότζεκτ Μαθήματος Thit O C Gm with ifocmt ig (Ενισχυτική Μάθηση στο παιχνίδι τριάντα μια) Μία εργασία του Νίκου Μαριάνου Α.Μ. 2011030091

Διαβάστε περισσότερα

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire Αυτόνομοι Πράκτορες Εργασία εξαμήνου Value Iteration και Q- Learning για Peg Solitaire Μαρίνα Μαυρίκου 2007030102 1.Εισαγωγικά για το παιχνίδι Το Peg Solitaire είναι ένα παιχνίδι το οποίο παίζεται με ένα

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΚΑΝΟΝΩΝ ΕΝΑ ΠΑΙΧΝΙΔΙ ΑΝΤΑΓΩΝΙΣΜΟΥ ΓΙΑ 2 ΩΣ 4 ΠΑΙΚΤΕΣ

ΕΓΧΕΙΡΙΔΙΟ ΚΑΝΟΝΩΝ ΕΝΑ ΠΑΙΧΝΙΔΙ ΑΝΤΑΓΩΝΙΣΜΟΥ ΓΙΑ 2 ΩΣ 4 ΠΑΙΚΤΕΣ ΕΓΧΕΙΡΙΔΙΟ ΚΑΝΟΝΩΝ ΕΝΑ ΠΑΙΧΝΙΔΙ ΕΞΕΡΕΥΝΗΣΗΣ ΑΝΤΑΓΩΝΙΣΜΟΥ & ΠΕΡΙΠΕΤΕΙΑΣ ΓΙΑ 2 ΩΣ 4 ΠΑΙΚΤΕΣ Credits 2012 Σχεδιαστές: Παραγωγή: Εικονογράφηση: Jose Pascual Εκτύπωση: Priority Soluciones Graficas - Eduardo

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

BRIDGE ÑÉÓÔÉÍÁ ÓÕÑÁÊÏÐÏÕËÏÕ

BRIDGE ÑÉÓÔÉÍÁ ÓÕÑÁÊÏÐÏÕËÏÕ BRIDGE ÃÍÙÑÉÌÉÁ ÌÅ ÔÏ ÁÈËÇÌÁ ÑÉÓÔÉÍÁ ÓÕÑÁÊÏÐÏÕËÏÕ Ξεκινώντας να παίζουμε μπριτζ Γνωριμία με το παιχνίδι Το μπριτζ παίζεται με 4 παίκτες: Τον Βορά, την Ανατολή, το Νότο και τη Δύση! Ο Βοράς είναι συμπαίκτης

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Η εξέλιξη των γλωσσών προγραμματισμού Η εξέλιξη των γλωσσών προγραμματισμού είναι μια διαδικασία αφαίρεσης Στην αρχή ένα πρόγραμμα ήταν

Διαβάστε περισσότερα

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59

Διαβάστε περισσότερα

Τύποι Δεδομένων και Απλές Δομές Δεδομένων. Παύλος Εφραιμίδης V1.0 ( )

Τύποι Δεδομένων και Απλές Δομές Δεδομένων. Παύλος Εφραιμίδης V1.0 ( ) Τύποι Δεδομένων και Απλές Δομές Δεδομένων Παύλος Εφραιμίδης V1.0 (2014-01-13) Απλές Δομές Δεδομένων Στην ενότητα αυτή θα γνωρίσουμε ορισμένες απλές Δομές Δεδομένων και θα τις χρησιμοποιήσουμε για την αποδοτική

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος Αυτόνομοι Πράκτορες Εργασία εξαμήνου Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος 2010030090 Περιγραφή του παιχνιδιού Το British square είναι ένα επιτραπέζιο

Διαβάστε περισσότερα

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack Χλης Νικόλαος-Κοσμάς Περιγραφή παιχνιδιού Βlackjack: Σκοπός του παιχνιδιού είναι ο παίκτης

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος

ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος Παναγιώτα Φατούρου. Προγραµµατιστική Εργασία 3 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 6 εκεµβρίου 2008 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2008-09 Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 3 ο Μέρος Ηµεροµηνία Παράδοσης:

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

Αντισταθμιστική ανάλυση

Αντισταθμιστική ανάλυση Αντισταθμιστική ανάλυση Θεωρήστε έναν αλγόριθμο Α που χρησιμοποιεί μια δομή δεδομένων Δ : Κατά τη διάρκεια εκτέλεσης του Α η Δ πραγματοποιεί μία ακολουθία από πράξεις. Παράδειγμα: Θυμηθείτε το πρόβλημα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Αναφορές

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Αναφορές ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Αναφορές Μαθήματα από το lab Υπενθύμιση: Η άσκηση ζητούσε να υλοποιήσετε μία κλάση vector που να διαχειρίζεται διανύσματα οποιουδήποτε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Αναφορές Στοίβα και Σωρός Μνήμης Αντικείμενα ως ορίσματα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Αναφορές Στοίβα και Σωρός Μνήμης Αντικείμενα ως ορίσματα ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Αναφορές Στοίβα και Σωρός Μνήμης Αντικείμενα ως ορίσματα ΑΝΑΦΟΡΕΣ new Όπως είδαμε για να δημιουργήσουμε ένα αντικείμενο χρειάζεται να καλέσουμε τη new. Για

Διαβάστε περισσότερα

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει

Διαβάστε περισσότερα

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear

Διαβάστε περισσότερα

Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό

Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό Ενότητα: Δυαδική Αναζήτηση Σχέδιο Δραστηριότητας: Παιχνίδι: Βρες τον αριθμό 1 Εισαγωγή Σκεφτείτε έναν αριθμό από το 1 έως το 1000 και απαντήστε στην ερώτηση: Ο αριθμός που σκεφτήκατε είναι μεγαλύτερος

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΕΡΟΣ 2 ο : ΣΤΟΙΒΑ & ΟΥΡΑ ΙΣΤΟΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ: http://eclass.sch.gr/courses/el594100/ ΣΤΟΙΒΑ 2 Μια στοίβα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Constructors, equals, tostring

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Constructors, equals, tostring ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Constructors, equals, tostring Constructors (Δημιουργοί) O Constructor είναι μια «μέθοδος» η οποία καλείται όταν δημιουργούμε το αντικείμενο

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ. ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Othello-TD Learning. Βόλτσης Βαγγέλης Α.Μ

ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ. ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Othello-TD Learning. Βόλτσης Βαγγέλης Α.Μ ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Othello-TD Learning Βόλτσης Βαγγέλης Α.Μ. 2011030017 Η παρούσα εργασία πραγματοποιήθηκε στα πλαίσια του μαθήματος Αυτόνομοι Πράκτορες και σχετίζεται με λήψη αποφάσεων

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Εργασία 1 ΣΤΟΙΧΕΙΑ ΦΟΙΤΗΤΡΙΑΣ: Τσελίγκα Αρετή, 1312009161, Στ εξάμηνο, κατεύθυνση: Εκπαιδευτική Τεχνολογία και Διαπολιτισμική Επικοινωνία Το γνωστικό αντικείμενο

Διαβάστε περισσότερα

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1 Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Καθηγητής : Κουμπαράκης Μανόλης Ημ/νία παράδοσης: 11/01/2011 Ονομ/μο φοιτητή : Μπεγέτης Νικόλαος Α.Μ.:

Διαβάστε περισσότερα

Επίλυση προβλημάτων με αναζήτηση

Επίλυση προβλημάτων με αναζήτηση Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών

Διαβάστε περισσότερα

Αρχές Τεχνολογίας Λογισμικού Εργαστήριο

Αρχές Τεχνολογίας Λογισμικού Εργαστήριο Αρχές Τεχνολογίας Λογισμικού Εργαστήριο Κωδικός Μαθήματος: TP323 Ώρες Εργαστηρίου: 2/εβδομάδα (Διαφάνειες Νίκου Βιδάκη) 1 JAVA Inheritance Εβδομάδα Νο. 3 2 Προηγούμενο μάθημα (1/2) Τι είναι αντικείμενο?

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Βασικές Έννοιες Δοµών Δεδοµένων

Βασικές Έννοιες Δοµών Δεδοµένων Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

Πίστας Αγώνα Αρχικών Στοιχημάτων Βοηθήματος Παικτών Πρώτου Παίκτη Τούρμπο Πρώτο στοίχημα: Κατασκευή της πίστας:

Πίστας Αγώνα Αρχικών Στοιχημάτων Βοηθήματος Παικτών Πρώτου Παίκτη Τούρμπο Πρώτο στοίχημα: Κατασκευή της πίστας: Η χελώνα δέχτηκε την απαίτηση του λαγού για ρεβάνς του αγώνα και τα νέα εξαπλώθηκαν γρήγορα παντού. Ο μεγάλος αγώνας ήταν έτοιμος να ξεκινήσει και οι συμμετέχοντες ήταν πια έτοιμοι για την μεγάλη αναμέτρηση.

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Μέθοδοι Παράδειγμα 1 Θέλουμε ένα πρόγραμμα που να προσομοιώνει την κίνηση ενός αυτοκινήτου, το οποίο κινείται και τυπώνει τη θέση του.

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #2

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #2 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #2 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #2 2 Γενικά Στο Εργαστήριο αυτό θα αναλύσουμε τη χρήση της βασικής εντολής ελέγχου ροής

Διαβάστε περισσότερα

Και τα τέσσερα κτίρια της Εποχής 1 της επέκτασης μπορούν να ανακαινιστούν. Η ιδιότητα

Και τα τέσσερα κτίρια της Εποχής 1 της επέκτασης μπορούν να ανακαινιστούν. Η ιδιότητα Η επέκταση αυτή εισάγει κάποια νέα στοιχεία ώστε να εμπλουτίσει το βασικό παιχνίδι. Μπορούν να χρησιμοποιηθούν ξεχωριστά ή σε οποιονδήποτε συνδυασμό. Πεμπτοσ Παικτησ Προφητειεσ Ξύλινα κομμάτια για πέμπτο

Διαβάστε περισσότερα

Κατ οίκον Εργασία 5 Σκελετοί Λύσεων

Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τις δομές: struct hashtable { struct node array[maxsize]; int maxsize; int size; struct node{ int data; int status; Στο πεδίο status σημειώνουμε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΠΑΙΧΝΙΔΙΟΥ

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΠΑΙΧΝΙΔΙΟΥ Η ΔΙΑΣΚΕΔΑΣΗ ΣΥΝΕΧΙΖΕΤΑΙ ΜΕΧΡΙ ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΖΑΡΙΑ! Αυτή είναι μία επέκταση μόνο για το παιχνίδι της alea Las Vegas. Χρησιμοποιήστε τους κανόνες του βασικού παιχνιδιού με τις παρακάτω προσθήκες, επεκτάσεις

Διαβάστε περισσότερα

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

Εγχειρίδιο του Τάλι i. Εγχειρίδιο του Τάλι

Εγχειρίδιο του Τάλι i. Εγχειρίδιο του Τάλι i Εγχειρίδιο του Τάλι ii Copyright 2001 Scott D. Heavner Δίνεται άδεια για αντιγραφή, διανομή και/ή τροποποίηση του εγγράφου υπό τους όρους της GNU Free Documentation License (GFDL), Έκδοση 1.1 ή μεταγενέστερη

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος - Δικτυωτή Ανάλυση Δίκτυο είναι ένα διάγραμμα το οποίο το οποίο αναπαριστά τη

Διαβάστε περισσότερα

Δ Ι Π Λ Ω Μ Α Τ Ι Κ Η Ε Ρ Γ Α Σ Ι Α

Δ Ι Π Λ Ω Μ Α Τ Ι Κ Η Ε Ρ Γ Α Σ Ι Α ΑΝΑΠΤΥΞΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΑΙΧΝΙΔΙΑ ΣΤΡΑΤΗΓΙΚΗΣ ΜΕΡΙΚΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ΕΦΑΡΜΟΓΗ ΣΤΟ ΠΑΙΧΝΙΔΙ ΤΗΣ ΜΠΙΡΙΜΠΑΣ) Δ Ι Π Λ Ω Μ Α Τ Ι Κ Η Ε Ρ Γ Α Σ Ι Α ΚΟΝΤΟΧΡΙΣΤΟΠΟΥΛΟΥ Γ. ΙΩΑΝΝΗ ΕΠΙΒΛΕΠΩΝ: Κ. ΣΓΑΡΜΠΑΣ ΠΑΤΡΑ - ΟΚΤΩΒΡΙΟΣ

Διαβάστε περισσότερα

Περιεχόμενα του Παιχνιδιού

Περιεχόμενα του Παιχνιδιού Ε υρώπη, 1347. Μεγάλη καταστροφή πρόκειται να χτυπήσει. Ο Μαύρος Θάνατος πλησιάζει την Ευρώπη και μέσα στα επόμενα 4-5 χρόνια ο πληθυσμός της θα μείνει μισός. Οι παίκτες αποικούν στις διάφορες περιοχές

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Μέθοδοι Παράδειγμα Θέλουμε ένα πρόγραμμα που να προσομοιώνει την κίνηση ενός αυτοκινήτου, το οποίο κινείται και τυπώνει τη θέση του.

Διαβάστε περισσότερα

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Αλγόριθμος (algorithm) λέγεται μία πεπερασμένη διαδικασία καλά ορισμένων βημάτων που ακολουθείται για τη λύση ενός προβλήματος. Το διάγραμμα ροής

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Εισαγωγή στη Java III

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Εισαγωγή στη Java III ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Εισαγωγή στη Java III Ισότητα Strings class StringTest public static void main(string args[]) String x1 = "java"; String y1 = "java"; System.out.println("1.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Επιβλέπων Καθηγητής: Δρ. Νίκος Μίτλεττον Η ΣΧΕΣΗ ΤΟΥ ΜΗΤΡΙΚΟΥ ΘΗΛΑΣΜΟΥ ΜΕ ΤΗΝ ΕΜΦΑΝΙΣΗ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 2 ΣΤΗΝ ΠΑΙΔΙΚΗ ΗΛΙΚΙΑ Ονοματεπώνυμο: Ιωσηφίνα

Διαβάστε περισσότερα

Εκτεταμένη έκθεση σε υπεριώδη ακτινοβολία στην παιδική και εφηβική ηλικία και εμφάνιση μελανώματος.

Εκτεταμένη έκθεση σε υπεριώδη ακτινοβολία στην παιδική και εφηβική ηλικία και εμφάνιση μελανώματος. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Εκτεταμένη έκθεση σε υπεριώδη ακτινοβολία στην παιδική και εφηβική ηλικία και εμφάνιση μελανώματος. Ονοματεπώνυμο φοιτήτριας : Ελίνα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Πίνακες Κλάσεις και Αντικείμενα ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Πίνακες Κλάσεις και Αντικείμενα Μαθήματα από το πρώτο εργαστήριο Δημιουργία αντικειμένου Scanner Scanner input = new Scanner(System.in); Το αντικείμενο input

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

EMOJITO! 7 Δίσκοι Ψηφοφορίας. 100 Κάρτες Συναισθημάτων. 1 Ταμπλό. 7 Πιόνια παικτών. 2-7 Παίκτες

EMOJITO! 7 Δίσκοι Ψηφοφορίας. 100 Κάρτες Συναισθημάτων. 1 Ταμπλό. 7 Πιόνια παικτών. 2-7 Παίκτες o Emojito! είναι ένα παιχνίδι παρέας, για 2 έως 14 άτομα, όπου οι παίκτες προσπαθούν να εκφράσουν συναισθήματα που απεικονίζονται σε κάρτες, είτε χρησιμοποιώντας το πρόσωπό τους, είτε ήχους ή και τα 2.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ Ιστότοπος Βιβλίου http://www.iep.edu.gr/ και «Νέα Βιβλία ΙΕΠ ΓΕΛ και ΕΠΑΛ» 2 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

Κλάσεις στη Java. Παύλος Εφραιμίδης. Java Κλάσεις στη Java 1

Κλάσεις στη Java. Παύλος Εφραιμίδης. Java Κλάσεις στη Java 1 Κλάσεις στη Java Παύλος Εφραιμίδης Java Κλάσεις στη Java 1 Κλάσεις στην Java Θα δούμε τη διαδικασία δημιουργίας μιας κλάσης Θα υλοποιήσουμε μια κλάση για τη Δομή Δεδομένων Stack Java Κλάσεις στη Java 2

Διαβάστε περισσότερα

Κλάσεις στη Java. Στοίβα - Stack. Δήλωση της κλάσης. ΗκλάσηVector της Java. Ηκλάση Stack

Κλάσεις στη Java. Στοίβα - Stack. Δήλωση της κλάσης. ΗκλάσηVector της Java. Ηκλάση Stack Κλάσεις στην Java Κλάσεις στη Java Παύλος Εφραιμίδης Θα δούμε τη διαδικασία δημιουργίας μιας κλάσης Θα υλοποιήσουμε μια κλάση για τη Δομή Δεδομένων Stack Java Κλάσεις στη Java 1 Java Κλάσεις στη Java 2

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο

Διαβάστε περισσότερα

Εισαγωγή. Περιεχόμενα

Εισαγωγή. Περιεχόμενα Εισαγωγή Το 1878, το Βασιλικό Μουσείο του Βερολίνου ξεκίνησε την ανάθεση των ανασκαφών στην Πέργαμο, μια περιοχή της νυν Τουρκίας. Η πόλη έφτασε στην κορυφή της ανάπτυξής της γύρω στο 200 π.χ. (στα Λατινικά

Διαβάστε περισσότερα

Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η

Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η μέθοδος main(), εμφάνιση μηνυμάτων, Java προγράμματα που εκτελούν αριθμητικές πράξεις Γαβαλάς Δαμιανός

Διαβάστε περισσότερα

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990,

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990, ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μια σημείωση από τον Α. Δελή για το άρθρο: W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees, Comms of the ACM, 33(), June 10,

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου J-GANNO ΓΕΝΙΚΕΥΜΕΝΟ ΠΑΚΕΤΟ ΥΛΟΠΟΙΗΣΗΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ JAVA Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΗΜΕΡ.ΑΝΑΘΕΣΗΣ: Δευτέρα 21 Δεκεμβρίου 2015 ΗΜΕΡ.ΠΑΡΑΔΟΣΗΣ: Δευτέρα 25 Ιανουαρίου 2016 Διδάσκοντες:

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα

Επαναληπτικό Διαγώνισμα Επαναληπτικό Διαγώνισμα Ανάπτυξη Εφαρμογών Σε Προγραμματιστικό Περιβάλλον Γ Λυκείου Κυριακή 13 Απριλίου 2014 ΘΕΜΑ Α Δίνεται το παρακάτω τμήμα προγράμματος που το ακολουθεί μία συνάρτηση που χρησιμοποιεί....

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2)

Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2) Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Οργάνωση Προγράµµατος Header Files Μετάφραση και σύνδεση αρχείων προγράµµατος ΕΠΛ 132 Αρχές Προγραµµατισµού

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Αντικείμενα με πίνακες. Constructors. Υλοποίηση Στοίβας

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Αντικείμενα με πίνακες. Constructors. Υλοποίηση Στοίβας ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Αντικείμενα με πίνακες. Constructors. Υλοποίηση Στοίβας Ένα ιστόγραμμα τιμών μετράει για ένα σύνολο από τιμές πόσες φορές εμφανίστηκε η κάθε τιμή. Για παράδειγμα

Διαβάστε περισσότερα

Η ΠΟΚΕΡΚΑΡΤΑ ΤΟΥ BIG TONY. User s Manual / Εγχειρίδιο Χρήσης. GDTronics

Η ΠΟΚΕΡΚΑΡΤΑ ΤΟΥ BIG TONY. User s Manual / Εγχειρίδιο Χρήσης. GDTronics Η ΠΟΚΕΡΚΑΡΤΑ ΤΟΥ BIG TONY User s Manual / Εγχειρίδιο Χρήσης GDTronics Οκτώβριος 2009 Πίνακας Περιεχομένων: ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ: 1 ΜΕΡΟΣ Α: ΠΟΚΕΡ ΚΑΙ ΤΕΞΑΣ ΧΟΛΝΤΕΜ 3 A.1 Τι Είναι Το Πόκερ 3 Α.2 Γενικά

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Έλεγχος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Σχεσιακοί Τελεστές και Ισότητας Ένα πρόγραμμα εκτός από αριθμητικές πράξεις

Διαβάστε περισσότερα