Εισαγωγή στους αλγορίθµους

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στους αλγορίθµους"

Transcript

1

2 Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Εισαγωγή στους αλγορίθµους Απόδοση στα ελληνικά: Ιωάννης Παπαδόγγονας Επιστηµονική επιµέλεια: Γεώργιος Φρ. Γεωργακόπουλος (Κεϕ. 1-26) Μετη συνεργασία των: Σταύρου Νικολόπουλου Λεωνίδα Παληού Βιβής Φραγκοπούλου Ιωάννης Παπαδόγγονας (Κεϕ ) ÓÂappleÈÛÙËÌÈ ÎÂÛ Î ÔÛÂÈÛ ÚËÙËÛ Ιδρυτική ωρεά Παγκρητικής Ενώσεως Αµερικής ΗΡΑΚΛΕΙΟ 2012

3 π ªπ π ƒ Ι ΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΡΕΥΝΑΣ Αθήνα: Κλεισόβης 3, , Αθήνα. Τηλ , Fax: Ηράκλειο: Νικ. Πλαστήρα 100, Βασιλικά Βουτών , Ηράκλειο Κρήτης. Τηλ , Fax: ΣΕΙΡΑ: ΠΑΝΕΠΙΣΤΗΜΙΑΚΗ ΒΙΒΛΙΟΘΗΚΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ / ΕΠΙΣΤΗΜΗ ΥΠΟΛΟΓΙΣΤΩΝ È ı ÓÙÂÛ ÂÈÚ Û: ˆÚÁÈÔÛ ºÚ. ˆÚÁ ÎÔappleÔ ÏÔÛ, πˆ ÓÓËÛ apple ÔÁÁÔÓ Û Τίτλος πρωτοτύπου: Introduction to Algorithms, 2nd edition c 1990, 2001: The Massachusetts Institute of Technology - MIT Press c για την ελληνική γλώσσα: 2003, Πανεπιστηµιακές Εκδόσεις Κρήτης Πρώτη έκδοση: εκέµβριος 2006 Πρώτη έκδοση σε ενιαίο τόµο: Σεπτέµβριος 2012 Απόδοση στα ελληνικά: Ιωάννης Παπαδόγγονας (ΠΕΚ) Επιστηµονική επιµέλεια: Γεώργιος Φρ. Γεωργακόπουλος (Κεϕ. 1-26) Μετη συνεργασία των: Σταύρου Νικολόπουλου Λεωνίδα Παληού Βιβής Φραγκοπούλου Ιωάννης Παπαδόγγονας (Κεϕ ) Τελική ανάγνωση (Κεϕ ): Γεώργιος Φρ. Γεωργακόπουλος Στοιχειοθεσία, σελιδοποίηση, επιµέλεια έκδοσης: Ιωάννης Παπαδόγγονας (ΠΕΚ) Μακέτα εξωϕύλλου: Βάσω Αβραµοπούλου ISBN

4 Περιεχόµενα Πρόλογος xiii I Θεµελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθµων στις υπολογιστικές διαδικασίες Αλγόριθµοι Οι αλγόριθµοι ως τεχνολογία 10 2 Προκαταρκτικές έννοιες και παρατηρήσεις Ενθετική ταξινόµηση Ανάλυση αλγορίθµων Σχεδίαση αλγορίθµων 28 3 Ρυθµός αύξησης συναρτήσεων Ασυµπτωτικός συµβολισµός Καθιερωµένοι συµβολισµοί και συνήθεις συναρτήσεις 52 4 Αναδροµικές σχέσεις Η µέθοδος της αντικατάστασης Η µέθοδος του δένδρου αναδροµής Η κεντρική µέθοδος Απόδειξη του κεντρικού θεωρήµατος 75 5 Πιθανοτική ανάλυση και τυχαιοκρατικοί αλγόριθµοι Το πρόβληµα της πρόσληψης είκτριες τυχαίες µεταβλητές Τυχαιοκρατικοί αλγόριθµοι Πιθανοτική ανάλυση και άλλες χρήσεις των δεικτριών τυχαίων µεταβλητών 104

5 vi Περιεχόµενα II Ταξινόµηση και διατακτικές στατιστικές Εισαγωγή Ταξινόµηση σωρού Σωροί ιατήρηση της ιδιότητας σωρού Κατασκευή σωρού Ο αλγόριθµος της ταξινόµησης σωρού Ουρές προτεραιότητας Ταχυταξ ινόµηση Περιγραϕή της ταχυταξινόµησης Επίδοση της ταχυταξινόµησης Μια τυχαιοκρατική εκδοχή της ταχυταξινόµησης Ανάλυση της ταχυταξινόµησης Ταξινόµηση σε γραµµικό χρόνο Κάτω ϕράγµατα για αλγορίθµους ταξινόµησης Απαριθµητική ταξινόµηση Αριθµοτακτική ταξινόµηση Ταξινόµηση µεδοχεία ιάµεσοι και διατακτικές στατιστικές Ελάχιστο και µέγιστο Επιλογή σε γραµµικό αναµενόµενο χρόνο Επιλογή σε γραµµικό χρόνο χειρότερης περίπτωσης 186 III οµές δεδοµένων Εισαγωγή Στοιχειώδεις δοµές δεδοµένων Στοίβες και ουρές Αλυσίδες Υλοποίηση δεικτών και αντικειµένων Αναπαράσταση έρριζων δένδρων Πίνακες διασποράς Πίνακες σταθερών διευθύνσεων Πίνακες διασποράς Συναρτήσεις διασποράς Η µέθοδος των µεταβλητών διευθύνσεων Πλήρης διασπορά υαδικά δένδρα αναζήτησης Τι είναι ένα δυαδικό δένδρο αναζήτησης; Άντληση πληροϕοριών από δυαδικό δένδρο αναζήτησης Εισαγωγή και διαγραϕή Τυχαία κατασκευασµένα δυαδικά δέντρα αναζήτησης 264

6 Περιεχόµενα vii 13 Μελανέρυθρα δένδρα Ιδιότητες των µελανέρυθρων δένδρων Περιστροϕές Εισαγωγή ιαγραϕή Επαύξηση δοµών δεδοµένων υναµικές διατακτικές στατιστικές Ηεπαύξησηδοµώνδεδοµένωνστηνπράξη ένδρα διαστηµάτων 311 IV Ανώτερες τεχνικές σχεδίασης και ανάλυσης Εισαγωγή υναµικός προγραµµατισµός Χρονοπρογραµµατισµός γραµµής παραγωγής Πολλαπλασιασµός αλληλουχίας πινάκων Στοιχεία δυναµικού προγραµµατισµού Μέγιστη κοινή υπακολουθία Βέλτιστα (στατικά) δυαδικά δένδρα αναζήτησης Άπληστοι αλγόριθµοι Ένα πρόβληµα επιλογής δραστηριοτήτων Στοιχεία της άπληστης στρατηγικής Κώδικες Huffman Θεωρητική θεµελίωση της άπληστης µεθοδολογίας Ένα πρόβληµα χρονοπρογραµµατισµού εργασιών Αντισταθµιστική ανάλυση Η αθροιστική µέθοδος Η χρεωπιστωτική µέθοδος Η ενεργειακή µέθοδος υναµικοί πίνακες 420 V οµές δεδοµένων προηγµένης σχεδίασης Εισαγωγή ένδρα Β Ορισµός των δένδρων Β Βασικές πράξεις σε δένδρα Β ιαγραϕή κλειδιού από δένδρο Β ιωνυµικοί σωροί ιωνυµικά δένδρα και διωνυµικοί σωροί Πράξεις σε διωνυµικούς σωρούς 465

7 viii Περιεχόµενα 20 Σωροί Fibonacci οµή των σωρών Fibonacci Πράξεις συγχωνεύσιµου σωρού Μείωση κλειδιού και διαγραϕή κόµβου Φραγή του µέγιστου βαθµού οµές δεδοµένων για παράσταση ξένων συνόλων Πράξεις ξένων συνόλων Αναπαράσταση ξένων συνόλων µέσω αλυσίδων άση ξένων συνόλων Ανάλυση της ένωσης κατά τάξη µεσυµπίεση κλάδου 512 VI Αλγόριθµοι γραϕηµάτων Εισαγωγή Στοιχειώδεις αλγόριθµοι γραϕηµάτων Αναπαραστάσεις γραϕηµάτων Οριζόντια διερεύνηση Καθοδική διερεύνηση Τοπολογική ταξινόµηση Ισχυρά συνδεδεµένες συνιστώσες Ελαϕρύτατα συνδετικά δένδρα Επέκταση ελαϕρύτατου συνδετικού δένδρου Οι αλγόριθµοι των Kruskal και Prim Οµοαϕετηριακές ελαϕρύτατες διαδροµές Ο αλγόριθµος των Bellman-Ford Οµοαϕετηριακές ελαϕρύτατες διαδροµές σε κατευθυντά άκυκλα γραϕήµατα Αλγόριθµος του Dijkstra Περιορισµοί διαϕοράς και ελαϕρύτατες διαδροµές Αποδείξεις των ιδιοτήτων ελαϕρύτατων διαδροµών Πανζευκτικές ελαϕρύτατες διαδροµές Ελαϕρύτατες διαδροµές και πολλαπλασιασµός πινάκων Ο αλγόριθµος των Floyd-Warshall Αλγόριθµος του Johnson για αραιά γραϕήµατα Μέγιστη ροή ίκτυα ροής Η µέθοδος των Ford-Fulkerson Μέγιστη διµερής αντιστοίχιση Αλγόριθµοι διοχέτευσης-αναβάθµισης Ο αλγόριθµος της προτακτικής αναβάθµισης 684

8 Περιεχόµενα ix VII Επιλεγµένα θέµατα Εισαγωγή Ταξινοµητικά δίκτυα Συγκριτικά δίκτυα Η αρχή µηδέν-ένα Ένα διτονικό ταξινοµητικό δίκτυο Ένα συγχωνευτικό δίκτυο Ένα ταξινοµητικό δίκτυο Πράξειςσεπίνακες Ιδιότητες πινάκων Ο αλγόριθµος του Strassen για πολλαπλασιασµό πινάκων Επίλυση συστηµάτων γραµµικών εξισώσεων Αντιστροϕή πινάκων Συµµετρικοί θετικά ορισµένοι πίνακες και προσέγγιση ελαχίστων τετραγώνων Γραµµικός προγραµµατισµός Τυπική και αποκλιτική µορϕή ιατύπωση προβληµάτων µετη µορϕή γραµµικών προγραµµάτων Ο πολυτοπικός αλγόριθµος υϊκότητα Η αρχική βασική εϕικτή λύση Πολυώνυµα και FFT Αναπαράσταση πολυωνύµων Οι µετασχηµατισµοί DFT και FFT ραστικές υλοποιήσεις FFT Αριθµοθεωρητικοί αλγόριθµοι Στοιχειώδεις έννοιες της θεωρίας αριθµών Μέγιστος κοινός διαιρέτης Υπολοιπική αριθµητική Επίλυση υπολοιπικών γραµµικών εξισώσεων Το κινεζικό θεώρηµα του υπολοίπου υνάµεις ενός στοιχείου Το κρυπτοσύστηµα δηµόσιου κλειδιού RSA Έλεγχος πρώτευσης Ακέραιη παραγοντοποίηση Ταύτιση συµβολοσειρών Ο απλοϊκός αλγόριθµος ταύτισης συµβολοσειρών Ο αλγόριθµος Rabin-Karp Ταύτιση συµβολοσειρών µε πεπερασµένα αυτόµατα Ο αλγόριθµος Knuth-Morris-Pratt 918

9 x Περιεχόµενα 33 Υπολογιστική γεωµετρία Ιδιότητες ευθύγραµµων τµηµάτων Πώς προσδιορίζεται εάν υπάρχει ζεύγος τεµνόµενων τµηµάτων Εύρεση του κυρτού καλύµµατος Εύρεση του ζεύγους εγγύτατων σηµείων NP-πληρότητα Πολυωνυµικός χρόνος Επαλήθευση πολυωνυµικού χρόνου NP-πληρότητα και αναγωγιµότητα Αποδείξεις NP-πληρότητας NP-πλήρη προβλήµατα Προσεγγιστικοί αλγόριθµοι Το πρόβληµα του κοµβικού καλύµµατος Το πρόβληµα του περιοδεύοντος πωλητή Το πρόβληµα της κάλυψης συνόλου Τυχαιότητα και γραµµικός προγραµµατισµός Το πρόβληµα του αθροίσµατος υποσυνόλου 1039 VIII Παράρτηµα: Μαθηµατικό υπόβαθρο Εισαγωγή Π 1 Αʹ Αθροίσµατα Π 2 Αʹ.1 Τύποι και ιδιότητες αθροισµάτων Π 2 Αʹ.2 Φραγή αθροισµάτων Π 6 Βʹ Σύνολα, σχέσεις, γραϕήµατα και άλλα Π 14 Βʹ.1 Σύνολα Π 14 Βʹ.2 Σχέσεις Π 19 Βʹ.3 Συναρτήσεις Π 21 Βʹ.4 Γραϕήµατα Π 23 Βʹ.5 ένδρα Π 28 Γʹ Απαρίθµηση και πιθανότητες Π 37 Γʹ.1 Απαρίθµηση Π 37 Γʹ.2 Πιθανότητες Π 42 Γʹ.3 ιακριτές τυχαίες µεταβλητές Π 49 Γʹ.4 Η γεωµετρική και η διωνυµική κατανοµή Π 54 Γʹ.5 Οι ουρές της διωνυµικής κατανοµής Π 59 Γλωσσάριο (Ελληνοαγγλικό - Αγγλοελληνικό) Γ 1 Βιβλιογραϕία Β 1 Ευρετήριο Ε 1

10 Πρόλογος Το βιβλίο αυτό αποτελεί µια εκτενή εισαγωγή στη σύγχρονη µελέτη των υπολογιστικών αλγορίθµων. Πραγµατεύεται ένα µεγάλο πλήθος αλγορίθµων, τους οποίους καλύπτει σε αρκετά µεγάλο βάθος, διατηρώντας ταυτόχρονα τη σχεδίαση και την ανάλυσή τους προσιτή σε όλους τους αναγνώστες. Έχουµε προσπαθήσει να διατηρήσουµε τη µελέτη των αλγορίθµων σε στοιχειώδες επίπεδο, χωρίς να θυσιάσουµε την εµβάθυνση ή τη µαθηµατική αυστηρότητα. Σε κάθε κεϕάλαιο παρουσιάζεται ένας αλγόριθµος, µια τεχνική σχεδίασης, µια περιοχή εϕαρµογών ή ένα σχετικό θέµα. Οι αλγόριθµοι περιγράϕονται σε ϕυσική γλώσσα και µέσω ενός «ψευδοκώδικα» σχεδιασµένου ώστε να είναι κατανοητός από οποιονδήποτε έχει έστω και ελάχιστη εµπειρία στον προγραµµατισµό. Το βιβλίο περιλαµβάνει περισσότερα από 230 σχήµατα τα οποία αποσαϕηνίζουν τη λειτουργία των αλγορίθµων. εδοµένου ότι δίνουµε έµϕαση στη δραστικότητα ως κριτήριο σχεδίασης, έχουµε συµπεριλάβει διεξοδικές αναλύσεις των χρόνων εκτέλεσης των αλγορίθµων µας. Σκοπός του βιβλίου είναι να χρησιµοποιηθεί ως διδακτικό εγχειρίδιο σε προπτυχιακά ή µεταπτυχιακά µαθήµατα αλγορίθµων ή δοµών δεδοµένων. εδοµένου ότι εκτός από τις µαθηµατικές πλευρές της σχεδίασης αλγορίθµων πραγµατεύεται και τα σχετικά τεχνικά ζητήµατα, προσϕέρεται εξίσου και για κατ ιδίαν µελέτη από επαγγελµατίες µε τεχνικό προσανατολισµό. Σε αυτή τη δεύτερη έκδοση, το βιβλίο έχει αναθεωρηθεί στο σύνολό του. Οι αλλαγέςεκτείνονταιαπότηνπροσθήκηνέωνκεϕαλαίωνµέχριτηναναδιατύπωση µεµονωµένων προτάσεων. Προς τον διδάσκοντα Το βιβλίο αυτό έχει σχεδιαστεί έτσι ώστε να είναι αϕ ενός προσαρµόσιµο στις ανάγκες των αναγνωστών και αϕ ετέρου πλήρες. Μπορεί να χρησιµοποιηθεί στη διδασκαλία διαϕόρων µαθηµάτων, από ένα προπτυχιακό µάθηµα δοµών δεδοµένων µέχρι και ένα µεταπτυχιακό µάθηµα αλγορίθµων. εδοµένου ότι η ύλη που περιλαµβάνει υπερβαίνει σηµαντικά αυτήν που µπορεί να καλυϕθεί σε ένα τυπικό εξα- µηνιαίο µάθηµα, µπορεί να θεωρηθεί ως ένα είδος «εκθετηρίου» από το οποίο έχετε τη δυνατότητα να επιλέξετε την ύλη που ταιριάζει περισσότερο στο µάθηµα που επιθυµείτε να διδάξετε. Ευελπιστούµε ότι η δοµή του βιβλίου θα σας επιτρέψει να οργανώσετε το µάθηµά σας µόνο µε βάση τα κεϕάλαια που θα θεωρήσετε αναγκαία. Έχουµε ϕροντίσει τα διάϕορα κεϕάλαια να είναι σχετικά αυτοτελή, ώστε να µη χρειάζεται να ανησυχείτε για αναπάντεχες και περιττές αλλελεξαρτήσεις µεταξύ τους. Σε κάθε κεϕάλαιο,

11 xii Πρόλογος παρατίθενται πρώτα τα πιο βατά τµήµατα της ύλης και ακολουθούν τα πιο απαιτητικά, ενώ τα όρια µεταξύ των ενοτήτων σηµατοδοτούν ϕυσιολογικά σηµεία τερµατισµού. Σεένα προπτυχιακό µάθηµα, θα µπορούσαν να χρησιµοποιηθούν µόνο οι αρχικές ενότητες των κεϕαλαίων που θα επιλεγούν. σε ένα µεταπτυχιακό µάθηµα, θα µπορούσε κανείς να καλύψει στο σύνολό τους τα κεϕάλαια που θα επιλέξει. Το βιβλίο περιλαµβάνει περισσότερες από 920 ασκήσεις και περισσότερα από 140 προβλήµατα. Κάθε ενότητα ολοκληρώνεται µε τις αντίστοιχες ασκήσεις, και κάθε κεϕάλαιο µε τα αντίστοιχα προβλήµατα. Οι ασκήσεις συνίστανται εν γένει σε σύντοµα ερωτήµατα που ελέγχουν την αϕοµοίωση της ύλης σε βασικό επίπεδο. Ορισµένες από τις ασκήσεις αποτελούν απλές νοητικές δοκιµασίες αυτοελέγχου, ενώ άλλες είναι περισσότερο ουσιώδεις και προσϕέρονται για ανάθεση κατ οίκον εργασιών. Τα προβλήµατα συνιστούν πιο σύνθετες µελέτες περιπτώσεων στις οποίες συχνά παρουσιάζονται και κάποια συµπληρώµατα της θεωρίας, και αποτελούνται κατά κανόνα από διάϕορα ερωτήµατα τα οποία καθοδηγούν τον σπουδαστή στα βήµατα που θα πρέπει να ακολουθήσει για να ϕτάσει στη λύση. Οι ενότητες και οι ασκήσεις που είναι περισσότερο κατάλληλες για µεταπτυχιακούς παρά για προπτυχιακούς ϕοιτητές επισηµαίνονται µε έναν αστερίσκο ( ). Οι επισηµασµένες ενότητες δεν είναι κατ ανάγκη δυσκολότερες από τις µη επισηµασµένες, αλλά ενδέχεται να απαιτούν υψηλότερο µαθηµατικό υπόβαθρο. Οµοίως, οι επισηµασµένες ασκήσεις ενδέχεται να απαιτούν υψηλότερο υπόβαθρο ή αυξηµένη επινοητικότητα. Προς τον σπουδαστή Ελπίζουµε το βιβλίο αυτό να αποτελέσει για εσάς µια ευχάριστη εισαγωγή στο πεδίο των αλγορίθµων. Έχουµεπροσπαθήσει να παρουσιάσουµεόλους τους αλγορίθµους µε τρόπο βατό και ενδιαϕέροντα. Για να διευκολύνουµε την κατανόηση µη οικείων ή δύσκολων αλγορίθµων, έχουµεακολουθήσει µια βήµα προς βήµα περιγραϕή. Παραθέτουµε επίσης λεπτοµερείς αναϕορές στα µαθηµατικά που απαιτούνται για την κατανόηση της ανάλυσης των αλγορίθµων. Εάν είστε ήδη εξοικειµένοι µε κάποιο γνωστικό αντικείµενο, θα διαπιστώσετε ότι τα κεϕάλαια είναι δοµηµένα έτσι ώστε να µπορείτε να διατρέξετε επί τροχάδην τις εισαγωγικές ενότητες και να προχωρήσετε γρήγορα στα πιο απαιτητικά τµήµατα της ύλης. εδοµένου του µεγάλου όγκου του βιβλίου, το µάθηµά σας θα καλύψει πιθανότητα µόνο ένα τµήµα της συνολικής ύλης του. Ωστόσο, έχουµεκαταβάλει κάθε προσπάθεια ώστε το βιβλίο αυτό, πέραν της χρήσης του ως διδακτικού εγχειριδίου, να αποτελέσει επίσης χρήσιµο βοήθηµα στη µελλοντική σας καριέρα τόσο ως βιβλίο αναϕοράς για µαθηµατικά ζητήµατα όσο και ως τεχνικό εγχειρίδιο. Ποια είναι τα προαπαιτούµενα για τη µελέτη αυτού του βιβλίου; Θα πρέπει να έχετε κάποια εµπειρία στον προγραµµατισµό. Συγκεκριµένα, θα πρέπει να έχετε κατανοήσει τις αναδροµικές διαδικασίες και τις απλές δοµές δεδοµένων, όπως οι συστοιχίες και οι αλυσίδες. Θα πρέπει να έχετε κάποια ευχέρεια στις αποδείξεις µέσω µαθηµατικής επαγωγής. Λίγα τµήµατα του βιβλίου προϋποθέτουν στοιχειώδεις γνώσεις απειροστικού λογισµού. Πέραν αυτών, όλες οι µαθηµατικές τεχνικές που θα χρειαστείτε αναπτύσσονται στα Μέρη I και VIII.

12 Πρόλογος xiii Προς τον επαγγελµατία Το µεγάλο εύρος των ζητηµάτων που καλύπτει το βιβλίο αυτό το καθιστούν ιδανικό εγχειρίδιο αναϕοράς για αλγορίθµους. Το γεγονός ότι όλα τα κεϕάλαια είναι σχετικά αυτοτελή σας επιτρέπει να εστιάσετε στα ζητήµατα που σας ενδιαϕέρουν περισσότερο. Οι περισσότεροι από τους αλγορίθµους που πραγµατευόµαστε στο βιβλίο αυτό έχουν µεγάλη πρακτική χρησιµότητα. Για τον λόγο αυτό, η µελέτη τους επεκτείνεται και σεζητήµατα υλοποίησης, καθώς και σετεχνικά θέµατα. Για τους λίγους αλγορίθµους που έχουν πρωτίστως θεωρητικό ενδιαϕέρον, συχνά παραθέτουµε πρακτικές εναλλακτικές λύσεις. Εάν θελήσετε να υλοποιήσετε κάποιους από τους αλγορίθµους, θα διαπιστώσετεότι η µετάϕρασή τους απο τον ψευδοκώδικα που χρησιµοποιούµεστην γλώσσα προγραµµατισµού της επιλογής σας είναι αρκετά απλή διαδικασία. Ο ψευδοκώδικας είναι σχεδιασµένος έτσι ώστε η παρουσίαση όλων των αλγορίθµων να χαρακτηρίζεται από σαϕήνεια και λιτότητα. Ως εκ τούτου, δεν ασχολούµαστε µε ζητήµατα διαχείρισης σϕαλµάτων και τεχνολογίας λογισµικού τα οποία βασίζονται σε συγκεκριµένες παραδοχές για το εκάστοτε προγραµµατιστικό περιβάλλον. Στόχος µας είναι να παρουσιάσουµεκάθεαλγόριθµο µεαπλό και άµεσο τρόπο, και να αποϕύγουµετη συσκότιση των βασικών του χαρακτηριστικών από τις ιδιοµορϕίες της κάθεγλώσσας προγραµµατισµού. Προς τους συναδέλϕους µας Έχουµε ϕροντίσει να παραθέσουµε µια εκτενή βιβλιογραϕία καθώς και παραποµπές στη σύγχρονη αρθρογραϕία. Στο τέλος κάθε κεϕαλαίου, παρατίθενται κάποιες «σηµειώσεις» οι οποίες αναϕέρονται σε ζητήµατα ιστορικού ενδιαϕέροντος καθώς και σε βιβλιογραϕικές πηγές. Εντούτοις, οι σηµειώσεις αυτές δεν εξαντλούν τις βιβλιογραϕικές αναϕορές στο πεδίο των αλγορίθµων. Αν και, κρίνοντας από τον όγκο του βιβλίου, θα ήταν µάλλον δύσκολο να το πιστέψει κανείς, πολλοί ενδιαϕέροντες αλγόριθµοι δεν στάθηκε δυνατόν να συµπεριληϕθούν λόγω έλλειψης χώρου. Παρά τα αναρίθµητα αιτήµατα που δεχθήκαµε από σπουδαστές για να συµπεριλάβουµε τις λύσεις των προβληµάτων και των ασκήσεων, επιλέξαµε να µην παραθέσουµε αναλυτικές υποδείξεις για τα προβλήµατα και τις ασκήσεις, προκειµένου οι σπουδαστές να αποϕύγουν τον πειρασµό να ανατρέξουν απλώς στη λύση αντί νατηβρουνοιίδιοι. Αλλαγές στη δεύτερη έκδοση Τι έχει αλλάξει µεταξύ της πρώτης και της δεύτερης έκδοσης αυτού του βιβλίου; Ανάλογα µε το πώς το εξετάζει κανείς, είτε ελάχιστα πράγµατα είτε πάρα πολλά. Όπως µπορεί να διαπιστώσει κανείς µε µια σύντοµη µατιά στον πίνακα περιεχο- µένων, τα κεϕάλαια και οι ενότητες της πρώτης έκδοσης υπάρχουν στην πλειονότητά τους και στη δεύτερη. Έχουµε αϕαιρέσει δύο κεϕάλαια και λίγες ενότητες, και έχουµε προσθέσει τρία νέα κεϕάλαια και τέσσερεις νέες ενότητες, πέραν των νέων αυτών κεϕαλαίων. Εάν προσπαθήσει κανείς να εκτιµήσει το εύρος των αλλαγών µε βάση τον πίνακα των περιεχοµένων, θα συµπεράνει µάλλον ότι δεν υπάρχουν σηµαντικές µεταβολές.

13 xiv Πρόλογος Εντούτοις, οι αλλαγές στη δεύτερη έκδοση εκτείνονται πολύ πέραν αυτών που ϕαίνονται στον πίνακα των περιεχοµένων. Οι πιο σηµαντικές από αυτές, µε αυθαίρετη σειρά, είναι οι εξής: Στην οµάδα των συγγραϕέων έχει προστεθεί και ο Cliff Stein. Έχουν διορθωθεί κάποια λάθη. Πόσα; Ας πούµε απλώς αρκετά. Υπάρχουν τρία νέα κεϕάλαια: Το Κεϕάλαιο 1 πραγµατεύεται τον ρόλο των αλγορίθµων στις υπολογιστικές διαδικασίες. Το Κεϕάλαιο 5 καλύπτει την πιθανοτική ανάλυση και τους τυχαιοκρατικούς αλγορίθµους. Όπως και στην πρώτη έκδοση, τα αντικείµενα αυτά απαντούν σεδιάϕορα σηµεία του βιβλίου. Το Κεϕάλαιο 29 είναι αϕιερωµένο στον γραµµικό προγραµµατισµό. Σε κεϕάλαια που υπήρχαν και στην πρώτη έκδοση, έχουν προστεθεί νέες ενότητες στα εξής αντικείµενα: στην πλήρη διασπορά (Ενότητα 11.5), σε δύο εϕαρµογές δυναµικού προγραµµατισµού (Ενότητες 15.1 και 15.5), και σεπροσεγγιστικούς αλγορίθµους οι οποίοι βασίζονται σετυχαιοκρατικές διαδικασίες και σε γραµµικό προγραµµατισµό (Ενότητα 35.4). Προκειµένου να εισαγάγουµε τον αναγνώστη στην καθαυτό µελέτη των αλγορίθµων νωρίτερα, έχουµε µετακινήσει τρία από τα κεϕάλαια που αϕορούν το µαθηµατικό υπόβαθρο από το Μέρος I στο Παράρτηµα, το οποίο αποτελεί το Μέρος VIII. Υπάρχουν περισσότερα από 40 νέα προβλήµατα και περισσότερες από 185 νέες ασκήσεις. Έχουµε καθιερώσει την απευθείας χρήση των αναλλοίωτων συνθηκών για την απόδειξη της ορθότητας αλγορίθµων. Η πρώτη αναλλοίωτη συνθήκη εµϕανίζεται στο Κεϕάλαιο 2, ενώ η µέθοδος χρησιµοποιείται συνολικά µερικές δεκάδες ϕορέςσεόλοτοβιβλίο. Πολλές από τις πιθανοτικές αναλύσεις έχουν αναθεωρηθεί. Συγκεκριµένα, χρησιµοποιούµε σε περίπου δέκα περιπτώσεις την τεχνική των «δεικτριών τυχαίων µεταβλητών», η οποία απλοποιεί την πιθανοτική ανάλυση, ιδιαίτερα όταν οι δείκτριες µεταβλητές είναι εξαρτηµένες. Έχουµε επεκτείνει και ανανεώσει τις σηµειώσεις των κεϕαλαίων και τη βιβλιογραϕία. Η βιβλιογραϕία έχει αυξηθεί κατά περίπου 50%, και έχουµεπροσθέσει αναϕορές σε πολλά νέα αποτελέσµατα τα οποία δηµοσιεύθηκαν µετά την κυκλοϕορία της πρώτης έκδοσης. Έχουµε προχωρήσει επίσης στις ακόλουθες αλλαγές: Από το κεϕάλαιο που αϕορά την επίλυση αναδροµικών σχέσεων έχει απαλει- ϕθεί η επαναληπτική µέθοδος. Αντ αυτής, στην Ενότητα 4.2, έχουµε «προαγάγει» τα δένδρα αναδροµής σε καθαυτό µέθοδο επίλυσης. Έχουµε διαπιστώσει ότι η µέθοδος της σχεδίασης δένδρων αναδροµής είναι λιγότερο ευάλωτη σε

14 Πρόλογος xv σϕάλµατα απ ό,τι η επαναληπτική επίλυση αναδροµικών σχέσεων. Επισηµαίνουµε, ωστόσο, ότι τα δένδρα αναδροµής είναι καλύτερο να χρησιµοποιούνται για τη διατύπωση εικασιών οι οποίες στη συνέχεια επιβεβαιώνονται µέσω της µεθόδου της αντικατάστασης. Η µέθοδος διαµέρισης που χρησιµοποιείται στην ταχυταξινόµηση (Ενότητα 7.1) και ο αλγόριθµος διατακτικών στατιστικών γραµµικού αναµενόµενου χρόνου (Ενότητα 9.2) διαϕέρουν σεσχέση µετην πρώτη έκδοση. Στην έκδοση αυτή, χρησιµοποιούµε τη µέθοδο που έχει αναπτυχθεί από τον Lomuto, η οποία, σε συνδυασµό µε τις δείκτριες τυχαίες µεταβλητές, απλοποιεί κάπως την ανάλυση. Η µέθοδος της πρώτης έκδοσης, η οποία οϕείλεται στον Hoare, παρατίθεται ως πρόβληµα στο Κεϕάλαιο 7. Έχουµετροποποιήσει την περιγραϕή της καθολικής διασποράς (Ενότητα ) έτσι ώστε να εντάσσεται στη µελέτη της πλήρους διασποράς. Η ανάλυση του ύψους ενός τυχαία κατασκευασµένου δυαδικού δένδρου αναζήτησης (Ενότητα 12.4) έχει απλοποιηθεί σηµαντικά. Η µελέτη των στοιχείων δυναµικού προγραµµατισµού (Ενότητα 15.3) έχει επεκταθεί σηµαντικά, όπως και η µελέτη των στοιχείων των άπληστων αλγορίθµων (Ενότητα 16.2). Η διερεύνηση του προβλήµατος της επιλογής δραστηριοτήτων, µε το οποίο ξεκινά το κεϕάλαιο των άπληστων αλγορίθµων, διευκολύνει την αποσαϕήνιση της σχέσης µεταξύ δυναµικού προγραµµατισµού και άπληστων αλγορίθµων. Η απόδειξη του χρόνου εκτέλεσης της δοµής δεδοµένων της ένωσης ξένων συνόλων στην Ενότητα 21.4 έχει αντικατασταθεί. Η νέα απόδειξη βασίζεται στην ενεργειακή µέθοδο για τον προσδιορισµό ενός αυστηρού ϕράγµατος. Η απόδειξη της ορθότητας του αλγορίθµου για τις ισχυρά συνδεδεµένες συνιστώσες στην Ενότητα 22.5 έχει γίνει απλούστερη, σαϕέστερη και πιο άµεση. Το Κεϕάλαιο 24, που αναϕέρεται στις οµοαϕετηριακές ελαϕρύτατες διαδροµές, έχει ανασυγκροτηθεί έτσι ώστε οι αποδείξεις των βασικών ιδιοτήτων να ενταχθούν σε µια ξεχωριστή ενότητα. Η νέα δοµή του κεϕαλαίου µας επιτρέπει να εισαγάγουµε νωρίτερα τους σχετικούς αλγορίθµους. Η Ενότητα 34.5 περιλαµβάνει µια διευρυµένη επισκόπηση της NP-πληρότητας καθώς και νέες αποδείξεις της NP-πληρότητας για τα προβλήµατα του χαµιλτονιανού κύκλου και του αθροίσµατος υποσυνόλων. Τέλος, σχεδόν όλες οι ενότητες έχουν τροποποιηθεί προκειµένου να διορθωθούν, να απλοποιηθούν και να αποσαϕηνιστούν οι διάϕορες εξηγήσεις και αποδείξεις. ικτυότοπος Μιαάλληαλλαγήσεσχέσηµετηνπρώτηέκδοσηείναιότιτοβιβλίοδιαθέτειπλέον τον δικό του δικτυότοπο: αυτού, µπορείτε να αναϕέρετε σϕάλµατα, να προµηθευτείτε έναν κατάλογο των γνωστών σϕαλµάτων, ή να κάνετε υποδείξεις. τα σχόλιά σας είναι ευπρόσδεκτα. Θα εκτιµούσαµε ιδιαίτερα τις ιδέες σας για νέες ασκήσεις και προβλήµατα, που θα θέλαµε όµως να συνοδεύονται από τις λύσεις τους. υστυχώς, δεν είναι δυνατόν να απαντήσουµε προσωπικά σε όλα τα σχόλια.

15 xvi Πρόλογος Ευχαριστίες για την πρώτη έκδοση Πολλοί ϕίλοι και συνάδελϕοι έχουν συµβάλει σηµαντικά στην ποιότητα αυτού του βιβλίου. Τους ευχαριστούµε όλους για τη συνδροµή τους και την εποικοδοµητική τους κριτική. Το Εργαστήριο Επιστήµης Υπολογιστών του MIT µας εξασϕάλισε ένα ιδανικό περιβάλλον εργασίας. Οι συνάδελϕοί µας από την Οµάδα Θεωρίας Υπολογισµού του εργαστηρίου προσέϕεραν σηµαντική υποστήριξη και επέδειξαν εξαιρετική υπο- µονή στις συνεχείς παρακλήσεις µας για κριτική αξιολόγηση των διαϕόρων κε- ϕαλαίων. Θα θέλαµενα ευχαριστήσουµειδιαίτερα τους Baruch Awerbuch, Shafi Goldwasser, Λεωνίδα Γκίµπα, Tom Leighton, Albert Meyer, David Shmoys, και Éva Tardos. Ευχαριστούµεεπίσης τους William Ang, Sally Bemus, Ray Hirschfeld, και Mark Reinhold για την εύρυθµη λειτουργία των υπολογιστών µας (DEC Microvax, Apple Macintosh, και Sun Sparcstation) και την επαναµεταγλώττιση του TEX κάθε ϕορά που υπερβαίναµε κάποιο χρονικό όριο µεταγλώττισης. Η Thinking Machines Corporation προσέϕερε την υποστήριξή της στον Charles Leiserson για να ασχοληθεί µε αυτό το βιβλίο κατά τη διάρκεια µιας εκπαιδευτικής άδειας από το MIT. Πολλοί συνάδελϕοι οι οποίοι χρησιµοποίησαν προσχέδια του κειµένου αυτού στη διδασκαλία µαθηµάτων σε άλλες σχολές µας υπέδειξαν αρκετές διορθώσεις και αναθεωρήσεις. Θα θέλαµε να ευχαριστήσουµε ιδιαίτερα τους Richard Beigel, Andrew Goldberg, Joan Lucas, Mark Overmars, Alan Sherman, και Diane Souvaine. Πολλοί βοηθοί καθηγητού στα µαθήµατά µας συνεισέϕεραν σηµαντικά στην ανάπτυξη του υλικού αυτού. Ευχαριστούµειδιαίτερα τους Alan Baratz, Bonnie Berger, Aditi Dhagat, Burt Kaliski, Arthur Lent, Andrew Moulton, Μάριο Παπαευθυµίου, Cindy Phillips, Mark Reinhold, Phil Rogaway, Flavio Rose, Arie Rudich, Alan Sherman, Cliff Stein, Susmita Sur, Gregory Troxel, και Margaret Tuttle. Πολλοί άλλοι προσέϕεραν πολύτιµη τεχνική υποστήριξη. Η Denise Sergent αϕιέρωσε πολλές ώρες στις βιβλιοθήκες του MIT αναζητώντας βιβλιογραϕικές πηγές. Η Maria Sensale, η βιβλιοθηκονόµος του αναγνωστηρίου µας, ήταν πάντοτε προσηνής και εξυπηρετική. Η πρόσβαση που είχαµε στην προσωπική βιβλιοθήκη του Albert Meyer µας απάλλαξεαπό πολλές ώρες απασχόλησης στη βιβλιοθήκη για την προετοιµασία των σηµειώσεων των κεϕαλαίων. Οι Shlomo Kipnis, Bill Niehaus, και David Wilson διόρθωσαν παλιές ασκήσεις, ανέπτυξαν νέες, και προσέθεσαν ση- µειώσεις στις λύσεις τους. Οι Μάριος Παπαευθυµίου και Gregory Troxel βοήθησαν στην ευρετηρίαση των όρων. Επί πολλά χρόνια, οι γραµµατείς µας Inna Radzihovsky, Denise Sergent, Gayle Sherman, και ιδιαιτέρως η Be Blackburn παρείχαν απεριόριστη υποστήριξη στην προσπάθεια αυτή. Τις ευχαριστούµε. Πολλοί ϕοιτητές µάς ανέϕεραν σϕάλµατα στα αρχικά προσχέδια του βιβλίου. Ευχαριστούµειδιαίτερα τους Bobby Blumofe, Bonnie Eisenberg, Raymond Johnson, John Keen, Richard Lethin, Mark Lillibridge, Ιωάννη Πεζάρη, Steve Ponzio, και Margaret Tuttle για την προσεκτική τους ανάγνωση. Επίσης, πολλοί συνάδελϕοι συνέταξαν κριτικές ανασκοπήσεις για συγκεκριµένα κεϕάλαια, ή προσέϕεραν πληροϕορίες για συγκεκριµένους αλγορίθµους, και τους ευχαριστούµεθερµά. Ιδιαίτερα θα θέλαµενα ευχαριστήσουµετους Bill Aiello, Alok Aggarwal, Eric Bach, Vašek Chvátal, Richard Cole, Johan Hastad, Alex Ishii, David Johnson, Joe Kilian, Dina Kravets, Bruce Maggs, Jim Orlin, James Park, Thane Plambeck, Hershel Safer, Jeff Shallit, Cliff Stein, Gil Strang, Bob Tarjan, και Paul Wang. ιάϕοροι συνάδελϕοί µας είχαν επίσης την καλοσύνη να µας προµηθεύ-

16 Πρόλογος xvii σουν προβλήµατα. ευχαριστούµε ιδιαίτερα τους Andrew Goldberg, Danny Sleator, και Umesh Vazirani. Ήταν χαρά για µας η συνεργασία µε την MIT Press και την McGraw-Hill για τη διαµόρϕωση του κειµένου αυτού. Ευχαριστούµε ιδιαιτέρως τους Frank Satlow, Terry Ehling, Larry Cohen, και Lorrie Lejeune της MIT Press και τον David Shapiro της McGraw-Hill για την ενθάρρυνση, την υποστήριξη και την υποµονή τους, καθώς και τον Larry Cohen για την εξαιρετική επιµέλεια της έκδοσης. Ευχαριστίες για τη δεύτερη έκδοση Όταν ζητήσαµε από την Julie Sussman, P.P.A., να αναλάβει την τεχνική επιµέλεια της δεύτερης έκδοσης, δεν µπορούσαµε να ϕανταστούµε πόσο εύστοχη ήταν η επιλογή µας. Εκτός από την επιµέλεια του κειµένου ως προς το τεχνικό σκέλος, η Julie ανέλαβε επίσης µε ιδιαίτερο ζήλο και τη ϕιλολογική επιµέλεια. Αισθανόµαστε πολύ πιο ταπεινοί όταν σκεπτόµαστε πόσα λάθη εντόπισε η Julie στα αρχικά µας δοκί- µια, παρ ότι αυτό δεν προκαλεί καµία έκπληξη αν αναλογιστούµε πόσα εντόπισε στην πρώτη έκδοση (δυστυχώς, αϕότου είχε εκτυπωθεί). Επιπλέον, η Julie υπερέβη το δικό της χρονοδιάγραµµα προκειµένου να προσαρµοστεί στις δικές µας υποχρεώσεις ϕτάνοντας στο σηµείο να επιµεληθεί κάποια κεϕάλαια ακόµη και σε ένα ταξίδι της στις Παρθένους Νήσους! Julie, όσο και αν σεευχαριστήσουµεγια την καταπληκτική σου δουλειά, δεν θα είναι αρκετό. Η προετοιµασία της δεύτερης έκδοσης πραγµατοποιήθηκε ενόσω οι συγγραϕείς ήταν µέλη του Τµήµατος Επιστήµης Υπολογιστών του Dartmouth College και του Εργαστηρίου Επιστήµης Υπολογιστών του MIT. Και στα δύο αυτά ιδρύµατα, το περιβάλλον εργασίας ήταν ιδιαίτερα ενθαρρυντικό, και θα θέλαµε να ευχαριστήσουµε όλους τους συναδέλϕους µας για την υποστήριξή τους. ιάϕοροι ϕίλοι και συνάδελϕοι ανά την υϕήλιο διατύπωσαν υποδείξεις και απόψεις οι οποίες µας καθοδήγησαν στη συγγραϕή του κειµένου. Ευχαριστούµε πολύ τους Sanjeev Arora, Javed Aslam, Guy Blelloch, Avrim Blum, Scot Drysdale, Hany Farid, Hal Gabow, Andrew Goldberg, David Johnson, Yanlin Liu, Nicolas Schabanel, Alexander Schrijver, Sasha Shen, David Shmoys, Dan Spielman, Gerald Jay Sussman, Bob Tarjan, Mikkel Thorup, και Vijay Vazirani. Πολλοί δάσκαλοι και συνάδελϕοι µας δίδαξαν πολλά σχετικά µε τους αλγορίθ- µους. Θα θέλαµενα ευχαριστήσουµειδιαίτερα τους δασκάλους µας Jon L. Bentley, Bob Floyd, Don Knuth, Harold Kuhn, H. T. Kung, Richard Lipton, Arnold Ross, Larry Snyder, Michael I. Shamos, David Shmoys, Ken Steiglitz, Tom Szymanski, Éva Tardos, Bob Tarjan, και Jeffrey Ullman. Θα πρέπει επίσης να ευχαριστήσουµε πολλούς από τους τους βοηθούς καθηγητού στα µαθήµατα της θεωρίας αλγορίθµων στο MIT και το Dartmouth, µεταξύ των οποίων τους Joseph Adler, Craig Barrack, Bobby Blumofe, Roberto De Prisco, Matteo Frigo, Igal Galperin, David Gupta, Raj D. Iyer, Nabil Kahale, Sarfraz Khurshid, Σταύρο Κολλιόπουλο, Alain Leblanc, Yuan Ma, Maria Minkoff, ηµήτρη Μήτσουρα, Alin Popescu, Harald Prokop, Sudipta Sengupta, Donna Slonim, Joshua A. Tauber, Sivan Toledo, Elisheva Werner-Reiss, Lea Wittie, Qiang Wu, και Michael Zhang. Οι William Ang, Scott Blomquist, και Greg Shomo στο MIT και οι Wayne Cripps, John Konkle, και Tim Tregubov στο Dartmouth µας προσέϕεραν υπολογιστική υποστήριξη. Ευχαριστούµεεπίσης τους Be Blackburn, Don Dailey, Leigh Deacon,

17 xviii Πρόλογος Irene Sebeda, και Cheryl Patton Wu του MIT και τους Phyllis Bellmore, Kelly Clark, Delia Mauceli, Sammie Travis, Deb Whiting, και Beth Young του Dartmouth για τη διοικητική υποστήριξη. Οι Michael Fromberger, Brian Campbell, Amanda Eubanks, Sung Hoon Kim, και Neha Narula µας προσέϕεραν επίσης σηµαντική βοήθεια στο Dartmouth. Πολλοί αναγνώστες είχαν την καλοσύνη να µας αναϕέρουν σϕάλµατα στην πρώτη έκδοση. Θα θέλαµενα ευχαριστήσουµετους παρακάτω αναγνώστες, καθένας από τους οποίους ανέϕερε πρώτος κάποιο σϕάλµα στην πρώτη έκδοση: Len Adleman, Selim Akl, Richard Anderson, Juan Andrade-Cetto, Gregory Bachelis, David Barrington, Paul Beame, Richard Beigel, Margrit Betke, Alex Blakemore, Bobby Blumofe, Alexander Brown, Xavier Cazin, Jack Chan, Richard Chang, Chienhua Chen, Ien Cheng, Hoon Choi, Drue Coles, Christian Collberg, George Collins, Eric Conrad, Peter Csaszar, Paul Dietz, Martin Dietzfelbinger, Scot Drysdale, Patricia Ealy, Yaakov Eisenberg, Michael Ernst, Michael Formann, Nedim Fresko, Hal Gabow, Marek Galecki, Igal Galperin, Luisa Gargano, John Gately, Rosario Genario, Mihaly Gereb, Ronald Greenberg, Jerry Grossman, Stephen Guattery, Alexander Hartemik, Anthony Hill, Thomas Hofmeister, Mathew Hostetter, Yih-Chun Hu, Dick Johnsonbaugh, Marcin Jurdzinki, Nabil Kahale, Fumiaki Kamiya, Anand Kanagala, Mark Kantrowitz, Scott Karlin, Dean Kelley, Sanjay Khanna, Haluk Konuk, Dina Kravets, Jon Kroger, Bradley Kuszmaul, Tim Lambert, Hang Lau, Thomas Lengauer, George Madrid, Bruce Maggs, Victor Miller, Joseph Muskat, Tung Nguyen, Michael Orlov, James Park, Seongbin Park, Ιωάννης Πασχαλίδης, Boaz Patt-Shamir, Leonid Peshkin, Patricio Poblete, Ira Pohl, Stephen Ponzio, Kjell Post, Todd Poynor, Colin Prepscius, Sholom Rosen, Dale Russell, Hershel Safer, Karen Seidel, Joel Seiferas, Erik Seligman, Stanley Selkow, Jeffrey Shallit, Greg Shannon, Micha Sharir, Sasha Shen, Norman Shulman, Andrew Singer, Daniel Sleator, Bob Sloan, Michael Sofka, Volker Strumpen, Lon Sunshine, Julie Sussman, Asterio Tanaka, Clark Thomborson, Nils Thommesen, Homer Tilton, Martin Tompa, Andrei Toom, Felzer Torsten, Hirendu Vaishnav, M. Veldhorst, Luca Venuti, Jian Wang, Michael Wellman, Gerry Wiener, Ronald Williams, David Wolfe, Jeff Wong, Richard Woundy, Neal Young, Huaiyuan Yu, Tian Yuxing, Joe Zachary, Steve Zhang, FlorianZschoke,καιUriZwick. Πολλοί από τους συναδέλϕους µας προσέϕεραν ενδελεχείς ανασκοπήσεις ή συµπλήρωσαν µακροσκελή ερωτηµατολόγια. Ευχαριστούµε τους Nancy Amato, Jim Aspnes, Kevin Compton, William Evans, Peter Gacs, Michael Goldwasser, Andrzej Proskurowski, Vijaya Ramachandran, και John Reif για την κριτική ανάγνωση κε- ϕαλαίων. Ευχαριστούµεεπίσης τους κάτωθι, για τη συµπλήρωση του ερωτηµατολογίου: James Abello, Josh Benaloh, Bryan Beresford-Smith, Kenneth Blaha, Hans Bodlaender, Richard Borie, Ted Brown, Domenico Cantone, M. Chen, Robert Cimikowski, William Clocksin, Paul Cull, Rick Decker, Matthew Dickerson, Robert Douglas, Margaret Fleck, Michael Goodrich, Susanne Hambrusch, Dean Hendrix, Richard Johnsonbaugh, Κυριάκο Καλορκώτη, Srinivas Kankanahalli, Hikyoo Koh, Steven Lindell, Errol Lloyd, Andy Lopez, Dian Rae Lopez, George Lucker, David Maier, Charles Martel, Xiannong Meng, David Mount, Alberto Policriti, Andrzej Proskurowski, Kirk Pruhs, Yves Robert, Guna Seetharaman, Stanley Selkow, Robert Sloan, Charles Steele, Gerard Tel, Murali Varanasi, Bernd Walter, και Alden Wright. Θα ήµασταν ευτυχείς εάν µπορούσαµε να υλοποιήσουµε όλες τις υποδεί-

18 Πρόλογος xix ξεις τους. Το µόνο πρόβληµα είναι ότι εάν το κάναµε, η δεύτερη έκδοση θα είχε έκταση περίπου 3000 σελίδες! Η δεύτερη έκδοση συντάχθηκε στο LATEX 2ε. Ο Michael Downes µετέτρεψε τις µακροεντολές του LATEX από το «κλασικό» LATEXστοLATEX2ε, και προσάρµοσεεπίσης τα αρχεία κειµένου προκειµένου να χρησιµοποιούν αυτές τις µακροεντολές. Επίσης, προσέϕερετη βοήθειά του και σεγενικότερα ζητήµατα του L A TEX 2ε. Τα σχήµατα της δεύτερης έκδοσης σχεδιάστηκαν από τους συγγραϕείς µε το πρόγραµ- µα MacDraw Pro. Όπως και στην πρώτη έκδοση, για τη σύνταξη του ευρετηρίου χρησιµοποιήθηκετο Windex, ένα πρόγραµµα σεc το οποίο έχουν κατασκευάσει οι συγγραϕείς, ενώ η βιβλιογραϕία συντάχθηκε µέσω του προγράµµατος µè TEX. Οι Ayorkor Mills-Tettey και Rob Leathern βοήθησαν στη µετατροπή των σχηµάτων στο πρόγραµµα MacDraw Pro, ενώ ο Ayorkor έλεγξε επίσης τη βιβλιογραϕία. Όπως και στην πρώτη έκδοση, η συνεργασία µε την MIT Press και την McGraw- Hill ήταν ιδιαίτερα ευχάριστη. Οι επιµελητές µας, Bob Prior από την MIT Press και Betsy Jones από την McGraw-Hill, ανέχθηκαν τις ιδιορρυθµίες µας και µας παρότρυναν µε«καρότο και µαστίγιο». Τέλος, θα θέλαµενα ευχαριστήσουµετις συζύγους µας Nicole Cormen, Gail Rivest, και Rebecca Ivry τα παιδιά µας Ricky, William, και Debby Leiserson. Alex και Christopher Rivest. και Molly, Noah, και Benjamin Stein και τους γονείς µας Renee και Perry Cormen, Jean και Mark Leiserson, Shirley και Lloyd Rivest, και Irene και Ira Stein για την αγάπη και συµπαράστασή τους κατά τη διάρκεια της συγγραϕής αυτού του βιβλίου. Η ευόδωση της προσπάθειας αυτής οϕείλεται στην υποµονή και την ενθάρρυνση των οικογενειών µας. Τους αϕιερώνουµε το βιβλίο αυτό µεστοργή. Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Hanover, New Hampshire Cambridge, Massachusetts Cambridge, Massachusetts Hanover, New Hampshire Μάιος2001

19

20 I Θεµελιώδεις έννοιες

Εισαγωγή στους αλγορίθµους

Εισαγωγή στους αλγορίθµους Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest CliffordStein Εισαγωγή στους αλγορίθµους Απόδοση στα ελληνικά: Ιωάννης Παπαδόγγονας Επιστηµονική επιµέλεια: Γεώργιος Φρ. Γεωργακόπουλος Με τη συνεργασία

Διαβάστε περισσότερα

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι Παύλος Εφραιμίδης 1 περιεχόμενα αλγόριθμοι τεχνολογία αλγορίθμων 2 αλγόριθμοι αλγόριθμος: οποιαδήποτε καλά ορισμένη υπολογιστική διαδικασία που δέχεται κάποια τιμή ή κάποιο σύνολο τιμών, και δίνεικάποιατιμήήκάποιοσύνολοτιμώνως

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Jon Kleinberg και Éva Tardos, Σχεδιασμός αλγορίθμων, Εκδόσεις Κλειδάριθμος,

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΘΗΝΑ, 2001 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ iii ix ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1 1.1

Διαβάστε περισσότερα

Κεφάλαιο 4. Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 4. Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 4 Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 4.1 Χρονοπρογραµµατισµός Διαστηµάτων Χρονοπρογραµµατισµός Διαστηµάτων Το πρόβληµα.

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Β'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της B Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν βάση των µαθηµατικών του

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΦΑΚΕΛΟΣ ΜΑΘΗΜΑΤΟΣ Μάθηµα: Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Γ Φάσης) ΜΙΧΑΗΛ ΣΚΟΥΜΙΟΣ

Διαβάστε περισσότερα

5. Γεννήτριες Τυχαίων Αριθµών.

5. Γεννήτριες Τυχαίων Αριθµών. 5. Γεννήτριες Τυχαίων Αριθµών. 5.1. Εισαγωγή. Στο Κεφάλαιο αυτό θα δούµε πώς µπορούµε να δηµιουργήσουµε τυχαίους αριθµούς από την οµοιόµορφη κατανοµή στο διάστηµα [0,1]. Την κατανοµή αυτή, συµβολίζουµε

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ VΙ - Ο ΗΓΙΕΣ ΥΠΟΒΟΛΗΣ ΠΡΟΤΑΣΗΣ

ΠΑΡΑΡΤΗΜΑ VΙ - Ο ΗΓΙΕΣ ΥΠΟΒΟΛΗΣ ΠΡΟΤΑΣΗΣ ΠΑΡΑΡΤΗΜΑ VΙ - Ο ΗΓΙΕΣ ΥΠΟΒΟΛΗΣ ΠΡΟΤΑΣΗΣ Έκδοση Εγγράφου: 1.0 Επιχειρησιακό Πρόγραµµα «Εκπαίδευση & ια Βίου Μάθηση» (ΕΚ. ι.βι.μ) Κενή σελίδα 2 Πίνακας περιεχοµένων 1 Εισαγωγή... 6 1.1 ηµιουργία πρότασης...

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών 1 Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της Κωτσογιάννη Μαριάννας Περίληψη 1. Αντικείµενο- Σκοπός Αντικείµενο της διπλωµατικής αυτής εργασίας

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Γώγουλος Γ., Κοτσιφάκης Γ., Κυριακάκη Γ., Παπαγιάννης Α., Φραγκονικολάκης Μ., Χίνου Π. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Γεωλογικοί Χάρτες ΜΕΡΟΣ Α: Βασικές Έννοιες & Στοιχειώδεις Δομές. Χ.Δ. Κράνης. Β.Ε. Αντωνίου. Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών

Γεωλογικοί Χάρτες ΜΕΡΟΣ Α: Βασικές Έννοιες & Στοιχειώδεις Δομές. Χ.Δ. Κράνης. Β.Ε. Αντωνίου. Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Γεωλογίας Γεωλογικοί Χάρτες ΜΕΡΟΣ Α: Βασικές Έννοιες & Τομέας ΔυναμικήςΤεκτονικής & Εφαρμοσμένης Γεωλογίας Στοιχειώδεις Δομές Χ.Δ. Κράνης Β.Ε. Αντωνίου

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» - Κρυπτογραφία είναι - Κρυπτανάλυση είναι - Με τον όρο κλειδί. - Κρυπτολογία = Κρυπτογραφία + Κρυπτανάλυση - Οι επιστήµες αυτές είχαν

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας.

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας. ΠΡΟΛΟΓΟΣ Το βιβλίο «Δικτυακή Βελτιστοποίηση» γράφτηκε με κύριο στόχο να καλύψει τις ανάγκες της διδασκαλίας του μαθήματος «Δικτυακός Προγραμματισμός», που διδάσκεται στο Τμήμα Εφαρμοσμένης Πληροφορικής,

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress.

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress. ΣΤΑΤΙΣΤΙΚΗ Ι Η Ύλη του µαθήµατος είναι στις διαφάνειες (slides) τα οποία καλύφθηκαν στην τάξη και βρίσκονται στην ιστοσελίδα: ανεξάρτητα µε το πιο βιβλίο που χρησιµοποιείται. Μερικά από τα θέµατα καλύπτονται

Διαβάστε περισσότερα

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες:. Φωτάκης (και Σ. Ζάχος στο μτπχ.) Βοηθοί διδασκαλίας

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

ΠαράδειγµαΠρογραµµατισµού

ΠαράδειγµαΠρογραµµατισµού Προγραµµατισµός Η/Υ Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Μεθοδολογία Προγραµµατισµού Αφαιρετικότητα Ροή Ελέγχου/ εδοµένων Βιβλίο µαθήµατος: Chapter 1,, Sec. 4-54 ΕΠΛ 131 Αρχές Προγραµµατισµού

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης ΝΙΚΟΣ ΤΑΣΟΣ Mα θ η μ α τ ι κ ά Γ Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς στον Αλέξη, το Σπύρο, τον Ηλία και το Λούη, στην παντοτινή φιλία Πρό λ ο γ ο ς Το βιβλίο αυτό έχει σκοπό και στόχο

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Εισαγωγή στον προγραµµατισµό Η έννοια του προγράµµατος Ο προγραµµατισµός ασχολείται µε τη δηµιουργία του προγράµµατος, δηλαδή του συνόλου εντολών που πρέπει να δοθούν στον υπολογιστή ώστε να υλοποιηθεί

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010

Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010 Κεφάλαιο 2 Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση., 2/05/200 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Σωρός και Ταξινόµηση

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ Ι. ΠΑΝΑΡΕΤΟΥ & Ε. ΞΕΚΑΛΑΚΗ Καθηγητών του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ (Εισαγωγή στις Πιθανότητες και την Στατιστική Συμπερασματολογία)

Διαβάστε περισσότερα

οµηµένος Προγραµµατισµός ΙΙΙ - Java

οµηµένος Προγραµµατισµός ΙΙΙ - Java οµηµένος Προγραµµατισµός ΙΙΙ - Παύλος Εφραιµίδης 1 Το µάθηµα Αντικείµενο-Περιεχόµενα µαθήµατος Τρόπος ιδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόµενα Μαθήµατος Εισαγωγή στους Αλγόριθµους

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Θεσσαλονίκη 2012 2 Περιεχόµενα 1 υναµικός

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήµη των Η/Υ

Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή στην Επιστήµη των Η/Υ Εισαγωγή Καθ. Κ. Κουρκουµπέτης Σηµείωση: Οι διαφάνειες βασίζονται σε µεγάλο βαθµό σε αυτές που συνοδεύονται µε το προτεινόµενο σύγγραµµα. 1

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Αγαπητές/οί συνάδελφοι, σε αυτό το τεύχος σας προτείνουµε µερικά ενδιαφέροντα βιβλία που αφορούν βασικές αρχές της Συµβουλευτικής.

Αγαπητές/οί συνάδελφοι, σε αυτό το τεύχος σας προτείνουµε µερικά ενδιαφέροντα βιβλία που αφορούν βασικές αρχές της Συµβουλευτικής. Αγαπητές/οί συνάδελφοι, σε αυτό το τεύχος σας προτείνουµε µερικά ενδιαφέροντα βιβλία που αφορούν βασικές αρχές της Συµβουλευτικής. Arist Von Schlippe, Jochen Schweitzer επιµέλεια: Βιργινία Ιωαννίδου µετάφραση:

Διαβάστε περισσότερα

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων &

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων & 5 η αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα: Η αποτελεί θεµελιώδες πρόβληµα σε κάθε σύγχρονη οικονοµία. Το πρόβληµα της αποδοτικής κατανοµής των πόρων µπορεί να εκφρασθεί µε 4 βασικά ερωτήµατα

Διαβάστε περισσότερα

Θετικής-Τεχνολογικής Κατεύθυνσης

Θετικής-Τεχνολογικής Κατεύθυνσης Mα θ η μ α τ ι κ ά Β Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο Θετικές Επιστήμες Μαθηματικά Β Λυκείου Θετικής-Τεχνολογικής

Διαβάστε περισσότερα

Οικονοµικό Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής. Φθινοπωρινό Εξάµηνο 2015. Δοµές Δεδοµένων - Εργασία 2. Διδάσκων: E. Μαρκάκης

Οικονοµικό Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής. Φθινοπωρινό Εξάµηνο 2015. Δοµές Δεδοµένων - Εργασία 2. Διδάσκων: E. Μαρκάκης Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής Φθινοπωρινό Εξάµηνο 2015 Δοµές Δεδοµένων - Εργασία 2 Διδάσκων: E. Μαρκάκης Ταξινόµηση και Ουρές Προτεραιότητας Σκοπός της 2 ης εργασίας είναι η εξοικείωση

Διαβάστε περισσότερα

Mathematics and its Applications, 5th

Mathematics and its Applications, 5th Μαθηµατικα για Πληροφορικη Εφαρµογες και τεχνικες Ηλιας Κουτσουπιάς Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Σχετικα µε το µαθηµα Σχετικα µε το µαθηµα Το µαθηµα πραγµατευεται καποια ϑεµατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 7 ΕΙ Η, ΤΕΧΝΙΚΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 7.1. Ανάπτυξη Προγράµµατος Τι είναι το Πρόγραµµα; Το Πρόγραµµα: Είναι ένα σύνολο εντολών για την εκτέλεση ορισµένων λειτουργιών από τον υπολογιστή.

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

οµηµένος Προγραµµατισµός ΙΙΙ - Java Παύλος Εφραιµίδης οµηµένος Προγρ. ΙΙΙ - 1 Java Το Μάθηµα

οµηµένος Προγραµµατισµός ΙΙΙ - Java Παύλος Εφραιµίδης οµηµένος Προγρ. ΙΙΙ - 1 Java Το Μάθηµα οµηµένος Προγραµµατισµός ΙΙΙ - Παύλος Εφραιµίδης 1 Το µάθηµα Αντικείµενο-Περιεχόµενα µαθήµατος Τρόπος ιδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόµενα Μαθήµατος Εισαγωγή στους Αλγόριθµους

Διαβάστε περισσότερα

ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ

ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ ΕΠΛ 034: Εισαγωγήστον ΠρογραµµατισµόγιαΗΜΥ Αχιλλέας Αχιλλέως, Τµήµα Πληροφορικής, Πανεπιστήµιο Κύπρου Email: achilleas@cs.ucy.ac.cy Κεφάλαιο 2 ΠρογραµµατισµόςΗ/Υ Θέµατα ιάλεξης οµή Προγράµµατος C Μεθοδολογία

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

6 Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας

6 Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας Πρόλογος Σ το βιβλίο αυτό περιλαμβάνεται η ύλη του μαθήματος «Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας» που διδάσκεται στους φοιτητές του Γ έτους σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας

Διαβάστε περισσότερα

Ανάλυση Αλγορίθµων 4. Πειραµατικές Μελέτες. Χρόνος Εκτέλεσης. Περιγραφή και Υλικό Ανάγνωσης

Ανάλυση Αλγορίθµων 4. Πειραµατικές Μελέτες. Χρόνος Εκτέλεσης. Περιγραφή και Υλικό Ανάγνωσης Ανάλυση Αλγορίθµων Είσοδος Αλγόριθµος Έξοδος Περιγραφή και Υλικό Ανάγνωσης Χρόνος εκτέλεσης (.) Ψευδοκώδικας (.) Μέτρηση των στοιχειωδών πράξεων (.) Ασυµπτωτική σηµειογραφία (.2) Ασυµπτωτική ανάλυση (.2)

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ 1 ο ΘΕΜΑ (1,5 Μονάδες) Στην παράδοση είχε παρουσιαστεί η αριθµητική επίλυση της εξίσωσης «καθαρής συναγωγής» σε µία διάσταση, η µαθηµατική δοµή της οποίας είναι

Διαβάστε περισσότερα

INFO. Copyright ECDL Ελλάς, Σεπτέµβριος 2004 ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ ΑΥΤΟΥ ΤΟΥ ΕΝΤΥΠΟΥ ΑΦΟΡΑ ΑΠΟΚΛΕΙΣΤΙΚΑ ΤΑ ΕΞΕΤΑΣΤΙΚΑ ΚΕΝΤΡΑ ECDL

INFO. Copyright ECDL Ελλάς, Σεπτέµβριος 2004 ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ ΑΥΤΟΥ ΤΟΥ ΕΝΤΥΠΟΥ ΑΦΟΡΑ ΑΠΟΚΛΕΙΣΤΙΚΑ ΤΑ ΕΞΕΤΑΣΤΙΚΑ ΚΕΝΤΡΑ ECDL INFO ECDL Expert Ένα ολοκληρωµένο Πρόγραµµα Πιστοποίησης γνώσεων πληροφορικής και δεξιοτήτων χρήσης Η/Υ ΠΡΟΧΩΡΗΜΕΝΟΥ ΕΠΙΠΕ ΟΥ Copyright ECDL Ελλάς, Σεπτέµβριος 2004 ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ ΑΥΤΟΥ ΤΟΥ ΕΝΤΥΠΟΥ ΑΦΟΡΑ

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS)

Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS) Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS) ρ. ΧΑΛΚΙΑΣ ΧΡΙΣΤΟΣ xalkias@hua.gr Χ. Χαλκιάς - Εισαγωγή στα GIS 1 Ορισµοί ΓΠΣ Ένα γεωγραφικό πληροφοριακό σύστηµα Geographic Information

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Γεώργιος Φίλιππας 23/8/2015

Γεώργιος Φίλιππας 23/8/2015 MACROWEB Προβλήματα Γεώργιος Φίλιππας 23/8/2015 Παραδείγματα Προβλημάτων. Πως ορίζεται η έννοια πρόβλημα; Από ποιους παράγοντες εξαρτάται η κατανόηση ενός προβλήματος; Τι εννοούμε λέγοντας χώρο ενός προβλήματος;

Διαβάστε περισσότερα

Δομές Δεδομένων. Παύλος Εφραιμίδης

Δομές Δεδομένων. Παύλος Εφραιμίδης Παύλος Εφραιμίδης 1 Το μάθημα Αντικείμενο-Περιεχόμενα μαθήματος Τρόπος Διδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόμενα Μαθήματος Εισαγωγή στις και τους Αλγορίθμους Μελέτη και υλοποίηση

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

Οπτική αντίληψη. Μετά?..

Οπτική αντίληψη. Μετά?.. Οπτική αντίληψη Πρωτογενής ερεθισµός (φυσικό φαινόµενο) Μεταφορά µηνύµατος στον εγκέφαλο (ψυχολογική αντίδραση) Μετατροπή ερεθίσµατος σε έννοια Μετά?.. ΓΙΑ ΝΑ ΚΑΤΑΝΟΗΣΟΥΜΕ ΤΗΝ ΟΡΑΣΗ ΠΡΕΠΕΙ ΝΑ ΑΝΑΛΟΓΙΣΤΟΥΜΕ

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών»

Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών» Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών» μια Νίκος Δαπόντες Φυσικός Δευτεροβάθμιας Εκπαίδευσης Το περιβάλλον Microworlds

Διαβάστε περισσότερα

Περιεχόµενα. 1 Εισαγωγή στις οµές εδοµένων 3. 2 Στοίβα (Stack) 5

Περιεχόµενα. 1 Εισαγωγή στις οµές εδοµένων 3. 2 Στοίβα (Stack) 5 Περιεχόµενα 1 Εισαγωγή στις οµές εδοµένων 3 2 Στοίβα (Stack) 5 i ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ ii Πληροφορίες Εργαστηρίου Σκοπός του εργαστηρίου Το εργαστήριο οµές εδοµένων αποσκοπεί στην εφαρµογή των τεχνολογιών

Διαβάστε περισσότερα

Δομές Δεδομένων. Λουκάς Γεωργιάδης. http://www.cs.uoi.gr/~loukas/courses/data_structures/ email: loukas@cs.uoi.gr

Δομές Δεδομένων. Λουκάς Γεωργιάδης. http://www.cs.uoi.gr/~loukas/courses/data_structures/ email: loukas@cs.uoi.gr Δομές Δεδομένων http://www.cs.uoi.gr/~loukas/courses/data_structures/ Λουκάς Γεωργιάδης email: loukas@cs.uoi.gr Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δεδομένα: Σύνολο από πληροφορίες που

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Έργο µιας χρονικά µεταβαλλόµενης δύναµης

Έργο µιας χρονικά µεταβαλλόµενης δύναµης Έργο µιας χρονικά µεταβαλλόµενης δύναµης Κ. Ι. Παπαχρήστου Τοµέας Φυσικών Επιστηµών, Σχολή Ναυτικών οκίµων papachristou@snd.edu.gr Θα συζητήσουµε µερικά λεπτά σηµεία που αφορούν το έργο ενός χρονικά µεταβαλλόµενου

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα