ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Διδακτικό υλικό για τις Ασκήσεις Πράξης του ομώνυμου μαθήματος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Διδακτικό υλικό για τις Ασκήσεις Πράξης του ομώνυμου μαθήματος"

Transcript

1 ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Διδακτικό υλικό για τις Ασκήσεις Πράξης του ομώνυμου μαθήματος ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΠΙΛΕΓΜΕΝΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 2. ΕΝΑΛΛΑΚΤΕΣ ΘΕΡΜΟΤΗΤΑΣ ΟΧΗΜΑΤΩΝ 3. EPΩTHΣEIΣ AΠANTHΣEIΣ 4. ΛYMENΕΣ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Διδάσκων: Καθηγητής Δημήτρης Πράπας 1

2 1. ΕΠΙΛΕΓΜΕΝΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΓΕΝΙΚΑ Οι υπολογισμοί μετάδοσης θερμότητα σε διάφορους τομείς εφαρμογών στοχεύουν συνήθως στην επίτευξη, για μια δεδομένη θερμοκρασιακή διαφορά, ενός ορισμένου ρυθμού μετάδοσης θερμότητας (ήτοι θερμικής ισχύος). Ο παραπάνω στόχος συνδέεται στην πράξη με μία από τις παρακάτω διαζευκτικές πρακτικές απαιτήσεις: είτε μεγιστοποίηση του ρυθμού μετάδοσης θερμότητας, π.χ. στης ψύξη θερμικών μηχανών, στη θέρμανση χώρου, στη σχεδίαση εναλλακτών θερμότητας, είτε ελαχιστοποίηση του ρυθμού μετάδοσης θερμότητας, π.χ. στη θερμομόνωση κτιρίων, αγωγών διακίνησης θερμότητας, διάφορων συσκευών. Ασφαλώς, για να επιτευχθούν τα παραπάνω ο υπεύθυνος μηχανικός πρέπει μεταξύ άλλων να διαθέτει επαρκείς γνώσεις των νόμων που διέπουν τη Μετάδοση Θερμότητας, για να μπορεί να ελέγχει τους παράγοντες που επηρεάζουν το ρυθμό μετάδοσή της. ΑΝΑΛΟΓΙΕΣ ΜΕΤΑΞΥ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ, ΗΛΕΚΤΡΙΣΜΟΥ ΚΑΙ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ Πολλά φυσικά φαινόμενα, μολονότι διαφορετικής φύσης, διέπονται από μαθηματικές σχέσεις που παρουσιάζουν ομοιότητες στη διατύπωση τους. Η αναγνώριση ομοιοτήτων και αναλογιών στους διάφορους τομείς των θετικών επιστημών βοηθά πολύ στη βαθύτερη κατανόηση φυσικών και τεχνητών φαινομένων, καθώς και στην αποτελεσματική εφαρμογή των νόμων που τα διέπουν. Ένα παραστατικό παράδειγμα που φανερώνει τις αναλογίες που υφίστανται μεταξύ της Μετάδοσης Θερμότητας, της κυκλοφορίας ηλεκτρικού ρεύματος στον Ηλεκτρισμό και της κυκλοφορίας ενός ρευστού στη Ρευστομηχανική αναλύεται παρακάτω, με βάση το εποπτικό κυλινδρικό σώμα του Σχ. 1. 2

3 Η ροή αξονική θερμότητας Q μπορεί να νοηθεί ως προκαλούμενη από την ύπαρξη διαφοράς θερμοκρασίας Δθ μεταξύ των επιφανειών 1 και 2 του κυλίνδρου του Σχ. 1. Η σχέση που διέπει το φαινόμενο είναι: Q=Δθ/R (1.1) όπου η θερμική αντίσταση R εκφράζεται, με βάση τη γεωμετρία και την ειδική θερμική αγωγιμότητα λ του σώματος, ως: R=(1/λ)(4L/πd 2 ) (1.1α) Η κυκλοφορία ηλεκτρικού ρεύματος Ι μέσα στον μεταλλικό αγωγό του Σχ. 1 προκαλείται από την διαφορά τάσης ΔU που επιβάλλεται στα άκρα του 1 και 2. Η ένταση του ρεύματος που διαρρέει τον αγωγό είναι: I = ΔU/R (1.2) όπου η ηλεκτρική αντίσταση R εκφράζεται, με βάση τη γεωμετρία και την ειδική ηλεκτρική αντίσταση ρ του σώματος, ως: R = ρ(4l/πd 2 ) (1.2α) Σχ. 1 Κυλινδρικό ομογενές σώμα μήκους L και διαμέτρου d (στην περίπτωση της κυκλοφορίας ρευστού το σχήμα νοείται ως σωλήνας εσωτερικής διαμέτρου d) Τέλος, η παροχή μάζας ενός ρευστού μέσα στον αγωγό εσωτερικής διαμέτρου d του Σχ. 1 προκαλείται από την ύπαρξη διαφοράς πίεσης Δρ στα άκρα του 1 και 2. Η παροχή μάζας δια του αγωγού είναι: =Δp/R (1.3) όπου η υδραυλική αντίσταση R (για τη περίπτωση στρωτής ροής) εκφράζεται, με βάση τη γεωμετρία και το κινηματικό ιξώδες ν του ρευστού, ως: 3

4 R = ν(128l/πd 4 ) (1.3α) Στις σχέσεις (1.1), (1.2) και (1.3) η ροή του αντίστοιχου μεγέθους, ήτοι κατά περίπτωση θερμότητα Q, ηλεκτρικό ρεύμα I και παροχή μάζας, εμφανίζεται ανάλογη με την υφιστάμενη διαφορά του γενεσιουργού μεγέθους στα άκρα του κυλίνδρου και αντιστρόφως ανάλογη με την αντίστοιχη αντίσταση (θερμική, ηλεκτρική, υδραυλική). Γενικότερα, η ολική αντίσταση σ' ένα πιο σύνθετο πρόβλημα προκύπτει από τις επί μέρους αντιστάσεις, που στο σύνολο τους μπορεί να είναι συνδεμένες "εν σειρά" ή "εν παραλλήλω". Οι τελευταίες έννοιες, ήδη γνωστές από την Ηλεκτροτεχνία, βρίσκουν επίσης εφαρμογή στην απεικόνιση και επίλυση σύνθετων θερμικών συστημάτων. ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Η πειραματική προσέγγιση και η επιστημονική μελέτη φυσικών προβλημάτων διευκολύνεται αρκετά με την εκ των προτέρων έκφραση των μαθηματικών σχέσεων που τα διέπουν. Στις Θετικές Επιστήμες πληθώρα φυσικών προβλημάτων καταστρώνονται αναλυτικά με μαθηματικές σχέσεις που εκφράζουν βασικούς νόμους της Φυσικής και άλλων επιστημών, όπως ενδεικτικά οι ακόλουθοι: - αρχή διατήρησης της μάζας (συνέχειας), - αρχή διατήρησης της ορμής, - αρχή διατήρησης της ενέργειας (1 ος Θερμοδυναμικός Νόμος), - διάφορες τεκμηριωμένες αναλογίες μεταξύ φυσικών μεγεθών και ιδιοτήτων της ύλης. Ειδικότερα για τη Μετάδοση Θερμότητας, αξιοποιούνται επίσης κατά περίπτωση οι παρακάτω μέθοδοι: - Διαστατική ανάλυση βλ. παρακάτω - Ακριβείς μαθηματικές λύσεις των εξισώσεων του οριακού στρώματος ροής - Προσεγγιστικές λύσεις των εξισώσεων του οριακού στρώματος ροής - Αναλογίες μεταξύ των μηχανισμών μετάδοσης μάζας, θερμότητας και ορμής - Αριθμητικές μέθοδοι 4

5 Συχνά η αναλυτική προσέγγιση του προβλήματος με μαθηματικές εξισώσεις δυσχεραίνεται, είτε επειδή αυτές δεν διατίθενται μέχρι στιγμής για ένα συγκεκριμένο πρόβλημα είτε επειδή το πρόβλημα είναι εγγενώς πολύ σύνθετο και «ατίθασο» για να φορμαριστεί σε μια κλειστή μαθηματική διατύπωση. Σε τέτοιες περιπτώσεις επιβάλλεται συχνά η χρήση αριθμητικών μεθόδων, ενώ η προσέγγιση πολυπαραμετρικών προβλημάτων διευκολύνεται με τη χρήση της διαστατικής ανάλυσης, που παρέχει μια αλγοριθμικού τύπου ασφάλεια τόσο στην ανάλυση του προβλήματος όσο και στην παρουσίαση και αξιοποίηση των εκάστοτε αποτελεσμάτων. Αναλυτικότερα, προσπαθώντας να εκφράζουμε φορμαλιστικά ένα πολυπαραμετρικό πρόβλημα σε αδιάστατη μορφή, δηλ. με καθαρούς αριθμούς χωρίς μονάδες, πραγματοποιούμε ήδη βήματα προς την επίλυσή του, αξιοποιώντας τους εγγενείς περιορισμούς που τίθενται στην εκδήλωση κάθε φυσικού προβλήματος από αυτές καθαυτές τις μονάδες των ανεξάρτητων μεταβλητών του. Απόρροια της θεωρίας της ομοιότητας είναι το θεώρημα διαστατικής ανάλυσης του Buckingham (αλλιώς, θεώρημα πι), που διατυπώνεται ως εξής: σε ένα πρόβλημα που υπεισέρχονται βάσιμα m ανεξάρτητες παράμετροι αποδεικνύεται ότι υφίστανται m n αδιάστατα μονώνυμα που καθορίζουν τη λύση του, αλλιώς m n αδιάστατοι αριθμοί, όπου n είναι ο αριθμός των θεμελιωδών μεγεθών που απαιτούνται για την έκφραση των διαστάσεων των ανωτέρω m ανεξάρτητων παραμέτρων σε κάποιο σύστημα μονάδων. Έτσι το πρόβλημα υπακούει σε μια γενικευμένη λύση της μορφής: F(π 1, π 2,.π m n ) = 0 (1.4) όπου τα μονώνυμα π 1, π 2,.π m n συμβολίζουν τους m n αδιάστατους αριθμούς. Το ακόλουθο Παράδειγμα διαστατικής ανάλυσης είναι ενδεικτικό της παραγωγικότατης χρήσης του θεωρήματος πι για την πρώιμη ανάλυση ενός τεχνικού προβλήματος και τον επιτυχή συγκερασμό των υπό μελέτη παραμέτρων. ΠΑΡΑΔΕΙΓΜΑ 1 5

6 Να εφαρμοστεί το θεώρημα πι στο φυσικό πρόβλημα της εξαναγκασμένης συναγωγής θερμότητας από ρευστό που ρέει κάθετα γύρω από κύλινδρο, με στόχους: α) τον επιτυχή σχεδιασμό κάποιας επικείμενης σχετικής πειραματικής μελέτης, και β) την αρμόζουσα ακόλουθη επεξεργασία των μετρήσεων και παρουσίαση των αποτελεσμάτων. Λύση Τα μεγέθη που υπεισέρχονται στο πρόβλημα και οι αντίστοιχες διαστατικές εκφράσεις τους στο Διεθνές σύστημα μονάδων εμφαίνονται στον ακόλουθο πίνακα: α/α ΠΑΡΑΜΕΤΡΟΣ ΣΥΜΒΟΛΟ ΜΟΝΑΔΕΣ 1 Διάμετρος κυλίνδρου D [m] 2 Ειδική θερμική αγωγιμότητα ρευστού λ [kgm/s 3 K] 3 Ταχύτητα ρευστού υ [m/s] 4 Πυκνότητα ρευστού ρ [kg/m 3 ] 5 Δυναμικό ιξώδες ρευστού μ [kg/ms] 6 Ειδική θερμοχωρητικότητα ρευστού c [m 2 /s 2 K] 7 Συντελεστής συναγωγής h [kg/s 3 K] Στον πίνακα εμφανίζονται τα m=7 συνολικά μεγέθη που συνέχονται με το εξεταζόμενο πρόβλημα, οι μονάδες των οποίων εκφράζονται με n=4 θεμελιώδεις μονάδες του Διεθνούς συστήματος μονάδων, ήτοι αναλυτικά: μήκος [m], μάζα [kg], χρόνος [s] και θερμοκρασία [K]. Υφίστανται συνεπώς, σύμφωνα με το θεώρημα πι, m n=7 4=3 αδιάστατα μονώνυμα, έτσι σύμφωνα με την εξ. (1.4) το πρόβλημα διαφαίνεται να υπακούει σε μια γενικευμένη λύση της μορφής: F(π 1, π 2, π 3 ) = 0 Η εύρεση της ακριβούς μορφής των τριών παραπάνω αδιάστατων μονωνύμων επιτυγχάνεται με μια αλγοριθμική μέθοδο, από την οποία προκύπτουν: π 1 =hd/λ (αριθμός Nusselt, Nu) π 2 =υdρ/μ (αριθμός Reynolds, Re) 6

7 π 3 =cμ/λ (αριθμός Prandtl, Pr) Οι παραπάνω 3 αδιάστατοι αριθμοί επικαθορίζουν αποφασιστικά το εξεταζόμενο πρόβλημα εξαναγκασμένης συναγωγής, χρησιμοποιούμενοι όντως κατά κόρο σε σχετικούς υπολογισμούς στη Μετάδοση Θερμότητας. Συμπερασματικά, προκύπτουν οι ακόλουθες απαντήσεις στη μελέτη του παραπάνω προβλήματος: α) Τα μεγέθη που πρέπει απαραίτητα να μετρήσω στις επικείμενες πειραματικές μετρήσεις είναι τουλάχιστον τα επτά (7) που εμφανίζονται στον παραπάνω πίνακα. β) κατά την επεξεργασία των αποτελεσμάτων γνωρίζω εκ των προτέρων ότι μπορώ και οφείλω να τα παρουσιάσω συμπυκνωμένα, με χρήση των παραπάνω τριών χαρακτηριστικών αδιάστατων αριθμών, π.χ. σε διαγράμματα ή με εξισώσεις της μορφής Nu = Nu(Re,Pr). Σχόλιο: Η παραπάνω μεθοδολογία φαίνεται να προσφέρει μια «μαγική» και ανέλπιστη βοήθεια στη μελέτη του προβλήματος: χωρίς να γνωρίζουμε καν τις βαθύτερες φυσικές και μαθηματικές συσχετίσεις που διέπουν το συγκεκριμένο πρόβλημα, επιστρατεύσαμε την απαίτηση εσωτερικής συνέπειας των χρησιμοποιούμενων μονάδων μέτρησης για την έκφραση και μόνο των 7 μεγεθών του φυσικού προβλήματος, για να προκύψουν με κάποιον αλγόριθμο οι τρεις αδιάστατοι αριθμοί που διέπουν το πρόβλημα! Δεν είναι λοιπόν καθόλου τυχαίο ιστορικά το ότι, μετά από τη διεξαγωγή και την αξιολόγηση ανεξάρτητων γενικά μετρήσεων στη Μετάδοση Θερμότητας για την εμπειρική έκφραση διάφορων συντελεστών εξαναγκασμένης συναγωγής, πιθανότατα με συνειδητή επίγνωση, οι αντίστοιχοι ερευνητές επέλεξαν να παρουσιάσουν τα αποτελέσματα όλων σχεδόν των ερευνών συγκερασμένα, με διαγράμματα ή εμπειρικές εξισώσεις της μορφής: Nu = Nu(Re,Pr). Σημαντική βεβαίως προϋπόθεση για την κατάστρωση του πίνακα του ΠΑΡΑΔΕΙΓΜΑΤΟΣ 1 ήταν η ύπαρξη μιας τουλάχιστον «εμπεριστατωμένης υποψίας» για το ποιες φυσικές παράμετροι μπορούν να επηρεάζουν το συγκεκριμένο 7

8 πρόβλημα! Το σπουδαίο αυτό βήμα απαιτεί ασφαλώς βαθύτερη κατανόηση, επαρκή γνώση και εμπειρία σε παρόμοια προβλήματα. ΓΕΝΙΚΕΥΜΕΝΗ ΠΡΑΚΤΙΚΗ ΕΚΤΙΜΗΣΗ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΣΥΝΑΓΩΓΗΣ Σε τυπικά προβλήματα μετάδοσης θερμότητας ο φοιτητής ή ο ασχολούμενος μηχανικός αναλίσκει ομολογουμένως αρκετό χρόνο για τον υπολογισμό των συντελεστών συναγωγής θερμότητας, όπως αυτοί εμφανίζονται στο εκάστοτε πρόβλημα, προσφεύγοντας στις εκάστοτε κατάλληλες εξισώσεις, διαγράμματα κλπ. Μεγάλο άλλωστε μέρος της διδασκαλίας του μαθήματος Μετάδοση Θερμότητας διατίθεται για την εξοικείωση του φοιτητή με την παραπάνω επίπονη διαδικασία υπολογισμού διάφορων συντελεστών συναγωγής θερμότητας. Για απολύτως πρόχειρους υπολογισμούς, ο παρακάτω Πιν. 1 παρέχει γρήγορα εντελώς προσεγγιστικές τιμές των συντελεστών συναγωγής θερμότητας, που μπορούν μάλιστα να έχουν χρήση και για την πρόβλεψη και τον τελικό έλεγχο των αντίστοιχων υπολογιζόμενων ακριβέστερων τιμών με την αναλυτική μέθοδο. ΕΛΕΥΘΕΡΗ ΣΥΝΑΓΩΓΗ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΣΥΝΑΓΩΓΗ ΑΕΡΙΟ ΥΓΡΟ π.χ. αέρας π.χ. νερό * *** ** **** Πιν. 1 Προσεγγιστικές τιμές των αναμενόμενων συντελεστών συναγωγής σε [W/m 2 K], ως γενικευμένη θεώρηση: χωρίς να υποκαθιστά ασφαλώς τον οικείο αναλυτικό υπολογισμό, ο παραπάνω πίνακας δίδει την τάξη μεγέθους του συντελεστή συναγωγής, παρέχοντας τον αριθμό ψηφίων της αναμενόμενης τιμής, π.χ. για ελεύθερη συναγωγή σε νερό αναμένεται τριψήφια τιμή ενώ για ελεύθερη συναγωγή σε αέρα αναμένεται μονοψήφια τιμή. Από τον αριθμό ψηφίων της αναμενόμενης τιμής σε [W/m 2 K] του παραπάνω Πίνακα 1, διαφαίνεται εντελώς προσεγγιστικά ότι: 8

9 οι συντελεστές συναγωγής σε υγρά είναι 100 φορές περίπου μεγαλύτεροι από ότι σε αέρια! οι συντελεστές συναγωγής για εξαναγκασμένη συναγωγή είναι 10 φορές περίπου μεγαλύτεροι από ότι για ελεύθερη συναγωγή! ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΥΠΟ ΜΕΤΑΒΑΤΙΚΕΣ ΣΥΝΘΗΚΕΣ Σε μερικές περιπτώσεις ενδιαφέρει η εξέλιξη των θερμοκρασιών και του ρυθμού μετάδοσης θερμότητας κάτω από μεταβατικές συνθήκες λειτουργίας. Εξετάστε ως εφαρμογή το πρακτικό θερμικό πρόβλημα του ζεστάματος μιας Μηχανής Εσωτερικής Καύσης (ΜΕΚ) όταν ο κινητήρας εκκινεί κρύος: θεωρώντας ότι ο κινητήρας λειτουργεί υπό σταθερό φορτίο και στροφές, οι θερμοκρασίες των διάφορων εξαρτημάτων του αναμένεται να ανέλθουν προοδευτικά, μέχρι να πιάσουν την τελική σταθερή τιμή τους. Αναλυτικότερα, ως μια προσεγγιστική εξέταση θα αναλυθεί η θερμική μεταβατική κατάσταση ζεστάματος μιας ΜΕΚ, εξετάζοντάς την από την πλευρά του εμβόλου αρχικής θερμοκρασίας θ Ε =θ 1 =20 ο C για κρύο κινητήρα. Θεωρώ επίσης, απλοποιημένα, ότι τα αέρια του θαλάμου καύσης άνωθεν του εμβόλου αποκτούν μια σταθερή μέση θερμοκρασία, έστω θ =700 ο C, ακαριαία με την εκκίνηση του κινητήρα βλ. συνημμένο Σχ. 2. Για την απλοποίηση της επίλυσης γίνεται συχνά η παραδοχή ότι το θερμικό σύστημα είναι μη χωρικά διανεμημένο, δηλ. μπορεί να θεωρηθεί σημειακό ή τέλος πάντων ότι έχει συγκεντρωμένη τη θερμοχωρητικότητά του σε ένα σημείο. Η θεωρία της μεταβατικής απόκρισης ενός τέτοιου ιδεατού θερμικού συστήματος προβλέπει ότι η θερμοκρασία θ Ε του εμβόλου θα εξελιχθεί στο χρόνο όχι βηματικά σύμφωνα με τη διαδρομή θ 1 0 Α Χ αλλά προοδευτικά, όπως απεικονίζεται από τη σύνθετη γραμμή θ 1 0 Β Y του Σχ. 2, φθάνοντας την τελική τιμή της θ Ε =θ 2 θεωρητικά μετά από άπειρο χρόνο, δηλ. για t=. Παρατηρείστε επίσης στο Σχ. 2 ότι, επειδή η θερμότητα μεταδίδεται από τα αέρια του θαλάμου προς την ψυχρότερη άνω επιφάνεια του εμβόλου με συντελεστή συναγωγής h, η τελική τιμή της 9

10 επιφανειακής θερμοκρασίας του εμβόλου θ Ε =θ 2 θα είναι μικρότερη από τη σταθερή μέση θερμοκρασία των αερίων του θαλάμου καύσης θ. Σχ. 2 Ζέσταμα κρύου κινητήρα: χρονική εξέλιξη της θερμοκρασίας θ Ε της άνω επιφάνειας ενός εμβόλου ΜΕΚ, που ανυψώνεται συνολικά κατά Δθ, ήτοι από θ 1 σε θ 2, σύμφωνα με τη διαδρομή θ 1-0-Β-Υ Ως μεταβατικό φαινόμενο, η τυπική εξέλιξη της θερμοκρασίας του εμβόλου θ Ε συνιστά μια εκθετική καμπύλη σε διάγραμμα θερμοκρασίας χρόνου (βλ. Σχ. 2), η μαθηματική έκφραση της οποίας δίδεται παρακάτω: όπου θ Ε θ = e t/td (1.5) θ 1 θ t D = mc/ha (1.6) Ο παράγοντας t D είναι η σταθερά χρόνου του εξεταζόμενου θερμικού συστήματος, που ορίζεται ως ο χρόνος που πρέπει να παρέλθει από την έναρξη της βηματικής μεταβολής για να ολοκληρωθεί το 63.2 % της συνολικά αναμενόμενης μεταβολής. Ο παραπάνω ορισμός ισχύει γενικά για συστήματα που παρουσιάζουν εκθετική απόκριση. Όπως φαίνεται από την εξ. (1.6), η σταθερά χρόνου του θερμικού προβλήματός μας εκφράζεται με βάση τα παρακάτω μεγέθη (για τα οποία παρέχονται ταυτόχρονα και αντιπροσωπευτικές τιμές) : 10

11 m (=0.6 kg), η μάζα του εμβόλου, c (=461 J/kg o C), η ειδική θερμοχωρητικότητα του εμβόλου, h (=50 W/m 2 K), ο συντελεστής συναγωγής εμβόλου αερίων θαλάμου, A=πd 2 /4 η διατομή του εμβόλου (d=81 mm). Πρακτική εφαρμογή Για τις δοθείσες παραπάνω σε παρενθέσεις τιμές των σχετικών μεγεθών, η σταθερά χρόνου του εξεταζόμενου εμβόλου προκύπτει ως: t D = mc/ha = 0.6*461/(50*π* /4) = 1074 s = 17.9 min Η φυσική σημασία του παραπάνω αποτελέσματος είναι ότι μετά από χρόνο t=t D =17.9 min θα έχει ολοκληρωθεί για το έμβολο το 63.2 % της συνολικά αναμενόμενης μεταβατικής θερμοκρασιακής μεταβολής Δθ=θ 1 θ 2. (Επιπρόσθετα, από τη θεωρία προβλέπεται ότι το 99% της συνολικά αναμενόμενης μεταβατικής θερμοκρασιακής μεταβολής θα σημειωθεί μετά από χρόνο t=5t D =5*17.9 = 89.5 min.) Η παραπάνω θεώρηση του μεταβατικού προβλήματος ζεστάματος μιας ΜΕΚ εμπεριέχει την παραδοχή ότι τη σύστημα μπορεί να θεωρηθεί ως μια διαδοχή σημειακών θερμοχωρητικοτήτων, ως προς τη χωρική μετάδοση θερμότητας. Η παραδοχή αυτή για ένα θερμικό φυσικό πρόβλημα γενικότερα ισοδυναμεί μεταξύ άλλων με άπειρη ειδική θερμική αγωγιμότητα των ενεχόμενων μαζών στην αγωγή και αποθήκευση θερμότητας, δηλ. λ=, κάτι που ασφαλώς δεν μπορεί να ισχύει για κανένα πραγματικό σώμα. Έτσι η γνώριμη εκθετική καμπύλη μεταβατικής απόκρισης δεν ισχύει γενικά επακριβώς για θερμικά συστήματα που περιλαμβάνουν αγώγιμα τοιχώματα κάποιου πάχους ενώ αντιθέτως ισχύει με ασφάλεια για τα διάφορα ηλεκτρικά και ηλεκτρονικά συστήματα, π.χ. κατά τη φόρτιση ενός πυκνωτή που μπορεί να θεωρηθεί σημειακός ως προς την ηλεκτρική συμπεριφορά του. Ειδικότερα, η παραπάνω απόκλιση των πραγματικών μεταβατικών θερμικών προβλημάτων από την ιδεατή εξέταση εξαρτάται κυρίως από την τιμή του αδιάστατου αριθμού Biot=hL/λ. Για τιμές Biot<0.1 αποδεικνύεται θεωρητικά ότι το 11

12 στερεό σώμα προς το οποίο μεταδίδεται μεταβατικά η θερμότητα είναι θερμοχωρητικά συγκεντρωμένο, δηλ. συγκριτικά με τη δυσκολία μετάβασης της θερμότητας από το ρευστό με συντελεστή συναγωγής h το σώμα κρίνεται πολύ αγώγιμο, ούτως ώστε προλαβαίνει να αναδιατάσσει τις εσωτερικές του θερμοκρασίες κατά μήκος του άξονα διάδοσης της θερμότητας. Η συνθετότητα της πραγματικής απόκρισης ενός θερμικού συστήματος μπορεί να γίνει ποιοτικά και ποσοτικά αντιληπτή με αναφορά στην ακριβή λύση του παρακάτω προβλήματος μεταβατικής αγωγής θερμότητας στο σάντουιτς των δύο στερεών σωμάτων 1 και 2 του Σχ. 3α. Θεωρείστε ότι τα δύο σώματα βρίσκονται αρχικά στην ίδια θερμοκρασία θ αρχ και στη συνέχεια η επιφάνεια 2 δέχεται σταθερή θερμορροή q ενώ η επιφάνεια 1 διατηρείται στην αρχική θερμοκρασία θ αρχ. Σχ. 3α Τομή κατακόρυφου εξωτερικού τοίχου κατοικίας με τη θερμομόνωση από μέσα Λαμβάνοντας θερμικές ιδιότητες που αντιστοιχούν σε τούβλο και σε θερμομονωτικό υαλοβάμβακα για τα σώματα 1 και 2 αντίστοιχα, η γεωμετρία προσομοιάζει έναν κατακόρυφο εξωτερικό τοίχο κατοικίας με τη θερμομόνωση από μέσα. Θεωρώ για μια πρώτη εκτίμηση του αριθμού Biot: h=14 W/m 2 K για τον ολικό συντελεστή μετάδοσης θερμότητας από το εσωτερικό του δωματίου προς την επιφάνεια 2 και λ=0.05 W/mK για την ειδική θερμική αγωγιμότητα του σώματος 2 (θερμομονωτικό). To χαρακτηριστικό μήκος τους προβλήματος κατά την κατεύθυνση διάδοσης θερμότητας είναι το πάχος του μονωτικού, δηλ. L=12 mm= m, συνεπώς ο αριθμός Biot προκύπτει ως: 12

13 Biot = hl/λ =14*0.012/0.05 = 3.36 >> 0.1 Με βάση το προαναφερθέν κριτήριο, στο πρόβλημα αυτό δεν μπορούμε να θεωρήσουμε τη θερμοχωρητικότητα της θερμομόνωσης πάχους L=12 mm σημειακά συγκεντρωμένη, έτσι η αναλυτική λύση του είναι αρκετά δύσκολη. Αντ αυτής, με αριθμητική επίλυση του προβλήματος προέκυψε η ακριβής χρονική εξέλιξη των θερμοκρασιών κατά τον οριζόντιο άξονα της μονοδιάστατης διάδοσης της θερμότητας του Σχ. 3β. Δεδομένου ότι η αρχική θερμοκρασία των δύο σωμάτων 1 και 2 ήταν ίδια, η απεικονιζόμενη λύση περιγράφει τί ακριβώς συμβαίνει θερμοκρασιακά σε διάφορα βάθη του τοίχου όταν κατά τη χρονική στιγμή t=0 αρχίσει να προσδίδεται σταθερή θερμορροή q (τυπική χαρακτηριστική τέτοια εφαρμογή συνιστά η ενεργοποίηση της θέρμανσης κατά το χειμώνα σε εξοχική οικία σποραδικής εγκατοίκησης). Η ανώτερη διακεκομμένη σπαστή ευθεία δείχνει την προβλεπόμενη κατανομή θερμοκρασιών από την επίλυση του προβλήματος μονοδιάστατης αγωγής σε μόνιμη κατάσταση, δηλ. πρακτικά τις τελικές θερμοκρασίες που θα πιάσουμε σε διάφορα βάθη του τοίχου. Από τη μορφή της χρονικής εξέλιξης των προφίλ θερμοκρασίας διαπιστώνεται ότι πρέπει να μιλάμε για διαφορετική τοπική απόκριση των διάφορων τμημάτων των δύο υλικών του τοίχου: όσο πιο κοντά προς την εσωτερική επιφάνεια (δηλ. την επιφάνεια που δέχεται άμεσα το μεταβατικό θερμικό «σοκ») βρίσκεται ένα μόριο της τοιχοποιίας τόσο ταχύτερα αποκρίνεται στο μεταβατικό φαινόμενο και αντιστρόφως. Ενδεικτικά το διάγραμμα φανερώνει ότι, μετά την παρέλευση 36 min (παρατηρήστε τη χαμηλότερη καμπύλη), για την εσωτερική επιφάνεια του τοίχου έχει συντελεστεί προσεγγιστικά το 50 % της αναμενόμενης θερμοκρασιακής ανύψωσης, για τη διεπιφάνεια των δύο υλικών σε βάθος 12 mm έχει συντελεστεί προσεγγιστικά μόνο το 18 %, ενώ για βάθη μεγαλύτερα από 21 mm τα μόρια του σώματος 1 (τούβλο) δεν έχουν καν αντιληφθεί ροή θερμότητας! 13

14 Σχ. 3β Εξέλιξη των προφίλ θερμοκρασιών σε έναν κατακόρυφο εξωτερικό τοίχο κατοικίας με τη θερμομόνωση από μέσα, ως αποτέλεσμα χαρακτηριστικής βηματικής αλλαγής της θερμορροής στο εσωτερικό του τοίχου από μηδενική αρχική τιμή σε q, π.χ. κατά την ενεργοποίηση της χειμερινής θέρμανσης σε κρύα κατοικία Η παραπάνω εντυπωσιακή πραγματική υστέρηση του προφίλ θερμοκρασιών του εξωτερικού τοίχου, ως προς την απλοποιημένη λύση με τη μέθοδο συγκεντρωμένης θερμοχωρητικότητας, οφείλεται κυρίως στη μεγάλη τιμή του αριθμού Biot=3.36 >> 0.1, δηλ. πρακτικά στη μη ύπαρξη άπειρης τιμής ειδικής θερμικής αγωγιμότητας από τα συμμετέχοντα στην αγωγή θερμότητας δομικά στοιχεία του σάντουιτς εξωτερικού τοίχου. Συνεπώς, σε μερικά θερμικά προβλήματα η άθροιση θερμοχωρητικοτήτων με την απλή μορφή (m 1 c 1 +m 2 c 2 +.+m i c i ) δεν μπορεί να περιγράψει επακριβώς τον πραγματικό μηχανισμό διάδοσης και αποθήκευσης θερμότητας σε μια γεωμετρία i σωμάτων. Αντ αυτού θα πρέπει να χρησιμοποιείται η «ενεργή» θερμοχωρητικότητα (mc) εν, που εξαρτάται μεταξύ άλλων και από τη χωρική εκδήλωση του προβλήματος και από τον τρόπο επιβολής της θερμικής βηματικής μεταβολής. 14

15 (Συγκριτικά, για την περίπτωση της μεταβατικής μετάδοσης θερμότητας από το θάλαμο καύσης προς το έμβολο της ΜΕΚ, θεωρώντας ως χαρακτηριστικό μήκος το ύψος του εμβόλου έστω L=45 mm = m απλοποιημένα, διότι το έμβολο δεν είναι συμπαγής κύλινδρος και ειδική θερμική αγωγιμότητα του εμβόλου λ=50 W/mK, ο αριθμός Biot προκύπτει ως: Biot = hl/λ =50*0.045/50 = < 0.1 Επειδή προκύπτει Biot<0.1, η τιμή της σταθεράς χρόνου t D =17.9 min που προέκυψε νωρίτερα με τη μέθοδο της συγκεντρωμένης θερμοχωρητικότητας θεωρείται σχετικά ακριβής.) Στην πράξη, η παραπάνω περιγραφείσα σύνθετη και χωρικά εξαρτώμενη πραγματική μεταβατική συμπεριφορά είναι πλεονεκτική σε μερικές περιπτώσεις και μειονεκτική σε άλλες, όπως αναλύεται παρακάτω: - Πλεονέκτημα: Κατά τη χειμερινή ενεργοποίηση του συστήματος θέρμανσης εξοχικής κατοικίας ή κατά την ψυχρή εκκίνηση μιας ΜΕΚ (σε αμφότερα τα θερμικά συστήματα εμφανίζεται βηματική εσωτερική πρόσδοση θερμότητας) ο χρόνος επαρκούς ανύψωσης των θερμοκρασιών των εσωτερικών τοιχωμάτων είναι αρκετά μικρότερος από τον υπολογιζόμενο από την εξ (1.6). Έτσι, ενώ στην παραπάνω πρακτική εφαρμογή ζεστάματος του εμβόλου προέκυψε σταθερά χρόνου t D =17.9 min, ο πραγματικός χρόνος επαρκούς προθέρμανσης της άνω επιφάνειας του εμβόλου και γενικότερα των υλικών κατασκευής του κινητήρα που γειτνιάζουν με το θάλαμο καύσης μπορεί να είναι της τάξης των 10 min. Αυτό επιβεβαιώνεται έμμεσα και από σχετικές μετρήσεις διάφορων ερευνητών, που πιστοποιούν ότι η κρίσιμη για την εκπομπή υπερβολικών ρύπων χρονική περίοδος ψυχρής λειτουργίας ενός τυπικού βενζινοκινητήρα δεν υπερβαίνει τα 5 min. - Μειονέκτημα: Κατά τη χειμερινή απενεργοποίηση του συστήματος θέρμανσης μιας συνεχώς θερμαινόμενης κατοικίας ή κατά το σβήσιμο μιας προθερμασμένης ΜΕΚ (σε αμφότερα τα θερμικά συστήματα έχουμε βηματική διακοπή της εσωτερικής πρόσδοσης θερμότητας) ο χρόνος πτώσης των θερμοκρασιών των εσωτερικών τοιχωμάτων είναι και πάλι 15

16 αρκετά μικρότερος από τον υπολογιζόμενο από την εξ (1.6). Συνεπώς, σε αμφότερα τα συστήματα τα εσωτερικά τμήματα ψύχονται γρηγορότερα από τα εξωτερικά, δηλ. πρακτικά αμφότερα το εσωτερικό ενός δωματίου και ο θάλαμος καύσης μιας ΜΕΚ. (Παρεμπιπτόντως, το παραπάνω μειονέκτημα δημιουργεί επίσης κάποιο προβληματισμό για τις γενικότερες επιπτώσεις της χρήσης του συστήματος auto stop start σε αυξανόμενο αριθμό σύγχρονων οχημάτων, που προβαίνει σε αυτόματη απενεργοποίηση του βενζινοκινητήρα κατά την ακινητοποίηση του οχήματος και στη συνέχεια σε αυτόματη επανεκκίνησή του, π.χ. τυπικά σε φωτεινούς σηματοδότες. Η συνεπαγόμενη γρήγορη πτώση των θερμοκρασιών κυρίως στο τοιχώματα των θαλάμων καύσης του κινητήρα μπορεί να έχει δύο τουλάχιστον αρνητικές επιπτώσεις: α) στιγμιαία αύξηση των εκπεμπόμενων ρύπων κατά την επανεκκίνηση του οχήματος, λόγω της προσωρινής λειτουργίας του σε συνθήκες «ημι ψυχρής» εκκίνησης, και β) απομάκρυνση της λειτουργίας του κινητήρα από τις βέλτιστες συνθήκες ανοχών και λίπανσης των διάφορων κινούμενων εξαρτημάτων, που μπορεί να συνεπάγεται προσωρινά αυξημένες μηχανικές φθορές, ειδικά π.χ. αν η αυτόματη επανεκκίνηση του οχήματος συνοδεύεται από άμεσα υψηλό φορτίο λειτουργίας για μια γρήγορη ανάπτυξη ταχύτητας μετά από στάση σε φωτεινό σηματοδότη.) ΙΣΟΔΥΝΑΜΗ ΘΕΡΜΟΚΡΑΣΙΑ ΟΥΡΑΝΟΥ Η θερμική ακτινοβολία διαδίδεται δια μέσου της μάζας των μονατομικών και των συμμετρικών διατομικών αερίων χωρίς καμία απορρόφηση. Στην γήινη ατμόσφαιρα όμως, εκτός από τα διατομικά μόρια του οξυγόνου και του αζώτου, που αποτελούν τα κύρια συστατικά της, περιέχονται και μόρια υδρατμών, όζοντος και διοξειδίου του άνθρακα (τριατομικά αέρια), ίχνη άλλων αερίων, καθώς επίσης και διάφορα αιωρούμενα σωματίδια. Ανάλογα μάλιστα με τις επικρατούσες καιρικές συνθήκες και με την παρέμβαση του ανθρώπινου παράγοντα, η σύνθεση της ατμόσφαιρας μεταβάλλεται ελαφρά (κυρίως ως προς τους περιεχόμενους υδρατμούς), τόσο κατά περιοχές όσο και στο ίδιο μέρος. 16

17 Ως αποτέλεσμα των παραπάνω, η γήινη ατμόσφαιρα δεν είναι τελείως διαπερατή για τη θερμική ακτινοβολία που εκπέμπεται από την επιφάνεια της Γης προς το διάστημα (μια ανάλογη συμπεριφορά παρουσιάζει η ατμόσφαιρα και προς τις εισερχόμενες ηλιακές ακτίνες, μολονότι η "αδιαφάνειά" της είναι πιο μεγάλη προς την θερμική απ' οτι προς την ηλιακή ακτινοβολία). H συναλλαγή θερμότητας με θερμική ακτινοβολία μεταξύ μιας οριζόντιας επιφάνειας A στην επιφάνεια της Γης σε θερμοκρασία Τ και του ουρανού θα μπορούσε, συνεπώς, να εκφρασθεί με μια σχέση της μορφής: Q = τ ατμ σaε(t 4 T 4 συμ ) όπου T συμ =0 K είναι η μηδενική απόλυτη θερμοκρασία του σύμπαντος εκτός της γήινης ατμόσφαιρας. O "συντελεστής διαπερατότητας της γήινης ατμόσφαιρας" τ ατμ έχει τιμή <1, που εξαρτάται από τις συνθήκες της ατμόσφαιρας. Στην πράξη, αντί της παραπάνω εποπτικής σχέσης εφαρμόζεται η παρακάτω σχέση: Q = σaε(t 4 T ουρ 4 ) (1.7) Όπου αντί για το συντελεστή τ ατμ υιοθετείται η "ισοδύναμη θερμοκρασία ουρανού" T ουρ. H δυσκολία υπολογισμού του συντελεστή διαπερατότητας της ατμόσφαιρας μετατίθεται δηλ. στην εκλογή της ισοδύναμης θερμοκρασίας T ουρ. Κατά τον Swinbank η θερμοκρασία T ουρ σχετίζεται με τη θερμοκρασία περιβάλλοντος T περ με την ακόλουθη σχέση: T ουρ = T περ 1.5 (1.8) Ακριβέστερες εμπειρικές σχέσεις για την ισοδύναμη θερμοκρασία ουρανού T ουρ λαμβάνουν υπόψη και την περιεκτικότητα της ατμόσφαιρας σε υδρατμούς. 17

18 2. ΕΝΑΛΛΑΚΤΕΣ ΘΕΡΜΟΤΗΤΑΣ ΟΧΗΜΑΤΩΝ Το ψυγείο κινητήρα και το καλοριφέρ θέρμανσης της καμπίνας επιβατών απαντώνται ως εναλλάκτες θερμότητας σε όλα τα οχήματα δρόμου με υδρόψυκτο κινητήρα. Πρόσθετοι εναλλάκτες θερμότητας μπορεί να εγκαθίστανται σε ένα όχημα για άλλες λειτουργίες, έχοντας συνήθως εξειδικευμένα ονόματα, όπως ενδεικτικά: εξατμιστής και συμπυκνωτής (για το θερινό κλιματισμό), ενδιάμεσος ψύκτης (intercooler) ή/και ψυγείο λαδιού (για υπερπληρούμενους κινητήρες), ελαιοψύκτες (για εξελιγμένα συστήματα μετάδοσης κίνησης). Λόγω των περιορισμών χώρου σε όλες πρακτικά τις παραπάνω εφαρμογές, κατά κανόνα για την κατασκευή των εναλλακτών εφαρμόζονται οι διαθέσιμοι τεχνολογικά τρόποι για τη μείωση του όγκου και του βάρους του εναλλάκτη. Τυπική προσέγγιση είναι π.χ. η χρήση εξωτερικών πτερυγίων για την αύξηση της επιφάνειας εναλλαγής προς τον «δύσκολο» από πλευράς μετάδοσης θερμότητας αέρα, που είναι ο τελικός αποδέκτης της εναλλασσόμενης θερμότητας. Για λόγους αντιπαγετικής και αντιδιαβρωτικής προστασίας, σε οχήματα χρησιμοποιούνται ως υγρά εναλλακτών επιλεγμένα αντιπηκτικά μίγματα με κατάλληλα πρόσθετα. Π.χ. το ψυκτικό υγρό ενός υδρόψυκτου κινητήρα, είναι συνήθως ένα μίγμα νερού, αιθυλικής (ή προπυλικής) γλυκόλης και αντιδιαβρωτικών πρόσθετων που, ατυχώς, αντί της ορθής λέξης ψυκτικό υγρό ή έστω αντιπηκτικό, στην αγορά αναφέρεται συχνά ως «αντιψυκτικό». Σύμφωνα με δεδομένα των προμηθευτών, η αιθυλική γλυκόλη παρέχει αντιπαγετική προστασία ανάλογα με την κατ όγκο περιεκτικότητά της, όπως φαίνεται παρακάτω: Κατ όγκο περιεκτικότητα αιθυλικής γλυκόλης 25 % 40 % 45 % Αντιπαγετική προστασία μέχρι: 20 ο C 25 ο C 30 ο C 18

19 O τυπικός χειμερινός "κλιματισμός" ενός οχήματος περιορίζεται πρακτικά στην ενεργοποίηση ενός θερμαντικού στοιχείου (αποκαλούμενο καλοριφέρ) για τη θέρμανση του προσαγόμενου στην καμπίνα αέρα. Αναλυτικά, σε υδρόψυκτα βενζινοκίνητα οχήματα η εκλυόμενη θερμότητα κατά την καύση του καυσίμου επιμερίζεται, ανάλογα με τις συνθήκες λειτουργίας του κινητήρα, περίπου ως ακολούθως (τα ποσοστά είναι ενδεικτικά για μερικό φορτίο λειτουργίας): ποσοστό % μετατρέπεται σε μηχανικό έργο (συγκριτικά, για πετρελαιοκίνητα %), ποσοστό % απορρίπτεται με τα καυσαέρια στο περιβάλλον, ποσοστό % διαφεύγει ως θερμικές απώλειες στο χώρο του κινητήρα, ποσοστό γύρω στο % απομακρύνεται με το σύστημα υδρόψυξης του κινητήρα. Kατά τη λειτουργία του καλοριφέρ μεταβλητό ποσοστό 0 100% του τελευταίου παραπάνω ποσού θερμότητας υδρόψυξης του κινητήρα διατίθεται για τη θέρμανση του αέρα της καμπίνας, που ρυθμίζεται από το θερμοστάτη του κυκλώματος υδρόψυξης σε συνδυασμό με τα χειριστήρια του καλοριφέρ. Είναι αντιληπτό οτι η θερμοκρασία προσαγωγής του νερού από την έξοδο του κινητήρα στο καλοριφέρ μειώνεται για μερικά φορτία λειτουργίας (δηλ. για λίγο πατημένο γκάζι). Πρακτικά, η διαθέσιμη στο καλοριφέρ θερμική ισχύς μεταβάλλεται κυρίως με το φορτίο του κινητήρα και λιγότερο με τις στροφές παρεμπιπτόντως, το αντίθετο ισχύει για την παρεχόμενη ψυκτική ισχύ από σύστημα αιρκοντίσιον οχήματος! Σε κάθε περίπτωση, οι στροφές λειτουργίας του κινητήρα επηρεάζουν σημαντικά την ταχύτητα ροής του ψυκτικού υγρού μέσα στο κύκλωμα ψύξης επειδή συμπίπτουν με τις στροφές περιστροφής της αντλίας νερού, άρα επιδρούν επίσης στην προσαγόμενη θερμότητα στο καλοριφέρ. Αναλυτικότερα, αυτή καθαυτή η παροχή θερμού νερού που εξασφαλίζει η αντλία κυμαίνεται ανάλογα με τις στροφές του κινητήρα από 0.05 l/s ως 3.0 l/s, δηλ. η παροχή αυξάνεται κατά 60 (!) περίπου φορές σε υψηλές στροφές λειτουργίας σε σύγκριση με τις στροφές του ρελαντί (η παραπάνω παροχή δεν είναι πάντα διαθέσιμη για τη θέρμανση της 19

20 καμπίνας επιβατών διότι όταν ανοίξει ο θερμοστάτης αυτοκινήτου, τυπικά για θερμοκρασίες του νερού ψύξης γύρω στους C, μέρος της ροής εκτρέπεται προς το ψυγείο). O χειμερινός κλιματισμός οχήματος έγκειται στη δίοδο του αέρα από το θερμαντικό στοιχείο (καλοριφέρ) πριν την προσαγωγή του στην καμπίνα των επιβατών. Tο θερμαντικό στοιχείο διαρρέεται πάντα από το θερμό νερό του κυκλώματος ψύξης του κινητήρα, αφού βέβαια ζεσταθεί η μηχανή. Η ενεργοποίηση της θέρμανσης απαιτεί την χειροκίνητη ή αυτόματη μετακίνηση του επιστομίου μείξης ζεστό κρύο (κλαπέτο), για την δίοδο μέρους ή όλου του προσαγόμενου από τον ανεμιστήρα αέρα από την πτερυγωτή εξωτερική επιφάνεια του θερμαντικού στοιχείου. H παροχή του αέρα ρυθμίζεται με επιλογή της ταχύτητας του ανεμιστήρα (αλλιώς βεντιλατέρ), ενώ η διανομή του στη θερμαινόμενη καμπίνα ελέγχεται από την επιλογή των στομίων διανομής. Σε εξελιγμένα συστήματα θέρμανσης απαντάται ηλεκτρονικός θερμοστατικός έλεγχος της θερμοκρασίας της καμπίνας, που φορές βασίζεται στη συνεχή ρύθμιση της ροής του ψυκτικού υγρού μέσω του καλοριφέρ. Ανάλογα με το επίπεδο αυτοματισμού μπορεί να υφίσταται αυτόματος έλεγχος των επιστομίων διανομής ή ανακύκλωσης αέρα, αυτόματη διαφοροποίηση θερμοκρασίας οδηγούσυνοδηγού κ.ά. Tο θερμαντικό στοιχείο κατασκευάζεται συνήθως από ορειχάλκινους ή χαλύβδινους σωλήνες Φ6 mm έως Φ16 mm, στην εξωτερική επιφάνεια των οποίων συγκολλούνται πτερύγια πάχους 3 8 mm. H διαδρομή του νερού εντός των σωλήνων είναι μορφής απλού U ή και ευθεία, ενώ η θερμαντική ικανότητα μεταβάλλεται τυπικά έντονα με την ταχύτητα προσαγωγής του αέρα. 20

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 Θερμοδυναμική και Μετάδοση Θερμότητας 1 1.2

Διαβάστε περισσότερα

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton):

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton): Συναγωγή Θερμότητας: Συναγωγή Θερμότητας Μέσω Συναγωγής μεταδίδεται η θερμότητα μεταξύ της επιφάνειας ενός στερεού σώματος και ενός ρευστού το οποίο βρίσκεται σε κίνηση σχετικά με την επιφάνεια και ταυτόχρονα

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ 1. Να υπολογιστεί η μαζική παροχή του ατμού σε (kg/h) που χρησιμοποιείται σε ένα θερμαντήρα χυμού με τα παρακάτω στοιχεία: αρχική θερμοκρασία χυμού 20 C, τελική θερμοκρασία

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ 1. Πώς ορίζεται η περίσσεια αέρα και η ισχύς μίγματος σε μία καύση; 2. Σε ποιές περιπτώσεις παρατηρείται μή μόνιμη μετάδοση της θερμότητας; 3. Τί είναι η αντλία

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα 1η ενότητα 1. Εναλλάκτης σχεδιάζεται ώστε να θερμαίνει 2kg/s νερού από τους 20 στους 60 C. Το θερμό ρευστό είναι επίσης νερό με θερμοκρασία εισόδου 95 C. Οι συντελεστές συναγωγής στους αυλούς και το κέλυφος

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΑΝΕΣΗ ΚΛΕΙΩ ΑΞΑΡΛΗ

ΘΕΡΜΙΚΗ ΑΝΕΣΗ ΚΛΕΙΩ ΑΞΑΡΛΗ ΘΕΡΜΙΚΗ ΑΝΕΣΗ ΚΛΕΙΩ ΑΞΑΡΛΗ το κέλυφος του κτιρίου και τα συστήματα ελέγχου του εσωκλίματος επηρεάζουν: τη θερμική άνεση την οπτική άνεση την ηχητική άνεση την ποιότητα αέρα Ο βαθμός ανταπόκρισης του κελύφους

Διαβάστε περισσότερα

Υπολογισµοί του Χρόνου Ξήρανσης

Υπολογισµοί του Χρόνου Ξήρανσης Η πραγµατική επιφάνεια ξήρανσης είναι διασπαρµένη και ασυνεχής και ο µηχανισµός από τον οποίο ελέγχεται ο ρυθµός ξήρανσης συνίσταται στην διάχυση της θερµότητας και της µάζας µέσα από το πορώδες στερεό.

Διαβάστε περισσότερα

Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων

Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων Χ. Τζιβανίδης, Λέκτορας Ε.Μ.Π. Φ. Γιώτη, Μηχανολόγος Μηχανικός, υπ. Διδάκτωρ Ε.Μ.Π. Κ.Α. Αντωνόπουλος, Καθηγητής

Διαβάστε περισσότερα

Τ Ε Χ Ν Ο Λ Ο Γ Ι Α Κ Λ Ι Μ Α Τ Ι Σ Μ Ο Υ ( Ε ) - Φ Ο Ρ Τ Ι Α 1

Τ Ε Χ Ν Ο Λ Ο Γ Ι Α Κ Λ Ι Μ Α Τ Ι Σ Μ Ο Υ ( Ε ) - Φ Ο Ρ Τ Ι Α 1 Τ Ε Χ Ν Ο Λ Ο Γ Ι Α Κ Λ Ι Μ Α Τ Ι Σ Μ Ο Υ ( Ε ) - Φ Ο Ρ Τ Ι Α 1 ΦΟΡΤΙΑ Υπό τον όρο φορτίο, ορίζεται ουσιαστικά το πoσό θερµότητας, αισθητό και λανθάνον, που πρέπει να αφαιρεθεί, αντίθετα να προστεθεί κατά

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ Α1) ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΗΛΙΑΚΟΥ ΤΟΙΧΟΥ Ο ηλιακός τοίχος Trombe και ο ηλιακός τοίχος μάζας αποτελούν

Διαβάστε περισσότερα

Γεωργικά Μηχανήματα (Εργαστήριο)

Γεωργικά Μηχανήματα (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικά Μηχανήματα (Εργαστήριο) Ενότητα 3 : Γεωργικός Ελκυστήρας Σύστημα Ψύξεως Δρ. Δημήτριος Κατέρης Εργαστήριο 3 ο ΣΥΣΤΗΜΑ ΨΥΞΗΣ Σύστημα ψύξης

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία)

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Διάδοση Θερμότητας (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Τρόποι διάδοσης θερμότητας Με αγωγή Με μεταφορά (με τη βοήθεια ρευμάτων) Με ακτινοβολία άλλα ΠΑΝΤΑ από το θερμότερο προς το ψυχρότερο

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΕΝΑΛΛΑΚΤΕΣ ΜΠΟΪΛΕΡ ΖΕΣΤΟΥ ΝΕΡΟΥ ΧΡΗΣΗΣ Μέρος 1 ο.

ΕΝΑΛΛΑΚΤΕΣ ΜΠΟΪΛΕΡ ΖΕΣΤΟΥ ΝΕΡΟΥ ΧΡΗΣΗΣ Μέρος 1 ο. 1 ΕΝΑΛΛΑΚΤΕΣ ΜΠΟΪΛΕΡ ΖΕΣΤΟΥ ΝΕΡΟΥ ΧΡΗΣΗΣ Μέρος 1 ο. Οι ανάγκες του σύγχρονου ανθρώπου για ζεστό νερό χρήσης, ήταν η αρχική αιτία της επινόησης των εναλλακτών θερμότητας. Στους εναλλάκτες ένα θερμαντικό

Διαβάστε περισσότερα

Συστήματα Θέρμανσης θερμοκηπίων. Εργαστήριο Γεωργικών Κατασκευών και Ελέγχου Περιβάλλοντος Ν. Κατσούλας, Κ. Κίττας

Συστήματα Θέρμανσης θερμοκηπίων. Εργαστήριο Γεωργικών Κατασκευών και Ελέγχου Περιβάλλοντος Ν. Κατσούλας, Κ. Κίττας Συστήματα Θέρμανσης θερμοκηπίων Εργαστήριο Γεωργικών Κατασκευών και Ελέγχου Περιβάλλοντος Ν. Κατσούλας, Κ. Κίττας Θέρμανση Μη θερμαινόμενα Ελαφρώς θερμαινόμενα Πλήρως θερμαινόμενα θερμοκήπια Συστήματα

Διαβάστε περισσότερα

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Η θερμοκρασία του εδάφους είναι ψηλότερη από την ατμοσφαιρική κατά τη χειμερινή περίοδο, χαμηλότερη κατά την καλοκαιρινή

Διαβάστε περισσότερα

2. ΟΛΕΣ οι απαντήσεις να δοθούν στις σελίδες του εξεταστικού δοκιμίου το οποίο θα επιστραφεί.

2. ΟΛΕΣ οι απαντήσεις να δοθούν στις σελίδες του εξεταστικού δοκιμίου το οποίο θα επιστραφεί. ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ OIKΙΑΚΩΝ

Διαβάστε περισσότερα

Ψυκτικές Μηχανές 21/10/2012. Υποπλοίαρχος (Μ) Α.Δένδης ΠΝ 1. Ψυκτικές Μηχανές (6.2) Ψυκτικές Μηχανές (6.2) Ψυκτικές Μηχανές (6.2)

Ψυκτικές Μηχανές 21/10/2012. Υποπλοίαρχος (Μ) Α.Δένδης ΠΝ 1. Ψυκτικές Μηχανές (6.2) Ψυκτικές Μηχανές (6.2) Ψυκτικές Μηχανές (6.2) Ψυκτικές Μηχανές Εξατμιστές Επανάληψη - Εισαγωγή 1. Ποιός είναι ο σκοπός λειτουργίας του εξατμιστή; 4 3 1 2 Υποπλοίαρχος (Μ) Α.Δένδης Π.Ν. 1 2 Ρόλος Τύποι Εξατμιστών Ψύξης αέρα ( φυσικής εξαναγκασμένης

Διαβάστε περισσότερα

Μεταφορά Θερμότητας. Βρασμός και συμπύκνωση (boiling and condensation)

Μεταφορά Θερμότητας. Βρασμός και συμπύκνωση (boiling and condensation) ΜΜK 312 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής γής MMK 312 1 Βρασμός και συμπύκνωση (boiing and condenion Όταν η θερμοκρασία ενός υγρού (σε συγκεκριμένη πίεση αυξάνεται μέχρι τη θερμοκρασία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Τεχνολογία Υδραυλικών, Θερμικών

Διαβάστε περισσότερα

1 Aπώλειες θερμότητας - Μονωτικά

1 Aπώλειες θερμότητας - Μονωτικά 1 Aπώλειες θερμότητας - Μονωτικά 1.1 Εισαγωγή Όταν ένα ρευστό ρέει μέσα σ' έναν αγωγό και η θερμοκρασία του διαφέρει από τη θερμοκρασία του περιβάλλοντος, τότε μεταδίδεται θερμότητα: από το ρευστό προς

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Η επιστήμη της Θερμοδυναμικής (Thermodynamics) συσχετίζεται με το ποσό της μεταφερόμενης ενέργειας (έργου ή θερμότητας) από ένα σύστημα προς ένα

Διαβάστε περισσότερα

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal Θ2 Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal 1. Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί, με αφορμή τον προσδιορισμό του παράγοντα μετατροπής της

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ 1. ΕΙΣΑΓΩΓΗ 2. ΚΑΤΑΣΚΕΥΗ

ΠΕΡΙΛΗΨΗ 1. ΕΙΣΑΓΩΓΗ 2. ΚΑΤΑΣΚΕΥΗ ΜΕΛΕΤΗ ΕΝΑΛΛΑΚΤΗ ΘΕΡΜΟΤΗΤΑΣ ΕΜΒΑΠΤΙΣΜΕΝΟΥ ΣΕ ΟΧΕΙΟ ΑΠΟΘΗΚΕΥΣΗΣ ΗΛΙΑΚΟΥ ΘΕΡΜΟΣΙΦΩΝΑ. Ν. Χασιώτης, Ι. Γ. Καούρης, Ν. Συρίµπεης. Τµήµα Μηχανολόγων & Αεροναυπηγών Μηχανικών, Πανεπιστήµιο Πατρών 65 (Ρίο) Πάτρα.

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Θερμότητα. Κ.-Α. Θ. Θωμά

Θερμότητα. Κ.-Α. Θ. Θωμά Θερμότητα Οι έννοιες της θερμότητας και της θερμοκρασίας Η θερμοκρασία είναι μέτρο της μέσης κινητικής κατάστασης των μορίων ή ατόμων ενός υλικού. Αν m είναι η μάζα ενός σωματίου τότε το παραπάνω εκφράζεται

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ: ΕΦΑΡΜΟΓΕΣ ΣΕ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ: ΕΦΑΡΜΟΓΕΣ ΣΕ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Επιβλέπων: ΠΕΤΡΟΣ Γ. ΒΕΡΝΑΔΟΣ, Καθηγητής ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ:

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

Πρακτικός Οδηγός Εφαρμογής Μέτρων

Πρακτικός Οδηγός Εφαρμογής Μέτρων Πρακτικός Οδηγός Εφαρμογής Μέτρων Φ ο ρ έ α ς υ λ ο π ο ί η σ η ς Ν Ο Ι Κ Ο Κ Υ Ρ Ι Α Άξονες παρέμβασης Α. Κτιριακές υποδομές Β. Μεταφορές Γ. Ύ δρευση και διαχείριση λυμάτων Δ. Δ ιαχείριση αστικών στερεών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: «ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΨΥΞΗΣ» ΕΠΑΛ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: «ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΨΥΞΗΣ» ΕΠΑΛ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: «ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΨΥΞΗΣ» ΕΠΑΛ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ

Διαβάστε περισσότερα

Εισαγωγή στην Μεταφορά Θερμότητας

Εισαγωγή στην Μεταφορά Θερμότητας Εισαγωγή στην Μεταφορά Θερμότητας ΜΜΚ 312 Μεταφορά Θερμότητας Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής Διάλεξη 1 MMK 312 Μεταφορά Θερμότητας Κεφάλαιο 1 1 Μεταφορά Θερμότητας - Εισαγωγή Η θερμότητα

Διαβάστε περισσότερα

9/10/2015. Παρουσίαση ΑΝΔΡΕΑΣ ΑΡΝΑΟΥΤΗΣ ΣΤΕΛΙΟΣ ΘΕΟΦΑΝΟΥΣ Εκπαιδευτές ΚΕ.ΠΑ

9/10/2015. Παρουσίαση ΑΝΔΡΕΑΣ ΑΡΝΑΟΥΤΗΣ ΣΤΕΛΙΟΣ ΘΕΟΦΑΝΟΥΣ Εκπαιδευτές ΚΕ.ΠΑ Παρουσίαση ΑΝΔΡΕΑΣ ΑΡΝΑΟΥΤΗΣ ΣΤΕΛΙΟΣ ΘΕΟΦΑΝΟΥΣ Εκπαιδευτές ΚΕ.ΠΑ Το έργο We Qualify έχει ως στόχο να βοηθήσει τον κατασκευαστικό τομέα της Κύπρου με την εκπαίδευση ατόμων στην τοποθέτηση κουφωμάτων και

Διαβάστε περισσότερα

Εργ.Αεροδυναμικής,ΕΜΠ. Καθ. Γ.Μπεργελές

Εργ.Αεροδυναμικής,ΕΜΠ. Καθ. Γ.Μπεργελές Μηχανολογικές Συσκευές και Εγκαταστάσεις Ενέργεια ( Κινητήριες μηχανές- ενεργειακές μηχανές- Θερμοτεχνική) Περιβάλλον ( Αντιρρυπαντική τεχνολογία) Μεταφορικά μέσα ( Αυτοκίνητα- Αεροπλάνα-ελικόπτερα) Βιοιατρική

Διαβάστε περισσότερα

Η ΘΕΣΗ ΤΗΣ ΘΕΡΜΟΜΟΝΩΤΙΚΗΣ ΣΤΡΩΣΗΣ ΣΤΑ ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΩΝ ΚΤΙΡΙΩΝ

Η ΘΕΣΗ ΤΗΣ ΘΕΡΜΟΜΟΝΩΤΙΚΗΣ ΣΤΡΩΣΗΣ ΣΤΑ ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΩΝ ΚΤΙΡΙΩΝ ΤΕΧΝΙΚΗ ΗΜΕΡΙΔΑ ΘΕΣΣΑΛΟΝΙΚΗ 31 ΜΑΪΟΥ 2014 ΕΝΕΡΓΕΙΑ ΣΤΑ ΚΤΙΡΙΑ Η ΘΕΣΗ ΤΗΣ ΘΕΡΜΟΜΟΝΩΤΙΚΗΣ ΣΤΡΩΣΗΣ ΣΤΑ ΔΟΜΙΚΑ ΣΤΟΙΧΕΙΑ ΤΩΝ ΚΤΙΡΙΩΝ ΟΡΓΑΝΩΣΗ: ASHRAE ΕΛΛΗΝΙΚΟ ΠΑΡΑΡΤΗΜΑ ΠΑΡΟΥΣΙΑΣΗ Δημήτρης Αραβαντινός αναπληρωτής

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΥΔΡΑΥΛΙΚΩΝ ΘΕΡΜΙΚΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 5 Eναλλάκτες Θερμότητας

Κεφάλαιο 5 Eναλλάκτες Θερμότητας Κεφάλαιο 5 Eναλλάκτες Θερμότητας 5. Εισαγωγή Σε πολλές εφαρμογές απαιτείται η μετάδοση θερμότητας μεταξύ δύο ρευστών. Οι διεργασίες αυτές λαμβάνουν χώρα σε συσκευές που αποκαλούνται εναλλάκτες θερμότητας

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 03 ΤΕΧΝΟΛΟΓΙΑ T.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Τεχνολογία Υδραυλικών, Θερμικών

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές

Διαβάστε περισσότερα

ΕΞΑΤΜΙΣΗ Θοδωρής Καραπάντσιος

ΕΞΑΤΜΙΣΗ Θοδωρής Καραπάντσιος ΕΞ ΕΞΑΤΜΙΣΗ Θοδωρής Καραπάντσιος ΕΞ.1 Εισαγωγή Αντικείµενο της συµπύκνωσης είναι κατά κύριο λόγο η αποµάκρυνση νερού, µε εξάτµιση, από ένα υδατικό διάλυµα που περιέχει µια ή περισσότερες διαλυµένες ουσίες,

Διαβάστε περισσότερα

ΤΑΞΙΝOΜΗΣΗ ΦΛΟΓΩΝ ΒΑΘΜΟΣ ΑΠΟ ΟΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΚΑΥΣΗΣ. Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 2004

ΤΑΞΙΝOΜΗΣΗ ΦΛΟΓΩΝ ΒΑΘΜΟΣ ΑΠΟ ΟΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΚΑΥΣΗΣ. Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 2004 ΤΑΞΙΝOΜΗΣΗ ΦΛΟΓΩΝ ΒΑΘΜΟΣ ΑΠΟ ΟΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΚΑΥΣΗΣ Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 2004 Oρισµός φλόγας Ογεωµετρικός τόπος στον οποίο λαµβάνει χώρα το µεγαλύτερο ενεργειακό µέρος της χηµικής µετατροπής

Διαβάστε περισσότερα

Αντλίες θερμότητας αέρα - νερού

Αντλίες θερμότητας αέρα - νερού Αντλίες θερμότητας αέρα - νερού Air Inverter Χαμηλή κατανάλωση χάρη στην τεχνολογία inverter Visual_Heat pumps_air Inverter_2.0 Air Inverter Πεδίο εφαρμογής: Θέρμανση Ψύξη Ζεστό νερό χρήσης Χρήσεις: Διαμερίσματα,

Διαβάστε περισσότερα

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ 1 ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ Προβλήματα μεταφοράς θερμότητας παρουσιάζονται σε κάθε βήμα του μηχανικού της χημικής βιομηχανίας. Ο υπολογισμός των θερμικών απωλειών, η εξοικονόμηση ενέργειας και ο σχεδιασμός

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΨΥΚΤΙ- ΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΚΛΙΜΑΤΙΣΜΟΥ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΨΥΚΤΙ- ΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΚΛΙΜΑΤΙΣΜΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΨΥΚΤΙ- ΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΚΛΙΜΑΤΙΣΜΟΥ ΣΤΟ ΠΑΡΟΝ ΦΥΛΛΑΔΙΟ ΔΙΝΟΝΤΑΙ ΟΛΑ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΕΙΔΙΚΟΤΗΤΑΣ ΤΩΝ ΨΥΚΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΚΛΙΜΑΤΙΣΜΟΥ ΣΤΑ ΜΑΘΗΜΑΤΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΨΥΞΗΣ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΜΒΟΛΟΦΟΡΩΝ ΜΗΧΑΝΩΝ Ι ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 Κυλινδροκεφαλή Βενζινοκινητήρων ΑΣΚΗΣΗ 2: ΚΥΛΙΝΔΡΟΚΕΦΑΛΗ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ OIKΙΑΚΩΝ

Διαβάστε περισσότερα

1. ΡΥΘΜΙΣΗ ΜΕ ΣΤΡΑΓΓΑΛΙΣΜΟ ΤΟΥ ΑΤΜΟΥ

1. ΡΥΘΜΙΣΗ ΜΕ ΣΤΡΑΓΓΑΛΙΣΜΟ ΤΟΥ ΑΤΜΟΥ 1. ΡΥΘΜΙΣΗ ΜΕ ΣΤΡΑΓΓΑΛΙΣΜΟ ΤΟΥ ΑΤΜΟΥ Ο στραγγαλισμός του ατμού υλοποιείται εξαναγκάζοντας τον ατμό, πριν παροχετευθεί στο στρόβιλο, να περάσει μέσα από κατάλληλη βαλβίδα όπου μικραίνει η διατομή διέλευσης

Διαβάστε περισσότερα

Μέτρηση ιξώδους λιπαντικών

Μέτρηση ιξώδους λιπαντικών 5 η Εργαστηριακή Άσκηση Μέτρηση ιξώδους λιπαντικών Εργαστήριο Τριβολογίας Μάιος 2011 Αθανάσιος Μουρλάς Η λίπανση Ως λίπανση ορίζεται η παρεμβολή μεταξύ των δύο στοιχείων του τριβοσυστήματος τρίτου κατάλληλου

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ.

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. 2.1 Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΑΡΗΣ ΟΥΣΙΑΣ. Μια ουσία της οποίας η χημική σύσταση παραμένει σταθερή σε όλη της την έκταση ονομάζεται καθαρή ουσία. Δεν είναι υποχρεωτικό να

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής 1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 7: Ηλιακοί Συλλέκτες Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης ΗλιακοίΣυλλέκτες Γιάννης Κατσίγιαννης Ηλιακοίσυλλέκτες Ο ηλιακός συλλέκτης είναι ένα σύστηµα που ζεσταίνει συνήθως νερό ή αέρα χρησιµοποιώντας την ηλιακή ακτινοβολία Συνήθως εξυπηρετεί ανάγκες θέρµανσης

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΚΕΦΑΛΑΙΟ 3ο ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ Σκοπός Στο τρίτο κεφάλαιο θα εισαχθεί η έννοια της ηλεκτρικής ενέργειας. 3ο κεφάλαιο ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ 1 2 3.1 Θερμικά αποτελέσματα του ηλεκτρικού ρεύματος Λέξεις κλειδιά:

Διαβάστε περισσότερα

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας 1 3 ο κεφάλαιο : Απαντήσεις των ασκήσεων Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες: 1. Συμπλήρωσε τις λέξεις που λείπουν από το παρακάτω κείμενο, έτσι ώστε οι προτάσεις που προκύπτουν να είναι

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

ΑΝΤΙΣΤΑΘΜΙΣΗ (ανακεφαλαίωση με επιπλέον πληροφορίες)

ΑΝΤΙΣΤΑΘΜΙΣΗ (ανακεφαλαίωση με επιπλέον πληροφορίες) Παναγιώτης Φαντάκης 1 ΑΝΤΙΣΤΑΘΜΙΣΗ (ανακεφαλαίωση με επιπλέον πληροφορίες) Όπως είδαμε και στο περί απωλειών κεφάλαιο, η ισχύς των σωμάτων που τοποθετούνται σε ένα χώρο υπολογίζεται ώστε να μπορούν να

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι αυτό που προϋποθέτει την ύπαρξη μιας συνεχούς προσανατολισμένης ροής ηλεκτρονίων; Με την επίδραση διαφοράς δυναμικού ασκείται δύναμη στα ελεύθερα ηλεκτρόνια του μεταλλικού

Διαβάστε περισσότερα

Επισκευή & συντήρηση σωλήνων

Επισκευή & συντήρηση σωλήνων Επισκευή & συντήρηση σωλήνων Ευρεία γκάμα από μία πηγή. Μοναδικός ανθεκτικός σχεδιασμός. Γρήγορη και αξιόπιστη απόδοση. Τύπος μοντέλων Σελίδα Πρέσες δοκιμής κυκλωμάτων 2 9.2 Ψύκτες σωλήνων 2 9.3 Αντλίες

Διαβάστε περισσότερα

ΛΕΒΗΤΕΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ

ΛΕΒΗΤΕΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ ΛΕΒΗΤΕΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ Η ΛΥΣΗ ΣΤΑ ΕΝΕΡΓΕΙΑΚΑ ΠΡΟΒΛΗΜΑΤΑ Ο οίκος Sime, αναλογιζόμενος τα ενεργειακά προβλήματα και τη ζήτηση χρήσης ανανεώσιμων πηγών ενέργειας, προσφέρει στην αγορά και λέβητες βιομάζας:

Διαβάστε περισσότερα

Ένα από τα πολλά πλεονεκτήματα της θερμογραφίας είναι ότι είναι μη καταστροφική.

Ένα από τα πολλά πλεονεκτήματα της θερμογραφίας είναι ότι είναι μη καταστροφική. Θερμογραφία είναι η παρατήρηση, μέτρηση και καταγραφή της θερμότητας και της ροής της. Όλα τα σώματα στη γη, με θερμοκρασία πάνω από το απόλυτο μηδέν ( 273 ο C) εκπέμπουν θερμική ενέργεια στο υπέρυθρο

Διαβάστε περισσότερα

Mάθημα: Θερμικές Στροβιλομηχανές. Εργαστηριακή Ασκηση. Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή

Mάθημα: Θερμικές Στροβιλομηχανές. Εργαστηριακή Ασκηση. Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Ε.Μ. ΠΟΛΥΤΕΧΝΕIΟ ΕΡΓΑΣΤΗΡIΟ ΘΕΡΜIΚΩΝ ΣΤΡΟΒIΛΟΜΗΧΑΝΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ Mάθημα: Θερμικές Στροβιλομηχανές Εργαστηριακή Ασκηση Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Κ. Μαθιουδάκη Καθηγητή

Διαβάστε περισσότερα

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 1. ΓΕΝΙΚΑ Τα ηλιακά στοιχεία χρησιμοποιούνται για τη μετατροπή του φωτός (που αποτελεί μία μορφή ηλεκτρομαγνητικής ενέργειας) σε ηλεκτρική ενέργεια. Κατασκευάζονται από

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Μαΐου 2010 Ώρα : 10:00-12:30 Προτεινόμενες λύσεις ΘΕΜΑ 1 0 (12 μονάδες) Για τη μέτρηση της πυκνότητας ομοιογενούς πέτρας (στερεού

Διαβάστε περισσότερα

ΠΡΟΣΤΑΣΙΑ ΑΠΟ ΥΓΡΑΣΙΑ

ΠΡΟΣΤΑΣΙΑ ΑΠΟ ΥΓΡΑΣΙΑ ΠΡΟΣΤΑΣΙΑ ΑΠΟ ΥΓΡΑΣΙΑ 1 ΜΕΓΕΘΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΓΡΑΣΙΑΣ ΑΠΟΛΥΤΗ ΥΓΡΑΣΙΑ ΤΟΥ ΑΕΡΑ, W Ως απόλυτη υγρασία του αέρα ορίζεται η ποσότητα των υδρατμών σε γραμμάρια, ηοποία περιέχεται σε 1 m 3 αέρα. Μονάδα μέτρησης

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ OIKΙΑΚΩΝ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Τεχνολογία και Εργαστήρια Μηχανολογικού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Ενότητα 2.4 ΥΔΡΑΥΛΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ ΣΤΟΧΟΙ

ΚΕΦΑΛΑΙΟ 2. Ενότητα 2.4 ΥΔΡΑΥΛΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟ 2 Ενότητα 2.4 ΥΔΡΑΥΛΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ ΣΤΟΧΟΙ Μετά την ολοκλήρωση της ενότητας αυτής θα μπορείτε: Να περιγράφετε την αρχή λειτουργίας ενός υδραυλικού αυτοματισμού. Να εξηγείτε τη λειτουργία ενός

Διαβάστε περισσότερα

Είδη Συλλεκτών. 1.1 Συλλέκτες χωρίς κάλυμμα

Είδη Συλλεκτών. 1.1 Συλλέκτες χωρίς κάλυμμα ΕΝΩΣΗ ΒΙΟΜΗΧΑΝΙΩΝ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕΜΙΝΑΡΙΟ ΘΕΡΜΙΚΩΝ ΗΛΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Είδη Συλλεκτών ΧΡΙΣΤΟΔΟΥΛΑΚΗ ΡΟΖA υπ. Διδ. Μηχ. Μηχ. ΕΜΠ MSc Environmental Design & Engineering Φυσικός Παν. Αθηνών ΚΑΠΕ - ΤΜΗΜΑ

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΔΟΜΗ ΑΥΤΟΜΑΤΙΣΜΟΥ

ΒΑΣΙΚΗ ΔΟΜΗ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 2 Ενότητα 2.1 ΒΑΣΙΚΗ ΔΟΜΗ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΤΟΧΟΙ Μετά την ολοκλήρωση της ενότητας αυτής θα μπορείτε: Να περιγράφετε ένα απλό σύστημα Αυτοματισμού Να διακρίνετε ένα Ανοικτό από ένα Κλειστό σύστημα

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Ψυκτικές Μηχανές (6.1)

Ψυκτικές Μηχανές (6.1) Ψυκτικές Μηχανές (6.1) Σκοπός λειτουργίας εκτονωτικής διάταξης Η έννοια της Υπερθέρμανσης Εκτονωτικές Διατάξεις Σύγχρονες Εκτονωτικές Βαλβίδες Τριχοειδής Σωλήνας Υδροψυκτοι Υποπλοίαρχος (Μ) Α.Δένδης Π.Ν.

Διαβάστε περισσότερα

Μονάδα νερού 42N ΝΈΑ ΓΕΝΙΆ ΚΟΜΨΌΤΗΤΑ, ΥΨΗΛΉ ΑΠΌΔΟΣΗ, ΆΝΕΣΗ

Μονάδα νερού 42N ΝΈΑ ΓΕΝΙΆ ΚΟΜΨΌΤΗΤΑ, ΥΨΗΛΉ ΑΠΌΔΟΣΗ, ΆΝΕΣΗ Μονάδα νερού 42N ΝΈΑ ΓΕΝΙΆ ΚΟΜΨΌΤΗΤΑ, ΥΨΗΛΉ ΑΠΌΔΟΣΗ, ΆΝΕΣΗ ΣΙΓΟΥΡΗ ΕΠΙΤΥΧΙΑ ΧΑΡΗ ΣΤΗΝ ΥΨΗΛΗ ΕΝΕΡΓΕΙΑΚΗ ΣΧΕΔΙΑΣΗ Το IDROFAN εναρμονίζεται άριστα με τα νέα πρότυπα για κτίρια χαμηλής ενεργειακής κατανάλωσης,

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

Σχέσεις εδάφους νερού Σχέσεις μάζας όγκου των συστατικών του εδάφους Εδαφική ή υγρασία, τρόποι έκφρασης

Σχέσεις εδάφους νερού Σχέσεις μάζας όγκου των συστατικών του εδάφους Εδαφική ή υγρασία, τρόποι έκφρασης Γεωργική Υδραυλική Αρδεύσεις Σ. Αλεξανδρής Περιγραφή Μαθήματος Σχέσεις εδάφους νερού Σχέσεις μάζας όγκου των συστατικών του εδάφους Εδαφική ή υγρασία, τρόποι έκφρασης Χαρακτηριστική Χ ή καμπύλη υγρασίας

Διαβάστε περισσότερα

4. ΕΠΙΠΕ ΟΣ ΗΛΙΑΚΟΣ ΣΥΛΛΕΚΤΗΣ.

4. ΕΠΙΠΕ ΟΣ ΗΛΙΑΚΟΣ ΣΥΛΛΕΚΤΗΣ. 4. ΕΠΙΠΕ ΟΣ ΗΛΙΑΚΟΣ ΣΥΛΛΕΚΤΗΣ. 4.1 Εισαγωγή. Η πλέον διαδεδοµένη συσκευή εκµετάλλευσης της ηλιακής ακτινοβολίας είναι ο επίπεδος ηλιακός συλλέκτης. Στην ουσία είναι ένας εναλλάκτης θερµότητας ο οποίος

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1

ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1 ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ 3 ΘΕΡΜΟΤΗΤΑ, Q ( W h ) ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Μεταφορά ενέργειας με: Θερμική αγωγή ή Θερμική μεταβίβαση ή με συναγωγιμότητα (μεταφορά θερμότητας στην επιφάνεια επαφής

Διαβάστε περισσότερα

Μεταλλικές Σχάρες Διέλευσης Καλωδίων. Τεχνικές Οδηγίες & Προδιαγραφές

Μεταλλικές Σχάρες Διέλευσης Καλωδίων. Τεχνικές Οδηγίες & Προδιαγραφές Μεταλλικές Σχάρες Διέλευσης Καλωδίων Τεχνικές Οδηγίες & Προδιαγραφές Ο κύριος στόχος της εταιρίας είναι η κατασκευή ποιοτικών προ όντων με: πρακτικό σχεδιασμό αυξημένη αντοχή εύκολη και γρήγορη τοποθέτηση

Διαβάστε περισσότερα

ΔΡΑΣΗ ΕΘΝΙΚΗΣ ΕΜΒΕΛΕΙΑΣ. «ΣΥΝΕΡΓΑΣΙΑ 2009» ΠΡΑΞΗ Ι:«Συνεργατικά έργα μικρής και μεσαίας κλίμακας»

ΔΡΑΣΗ ΕΘΝΙΚΗΣ ΕΜΒΕΛΕΙΑΣ. «ΣΥΝΕΡΓΑΣΙΑ 2009» ΠΡΑΞΗ Ι:«Συνεργατικά έργα μικρής και μεσαίας κλίμακας» ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΣΥΝΤΟΝΙΣΜΟΥ ΚΑΙ ΕΦΑΡΜΟΓΗΣ ΔΡΑΣΕΩΝ ΣΤΟΥΣ ΤΟΜΕΙΣ ΤΗΣ ΕΡΕΥΝΑΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΗΣ ΚΑΙΝΟΤΟΜΙΑΣ (ΕΥΣΕΔ-ΕΤΑΚ)

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΕΔΑΦΟΥΣ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 3. ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΕΔΑΦΟΥΣ

Διαβάστε περισσότερα

1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8

1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8 ΚΕΦΑΛΑΙΟ 1 ο 1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8 Είναι θερμικές μηχανές που μετατρέπουν την χημική ενέργεια του καυσίμου σε θερμική και μέρος αυτής για την παραγωγή μηχανικού έργου,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 ΜΜΚ 31 Μεταφορά Θερμότητας Εξαναγκασμένη Συναγωγή και Σφαίρες ΜΜΚ 31 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 και Σφαίρες (flow across cylinders

Διαβάστε περισσότερα

Επεμβάσεις Εξοικονόμησης Ενέργειας στον Η/Μεξοπλισμό στον κτιριακό τομέα

Επεμβάσεις Εξοικονόμησης Ενέργειας στον Η/Μεξοπλισμό στον κτιριακό τομέα Επεμβάσεις Εξοικονόμησης Ενέργειας στον Η/Μεξοπλισμό στον κτιριακό τομέα Α. Μπότζιος-Βαλασκάκης Κέντρο Ανανεώσιμων Πηγών Ενέργειας Διεύθυνση Εξοικονόμησης Ενέργειας Τμήμα Βιομηχανίας και Μεταφορών Θέρμανση

Διαβάστε περισσότερα

ΤΟ ΘΕΡΜΙΚΟ ΙΣΟΖΥΓΙΟ- ΘΕΡΜΙΚΗ ΡΟΗ- ΘΕΡΜΟΜΟΝΩΣΗ

ΤΟ ΘΕΡΜΙΚΟ ΙΣΟΖΥΓΙΟ- ΘΕΡΜΙΚΗ ΡΟΗ- ΘΕΡΜΟΜΟΝΩΣΗ ΤΟ ΘΕΡΜΙΚΟ ΙΣΟΖΥΓΙΟ- ΘΕΡΜΙΚΗ ΡΟΗ- ΘΕΡΜΟΜΟΝΩΣΗ τρόποι μετάδοσης της θερμότητας αγωγιμότητα μεταφορά ακτινοβολία Θερμικές απώλειες (ή πρόσοδοι) Το κτίριο χάνει θερμότητα: Μέσω του κελύφους, ανάλογα με τη

Διαβάστε περισσότερα

ΒΙΟΚΛΙΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΤΗΡΙΩΝ. Εύη Τζανακάκη Αρχιτέκτων Μηχ. MSc

ΒΙΟΚΛΙΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΤΗΡΙΩΝ. Εύη Τζανακάκη Αρχιτέκτων Μηχ. MSc ΒΙΟΚΛΙΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΤΗΡΙΩΝ Εύη Τζανακάκη Αρχιτέκτων Μηχ. MSc Αρχές ενεργειακού σχεδιασμού κτηρίων Αξιοποίηση των τοπικών περιβαλλοντικών πηγών και τους νόμους ανταλλαγής ενέργειας κατά τον αρχιτεκτονικό

Διαβάστε περισσότερα

Η/Μ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΑΠΟΧΕΤΕΥΣΗ

Η/Μ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΑΠΟΧΕΤΕΥΣΗ Η/Μ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΑΠΟΧΕΤΕΥΣΗ ΑΠΟΧΕΤΕΥΣΗ Ανάμικτη περισυλλογή Ένα δίκτυο για βρόχινα νερά και λύματα απλό και φθηνό διάμετροι μεγάλοι καθώς νερό βροχής μπορεί για μικρό διάστημα να είναι σε μεγάλες ποσότητες

Διαβάστε περισσότερα

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 0- Τομέας Ηλεκτρικής Ισχύος Αθήνα, 0 Μαρτίου 0 Καθηγητής Κ.Βουρνάς Παράδοση,,5: 8// Λέκτωρ Σ. Καβατζά 6,,4: /4/ Παραγωγή

Διαβάστε περισσότερα