Α Τάξη Γυµνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. ιδακτέα ύλη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Α Τάξη Γυµνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. ιδακτέα ύλη"

Transcript

1 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 580 Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΠΡΟΣ : Να διατηρηθεί µέχρι... Βαθµός Ασφαλείας... Μαρούσι Αριθ. Πρωτ 98600/Γ Βαθ. Προτερ.... /νσεις και Γραφεία /θµιας Εκπ/σης Γραφεία Σχολικών Συµβούλων Γυµνάσια (µέσω των /νσεων και των Γραφείων ΚΟΙΝ: Περιφερειακές /νσεις Εκπ/σης Παιδαγωγικό Ινστιτούτο ΘΕΜΑ : Οδηγίες για τη διδασκαλία των Θετικών Μαθηµάτων των Α, Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γυµνασίου για το σχ. έτος 0-0. Μετά από σχετική εισήγηση του Τµήµατος ευτεροβάθµιας Εκπαίδευσης του Παιδαγωγικού Ινστιτούτου (πράξη 09/0) σας αποστέλλουµε τις παρακάτω οδηγίες για τη διδασκαλία των Θετικών Μαθηµάτων της Α, Β και Γ τάξης Ηµερησίων και Εσπερινών Γυµνασίων. Α Τάξη Γυµνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. ιδακτέα ύλη Από το βιβλίο «Μαθηµατικά Α Γυµνασίου» των Ιωάννη Βανδουλάκη, Χαράλαµπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση Ο.Ε..Β. 0 ΜΕΡΟΣ Α Κεφ. ο : Οι φυσικοί αριθµοί. Πρόσθεση, αφαίρεση και πολλαπλασιασµός φυσικών αριθµών.3 υνάµεις φυσικών αριθµών.4 Ευκλείδεια διαίρεση ιαιρετότητα

2 .5 Χαρακτήρες διαιρετότητας Μ.Κ.. Ε.Κ.Π. Ανάλυση αριθµού σε γινόµενο πρώτων παραγόντων Κεφ. ο : Τα κλάσµατα. Η έννοια του κλάσµατος. Ισοδύναµα κλάσµατα.3 Σύγκριση κλασµάτων.4 Πρόσθεση και Αφαίρεση κλασµάτων.5 Πολλαπλασιασµός κλασµάτων.6 ιαίρεση κλασµάτων Κεφ. 3 ο : εκαδικοί αριθµοί 3. εκαδικά κλάσµατα, εκαδικοί αριθµοί, ιάταξη δεκαδικών αριθµών, Στρογγυλοποίηση 3.3 Υπολογισµοί µε τη βοήθεια υπολογιστή τσέπης Κεφ. 4 ο : Εξισώσεις και προβλήµατα 4. Η έννοια της εξίσωσης Οι εξισώσεις: α+ x = β, x α = β, α x = β, α x = β, α: x = β και x: α = β Κεφ. 5 ο : Ποσοστά 5. Ποσοστά 5. Προβλήµατα µε ποσοστά Κεφ. 6 ο : Ανάλογα ποσά Αντιστρόφως ανάλογα ποσά 6. Παράσταση σηµείων στο επίπεδο 6. Λόγος δύο αριθµών Αναλογία 6.3 Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 6.4 Γραφική παράσταση σχέσης αναλογίας 6.5 Προβλήµατα αναλογιών 6.6 Αντιστρόφως ανάλογα ποσά Κεφ. 7 ο : Θετικοί και Αρνητικοί Αριθµοί 7. Θετικοί και Αρνητικοί Αριθµοί (Ρητοί αριθµοί) Η ευθεία των ρητών Τετµηµένη σηµείου 7. Απόλυτη τιµή ρητού Αντίθετοι ρητοί Σύγκριση ρητών 7.3 Πρόσθεση ρητών αριθµών 7.4 Αφαίρεση ρητών αριθµών 7.5 Πολλαπλασιασµός ρητών αριθµών 7.6 ιαίρεση ρητών αριθµών 7.7 εκαδική µορφή ρητών αριθµών ΜΕΡΟΣ Β Κεφ. ο : Βασικές γεωµετρικές έννοιες. Σηµείο Ευθύγραµµο τµήµα Ευθεία Ηµιευθεία Επίπεδο Ηµιεπίπεδο. Γωνία Γραµµή Επίπεδα σχήµατα Ευθύγραµµα σχήµατα Ίσα σχήµατα.3 Μέτρηση, σύγκριση και ισότητα ευθυγράµµων τµηµάτων Απόσταση σηµείων Μέσο ευθυγράµµου τµήµατος.4 Πρόσθεση και αφαίρεση ευθυγράµµων τµηµάτων.5 Μέτρηση, σύγκριση και ισότητα γωνιών ιχοτόµος γωνίας.6 Είδη γωνιών Κάθετες ευθείες.7 Εφεξής και διαδοχικές γωνίες Άθροισµα γωνιών.8 Παραπληρωµατικές και Συµπληρωµατικές γωνίες Κατακορυφήν γωνίες.9 Θέσεις ευθειών στο επίπεδο.0 Απόσταση σηµείου από ευθεία Απόσταση παραλλήλων. Κύκλος και στοιχεία του κύκλου.3 Θέσεις ευθείας και κύκλου

3 Κεφ. ο : Συµµετρία. Συµµετρία ως προς άξονα. Άξονας συµµετρίας.3 Μεσοκάθετος ευθυγράµµου τµήµατος.4 Συµµετρία ως προς σηµείο.5 Κέντρο συµµετρίας.6 Παράλληλες ευθείες που τέµνονται από µία άλλη ευθεία Κεφ. 3 ο : Τρίγωνα Παραλληλόγραµµα Τραπέζια 3. Στοιχεία τριγώνου Άθροισµα γωνιών τριγώνου 3. Είδη τριγώνων Ιδιότητες ισοσκελούς τριγώνου 3.3 Παραλληλόγραµµο Ορθογώνιο Ρόµβος Τετράγωνο Τραπέζιο Ισοσκελές τραπέζιο 3.4 Ιδιότητες Παραλληλογράµµου Ορθογωνίου Ρόµβου Τετραγώνου Τραπεζίου Ισοσκελούς τραπεζίου ΜΕΡΟΣ Α ΙΙ. ιαχείριση ιδακτέας ύλης Κεφάλαια ο, ο, 3ο (Φυσικοί αριθµοί, Κλάσµατα, εκαδικοί) Στο ηµοτικό έχουν διδαχθεί τόσο οι έννοιες όσο και οι διαδικασίες που αναφέρονται στα κεφάλαια αυτά. Έτσι, η διδασκαλία στην Α Γυµνασίου πρέπει να έχει δύο στόχους: ο. Tην επανάληψη υπενθύµιση εννοιών και διαδικασιών και ο. Tην εµβάθυνση σε κάποιες πλευρές που κρίνονται σηµαντικές για την περαιτέρω ανάπτυξη των µαθηµατικών εννοιών. Πιο συγκεκριµένα πρέπει να έχει ως στόχους: Την αντιµετώπιση εµποδίων και δυσκολιών που συναντούν οι µαθητές (π.χ. το γινόµενο δύο αριθµών είναι πάντα µεγαλύτερο από τους παράγοντές του, οι δεκαδικοί αριθµοί είναι άλλο είδος αριθµών απ ότι τα κλάσµατα). Την ανάπτυξη των ικανοτήτων των µαθητών να χρησιµοποιούν αναπαραστάσεις και να µεταβαίνουν από το ένα είδος στο άλλο (π.χ. αναπαράσταση στην ευθεία των αριθµών, οι γεωµετρικές αναπαραστάσεις των κλασµάτων, οι δεκαδικοί και τα δεκαδικά κλάσµατα ως διαφορετικές αναπαραστάσεις των ίδιων αριθµών). Την εµβάθυνση σε ιδιότητες των πράξεων και αλγοριθµικών διαδικασιών που υποστηρίζουν τη µετάβαση από την αριθµητική στην άλγεβρα (π.χ. επιµεριστική και αντιµεταθετική ιδιότητα, η αφαίρεση ως αντίστροφη πράξη της πρόσθεσης κτλ.). Την εισαγωγή αλγεβρικών συµβόλων και τη νοηµατοδότηση τους µέσα από την ανάγκη διατύπωσης σχέσεων και ιδιοτήτων (π.χ. ιδιότητες πράξεων), από την ανάγκη περιγραφής προβληµάτων ή ποσοτήτων που είναι λεκτικά διατυπωµένες (π.χ. άσκηση της 4.), από την παραγωγή αλγεβρικών εκφράσεων που περιγράφουν γεωµετρικά ή αριθµητικά µοτίβα (π.χ. άσκηση 5 της 4., αλλά και γενίκευση του παραδείγµατος 3 της.). Με βάση τα παραπάνω, προτείνεται η µείωση των ωρών, που θα αφιερωθούν για διδασκαλία των τριών πρώτων κεφαλαίων, από 7 σε 8. Κεφάλαιο ο (Να διατεθούν 6 ώρες) Να δοθεί έµφαση στα παρακάτω: Αναπαράσταση των αριθµών στην ευθεία. Κατανόηση και χρήση της επιµεριστικής ιδιότητας (παρ. 3 και ασκήσεις 6, 7 της.). Υπολογισµοί δυνάµεων και κατανόηση των συµβολισµών (ασκήσεις, 3, 4, 5, 8, 9 της.3). Εφαρµογή της προτεραιότητας των πράξεων στον υπολογισµό αριθµητικών παραστάσεων (ασκήσεις 6, 7, και της.3). Ταυτότητα της ευκλείδειας διαίρεσης και χρήση των εννοιών «διαιρεί», «πολλαπλάσιο». Κριτήρια διαιρετότητας, ανάλυση ενός αριθµού σε γινόµενο πρώτων παραγόντων και εύρεση Ε.Κ.Π. και Μ.Κ.. Λεκτικά προβλήµατα που υπάρχουν στο σχολικό βιβλίο. 3

4 Κεφάλαιο ο (Να διατεθούν 8 ώρες) Να δοθεί έµφαση στα παρακάτω: Έννοια κλάσµατος και οι διαφορετικές πτυχές της όπως µέρος του όλου, πηλίκο και λόγος (οι εισαγωγικές δραστηριότητες της., ασκήσεις,, 3, σελ. 36, δραστηριότητα, σελ. 37 και προβλήµατα αναγωγής στη µονάδα). Ισοδύναµα κλάσµατα και µετατροπές τους Σύγκριση κλασµάτων µέσα από διαφορετικούς τρόπους (µετατροπή σε οµώνυµα, χρήση γεωµετρικών αναπαραστάσεων, χρήση προσεγγιστικών µεθόδων π.χ. σύγκριση µε τη µονάδα ή µε ένα τρίτο αριθµό) ιαδικασίες που συνδέονται εµµέσως µε την έννοια της πυκνότητας των ρητών (να επεκταθεί το παράδειγµα 4 στην.3 στην περίπτωση παρεµβολής περισσότερων του ενός κλασµάτων). Ανάγκη µετατροπής ετερώνυµων κλασµάτων σε οµώνυµα στην περίπτωση της πρόσθεσης και αφαίρεσης, χρησιµοποιώντας ασκήσεις πράξεων απλών κλασµάτων µε παρονοµαστές µέχρι το 0. Έννοια των πράξεων στα κλάσµατα και η εφαρµογή τους στην επίλυση προβληµάτων (π.χ. ότι η έκφραση «τα 5 του 3 3» αποδίδεται αριθµητικά µε τον πολλαπλασιασµό 8 5, ότι οι 8 αντίστροφοι αριθµοί είναι αυτοί που έχουν γινόµενο τη µονάδα, ότι το άθροισµα και η διαφορά κλασµάτων αναφέρεται στο ίδιο όλο, ότι τα σύνθετα κλάσµατα εκφράζουν τη διαίρεση κλασµάτων) Παραστάσεις και προτεραιότητα πράξεων ιαφορετικές αναπαραστάσεις κλασµάτων (ευθεία, γεωµετρικά σχήµατα) Κεφάλαιο 3 ο (Να διατεθούν 4 ώρες) Η παράγραφος 3. δεν συµπεριλαµβάνεται στη διδακτέα ύλη. Όµως, στην διδασκαλία της παραγράφου 3.3 να αναφερθεί ότι οι δυνάµεις των δεκαδικών ορίζονται µε τον ίδιο τρόπο και έχουν τις ίδιες ιδιότητες µε εκείνες των δυνάµεων των φυσικών αριθµών. Η παράγραφος 3.4 δεν συµπεριλαµβάνεται στη διδακτέα ύλη, αλλά θα συζητηθεί στην διδασκαλία της παραγράφου 7.0. Να δοθεί έµφαση στα παρακάτω: Ότι οι δεκαδικοί και τα δεκαδικά κλάσµατα είναι διαφορετικές αναπαραστάσεις των ίδιων αριθµών Στη διαδικασία σύγκρισης δεκαδικών αριθµών και την τοποθέτησή τους στην ευθεία των πραγµατικών αριθµών. Στον τρόπο µε τον οποίο εκφράζεται η προτεραιότητα των πράξεων στον υπολογισµό µιας παράστασης µε τον υπολογιστή τσέπης. Σχετικά µε τις δυνάµεις, να συζητηθεί το γεγονός ότι µεταξύ δύο δυνάµεων µε ίδια βάση, µεγαλύτερη του, µεγαλύτερη είναι η δύναµη που έχει το µεγαλύτερο εκθέτη (π.χ. 3,5 < (,5) < (, 5) ), ενώ συµβαίνει το αντίθετο, αν η βάση είναι µικρότερη του (π.χ. 3 0, > (0, ) > (0, ) ). Να γίνει χρήση του υπολογιστή τσέπης. Κεφάλαιο 4 ο (Να διατεθούν ώρες) Η έννοια της εξίσωσης και η εύρεση της λύσης µε την αντίθετη αντίστροφη πράξη έχει συζητηθεί στην ΣΤ ηµοτικού. Επιπλέον, η επίλυση των εξισώσεων πρώτου βαθµού θα αντιµετωπισθεί αναλυτικά στη Β Γυµνασίου. Ο ρόλος του κεφαλαίου αυτού στην Α Γυµνασίου είναι επαναληπτικός, καθόσον οι µαθητές θα χρησιµοποιήσουν απλές εξισώσεις στην αντιµετώπιση προβληµάτων σε επόµενα κεφάλαια. 4. (Να διατεθούν ώρες) Να µην διδαχθούν οι έννοιες της ταυτότητας και της αδύνατης εξίσωσης. Να µην ζητείται η αποµνηµόνευση των λύσεων (τελευταία παράγραφος του «µαθαίνουµε»). Να δοθεί έµφαση στη µετατροπή λεκτικών εκφράσεων σε µαθηµατικές (δραστηριότητες,, 3 και ασκήσεις,, 3), στην έννοια της λύσης εξίσωσης (δραστηριότητα 4 και ασκήσεις 7, 8) και στην επίλυση εξίσωσης µόνο µε τον ορισµό των πράξεων. Η άσκηση 5 µπορεί να συµβάλει στην προσπάθεια ανάπτυξης της αλγεβρικής σκέψης και γι' αυτό να δοθεί στους µαθητές ως δραστηριότητα στην τάξη. 4

5 Κεφάλαιο 5 ο (Να διατεθούν 3 ώρες) Η έννοια του ποσοστού και προβλήµατα µε ποσοστά έχουν διδαχθεί στο ηµοτικό. Το καινούριο που υπάρχει είναι το πλαίσιο των προβληµάτων (π.χ. προβλήµατα µε τόκους, Φ.Π.Α.). 5. (Να διατεθεί ώρα) Να δοθεί έµφαση στα ποσοστά ως διαφορετικής αναπαράστασης των δεκαδικών και των κλασµάτων, αλλά και να επισηµανθεί το γεγονός ότι δεν γράφονται όλα τα κλάσµατα µε ακρίβεια 3 στη µορφή ποσοστού (π.χ. ενώ 0, 75 75% 4 = =, είναι = 0,33... = 33,33...% ). Να δοθεί 3 προτεραιότητα σε ασκήσεις µετατροπής ποσοστών σε κλάσµατα και δεκαδικούς και αντίστροφα και σε απλά προβλήµατα. 5. (Να διατεθούν ώρες) Να γίνει διαπραγµάτευση µόνο απλών προβληµάτων τόκου, Φ.Π.Α. και προβληµάτων που αντιµετωπίζει ο καταναλωτής. Κεφάλαιο 6 ο (Να διατεθούν ώρες) Οι έννοιες των ανάλογων και αντιστρόφως ανάλογων ποσών έχουν διδαχθεί στο ηµοτικό. Το νέο για τους µαθητές στην Α Γυµνασίου είναι η εµπλοκή των µεταβλητών, η συµµεταβολή (χωρίς να γίνεται λόγος για συνάρτηση) και η παράσταση σε σύστηµα συντεταγµένων. 6. (Να διατεθεί ώρα) 6. (Να διατεθούν ώρες) 6.3 (Να διατεθούν ώρες) Να επισηµανθεί ότι η ταυτόχρονη αύξηση (ή µείωση) δύο ποσών δεν αρκεί για να είναι ανάλογα (π.χ. το βάρος των βρεφών και η ηλικία τους που περιγράφεται στη δραστηριότητα της σελ. 89, η πλευρά και το εµβαδόν τετραγώνου κ.ο.κ.). 6.4 (Να διατεθούν ώρες) Όσον αφορά στις συναρτήσεις, ένας από τους σηµαντικότερους στόχους είναι η ικανότητα µετάβασης από ένα είδος αναπαράστασης στο άλλο. Για το λόγο αυτό, είναι χρήσιµο να γίνει διαπραγµάτευση των ασκήσεων 3 και 4 στην τάξη. 6.5 (Να διατεθούν ώρες) Να τονιστεί ότι η αριθµητική και η γραφική επίλυση του προβλήµατος είναι ισοδύναµες και εξίσου χρήσιµες. 6.6 (Να διατεθούν ώρες) Κεφάλαιο 7 ο (Να διατεθούν 4 ώρες) Το περιεχόµενο του κεφαλαίου είναι εξολοκλήρου νέο για τους µαθητές, αν και υπάρχει άτυπη γνώση των αρνητικών αριθµών (θερµοκρασία κτλ.) που µπορεί να αξιοποιηθεί. 7. (Να διατεθούν ώρες) 7. (Να διατεθούν ώρες) Το γεγονός ότι ο αντίθετος του είναι ο ίσως είναι προφανές για τους µαθητές, αλλά δεν συµβαίνει το ίδιο για τον αντίθετο ενός αριθµού α. Στην κατεύθυνση αυτή ίσως είναι αποτελεσµατική η χρήση της ευθείας των αριθµών, όπου ο α µπορεί να τοποθετηθεί τόσο δεξιά από το 0 (αν α θετικός), όσο και αριστερά του (αν α αρνητικός). Έτσι, µπορεί να αναδειχθεί το γεγονός ότι στην έκφραση α το δηλώνει τον αντίθετο του α, αλλά όχι το πρόσηµο. 7.3 (Να διατεθούν ώρες) Για την εισαγωγή της πρόσθεσης θετικών και αρνητικών αριθµών, παράλληλα µε τη δραστηριότητα του βιβλίου του µαθητή µπορεί να γίνει χρήση και της µετατόπισης πάνω στον άξονα: στο άθροισµα δύο αριθµών, ο πρώτος προσθετέος δείχνει το σηµείο εκκίνησης πάνω στο άξονα, ενώ ο δεύτερος δείχνει τη µετακίνηση (το πρόσηµό του την κατεύθυνση και η απόλυτη τιµή του την απόσταση). 5

6 7.4 (Να διατεθούν ώρες) Μια πηγή δυσκολιών για τους µαθητές είναι η τριπλή σηµασία του συµβόλου : ως πρόσηµο (π.χ. στον αριθµό ), ως δηλωτικό του αντίθετου (π.χ. στο ( 3) ή στο α ) και ως σύµβολο της αφαίρεσης (π.χ. στο 3 8). Είναι λοιπόν χρήσιµο να γίνει συζήτηση στην τάξη µε στόχο την ανάπτυξη της ικανότητας χρήσης όλων αυτών των σηµασιών και την ευχέρεια στην µετάβαση από τη µία σηµασία στην άλλη. Επιπλέον, ίσως χρειάζεται να ξαναγίνει συζήτηση για την έννοια του αντίθετου (βλ. την 7.). Επειδή στην απαλοιφή των παρενθέσεων εµφανίζονται δυσκολίες, καλό είναι να δοθεί περισσότερος χρόνος για την κατανόησή της από τους µαθητές. Ένας τρόπος να αποδοθεί νόηµα στους κανόνες απαλοιφής παρενθέσεων είναι ο υπολογισµός µε δύο τρόπους των αποτελεσµάτων (άσκηση 8). Ένας ακόµη τρόπος (ο οποίος είναι ίσως περισσότερο αποδοτικός) είναι η χρήση της επιµεριστικής ιδιότητας. Αυτό σηµαίνει ότι η απαλοιφή παρενθέσεων δεν θα διδαχθεί σε αυτή την παράγραφο αλλά στην επόµενη (βλ. παρακάτω) 7.5 (Να διατεθούν 3 ώρες) Για την κατανόηση του πρόσηµου του γινοµένου δύο ρητών είναι καλό να χρησιµοποιηθεί η εισαγωγική δραστηριότητα του βιβλίου. Εδώ προτείνεται να διδαχθεί και η απαλοιφή παρενθέσεων, µε τη χρήση της επιµεριστικής ιδιότητας. Αυτό θα επιτρέψει την κατανόηση και αιτιολόγηση των κανόνων. Για παράδειγµα, η 5 µπορεί να σηµαίνει έκφραση ( ) = ( ) ( + ) + ( ) = ( ) ( + ) + ( ) ( ) = + + = + και αυτό µπορεί να γενικευθεί και σε παραστάσεις µε µεταβλητές, (π.χ. ( α β)... ( 5) 5 5 ( ) ( 5) 5 = ). Βέβαια, θα πρέπει να προηγηθεί µια συζήτηση για να εξηγηθεί ότι ο αντίθετος ενός αριθµού είναι το γινόµενό του µε το + =,, πράγµα που µπορεί να γίνει µέσω παραδειγµάτων, όπως ( ) ( ) ( ) ( 5) =+ 5 κ.ο.κ. 7.6 (Να διατεθούν ώρες) 7.7 (Να διατεθεί ώρα) 7.8, 7.9 και 7.0 (Θα διδαχθούν στη Β Γυµνασίου). ΜΕΡΟΣ Β Κεφάλαιο ο (Να διατεθούν 4 ώρες) Στην εισαγωγή γεωµετρικών εννοιών χρειάζεται να δοθεί έµφαση στο να µπορούν οι µαθητές να τις αναγνωρίζουν, να τις περιγράφουν (άτυπα ή τυπικά) και να τις αναπαριστάνουν.. (Να διατεθούν ώρες). (Να διατεθούν ώρες) Η έννοια της γωνίας είναι γνωστή στους µαθητές από το ηµοτικό αλλά δηµιουργεί αρκετές δυσκολίες. Ο τυπικός ορισµός της εισάγεται πρώτη φορά αλλά χρειάζεται ιδιαίτερη επεξεργασία από τους µαθητές, ώστε να µπορούν οι ίδιοι να τον κατανοήσουν και να τον περιγράψουν. Η δε αναγνώριση γωνιών µέσα σε σχήµατα είναι µια πιο απαιτητική γνωστική λειτουργία απ ότι η αναγνώριση µεµονωµένων γωνιών. Η δραστηριότητα προτείνεται να αντικατασταθεί µε µία απλούστερη..3 (Να διατεθούν ώρες) Η έννοια της µέτρησης, η σύγκριση τµηµάτων, οι διαφορετικοί τρόποι σύγκρισης (µε διαβήτη ή µε µέτρηση), η διαφοροποίηση ανάµεσα στο ευθύγραµµο τµήµα και στο µήκος του, η έννοια της µονάδας µέτρησης (άτυπη, τυποποιηµένη), η προσεγγιστική φύση της διαδικασίας της µέτρησης, η χρήση των οργάνων µέτρησης, ο τρόπος µεταβολής του αποτελέσµατος της µέτρησης όταν χρησιµοποιούµε πολλαπλάσια ή υποπολλαπλάσια µιας αρχικής µονάδας είναι απαραίτητα στοιχεία που πρέπει να κατανοηθούν από τους µαθητές..4 (Να διατεθούν ώρες) Προτείνεται να γίνεται επιλογή κάποιων ασκήσεων από τις 5, 6, 7, 9, 0 και, διότι έχουν παρεµφερές περιεχόµενο. Η άσκηση 8 είναι ιδιαίτερα δύσκολη καθώς απαιτεί παράλληλα ο µαθητής να κάνει συσχετίσεις, να σχεδιάζει, να πειραµατίζεται και να αναθεωρεί τις επιλογές του. Προτείνεται λοιπόν αν θα γίνει να αντιµετωπιστεί στην τάξη µέσα από συζήτηση. 6

7 .5 (Να διατεθούν ώρες) Οι µαθητές έχουν γνωρίσει τις άλλες έννοιες στο ηµοτικό, εκτός από την έννοια της διχοτόµου γωνίας, όµως αντιµετωπίζουν δυσκολίες σχετικά µ αυτές. Συγκεκριµένα συγχέουν ποιό ακριβώς είναι το γεωµετρικό αντικείµενο που µετριέται (η γωνία) µε άλλα και/ή τις µετρήσεις τους, όπως τα µήκη των τµηµάτων που είναι οι πλευρές της γωνίας, την επιφάνεια ανάµεσα στις ηµιευθείες κλπ. Επίσης ταυτίζουν το γεωµετρικό αντικείµενο (γωνία) µε την µέτρησή του (µέτρο της γωνίας). Προτείνεται η σύγκριση γωνιών να γίνεται και µε την χρήση διαφανούς χαρτιού (παραδείγµατα, και άσκηση 6) και όχι αποκλειστικά και µόνο µέσω του µέτρου τους µε την µέτρηση µε µοιρογνωµόνιο. Γενικά, διαφορετικά µέσα αναδεικνύουν διαφορετικές πτυχές των εννοιών που διαπραγµατευόµαστε. Για παράδειγµα, η εύρεση - κατασκευή της διχοτόµου µιας γωνίας (σελ. 67) µε δίπλωση του χαρτιού αναδεικνύει την ισότητα των γωνιών αλλά και την διχοτόµο ως άξονα συµµετρίας, ενώ η κατασκευή µε το µοιρογνωµόνιο αναδεικνύει την ισότητα των γωνιών µέσω του µέτρου τους..6 (Να διατεθούν ώρες) Το περιεχόµενο της ενότητας είναι γνωστό στους µαθητές από το ηµοτικό, εκτός από την µηδενική, την ευθεία, την µη κυρτή και την πλήρη γωνία. Παρόλα αυτά η έννοια της καθετότητας µπορεί να µην έχει κατακτηθεί από πολλούς µαθητές και µια από τις συνηθισµένες δυσκολίες που έχουν είναι η αναγνώριση της καθετότητας σε ευθείες που δεν έχουν τον συνήθη οριζόντιο και κατακόρυφο προσανατολισµό. Κάποιες από τις αιτίες αυτής της δυσκολίας είναι ο τρόπος προσανατολισµού των σχηµάτων στα σχολικά βιβλία (π.χ. ορθογώνια ή τετράγωνα µε πλευρές παράλληλες προς τις ακµές των σελίδων του βιβλίου), οι παραστάσεις που έχουν από το περιβάλλον γύρω τους (π.χ. οριζόντιος και κατακόρυφος προσανατολισµός των κουφωµάτων των σπιτιών, των παραθύρων κλπ), αλλά και από τον τρόπο προσανατολισµού των σχηµάτων στον πίνακα, κατά την διδασκαλία. Το φαινόµενο αυτό δεν περιορίζεται µόνον στην έννοια της καθετότητας αλλά επεκτείνεται και στην αναγνώριση σχηµάτων π.χ. δεν αναγνωρίζουν ως τρίγωνο κάποιο «µακρόστενο» στο οποίο µία πλευρά είναι πολύ µικρή σε σχέση µε τις άλλες. Θα πρέπει ο διδάσκων, λαµβάνοντας υπόψη τα προηγούµενα, να εµπλουτίζει την ποικιλία των σχηµάτων που χρησιµοποιεί κατά την διάρκεια της διδασκαλίας. Κατά την διδασκαλία του παραδείγµατος (σελ. 7) η διαπίστωση της καθετότητας να γίνει εκτός από την δίπλωση και µε την χρήση γνώµονα. Προτείνεται ο διδάσκων να κάνει κάποια επιλογή στις ασκήσεις, 3, 4, 5, 6, 7 λόγω παρεµφερούς περιεχοµένου..7 (Να διατεθούν ώρες) Οι έννοιες είναι νέες για τους µαθητές. Να αναφερθεί η έννοια της διαφοράς δύο γωνιών. Να δοθεί προτεραιότητα κατά σειρά στις ασκήσεις, 4 (περιπτώσεις 3 και ) και 3 και να εµπλουτισθούν οι ασκήσεις µε ερωτήµατα για τον προσδιορισµό της γωνίας που είναι το άθροισµα των ζευγαριών των εφεξής που βρίσκουν οι µαθητές, όπως και ερωτήµατα προσδιορισµού της διαφοράς δύο γωνιών..8 (Να διατεθούν ώρες) Οι έννοιες είναι νέες για τους µαθητές. Να µην διδαχθεί η εφαρµογή 5 της σελίδας 78. Στα παραδείγµατα και να διευκρινιστεί ότι δύο γωνίες µπορεί να είναι παραπληρωµατικές ή συµπληρωµατικές χωρίς να είναι εφεξής..9 (Να διατεθούν ώρες) Η έννοια της παραλληλίας είναι γνωστή στους µαθητές από το ηµοτικό. Προτείνεται να δοθεί ως άσκηση ο σχεδιασµός ενός παραλληλογράµµου (είναι γνωστή έννοια από το ηµοτικό) µε στοιχεία που θα καθορίσει ο διδάσκων..0 (Να διατεθούν ώρες) Προτείνεται ο διδάσκων να κάνει κάποια επιλογή στις ασκήσεις, 3, 4, 5, 6, 7 λόγω παρεµφερούς περιεχοµένου.. (Να διατεθούν ώρες) Λόγω εξαίρεσης από την διδακτέα ύλη της επόµενης παραγράφου οι εφαρµογές και 3 της. θα διδαχθούν σε αυτή την παράγραφο, µαζί µε την εφαρµογή της σελ. 89. Ο διδάσκων θα µπορούσε να ζητήσει οι κατασκευές να γίνουν σε ένα πρόγραµµα δυναµικής γεωµετρίας και µε κατάλληλες δραστηριότητες και ερωτήσεις οι µαθητές να διερευνήσουν π.χ. τις συνθήκες κατασκευής ενός τριγώνου, όταν δίνονται τρία ευθύγραµµα τµήµατα (εφαρµογή, σελ. 89, δραστηριότητα για το σπίτι, αριθ. )..3 (Να διατεθούν ώρες) Το περιεχόµενο της ενότητας είναι νέο για τους µαθητές. 7

8 Κεφάλαιο ο (Να διατεθούν ώρες) Γενικά για την διδασκαλία του κεφαλαίου ενδείκνυται η αξιοποίηση των νέων τεχνολογιών, παράλληλα µε τη χρήση άλλων µέσων (όπως το διαφανές χαρτί, τα γεωµετρικά όργανα κτλ.) µε σκοπό όχι µόνο την κατασκευή συµµετρικών σχηµάτων αλλά και την κατανόηση και την αξιοποίηση των ιδιοτήτων της συµµετρίας. Προτείνεται να προηγηθεί η διδασκαλία της. (άξονας συµµετρίας) και να ακολουθήσει η διδασκαλία της. (συµµετρία ως προς άξονα) µε σκοπό να προηγηθεί το διαισθητικό µέρος της αξονικής συµµετρίας και κατόπιν να ακολουθήσει το κατασκευαστικό και τα συµµετρικά σχήµατα. Να επισηµανθεί ότι η ταύτιση των δύο µερών του σχήµατος, όπως αυτό χωρίζεται από τον άξονα συµµετρίας και η δίπλωση του σχήµατος κατά το µήκος αυτού, σηµαίνει την ισότητα των δύο µερών και προτείνεται να δοθούν για ανακάλυψη και αιτιολόγηση οι ιδιότητες του ισοσκελούς τριγώνου (δεν θα αναφέρονται σε ύψος, διάµεσο και διχοτόµο του τριγώνου ως προς την βάση, αλλά θα συνάγουν ότι ο άξονας συµµετρίας διχοτοµεί την γωνία που είναι απέναντι από την βάση, τέµνει κάθετα την βάση κτλ.), του ισόπλευρου, του ορθογωνίου, του ρόµβου και του τετραγώνου (οι µαθητές τα σχεδιάζουν σε διαφανές χαρτί ή τους δίνονται έτοιµα τα σχήµατα και µε την χάραξη των αξόνων συµµετρίας και την δίπλωση των σχηµάτων κατά µήκος αυτών ανακαλύπτουν και δικαιολογούν τις ιδιότητες τους). Προτείνεται επίσης να προηγηθεί η διδασκαλία της.5 (κέντρο συµµετρίας) και να ακολουθήσει η διδασκαλία της.4 (συµµετρία ως προς σηµείο) µε σκοπό να προηγηθεί το διαισθητικό µέρος της κεντρικής συµµετρίας και κατόπιν να ακολουθήσει το κατασκευαστικό και τα συµµετρικά σχήµατα.. (Να διατεθούν ώρες). (Να διατεθούν ώρες).3 (Να διατεθούν ώρες) Προτείνεται να δοθεί προτεραιότητα στις εφαρµογές, και 5 και στις ασκήσεις, 3, 4, 5, 7 και 9..5 (Να διατεθούν ώρες).4 (Να διατεθούν ώρες) Προτείνεται να δοθεί για δραστηριότητα η ανακάλυψη και η αιτιολόγηση των ιδιοτήτων του παραλληλογράµµου, µε την σχεδίαση δύο ίσων παραλληλογράµµων σε δύο διαφορετικά φύλλα, που το ένα θα είναι διαφανές χαρτί..6 (Να διατεθούν ώρες) Κατά την διδασκαλία της ενότητας να διευκρινιστεί ότι δύο γωνίες ορίζονται ως εντός εναλλάξ, εντός και επί τα αυτά κτλ., ανεξάρτητα από το αν οι δύο ευθείες ε και ε (τεµνόµενες από µία τρίτη ευθεία), είναι παράλληλες µεταξύ τους ή όχι. Όµως, µόνο όταν οι ευθείες ε και ε είναι παράλληλες, οι παραπάνω γωνίες θα είναι αντιστοίχως ίσες, παραπληρωµατικές κτλ. Κεφάλαιο 3 ο (Να διατεθούν 8 ώρες) 3. (Να διατεθούν ώρες) Όπως αναφέρθηκε σε προηγούµενη παράγραφο, διαφορετικά µέσα αναδεικνύουν διαφορετικές πτυχές µιας έννοιας. Ταυτόχρονα, σε κάποιες περιπτώσεις αυτά απαιτούν και διαφορετικό βαθµό συνειδητοποίησης και κατανόησης κάποιων εννοιών, εκ µέρους των µαθητών. Τα προγράµµατα δυναµικής γεωµετρίας επιτρέπουν στο χρήστη να δηµιουργήσει µία κατασκευή µέσα από µία σειρά ενεργειών που ορίζονται γεωµετρικά (π.χ. κατασκευή ευθείας παράλληλης προς µία άλλη, από σηµείο εκτός αυτής). Όταν στο αποτέλεσµα αυτής της κατασκευής, επιλέξουµε κάποιο σηµείο και το σύρουµε, µε την βοήθεια του ποντικιού, το γεωµετρικό αντικείµενο µεταβάλλεται, ενώ όλες οι γεωµετρικές σχέσεις που χρησιµοποιήθηκαν κατά την κατασκευή διατηρούνται. Έτσι, η κατασκευή βασίζεται και συµπεριφέρεται µε βάση τις γεωµετρικές σχέσεις και τις ιδιότητες που απορρέουν απ αυτές. Αυτή η συµπεριφορά του σχήµατος δεν συµβαίνει όταν ο µαθητής έχει δηµιουργήσει ένα σχέδιο βασισµένο σε επιφανειακά χαρακτηριστικά. Για παράδειγµα η ανάθεση στους µαθητές να βρουν τρόπο (ή τρόπους) να σχεδιάσουν σε ένα πρόγραµµα δυναµικής γεωµετρίας, ένα ισοσκελές τρίγωνο το οποίο να µπορεί να µεταβάλλεται και να αντέχει στην δοκιµασία του συρσίµατος των κορυφών, απαιτεί εκ µέρους τους τη συνειδητοποίηση και την κατανόηση των γεωµετρικών ιδιοτήτων που θα πρέπει να χρησιµοποιήσουν έτσι ώστε το τρίγωνο να παραµένει ισοσκελές κάτω απ όλες τις περιστάσεις. Η σχεδίαση ενός ισοσκελούς τριγώνου, βασισµένη στις µετρήσεις των πλευρών, δεν «αντέχει» στην δοκιµασία του συρσίµατος, ενώ η Οι έννοιες του ισοσκελούς και του ισόπλευρου τριγώνου τους είναι γνωστές από το ηµοτικό, οµοίως του παραλληλογράµµου, του ορθογωνίου, του ρόµβου και του τετραγώνου. 8

9 κατασκευή ισοσκελούς που βασίζεται π.χ. στην ιδιότητα των σηµείων της µεσοκαθέτου «αντέχει». Ταυτόχρονα η δυναµική µεταβολή της κατασκευής, τους επιτρέπει να διερευνήσουν και να κατανοήσουν (µε κατάλληλες δραστηριότητες και ερωτήσεις) άλλες σχέσεις, όπως ότι τα ισόπλευρα τρίγωνα είναι και ισοσκελή, χωρίς όµως να ισχύει και το αντίστροφο. Προτείνεται να δοθούν ως δραστηριότητες για το σπίτι, οι κατασκευές σε ένα πρόγραµµα δυναµικής γεωµετρίας ισοσκελούς, ισόπλευρου και σκαληνού τριγώνου, όπως επίσης ορθογωνίου, αµβλυγωνίου και οξυγωνίου, που να «αντέχουν» στην διαδικασία συρσίµατος και µε συζήτηση στην τάξη, των προσεγγίσεων των µαθητών, µέσα από κατάλληλες ερωτήσεις, να αναδειχθούν πτυχές των υπό διαπραγµάτευση εννοιών ή να αποτελέσουν την βάση προβληµατισµού για την ανάπτυξη της επόµενης ενότητας. 3. (Να διατεθούν ώρες) Οι µαθητές γνωρίζουν από το ηµοτικό ότι το άθροισµα των γωνιών ενός τριγώνου είναι 80, ενώ τις ιδιότητες του ισοσκελούς και του ισοπλεύρου µπορεί να τις έχουν διαπραγµατευτεί σε προηγούµενες ενότητες, όπως έχει προταθεί. Προτείνεται να δοθεί προτεραιότητα στα παραδείγµατα εφαρµογές και στις ασκήσεις, 4, 5, 6, 7, 8 και 9. Η άσκηση 0 είναι πολύ δύσκολη γι αυτή την ηλικία και αν αντιµετωπιστεί να µη γίνει µε τη βοήθεια του αλγεβρικού λογισµού. 3.3 (Να διατεθούν ώρες) Προτείνεται να δοθούν κατάλληλες δραστηριότητες κατασκευής παραλληλογράµµου, ορθογωνίου κτλ. σε πρόγραµµα δυναµικής γεωµετρίας, µε βάση αυτά που αναφέρθηκαν στην (Να διατεθούν ώρες) Τα περιεχόµενο της ενότητας είναι νέο για τους µαθητές, εκτός αν διαπραγµατεύτηκαν µέρος του σε προηγούµενες ενότητες, όπως έχει προταθεί. Β Ι Ο Λ Ο Γ Ι Α ιδακτέα ύλη ιαχείριση ιδακτέας ύλης Με βάση το ισχύον Αναλυτικό Πρόγραµµα Σπουδών για τη Βιολογία της Α τάξης του Γυµνασίου, από τη διδακτέα ύλη, όπως αυτή παρουσιάζεται στο διδακτικό εγχειρίδιο (βιβλίο του µαθητή), προτείνεται να διδαχτούν τα κεφάλαια :. Η Οργάνωση της ζωής (Κεφ. ). Αναπαραγωγή (Κεφ. 6) 3. Στήριξη και Κίνηση (Κεφ. 5) 4. Η πρόσληψη ουσιών και η πέψη στον άνθρωπο (Κεφ..4) 5. Η µεταφορά και η αποβολή ουσιών στον άνθρωπο (Κεφ. 3.4) 6. Η αναπνοή στον άνθρωπο (Κεφ. 4.4) 7. Το νευρικό σύστηµα του ανθρώπου (Κεφ. 7.4) Η έµφαση που προτείνεται να δοθεί στις λειτουργίες της ζωής σε σχέση µε τον άνθρωπο, επιλέχθηκε µε δεδοµένο το ότι, λόγω των περιορισµένων ωρών διδασκαλίας της Βιολογίας γενικότερα στη ευτεροβάθµια Εκπαίδευση, οι µαθητές δεν έχουν άλλη ευκαιρία να µελετήσουν όλες τις λειτουργίες του ανθρώπινου οργανισµού, κάτι ιδιαίτερα σηµαντικό για τη ζωή τους. Η µελέτη της εξελικτικής υπόστασης των οργανισµών που προβλέπεται από το ισχύον Αναλυτικό Πρόγραµµα Σπουδών, µπορεί να προσεγγιστεί µε τη µελέτη κάθε λειτουργίας από τους µονοκύτταρους οργανισµούς έως τον άνθρωπο, είναι ενδιαφέρουσα αλλά σε αρκετές περιπτώσεις περιλαµβάνονται λεπτοµέρειες για τη δοµή των συστηµάτων που εξετάζονται στους διάφορους οργανισµούς οι οποίες ταλαιπωρούν τους µαθητές χωρίς να προσφέρουν στην ανάδειξη της εξελικτικής πορείας των οργανισµών. Απαραίτητη προϋπόθεση για αυτή την δραστηριότητα είναι οι µαθητές να είναι εξοικειωµένοι µε κάποιο πρόγραµµα δυναµικής γεωµετρίας και να µπορούν να δουλεύουν αυτόνοµα σ αυτό. 9

10 Ωστόσο, επειδή κρίνεται σηµαντικό να δοθεί στους µαθητές η ευκαιρία να προσεγγίσουν και την έννοια της εξέλιξης µέσα από τη µελέτη ορισµένων τουλάχιστον λειτουργιών της ζωής και των οργανικών συστηµάτων που τις εξυπηρετούν, προτείνεται να διατηρηθεί αυτή η δοµή στη µελέτη των λειτουργιών: (α) της «Αναπαραγωγής» (κεφ. 6), µε δεδοµένο το γεγονός ότι οι µαθητές δε θα έχουν την ευκαιρία να διδαχθούν κάτι σχετικό µε την αναπαραγωγή σε φυτά και ζώα και (β) της «Στήριξης Κίνησης» (κεφ. 5) γιατί περιλαµβάνονται θέµατα ενδιαφέροντα για τους µαθητές αυτής της ηλικίας και επιπλέον αναφέρονται χαρακτηριστικά της εξέλιξης του σκελετού των οργανισµών µέσα από τα οποία αναδεικνύεται η σχέση της δοµής των οργανισµών µε τις ανάγκες που το περιβάλλον τους δηµιουργεί, προκειµένου να επιβιώνουν σ αυτό. Κατά τη διδασκαλία των ενοτήτων αυτών θα πρέπει να δοθεί έµφαση σε οµοιότητες και διαφορές των διαφόρων οµάδων οργανισµών µε εξελικτική διάσταση. Η αναδιάταξη των κεφαλαίων µε πρόταξη αυτών που θα διδαχθούν µε την υπάρχουσα δοµή (µελέτη της συγκεκριµένης λειτουργίας από τους µονοκύτταρους οργανισµούς έως τον άνθρωπο) και η διάταξη των υπολοίπων έγινε µε τρόπο κατά τον οποίο να µην θίγεται η ανάδειξη της λειτουργικής σχέσης των επιµέρους συστηµάτων. Γ Ε Ω Λ Ο Γ Ι Α Γ Ε Ω Γ Ρ Α Φ Ι Α ιδακτέα ύλη ιαχείριση ιδακτέας ύλης ΜΑΘ. Α.. Γεωγραφικές συντεταγµένες εν θα διδαχθεί η δραστηριότητα Α.. από το Τετράδιο Εργασιών. Η δραστηριότητα αυτή δεν σχετίζεται µε το αντίστοιχο µάθηµα που αφορά στις γεωγραφικές συντεταγµένες. Είναι απλώς µια πρόταση για να κάνουν οι µαθητές µια έκθεση ζωγραφικής ή να συµµετάσχουν σε διαγωνισµό µε έργα τους καλλιτεχνικά. ΜΑΘ. Α.. Παιχνίδια µε τις γεωγραφικές συντεταγµένες εν θα διδαχθούν οι σελ. 5-6 (προβολές). Η έννοια της προβολής είναι από µόνη της δύσκολη, γίνεται ακόµα δυσκολότερη όταν οι εικόνες που πρέπει να οπτικοποιήσουν τις ιδιαιτερότητες κάθε προβολής είναι δυσανάγνωστες και δεν υπάρχει επεξηγηµατικό κείµενο. Η γνώση διαφορετικών προβολών είναι περισσότερο εγκυκλοπαιδική και δεν προσφέρει υλικό για παραπέρα µελέτη σε αυτές τις ηλικίες, ούτε συναντώνται άλλη φορά σε όλη την ύλη που αναπτύσσεται τόσο στην Α όσο και την Β Τάξη. εν θα διδαχθεί επίσης η δραστηριότητα Α. από το Τετράδιο Εργασιών. Ο χάρτης που υπάρχει και προτείνεται για µελέτη για αυτήν τη δραστηριότητα, είναι εξαιρετικά λεπτοµερής και δυσανάγνωστος. Μερικές ερωτήσεις είναι δύσκολο να απαντηθούν ακόµα και από ενηµερωµένους καθηγητές. Η ερµηνεία τους απαιτεί την ανάγνωση ισοϋψών γραµµών, δυσκολότατη ικανότητα, αν προηγούµενα κάποιος δεν έχει ασκηθεί σε απλές ασκήσειςπαραδείγµατα πάνω στις ισοϋψείς. Εδώ µια προσπάθεια προς αυτή την κατεύθυνση έπεται αντί να προηγείται. Θα µπορούσε να διδαχθεί αυτή η άσκηση µόνο µετά από µια διδασκαλία που απαιτεί αναδιάρθρωση της συγκεκριµένης ύλης του µαθήµατος αυτού. ΜΑΘ. Α.3. Η χρήση των χαρτών στην καθηµερινή ζωή εν θα διδαχθεί η σελ. 9 (Τα συστήµατα Γεωγραφικών Πληροφοριών) µε βάση την εγκύκλιο 900/Γ/ του ΥΠ ΒΜΘ. Επιπλέον δεν θα διδαχθεί από το Τετράδιο Εργασιών η δραστηριότητα Α. γιατί απαιτεί για την πραγµατοποίηση της τη χρήση GPS. ΜΑΘ. Α.4. Ποιόν χάρτη να διαλέξω; εν θα διδαχθεί το έγχρωµο ένθετο «συνταγές» για νεαρούς χαρτογράφους. Αυτό το κείµενο θα αποτελέσει οδηγό στο κεφάλαιο Γ.. και θα συνδυαστεί µε την προτεινόµενη από το Τετράδιο Εργασιών Γ.. δραστηριότητα. ΜΑΘ. Α.5. Ανακρίνοντας τους χάρτες 0

11 εν θα διδαχθεί το µάθηµα. Ωστόσο µπορεί να αποτελέσει οδηγό µελέτης στη Ενότητα: «Ήπειροι Στιγµιότυπα». ΜΑΘ. Β.. Ο πλανήτης Γη εν θα διδαχθεί γιατί παρόµοια ύλη έχει διδαχθεί στη ΣΤ ηµοτικού. ΜΑΘ. Β.. Ατµόσφαιρα-Σύνθεση της Ατµόσφαιρας, θερµοκρασία, άνεµοι εν θα διδαχθεί από το Τετράδιο Εργασιών η δραστηριότητα Β.. γιατί δε συνδέεται µε το θέµα του βιβλίου. ΜΑΘ. Β3.. Υδρόσφαιρα. Το νερό στη φύση εν θα διδαχθεί η σελίδα 50 (Μεγάλες λίµνες του κόσµου). Είναι ασύνδετο µε το υπόλοιπο µάθηµα. Η υδρόσφαιρα δεν περιορίζεται µόνο στις λίµνες, αυτές αποτελούν µόνο µία περίπτωση. Εξάλλου οι λίµνες µέσα στο βιβλίο µελετώνται µόνο ως προς την διάσταση του τρόπου δηµιουργίας τους, ενώ µεγαλύτερη σηµασία θα είχε να εξεταστεί ο σηµαντικός περιβαλλοντικός τους ρόλος και το πως επηρεάζουν τις ανθρώπινες δραστηριότητες, αλλά και η σύγκρισή τους µε τα ποτάµια, την άλλη µορφή της υδρόσφαιρας πάνω στην ξηρά. Το συγκεκριµένο κείµενο µπορεί να χρησιµοποιηθεί ως πληροφοριακό υλικό στην Ενότητα: «Ήπειροι Στιγµιότυπα». ΜΑΘ. Β3.. Ωκεανοί και θάλασσες: εν θα διδαχθεί η δραστηριότητα του Τετραδίου Εργασιών Β.3.. (Ωκεανοί και θάλασσες), γιατί ζητά από τους µαθητές να µετρήσουν αποστάσεις, µετατρέποντας τα ναυτικά µίλια σε χιλιόµετρα και την ταχύτητα από κόµβους σε µίλια ανά ώρα, οπότε τελικά αντί να είναι µια δηµιουργική γεωγραφική δραστηριότητα γίνεται µια άσκηση µετατροπής µονάδων, δεξιότητα που καλλιεργείται και στο µάθηµα της Φυσικής την επόµενη σχολική χρονιά. ΜΑΘ. Β3.3. Άνθρωποι και θάλασσα- Τα νησιωτικά κράτη εν θα διδαχθεί γιατί το πρώτο µέρος του µαθήµατος που αφορά στην κατανοµή των ανθρώπων έχει διδαχθεί στην ΣΤ τάξη και στο δεύτερο µέρος δεν τονίζονται τα χαρακτηριστικά της Ιαπωνίας ως νησιωτικό κράτος, που είναι ο κύριος στόχος του µαθήµατος. Επίσης δεν θα διδαχθεί από το Τετράδιο Εργασιών η δραστηριότητα Β.3.3. (Ταξίδι στις Μολούκες), γιατί οι ερωτήσεις που θέτει το µάθηµα δεν µπορούν να απαντηθούν χωρίς τον κατάλληλο χάρτη. Ο παγκόσµιος χάρτης στον οποίο αναφέρονται οι ερωτήσεις καταλαµβάνει µόλις το ¼ της σελίδας και έτσι οι πληροφορίες του µόνο µε µεγεθυντικό φακό θα µπορούσαν να διαβαστούν. εν υπάρχει στοιχειώδης πληροφόρηση ούτε στο κείµενο για την κατανοµή του πληθυσµού σε παραθαλάσσιες, εσωτερικές, ορεινές ή πεδινές περιοχές στις οποίες αναφέρεται, αλλά ούτε υπάρχουν πηγές στις οποίες η µελέτη τους θα επέτρεπε να παρατηρήσουµε την δεδοµένη κατάσταση, πολύ περισσότερο δεν υπάρχει αναφορά στους λόγους που εξηγούν αυτή την κατανοµή. Ο µαθητής δηλ. δεν έχει ούτε πηγές για µελέτη, ούτε και την πληροφόρηση για να αντιληφθεί το γεωγραφικό φαινόµενο της κατανοµής του πληθυσµού ανάλογα µε το ανάγλυφο, την γειτνίαση µε τη θάλασσα ή την απόστασή του από τον Ισηµερινό που παραλείπεται εντελώς. Θα µπορούσαν να δοθούν ως πηγές διαγράµµατα ποσοστών κατανοµής πληθυσµού σε σχέση µε το ανάγλυφο ή το γεωγραφικό πλάτος, ή την απόσταση από την θάλασσα που θα επέτρεπαν κάποια επεξεργασία και επιβεβαίωση των απαντήσεων των µαθητών. Επιπλέον, σε µία από τις ερωτήσεις για την Ιαπωνία γίνεται λόγος για την φυσιολογική πυκνότητα, έννοια που δεν είναι γνωστή ακόµα στους µαθητές, δεν αποτελεί στόχο στο µάθηµα και κυρίως προβλέπεται να διδαχθεί 0 µαθήµατα παρακάτω, (στο Γ. µάθηµα). Τα Μαθήµατα: Β3.5. Τα ποτάµια της Ασίας, Β3.6. Τα ποτάµια της Αµερικής, Β3.7 Τα ποτάµια της Αφρικής-Τα ποτάµια της Αυστραλίας δεν θα διδαχθούν. Πρόκειται για απλή περιγραφική γεωγραφία που περιορίζεται στην ονοµατολογία των ποταµών, απαιτεί µεγάλη αποµνηµόνευση ονοµάτων, δεν γενικεύει τη σηµασία των ποταµών για την ανθρώπινη ζωή, δεν συνδυάζεται µε τη γενικότερη µορφολογία του εδάφους ώστε να εξηγηθεί το µέγεθος ή το είδος της ροής τους. Το υλικό αυτό µπορεί να χρησιµοποιηθεί για την διδασκαλία της Ενότητας: «Ήπειροι Στιγµιότυπα», γιατί εκεί µπορεί να αποτελέσει υλικό για επεξεργασία και ανάλυση.

12 ΜΑΘ. Β4.. Λιθόσφαιρα Μιλώντας για την ηλικία της Γης: εν θα διδαχθεί γιατί έχει δύσκολες έννοιες. Βάσει επιστηµονικών ερευνών (Ault, 98, 984, Trent, 998, Dodick, Orion, 003, Libarkin et al., 005) έχουν προσδιοριστεί βασικά και κρίσιµα εµπόδια στην ανάπτυξη επιστηµονικής σκέψης των παιδιών σε θέµατα όπως: γεωλογικός χρόνος, πρότυπα µεγάλης κλίµακας στο περιβάλλον και τις αλλαγές που τις αντιπροσωπεύουν, τα πετρώµατα: δηµιουργία αυτών, κλίµακα και διάταξή τους σε στρώµατα, κ.α. Επιπλέον είναι ένα µάθηµα που δεν συνδέεται µε τα επόµενα µαθήµατα. ΚΑΤΑΝΟΜΗ ΩΡΩΝ Ι ΑΣΚΑΛΙΑΣ ΥΛΗ ΓΕΩΛΟΓΙΑΣ-ΓΕΩΓΡΑΦΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΕΝΟΤΗΤΕΣ ΚΕΦΑΛΑΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΒΙΒΛΙΟ Α.. Γεωγραφικές συντεταγµένες ΠΑΡΑΤΗΡΗΣ ΕΙΣ ΤΕΤΡΑ ΙΟ ΕΡΓΑΣΙΩΝ εν θα διδαχθεί η δραστηριότητα Α.. από το τετράδιο. ΠΡΟΤΕΙΝΟΜΕ ΝΕΣ ΩΡΕΣ Ι ΑΣΚΑΛΙΑΣ ΕΝΟΤΗΤΑ Α ΧΑΡΤΕΣ Α... Παιχνίδια µε τις γεωγραφικές συντεταγµένες Α.3. Η χρήση των χαρτών στην καθηµερινή ζωή εν θα διδαχθούν οι σελ. 5-6 (προβολές). ( σελ.) εν θα διδαχθεί η σελ. 9 (Τα συστήµατα Γεωγραφικών Πληροφοριών). ( σελ.) εν θα διδαχθεί η δραστηριότητα Α.. από το τετράδιο. εν θα διδαχθεί από το τετράδιο η δραστηριότητα Α.. Α.4.Ποιόν χάρτη διαλέξω; να εν διδάσκεται το έγχρωµο ένθετο «συνταγές» για νεαρούς χαρτογράφους σελ. - 3 ( σελ.) Αυτό το κείµενο θα αποτελέσει οδηγό στο κεφάλαιο Γ.. και θα συνδυαστεί µε την προτεινόµενη από το Τετράδιο Εργασιών Γ.. δραστηριότητα. Α.5. Ανακρίνοντας τους χάρτες εν θα διδαχθούν οι σελίδες 4-7 (4 σελ.) Ωστόσο µπορεί να ΟΧΙ

13 Β.. Ο πλανήτης Γη αποτελέσει οδηγό µελέτης στη Ενότητα: «Στιγµιότυπα» εν θα διδαχθεί γιατί παρόµοια ύλη έχει διδαχθεί στη ΣΤ ηµοτικού, σελίδες 3-35 (5 σελ.) ΟΧΙ Β.. Χωρίζοντας το περιβάλλον σε ενότητες Β.. Ατµόσφαιρα- Σύνθεση της Ατµόσφαιρας, θερµοκρασία, άνεµοι εν θα διδαχθεί από το τετράδιο η δραστηριότητα Β.. γιατί δεν συνδέεται µε το θέµα του βιβλίου. Β... βροχές, κλίµα Οι το ΕΝΟΤΗΤΑ Β Φυσικό περιβάλλον Β.3.. Υδρόσφαιρα. Το νερό στη φύση ε θα διδαχθεί η σελίδα 50. Οι µεγάλες λίµνες του κόσµου ( σελ.) Το συγκεκριµένο κείµενο µπορεί να χρησιµοποιηθεί ως πληροφοριακό υλικό στην Ενότητα: «Ήπειροι Στιγµιότυπα» Β3.. Ωκεανοί και θάλασσες εν θα διδαχθεί η δραστηριότητα Β.3.. (Ωκεανοί και θάλασσες). η ώρα γενικά η ώρα υφαλοκρηπίδα Β3.3. Άνθρωποι και θάλασσα- Τα νησιωτικά κράτη εν θα διδαχθεί γιατί και η κατανοµή των ανθρώπων έχει διδαχθεί στην ΣΤ τάξη και το υπόλοιπο περιεχόµενο δεν είναι απαραίτητο για τις επόµενες ενότητες του βιβλίου, σελίδες (4 σελ.) Επίσης δεν θα διδαχθεί από το τετράδιο εργασιών η δραστηριότητα Β.3.3. (Ταξίδι στις Μολούκες). ΟΧΙ Β3.4. ποτάµια κόσµου Τα του 3

14 Β3.5. Τα ποτάµια της Ασίας Β3.6. Τα ποτάµια της Αµερικής Β3.7. Τα ποτάµια της Αφρικής-Τα ποτάµια της Αυστραλίας Β4.. ΛΙΘΟΣΦΑΙΡΑ Μιλώντας για την ηλικία της Γης Β4.. Το εσωτερικό της Γης Β.4.3. υνάµεις που διαµορφώνουν την επιφάνεια της Γης: Ενδογενείς και εξωγενείς Β4.4. Μορφές του ανάγλυφου της Γης Τα κεφάλαια Β3.5., Β3.6., Β3.7. δεν θα διδαχθούν. Το υλικό αυτό µπορεί να χρησιµοποιηθεί για την διδασκαλία της Ενότητας: «Ήπειροι Στιγµιότυπα». Σελίδες (9 σελ.) εν θα διδαχθεί γιατί έχει δύσκολες έννοιες Σελίδες 70-7 ( σελ.) ΟΧΙ ΟΧΙ Να διατεθούν 3 ώρες ώστε να χρησιµοποιηθεί και το CD Γεωγραφίας. η ώρα: Α. υνάµεις στο εσωτερικό της Γης (ενδογενείς): Πως γεννιούνται οι σεισµοί; και Πως γεννιούνται τα βουνά και οι οροσειρές; η ώρα: Πως γεννιούνται οι µεγάλες νησιωτικές αλυσίδες; Πως γεννιούνται τα ηφαίστεια; Θερµές κηλίδες. 3 η ώρα: υνάµεις στην επιφάνεια της γης (εξωγενείς ) Β.5.. Να διατεθούν 3 4

15 ΒΙΟΣΦΑΙΡΑ Η γεωγραφική κατανοµή των οργανισµών ώρες για να γίνει από το τετράδιο εργασιών η δραστηριότητα Β5.. (Αποδίδοντας µε κόµικς τα οικοσυστήµατα ). η ώρα: Επεξεργασία του κειµένου του βιβλίου η ώρα: Επεξεργασία στην τάξη από το τετράδιο εργασιών των κειµένων µε τίτλο: «Ερωτήσεις που ζητούν απάντηση». 3 η ώρα: Παρουσίαση εργασιών των µαθητών που έχουν απαντήσει στα κείµενα µε τίτλο: «ικιά σου εργασία». ΕΝΟΤΗΤΑ Γ Ανθρωπογεν ές περιβάλλον Γ.. Ο πληθυσµός της Γης Γ.. Η κατανοµή των ανθρώπων στη Γη Γ.3. Παιχνίδια µε τις ηλικιακές πυραµίδες Γ.4. Οι µεγάλες πόλεις του πλανήτη Γ..5. Που είναι χτισµένες οι µεγάλες πόλεις του πλανήτη Να διατεθούν τρεις (3) διδακτικές ώρες η ώρα: σελ. 04 (δες 5

16 το µοντέλο µιας πόλης) η ώρα: σελ.0-03 (θέσεις πόλεων) 3 η ώρα: Προβλήµατα στις µεγάλες πόλεις. Γ.6. τόσο διαφορετικοί, τόσο ίδιοι Γ.. Φυσικοί πόροι Γ.. Ανθρώπινοι πόροι Γ.3. Προβλήµατα που ζητούν απαντήσεις.. Αφρική- Φυσικό Περιβάλλον και άνθρωποι * *βλ. παρατήρηση στο τέλος του πίνακα ΕΝΟΤΗΤΑ «Ήπειροι Στιγµιότυπα».. Ασία- Φυσικό Περιβάλλον και άνθρωποι.3. Βόρεια και Κεντρική Αµερική- Φυσικό Περιβάλλον και άνθρωποι.4. Νότια Αµερική- Φυσικό Περιβάλλον και άνθρωποι.5. Ωκεανία- Φυσικό Περιβάλλον και άνθρωποι.6. Ανταρκτική 6

17 .7. Ευρώπη ΣΥΝΟΛΟ 45 ώρες **Παρατήρηση: Η Ενότητα : «Ήπειροι Στιγµιότυπα» προτείνεται να διδαχθεί σε µορφή project. Οι µαθητές κάθε τάξης µπορούν να χωριστούν σε οµάδες που να αντιστοιχούν µία σε κάθε ήπειρο. Ενδεικτικό σενάριο φυσικού περιβάλλοντος: µε τη µατιά ενός εξερευνητή µια οµάδα µαθητών ερευνά το φυσικό περιβάλλον της Ν. Αµερικής ξεκινώντας από τις Άνδεις συνεχίζοντας στον Αµαζόνιο και φτάνοντας µέχρι τη Γη του Πυρός. Ενδεικτικό σενάριο ανθρωπογεωγραφίας: µε την οπτική γωνία ενός πρακτορείου ταξιδιών µια οµάδα µαθητών θα πρέπει να φτιάξει από τις διαφηµιστικές αφίσες µέχρι το κόστος και το πρόγραµµα επισκέψεων σε πόλεις της Ν. Αµερικής. Ανάλογα σενάρια θα µπορούσαν να γίνουν και για τις υπόλοιπες ηπείρους (βασικά για την Αφρική, Ασία, Βόρεια και Κεντρική Αµερική, Νότια Αµερική και Ωκεανία µιας και η Ανταρκτική δεν ενδείκνυται για τέτοιου είδους σενάρια και η Ευρώπη θα διδαχθεί αναλυτικά στην επόµενη τάξη). Η συγκρότηση των οµάδων των µαθητών και η εκπόνηση των projects θεωρείται σκόπιµο να γίνουν πολύ πριν από την έναρξη διδασκαλίας της Ενότητας, έτσι ώστε όταν φθάσουν σ αυτή οι µαθητές να είναι έτοιµοι να παρουσιάσουν τις εργασίες τους Παρατήρηση Στα Εσπερινά Γυµνάσια δε θα διδαχθεί η Ενότητα Γ : Ανθρωπογενές Περιβάλλον. Β Τάξη Γυµνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. ιδακτέα ύλη Από το βιβλίο «Μαθηµατικά Α Γυµνασίου» των Ιωάννη Βανδουλάκη, Χαράλαµπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση Ο.Ε..Β. 0. ΜΕΡΟΣ Α Κεφ. 7 ο : Θετικοί και Αρνητικοί Αριθµοί ( εν αποτελεί εξεταστέα ύλη) 7.8 υνάµεις ρητών αριθµών µε εκθέτη φυσικό 7.9 υνάµεις ρητών αριθµών µε εκθέτη ακέραιο 7.0 Τυποποιηµένη µορφή µεγάλων και µικρών αριθµών Από το βιβλίο «Μαθηµατικά Β Γυµνασίου» των Παναγιώτη Βλάµου, Παναγιώτη ρούτσα, Γεωργίου Πρέσβη, Κωνσταντίνου Ρεκούµη, έκδοση Ο.Ε..Β. 0 ΜΕΡΟΣ Α Κεφ. ο : ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ. Η έννοια της µεταβλητής Αλγεβρικές παραστάσεις. Εξισώσεις α' βαθµού.4 Επίλυση προβληµάτων µε τη χρήση εξισώσεων.5 Ανισώσεις α' βαθµού Κεφ. ο : ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Τετραγωνική ρίζα θετικού αριθµού. Άρρητοι αριθµοί Πραγµατικοί αριθµοί.3 Προβλήµατα 7

18 Κεφ. 3 ο : ΣΥΝΑΡΤΗΣΕΙΣ 3. Η έννοια της συνάρτησης 3. Καρτεσιανές συντεταγµένες Γραφική παράσταση συνάρτησης 3.3 Η συνάρτηση y = α x 3.4 Η συνάρτηση y = α x+ β ( χωρίς τις υποπαραγράφους: «Η εξίσωση της µορφής «α x+ β y = γ» και «Σηµεία τοµής της ευθείας α x+ β y = γ µε τους άξονες»). 3.5 α Η συνάρτηση y = Η υπερβολή x Κεφ. 4 ο : ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 4. Βασικές έννοιες της Στατιστικής: Πληθυσµός είγµα 4. Γραφικές Παραστάσεις 4.3 Κατανοµή συχνοτήτων και σχετικών συχνοτήτων 4.5 Μέση τιµή ιάµεσος (χωρίς την υποπαράγραφο: «Μέση τιµή οµαδοποιηµένης κατανοµής») ΜΕΡΟΣ Β Κεφ. ο : ΕΜΒΑ Α ΕΠΙΠΕ ΩΝ ΣΧΗΜΑΤΩΝ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Εµβαδόν επίπεδης επιφάνειας. Μονάδες µέτρησης επιφανειών.3 Εµβαδά επίπεδων σχηµάτων.4 Πυθαγόρειο θεώρηµα Κεφ. ο : ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΙΑΝΥΣΜΑΤΑ. Εφαπτοµένη οξείας γωνίας. Ηµίτονο και συνηµίτονο οξείας γωνίας.4 Οι τριγωνοµετρικοί αριθµοί των γωνιών 30, 45 και 60 Κεφ. 3 ο : ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 3. Εγγεγραµµένες γωνίες 3. Κανονικά πολύγωνα 3.3 Μήκος κύκλου 3.5 Εµβαδόν κυκλικού δίσκου Κεφ. 4 ο : ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ ΜΕΤΡΗΣΗ ΣΤΕΡΕΩΝ 4. Ευθείες και επίπεδα στο χώρο 4. Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου 4.3 Όγκος πρίσµατος και κυλίνδρου 4.4 Η πυραµίδα και τα στοιχεία της 4.6 Η σφαίρα και τα στοιχεία της ΜΕΡΟΣ Α ΙΙ. ιαχείριση ιδακτέας ύλης Κεφάλαιο 7 ο Α ΜΕΡΟΥΣ Μαθηµατικών Α Γυµνασίου (Να διατεθούν 9 ώρες) Επανάληψη βασικών εννοιών (αρνητικοί αριθµοί, απόλυτη τιµή, αντίθετος αριθµού) και διαδικασιών (πράξεις) από τις προηγούµενες παραγράφους (3 ώρες) 7.8 (Να διατεθούν 3 ώρες) 7.9 (Να διατεθούν ώρες) 8

19 7.0 (Να διατεθεί ώρα) Εδώ θα διδαχθεί για πρώτη φορά στο Γυµνάσιο και η τυποποιηµένη µορφή µεγάλων αριθµών. Κεφάλαιο ο (Να διατεθούν ώρες). (Να διατεθούν ώρες) Να δοθεί προτεραιότητα τόσο σε ασκήσεις αλγεβρικής έκφρασης ποσοτήτων που είναι λεκτικά διατυπωµένες και αντιστρόφως, όσο και στις αναγωγές οµοίων όρων απλοποιήσεις αλγεβρικών παραστάσεων µε χρήση της επιµεριστικής ιδιότητας.. (Να διατεθούν 3 ώρες) Στις εξισώσεις ο χωρισµός γνωστών από άγνωστους να µην γίνεται από την αρχή µε τον πρακτικό κανόνα «αλλάζω µέλος αλλάζω πρόσηµο», που µοιάζει µαγικός στο µαθητή και τον οδηγεί σε µηχανιστικούς και άνευ νοήµατος χειρισµούς, αλλά µε βάση τις ιδιότητες των πράξεων. Η ιδιότητα αυτή µπορεί να υποστηριχθεί µε το µοντέλο της ζυγαριάς στην περίπτωση των θετικών αριθµών. Εξάλλου, οι σύγχρονες απόψεις για τη διδασκαλία της άλγεβρας, δίνουν έµφαση στο νόηµα των αλγεβρικών εκφράσεων και στην δυνατότητα χειρισµού πολλαπλών αναπαραστάσεων, παράλληλα µε την ανάπτυξη αλγοριθµικών δεξιοτήτων. Η διδασκαλία των εξισώσεων θα πρέπει να ξεκινάει από προβλήµατα, τα οποία είναι δυσκολότερο να λυθούν µε πρακτική αριθµητική και να επιλύονται εξισώσεις που είναι µοντέλα τέτοιων προβληµάτων. Έτσι, δεν έχει νόηµα η διδασκαλία πολύπλοκων εξισώσεων που απαιτούν µεγάλη ευχέρεια στον αλγεβρικό λογισµό, όπως οι ασκήσεις 6, 7 και 9 (εξίσωση µε παράµετρο)..4 (Να διατεθούν 4 ώρες).5 (Να διατεθούν 3 ώρες) Ισχύουν αντίστοιχες παρατηρήσεις µε εκείνες που έγιναν στις εξισώσεις, αλλά στην περίπτωση αυτή χρειάζεται να δοθεί έµφαση στο ότι η λύση ανίσωσης, συνήθως, δεν είναι µια τιµή αλλά ένα σύνολο από τιµές. Επιπλέον, προτείνεται να µη συζητηθεί η άσκηση 7 (ανίσωση µε παράµετρο) και να γίνει επιλογή (από τον διδάσκοντα) των ασκήσεων µε ανισώσεις και συναλήθευση ανισώσεων. Κεφάλαιο ο (Να διατεθούν 8 ώρες) Το περιεχόµενο του κεφαλαίου είναι νέο για τους µαθητές και υπάρχουν πολλές πτυχές που είναι πηγή δυσκολιών (δεκαδική αναπαράσταση αρρήτων, έννοια πραγµατικών αριθµών, κ.ο.κ.).. (Να διατεθούν 3 ώρες) Η παράγραφος αυτή θα πρέπει να διδαχθεί αµέσως µετά τη διδασκαλία της.4 (Πυθαγόρειο θεώρηµα) της Γεωµετρίας.. (Να διατεθούν 3 ώρες) Προτείνεται να συζητηθούν στην τάξη θέµατα σχετικά µε βασικές ιδιότητες συνέχειας των πραγµατικών και της ευθείας, µε απλά ερωτήµατα όπως: Ποιος είναι ο µικρότερος θετικός πραγµατικός; Ποιος είναι ο επόµενος πραγµατικός του ; Μπορούµε πάντα να βρίσκουµε έναν ρητό/άρρητο ανάµεσα σε δύο άλλους;.3 (Να διατεθούν ώρες) Κεφάλαιο 3 ο (Να διατεθούν 3 ώρες) Παρά το ότι οι µαθητές έχουν διδαχθεί τα ανάλογα και τα αντιστρόφως ανάλογα ποσά, η έννοια της συνάρτησης, και οι πολλαπλές αναπαραστάσεις της (λεκτική διατύπωση, γραφική παράσταση, αλγεβρικός τύπος, πίνακας τιµών) δεν έχουν γίνει µέχρι τώρα αντικείµενο συστηµατικής διαπραγµάτευσης. 3. (Να διατεθούν ώρες) Η χρήση γράµµατος ως µεταβλητής και όχι µόνο ως άγνωστου σε µια εξίσωση είναι κάτι που δεν έχει γίνει επαρκώς αντικείµενο συζήτησης µέχρι τώρα. Για το σκοπό αυτό είναι χρήσιµη τόσο η δηµιουργία αλγεβρικών τύπων συναρτήσεων από λεκτικές διατυπώσεις ποσοτήτων, όσο και η συµπλήρωση τιµών σε πίνακα (µε αντικατάσταση αριθµητικών τιµών στον τύπο). 3. (Να διατεθούν 3 ώρες) Να δοθούν ασκήσεις και προβλήµατα µε γραφικές παραστάσεις τις οποίες θα πρέπει οι µαθητές να "διαβάσουν" για να βρουν ποιες τιµές του y αντιστοιχούν σε δεδοµένες τιµές του x και αντιστρόφως. Τέτοιες είναι η ερώτηση 5, η καµπύλη θερµοκρασίας ενός τόπου ( 4.5 του νέου σχολικού βιβλίου της Α Λυκείου) και άλλες που µπορούν να αναζητηθούν στο διαδίκτυο. 9

20 Να µη διδαχθούν οι εφαρµογές (συµµετρικό σηµείου) και 3 (τύπος απόστασης σηµείων), οι ερωτήσεις κατανόησης 3, 4 και οι ασκήσεις 3, 5 και 6. Στις ασκήσεις 4 και 7 µπορεί να χρησιµοποιηθεί το Πυθαγόρειο Θεώρηµα και όχι ο τύπος απόστασης σηµείων. Αντίθετα, να δοθεί έµφαση στην εφαρµογή 4 και στις ασκήσεις 8, 9 και (Να διατεθούν 3 ώρες) Το σχόλιο της. του Β Μέρους (σελ. 37) να αναφερθεί στη διδασκαλία της παραγράφου αυτής. 3.4 (Να διατεθούν 3 ώρες) Να µη διδαχθούν οι υποπαράγραφοι «η εξίσωση αx+ βy = γ» και «σηµεία τοµής της ευθείας αx+ βy = γ µε τους άξονες» και οι αντίστοιχες ερωτήσεις κατανόησης και ασκήσεις. Να δοθεί έµφαση σε προβλήµατα που µοντελοποιούνται µε γραµµικές συναρτήσεις και σε ερωτήµατα που οδηγούν σε εξίσωση και ανίσωση και µπορούν να λυθούν µέσω αναπαραστάσεων της συνάρτησης (δηλαδή είτε µε πίνακα τιµών, είτε µε γραφική ή γραφικές παραστάσεις, είτε µε τους τύπους που οδηγούν σε εξίσωση ή ανίσωση). Τέτοια προβλήµατα είναι οι ασκήσεις 8, 9 σελ. 7, οι 5, 9, 0 σελ. 78, και οι 4, 5 σελ 8 (υπερβολή), αφού συµπληρωθούν µε κατάλληλα ερωτήµατα από τον διδάσκοντα. 3.5 (Να διατεθούν ώρες) Κεφάλαιο 4 ο (Να διατεθούν 8 ώρες) Οι µαθητές έχουν, ήδη, επεξεργαστεί στο ηµοτικό σχολείο δεδοµένα (ταξινόµηση, αναπαράσταση δεδοµένων και υπολογισµό του µέσου όρου). Το νέο στο κεφάλαιο αυτό είναι οι έννοιες του πληθυσµού, του δείγµατος και της διαµέσου καθώς και η κατανοµή σχετικών συχνοτήτων. Στο κεφάλαιο αυτό θα µπορούσαν οι ίδιοι οι µαθητές να εµπλακούν στη συλλογή και επεξεργασία δεδοµένων καθώς και στην ερµηνεία γραφικών παραστάσεων αναφορικά µε θέµατα που ενδιαφέρουν τους ίδιους. 4. (Να διατεθούν ώρες) 4. (Να διατεθούν ώρες) 4.3 (Να διατεθούν ώρες) 4.5 (Να διατεθούν ώρες) Να µη διδαχθεί η υποπαράγραφος «µέση τιµή οµαδοποιηµένης κατανοµής» και οι ασκήσεις 6, 7 και 8. ΜΕΡΟΣ Β Κεφάλαιο ο (Να διατεθούν 4 ώρες). (Να διατεθούν 3 ώρες) Η συγκεκριµένη ενότητα έχει µεγάλη σηµασία για την ανάπτυξη των εννοιών που ακολουθούν στις επόµενες παραγράφους. Απαραίτητα στοιχεία που πρέπει να κατανοηθούν από τους µαθητές πριν περάσουν αργότερα στους τύπους υπολογισµού των εµβαδών γεωµετρικών σχηµάτων καθώς και στις µετατροπές µονάδων είναι τα εξής: Η σύγκριση επιφανειών (πολυγωνικών και µη) µέσα από διαφορετικές διαδικασίες (επικάλυψη, διαίρεση, σύνθεση κ.λ.π.) Η έννοια της διατήρησης της επιφάνειας. Η διαφοροποίηση ανάµεσα στο γεωµετρικό µέγεθος (επιφάνεια) και στη µέτρησή του (εµβαδόν). Η έννοια της µονάδας µέτρησης (άτυπη ή τυποποιηµένη), η επιλογή της κατάλληλης µονάδας, η χρήση της για την επικάλυψη µιας επιφάνειας και η σύµβαση της χρήσης της τετραγωνικής µονάδας. Η διάκριση ανάµεσα στη µέτρηση της επιφάνειας (εµβαδόν) από τις µετρήσεις άλλων µεγεθών (π.χ. τµήµατα και τα µήκη τους ή η περίµετρος και το µήκος της) Η προσεγγιστική φύση της διαδικασίας της µέτρησης. Ο τρόπος µεταβολής του εµβαδού όταν χρησιµοποιούµε πολλαπλάσια ή υποπολλαπλάσια µιας αρχικής µονάδας. 0

Γ Ε Ω Λ Ο Γ Ι Α Γ Ε Ω Γ Ρ Α Φ Ι Α Γεωλογία- Γεωγραφία Α Τάξης Ημερησίου και Εσπερινού Γυμνασίου

Γ Ε Ω Λ Ο Γ Ι Α Γ Ε Ω Γ Ρ Α Φ Ι Α Γεωλογία- Γεωγραφία Α Τάξης Ημερησίου και Εσπερινού Γυμνασίου Γ Ε Ω Λ Ο Γ Ι Α Γ Ε Ω Γ Ρ Α Φ Ι Α Γεωλογία- Γεωγραφία Α Τάξης Ημερησίου και Εσπερινού Γυμνασίου Διδακτέα ύλη Διαχείριση Διδακτέας ύλης ΜΑΘ. Α.. Γεωγραφικές συντεταγμένες Δεν θα διδαχθεί η δραστηριότητα

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Θετικών Μαθηµάτων των Α, Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γυµνασίου για το σχ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Θετικών Μαθηµάτων των Α, Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γυµνασίου για το σχ. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα:

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011.

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί µέχρι... Βαθµός Ασφαλείας...

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 2015-2016 1 ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

210-344 3306 E-mail: t09tee07@minedu.gov.gr

210-344 3306 E-mail: t09tee07@minedu.gov.gr ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β' Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ.-Πόλη: 15180 Μαρούσι ΠΡΟΣ:

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ ----- Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Παρουσίαση του νέου βιβλίου «Γεωλογία Γεωγραφία» για την Α Γυμνασίου Γκαραγκούνη Αναστασία

Παρουσίαση του νέου βιβλίου «Γεωλογία Γεωγραφία» για την Α Γυμνασίου Γκαραγκούνη Αναστασία Παρουσίαση του νέου βιβλίου «Γεωλογία Γεωγραφία» για την Α Γυμνασίου Γκαραγκούνη Αναστασία Ομάδα εργασίας: Δημητρίου Δώρα, Μυρωνάκη Άννα, Γκαραγκούνη Αναστασία Δομή της Παρουσίασης Ενδεικτικός Προγραμματισμός

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β --- ΠΡΟΣ: Ταχ. /νση: Ανδρέα

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β Μαρούσι, 6-11-01 Αρ.

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14 Βαθμός Ασφαλείας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Δείκτες Επιτυχίας Α3.2 Κατανοούν την έννοια της μεταβλητής, ερμηνεύουν και επεξηγούν σχέσεις μεταξύ μεταβλητών.

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων 9 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Β -- ΓΕΩΜΕΤΡΙΙΑ Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων Β. 1. 1 44. Τι ονομάζεται εμβαδόν μιας επίπεδης επιφάνειας και από τι εξαρτάται; Ονομάζεται εμβαδόν

Διαβάστε περισσότερα

ΦΟΡΜΑ 2: Συνοπτικό σχέδιο σχετικά με την υλοποίηση της πρακτικής άσκησης/εφαρμογής στην τάξη

ΦΟΡΜΑ 2: Συνοπτικό σχέδιο σχετικά με την υλοποίηση της πρακτικής άσκησης/εφαρμογής στην τάξη ΦΟΡΜΑ 2: Συνοπτικό σχέδιο σχετικά με την υλοποίηση της πρακτικής άσκησης/εφαρμογής στην τάξη Συμπλήρωση (Ομάδα Επιμορφωτών): ΧΡΥΣΑΦΕΝΙΑ ΜΑΝΩΛΟΠΟΥΛΟΥ Κατάθεση/Υποβολή: ΑΛΕΞΑΝΔΡΟΣ ΚΟΝΤΟΥΛΗΣ Α. ΣΤΟΙΧΕΙΑ ΠΡΟΓΡΑΜΜΑΤΟΣ

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1).

. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1). . Ερωτήσεις διάταξης. Οι συναρτήσεις f (x) = x, g (x) = x, h (x) = x, φ (x) = 3x, ρ (x) = 5x, t (x) = 7x έχουν κοινό πεδίο ορισµού το Α = [- 3, 3]. Να γράψετε τις συναρτήσεις σε µια σειρά έτσι ώστε η γραφική

Διαβάστε περισσότερα