ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL"

Transcript

1 ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL ΒΑΡΗ Μπίλιας Κων/νος Φυσικός

2 Στόχοι Σκοπός του πειράματος αυτού είναι η μελέτη της κίνησης του τροχού Maxwell και πιο συγκεκριμένα θα μελετήσουμε : Τη διατήρηση της Μηχανικής Ενέργειας στη κίνηση του τροχού Μaxwell. Tη μετατροπή της Δυναμικής Ενέργειας σε Περιστροφική και Μεταφορική Κινητική Ενέργεια. Τη ροπή αδράνειας του τροχού Μaxwell. Όργανα και Υλικά Τροχός Μaxwell με νήμα μήκους 80 cm. Oρθοστάτες (x) και βάσεις στήριξης (x). Μεταλλικές ράβδοι 0 cm (x6) και μεταλλικοί σύνδεσμοι (x10). Σύστημα δύο φωτοπυλών και Data logge. (Μπορεί να χρησιμοποιηθεί εναλλακτικά και χρονόμετρο με φωτοπύλες). Μεταλλικός κανόνας 1m. Ηλεκτρονικός ζυγός και βερνιέρος Για την επεργασία των δεδομένων θα χριεαστούν υπολογιστής τσέπης και χαρτί μιλιμετρέ. Θεωρητικές Επισημάνσεις Η αρχή διατήρησης της μηχανικής ενέργειας λέει ότι, η συνολική μηχανική ενέργεια ενός συστήματος παραμένει σταθερή εάν οι δυνάμεις που ασκούνται στο σύστημα (και παράγουν έργο) είναι συντηρητικές. Αυτό σημαίνει ότι, αν η κινητική ενέργεια ενός συστήματος συντηρητικού αυξάνεται (ή μειώνεται) κατά κάποια ποσότητα, η δυναμική ενέργεια πρέπει να μειωθεί (ή αυξηθεί) κατά το ίδιο ποσό. ΔK = - ΔU (Διατήρηση της Μηχανικής Ενέργειας) Η συνολική μηχανική ενέργεια ενός συστήματος είναι το άθροισμα της κινητικής και της δυναμικής του ενέργειας:

3 Ε Μηχ =K+ U Η οποία είναι σταθερή κατά τη διάρκεια της κίνησης. Αν τώρα ένα σύστημα εκτελεί στροφική κίνησηη γύρω από σταθερό άξονα, η κίνηση αυτή μπορεί να θεωρηθεί ως σύνθετη, στροφική γύρω από το κέντρο μάζας τουυ σώματος και μεταφορική του κέντρου μάζας τουυ σώματος. Σε αυτή τη τ περίπτωση η συνολική κινητική του ενέργεια είναι το άθροισμα της μεταφορικής κινητικής του ενέργειας και της περιστροφικής του κινητικής ενέργειας: K=K t + K όπου 1 t mu, μεταφορική κινητική ενέργεια και 1 I, περιστροφική κινητική ενέργεια. Ο τροχός Μaxwell που θα χρησιμοποιήσουμε αποτελείται από ένα συμπαγή τροχό και μία ράβδο (άξονας περιστροφής) όπως φαίνεται στην εικόνα (1). Ο άξονας περιστροφής μένει σε οριζόντια θέση στηριζόμενος από δύο κορδόνια δεμένα στην οριζόντια ράβδο και έχει την δυνατότητα να ανέρχεται και να κατέρχεται. Όταν ο τροχός ελευθερωθεί από την θέση ισορροπίας κατέρχεται και φθάνοντας στο κατώτερο σημείο ανέρχεται. Η ολική μηχανική ενέργεια του τροχού θα είναι κάθε στιγμή: Εικόνα 1 U K t K δηλαδή mgh 1 1 mu Όπου ω η γωνιακή ταχύτητα και u η μεταφορική ταχύτητα του δίσκου. Η σχέση που υπάρχει μεταξύ των ταχυτήτων ω και u βρίσκεται ως ω εξής: ds d u, όμως όπως είναι γνωστό, η γωνιακήή ταχύτηταα ορίζεταιι ως dt dt d, επομένως: Σχέση μεταξύ της αύξησης dt στη γωνία dφ d και στη μείωση u του ύψους ds d του τροχού s Όπου η ακτίνα του άξονα του τροχού. dφ ds

4 Έτσι η ολική ενέργεια του συστήματος γίνεται: 1 1 u mgh mu I ή 1 I mgh m u Καθώς όμως η μηχανική ενέργεια παραμένει συνεχώς σταθερή με τον χρόνο, η παραγώγιση στη παραπάνω εξίσωση μας δίνει: de M dh() t 1 I d mg m u() t dt dt dt Γνωρίζοντας όμως ότι η μηχανική ενέργεια είναι σταθερή οπότε η χρονική της παράγωγος μηδενίζεται, η παραπάνω εξίσωση καταλήγει στην διαφορική : () 0 ( ) I du t mgu t m u( t ) dt Προχωρώντας στη λύση της διαφορικής αυτής εξίσωσης θα έχουμε:. I du() t mgu() t m u() t dt ώ με ut () I du() t mg m dt I mgdt m du() t mg du() t dt I m mg du() t dt I m Έτσι, το μέτρο της ταχύτητας του συστήματος θα είναι: mg u() t t I m (1)

5 Επιπλέον, η κατακόρυφη μετατόπιση θα βρεθεί από τον ορισμό της ταχύτητας. Αφού dh() t ut () dt Θα έχουμε: dh() t u() t dt dh() t u() t dt mg ht () I m tdt Δηλαδή: 1 mg ht () t I m Ενώ λύνοντας ως προς την ροπή αδρανείας παίρνουμε: gt I m 1 ht ( ) () Από την παραπάνω εξίσωση είναι φανερό πως, μετρώντας τον χρόνο που κάνει το σύστημα να διανύσει μια συγκεκριμένη απόσταση, μπορούμε να υπολογίσουμε τη ροπή αδρανείας του ενώ χρησιμοποιώντας τη σχέση (1) μπορούμε να υπολογίζουμε την μεταφορική άρα και τη γωνιακή του ταχύτητα κάθε στιγμή.

6 Πειραματική Διαδικασία 1. Συναρμολογούμε τη διάταξη της εικόνας (). Τοποθετούμε τη πρώτη φωτοπύλη με τέτοιο τρόπο ώστε το «μάτι» της να βρίσκεται στην θέση 0cm του κανόνα (Εικόνα 3). Αυτή η φωτοπύλη Εικόνα θα παραμένει ακίνητη καθ όλη τη διάρκεια του πειράματος.. Τοποθετούμε τον τροχό Maxwell στη διάταξη με τέτοιο τρόπο ώστε τα νήματα να είναι ίσια και από τις δύο πλευρές και η ανώτατη δυνατή θέση του τροχού να βρίσκεται ελάχιστα πάνω από το «μάτι» της πρώτης φωτοπύλης 3. Τοποθετούμε την δεύτερη φωτοπύλη στη θέση 35 Εικόνα 3 cm (έτσι ώστε ο τροχός θα έχει διανύσει 15 cm από την μία φωτοπύλη στην άλλη). Η απόσταση θα μεταβληθεί από τα 15cm έως τα 50cm σε βήματα των 5cm. 4. Συνδέουμε τις φωτοπύλες στο data logge. (Εάν πρόκειται για το Venie ανοίγουμε το πρόγραμμα Logge light.) 5. Τυλίγουμε τον τροχό και τον κρατούμε στην ανώτατη θέση του. Κατόπιν τον απελευθερώνουμε και καθώς περνά από τις φωτοπύλες καταγράφονται 4 χρόνοι t1, t, t3, t4 ( είσοδος έξοδος από την κάθε φωτοπύλη). 6. Αφαιρούμε από τον t3 (=χρόνος εισόδου στη δεύτερη φωτοπύλη) τον t1 (=χρόνος εισόδου στην πρώτη φωτοπύλη) και βρίσκουμε την χρονική διάρκεια που απαιτείται για να διανύσει ο τροχός την απόσταση h1=15cm με καλή προσέγγιση.

7 7. Επαναλαμβάνοντας τα βήματα (5) και (6) για h μέχρι 50 cm συμπληρώνουμε τις δύο πρώτες στήλες του πίνακα (1). 8. Υπολογίζουμε τη ροπή αδρανείας από τον τύπο : gt I m 1 ht ( ) για κάθε μέτρηση και κατόπιν υπολογίζουμε τη μέση τιμή της. Καταγράφουμε τις ροπές αδρανείας στην τρίτη στήλη του πίνακα (1). 9. Υπολογίζουμε τη μεταφορική και τη γωνιακή ταχύτητα από τις ακόλουθες εξισώσεις : mg u() t t u και I m και κατόπιν τις καταγράφουμε στις δύο τελευταίες στήλες του πίνακα (1) 10. Σχεδιάζουμε ένα γράφημα h=f(t) καθώς και ένα γράφημα u=f(t) και σχολιάζουμε το αποτέλεσμα Υπολογίζουμε τη δυναμική ενέργεια για κάθε απόσταση και την καταγράφουμε στη δεύτερη στήλη του πίνακα () U= mgh 1. Υπολογίζουμε τη μεταφορική κινητική ενέργεια για κάθε απόσταση και την καταγράφουμε στη τρίτη στήλη του πίνακα (). 1 t mu 13. Υπολογίζουμε τη περιστροφική κινητική ενέργεια για κάθε απόσταση και την καταγράφουμε στη τέταρτη στήλη του πίνακα ().

8 1 I 14. Υπολογίζουμε τη συνολική κινητική ενέργεια για κάθε απόσταση και την καταγράφουμε στη πέμπτη στήλη του πίνακα (). 15. Συγκρίνουμε τις τιμές της δυναμικής και της συνολικής κινητικής ενέργειας την ίδια χρονική στιγμή και σχολιάζουμε το αποτέλεσμα. 16. Συγκρίνουμε τις τιμές της μεταφορικής κινητικής ενέργειας και της περιστροφικής κινητικής ενέργειας την ίδια χρονική στιγμή και σχολιάζουμε το αποτέλεσμα. 17. Σχεδιάζουμε τα γραφήματα U=f(t), Kt=f(t), K=f(t) 18. Προτείνουμε έναν ακόμη πειραματικό τρόπο επαλήθευσης της ταχύτητας του τροχού στις διάφορες θέσεις του, και τον εκτελούμε για δύο θέσεις του τροχού. Σχολιάζουμε το αποτέλεσμα.

9 ΠΙΝΑΚΑΣ (1) No Διάστημα Xρόνος Ροπή Αδρανείας Mεταφορική Ταχ. Γωνιακή Ταχύτητa h(m) t(s) Ι(Κgm ) u(m/s) ω (ad/s) Iμ= ΠΙΝΑΚΑΣ Xρόνος Δυναμική Εν. Κινητική Μετ. Κινητική Περ. Κινητική Ολική t(s) U (J) Kt (J) K (J) K (J) Βιβλιογραφία: 1. PHYWE Laboatoy Expeiments, Phywe publications. Physics Lab Manual, Depatment of Physics, King Fahd Univesity

10 ΕΝΔΕΙΚΤΙΚΕΣ ΜΕΤΡΗΣΕΙΣ No m=16,1 g =5mm Α. Υπολογισμός Ροπής Αδρανείας και μελέτη της κίνησης ΠΙΝΑΚΑΣ (1) Διάστημα h(m) Xρόνος t(s) Ροπή Αδρανείας Ι(Κgm )x10 4 Mεταφορική Ταχ. U(m/s) Γωνιακή Ταχύτητa ω (ad/s) 1 0,15 0,81 0,65 0, ,0 0,97 0,69 0, ,5 1,07 0,67 0, ,30 1,16 0,66 0, ,35 1,7 0,68 0, ,40 1,36 0,68 0, ,45 1,48 0,7 0, ,50 1,57 0,73 0, Iμ= 0,68 0,7 0,6 0,5 Δι'αστημα (m) 0,4 0,3 0, 0,1 Σειρά 0 0 0,5 1 1,5 Χρόνος (t) (Διάγραμμα Α)

11 0,8 Τ α χ ύ τ η τ α m / s 0,7 0,6 0,5 0,4 0,3 0, 0,1 y = 0,4349x 0, ,5 1 1,5 Χρόνος (s) (Διάγραμμα Β) Eίναι φανερό από τα διαγράμματα Α και Β πως το διάστημα ακολουθεί παραβολική συνάρτηση ενώ η ταχύτητα αυξάνει γραμμικά, κάτι που συμφωνεί 1 mg mg ht () t u() t t I και με τις εξισώσεις : m I m, Β. Μετατροπές Ενέργειας ΠΙΝΑΚΑΣ Xρόνος t(s) Δυναμική Εν. U (J) Κινητική Μετ. Kt (J) Κινητική Περ. K (J) Κινητική Ολική K (J) 0,81 0,18 0,17 0,008 0,178 0,97 0,4 0,3 0,011 0,41 1,07 0,30 0,9 0,013 0,303 1,16 0,37 0,34 0,016 0,356 1,7 0,43 0,41 0,019 0,49 1,36 0,49 0,47 0,0 0,49 1,48 0,55 0,55 0,05 0,575 1,57 0,61 0,63 0,09 0,659

12 Ο πίνακας () δείχνει την δυναμική ενέργεια και την κινητική ενέργεια. Σε όλη την διάρκεια της κίνησης έχουν σχεδόν την ίδια τιμή. Αξίζει να παρατηρήσουμε πως το μεγαλύτερο μέρος της δυναμικής ενέργειας μετατρέπεται σε κινητική λόγω περιστροφής. Δυναμική Ενέργεια (J) 0,00 0,10 0 0,5 1 1,5 0,0 0,30 0,40 0,50 0,60 0,70 Χρόνος(s) Διάγραμμα (Γ) Δυναμική Ενέργεια (αρνητική). Ολική Κινητική Ενέργεια (J) 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 0, ,5 1 1,5 Xρόνος (s) Διάγραμμα (Δ)

13 Περιστροφική (ρόμβοι) Μεταφορική (τετράγωνα) (J) 0,9 0,8 0,7 Κατανομή Κινητικής Ενέργειας 0,6 0,5 0,4 0,3 0, 0, ,5 Χρόνος(s) 1 1,5 Διάγραμμα (Ε) Περιστροφική Κινητική Ενέργεια (μπλέ ρόμβοι), Μεταφορική Κινητική Ενέργεια (κόκκινα τετράγωνα).

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) ύο καράβια αναχωρούν από το ίδιο λιµάνι. Το ένα κινείται µε 5 Km/h προς τα νότια και το άλλο µε Km/h προς τα ανατολικά. Να εκϕράσετε

Διαβάστε περισσότερα

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες 20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Τεχνική φλοπ Φορά Σκοπός της φοράς είναι να αναπτυχθεί μια ιδανική για τον κάθε αθλητή ταχύτητα και ταυτόχρονα να προετοιμάσει το πάτημα. Το είδος της φοράς του Fosbury ήτα, μια

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται

α) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται 1. Ο πληθωρισμός ορίζεται ως εξής: (Δ= μεταβολή, Ρ= επίπεδο τιμών, Ρ e = προσδοκώμενο επίπεδο τιμών): α) Δ Ρ e /Ρ β) Ρ e / Ρ γ) Δ Ρ/Ρ δ) (Ρ Ρ e )/Ρ 2. Όταν οι εξαγωγές αυξάνονται: α) Το έλλειμμα ή το πλεόνασμα

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης (β) Η απόλυτη υπεραξία Αγορά και πώληση της εργασιακής δύναμης Στο κεφάλαιο για την αγορά και την πώληση της εργατικής δύναμης (ελληνική έκδοση: τόμος

Διαβάστε περισσότερα

Πειραματικές δοκιμές πρότυπης περισταλτικής αντλίας δύο σταδίων έγχυσης για τον προσδιορισμό της απόδοσής της

Πειραματικές δοκιμές πρότυπης περισταλτικής αντλίας δύο σταδίων έγχυσης για τον προσδιορισμό της απόδοσής της ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΒΙΟΙΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Διπλωματική εργασία Πειραματικές δοκιμές πρότυπης περισταλτικής αντλίας

Διαβάστε περισσότερα

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται 1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ HMEΡΟΜΗΝΙΑ ΔΗΜΟΣΙΕΥΣΗΣ: 4 ΑΠΡΙΛΙΟΥ: ΩΡΑ 10μ.μ Τα παρακάτω θέματα δημοσιεύονται αποκλειστικά και μόνο για όσους υποψήφιους του φροντιστηρίου μας δεν κατάφεραν να προσέλθουν στα επαναληπτικά μαθήματα που

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΚΗΣ ΕΝΤΡΟΠΙΑΣ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΚΑΙ ΤΗ ΣΚΕ ΑΣΗ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΚΗΣ ΕΝΤΡΟΠΙΑΣ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΚΑΙ ΤΗ ΣΚΕ ΑΣΗ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΒΑΣΙΛΕΙΟΣ Π. ΨΩΝΗΣ ΕΦΑΡΜΟΓΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΚΗΣ ΕΝΤΡΟΠΙΑΣ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ ΚΑΙ ΤΗ ΣΚΕ

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι:

1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: 1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: α) Ανεξάρτητα από το ύψος της τιμής των οσπρίων, ο καταναλωτής θα δαπανά πάντα ένα σταθερό

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ ΚΑΙ ΔΗΜΟΤΙΚΩΝ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ Επιμέλεια Άγγελου Αργυρακόπουλου

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Κλασικός Αθλητισμός Δρόμοι : Μεσαίες και μεγάλες αποστάσεις Ταχύτητες Σκυταλοδρομίες Δρόμοι με εμπόδια Δρόμοι Μεσαίων και Μεγάλων αποστάσεων Στην αρχαία εποχή ο δρόμος που είχε

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 1 Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 2 Εισαγωγή: Η

Διαβάστε περισσότερα

Βελτίωση Εικόνας. Σήμερα!

Βελτίωση Εικόνας. Σήμερα! Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram

Διαβάστε περισσότερα

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή Μητροπολιτικά Οπτικά Δίκτυα 11.1. Εισαγωγή Τα τηλεπικοινωνιακά δίκτυα είναι διαιρεμένα σε μια ιεραρχία τριών επιπέδων: Στα δίκτυα πρόσβασης, τα μητροπολιτικά δίκτυα και τα δίκτυα κορμού. Τα δίκτυα κορμού

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Κινητική Μάθηση Μέρος Πρώτο : Ανθρώπινη απόδοση εκτέλεση 1. Εισαγωγή «Η ικανότητα που έχει κάποιος, να πετυχαίνει ένα τελικό αποτέλεσμα με την μεγαλύτερη δυνατή σιγουριά και τη

Διαβάστε περισσότερα

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. 1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων

Διαβάστε περισσότερα

«Απόδοση φωτοβολταϊκών στοιχείων και φωτοβολταϊκών συστημάτων υπό συνθήκες σκίασης και χαμηλής έντασης ακτινοβολίας»

«Απόδοση φωτοβολταϊκών στοιχείων και φωτοβολταϊκών συστημάτων υπό συνθήκες σκίασης και χαμηλής έντασης ακτινοβολίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Κατεύθυνση Εφαρμοσμένης Φυσικής «Απόδοση φωτοβολταϊκών στοιχείων και φωτοβολταϊκών συστημάτων υπό συνθήκες σκίασης και χαμηλής έντασης ακτινοβολίας»

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 A Πανεπιστήμιο Αιγαίου Σχολή Επιστημών της ιοίκησης Τμήμα Μηχανικών Οικονομίας και ιοίκησης Εργαστήριο Στατιστικής Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 26Επιμέλεια:

Διαβάστε περισσότερα

3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι:

3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι: 1. Σε περίπτωση που το κράτος φορολογεί τους πολίτες το διαθέσιμο εισόδημα του κάθε ατόμου είναι: α) το σύνολο του εισοδήματός του β) το σύνολο του εισοδήματός του, αφού προηγουμένως αφαιρέσουμε τους φόρους

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 Ένας χρήστης μιας PDH μισθωμένης γραμμής χρησιμοποιεί μια συσκευή πρόσβασης που υλοποιεί τη στοίβα ΑΤΜ/Ε1. α) Ποιος είναι ο μέγιστος υποστηριζόμενος ρυθμός (σε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΣΠΗΛΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΡΓΑΣΤΗΡΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ από τον Κοσμά Γαζέα

ΕΛΛΗΝΙΚΗ ΣΠΗΛΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΡΓΑΣΤΗΡΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ από τον Κοσμά Γαζέα ΕΛΛΗΝΙΚΗ ΣΠΗΛΑΙΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ ΕΡΓΑΣΤΗΡΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ από τον Κοσμά Γαζέα Πραγματοποιήθηκε με επιτυχία το προγραμματισμένο Εργαστήρι Χαρτογράφησης της Ελληνικής Σπηλαιολογικής Εταιρείας από τις 26 Νοεμβρίου

Διαβάστε περισσότερα

1. Η Μακροοικονομική ασχολείται με τη λειτουργία και τα προβλήματα: α) των δημοσίων επιχειρήσεων και των οργανισμών. β) των ιδιωτικών επιχειρήσεων

1. Η Μακροοικονομική ασχολείται με τη λειτουργία και τα προβλήματα: α) των δημοσίων επιχειρήσεων και των οργανισμών. β) των ιδιωτικών επιχειρήσεων 1. Η Μακροοικονομική ασχολείται με τη λειτουργία και τα προβλήματα: α) των δημοσίων επιχειρήσεων και των οργανισμών. β) των ιδιωτικών επιχειρήσεων γ) του στενού δημόσιου τομέα. δ) της συμπεριφοράς ολόκληρης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Διδάσκων : Πομπιέρη Βασιλεία, Δικηγόρος, LLM UCL Πτωχευτικό Δίκαιο Σημαντικότερες ρυθμίσεις σε προπτωχευτικό στάδιο. Εισαγωγή της διαδικασίας συνδιαλλαγής Σκοπός Η διάσωση και εξυγίανση

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΑΝΤΙΟΠΗ ΓΙΓΑΝΤΙ ΟΥ Τοµεάρχης Λειτουργίας Κέντρων Ελέγχου Συστηµάτων Μεταφοράς ιεύθυνσης ιαχείρισης Νησιών ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ ΚΡΗΤΗΣ 2009 Εγκατεστηµένη Ισχύς (Ατµοµονάδες, Μονάδες

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΡΧΕΙΑ Ο πιο γνωστός τρόπος οργάνωσης δεδομένων με τη χρήση ηλεκτρονικών υπολογιστών είναι σε αρχεία. Ένα αρχείο μπορούμε να το χαρακτηρίσουμε σαν ένα σύνολο που αποτελείται από οργανωμένα

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πανεπιστήμιο Πειραιώς Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Παραμετρικά Μοντέλα Επιβίωσης που προκύπτουν από μεταβολές

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

Η Θεωρια Αριθμων στην Εκπαιδευση

Η Θεωρια Αριθμων στην Εκπαιδευση Η Θεωρια Αριθμων στην Εκπαιδευση Καθηγητὴς Ν.Γ. Τζανάκης Εφαρμογὲς τῶν συνεχῶν κλασμάτων 1 1. Η τιμὴ τοῦ π μὲ σωστὰ τὰ 50 πρῶτα δεκαδικὰ ψηφία μετὰ τὴν ὑποδιαστολή, εἶναι 3.14159265358979323846264338327950288419716939937511.

Διαβάστε περισσότερα

ΤΙΜΕΣ DISNEYLAND RESORT PARIS

ΤΙΜΕΣ DISNEYLAND RESORT PARIS ΤΙΜΕΣ DISNEYLAND RESORT PARIS 09 Νοεµβρίου 2009 01 Απριλίου 2010 DISNEYLAND 4 3 2 1 4 3 2 1 4 3 2 1 CHD ΠΑΚΕΤΟ 2N/3Μ 350 419 558 973 392 475 641 1140 491 607 840 1538 117 ΠΑΚΕΤΟ 3N/4Μ 464 562 760 1353

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

To παιχνίδι την Αρχαία Ελλάδα

To παιχνίδι την Αρχαία Ελλάδα To παιχνίδι την Αρχαία Ελλάδα Μέχρι τα επτά του χρόνια το παιδί έμενε στο σπίτι, όπου έπαιζε διάφορα παιχνίδια. Ο Πλάτων κι ο Αριστοτέλης συμβούλευαν τους γονείς να αφήνουν τα παιδιά τους να διασκεδάζουν

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

2. Δίκτυα Πολυπλεξίας Μήκους Κύματος (WDM Δίκτυα)

2. Δίκτυα Πολυπλεξίας Μήκους Κύματος (WDM Δίκτυα) 2. Δίκτυα Πολυπλεξίας Μήκους Κύματος (WDM Δίκτυα) Η πολυπλεξία μήκους κύματος (WDM πολυπλεξία) παρέχει συμβατότητα μεταξύ του εύρους ζώνης του οπτικού μέσου οπτική ίνα και του εύρους ζώνης του τερματικού

Διαβάστε περισσότερα

Το εγχειρίδιο του καλού κηπουρού

Το εγχειρίδιο του καλού κηπουρού Το εγχειρίδιο του καλού κηπουρού 1. Φροντίδα των φυτών Αφού αποφάσισες να φυτέψεις πρέπει να είσαι έτοιμος να ασχοληθείς με τα φυτά σου και να παρακολουθείς τις ανάγκες τους. Θα πρέπει να ποτίζεις όποτε

Διαβάστε περισσότερα

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης Συγκέντρωση Κίνησης 6.1. Εισαγωγή Σε ένα οπτικό WDM δίκτυο, οι κόμβοι κορμού επικοινωνούν μεταξύ τους και ανταλλάσουν πληροφορία μέσω των lightpaths. Ένα WDM δίκτυο κορμού είναι υπεύθυνο για την εγκατάσταση

Διαβάστε περισσότερα

III. ΕΠΙΔΡΑΣΗ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ

III. ΕΠΙΔΡΑΣΗ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ III. ΕΠΙΔΡΑΣΗ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ III.1 ΓΕΝΙΚΑ Είναι γνωστό ότι η ανάπτυξη υψηλών θερμοκρασιών στα υλικά δομήσεως επηρεάζει δυσμενώς τόσο τα μηχανικά χαρακτηριστικά τους (όπως

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΕΙΚΟΝΑΣ ADOBE PHOTOSHOP CS ΑΝΑΣΤΑΣΙΟΣ Β. ΣΥΜΕΩΝΙ ΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του mathematica.gr. Μετατροπές

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ Μορφές δημόσιου δανεισμού Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate 1 Ανάλογα με την πηγή προελεύσεως των πόρων Με βάση το κριτήριο αυτό, ο δανεισμός διακρίνεται

Διαβάστε περισσότερα

Άσκηση του δικαιώματος σημαίνει την εξουσία του δικαιούχου να ενεργήσει για την

Άσκηση του δικαιώματος σημαίνει την εξουσία του δικαιούχου να ενεργήσει για την Καραίσκος Δημήτριος: Δικηγόρος υπ. Διδάκτωρ Ιδιωτικού Δικαίου Παν/μίου Αθηνών 1. Άσκηση και κατάχρηση του δικαιώματος Άσκηση του δικαιώματος σημαίνει την εξουσία του δικαιούχου να ενεργήσει για την αξιοποίηση

Διαβάστε περισσότερα

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133 ÅéêïóéäùäåêÜåäñïí Ìáèçìáôéêü Äåëôßï Ôåý ïò 3ï Ïêôþâñéïò 04 www.mathematica.gr ISSN: 4-733 Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΖΗΤΗΣΗΣ ΤΡΟΦΙΜΩΝ : ΜΙΑ ΜΙΚΡΟΟΙΚΟΝΟΜΕΤΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΖΗΤΗΣΗΣ ΤΡΟΦΙΜΩΝ : ΜΙΑ ΜΙΚΡΟΟΙΚΟΝΟΜΕΤΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΡΟΦΙΜΩΝ & ΓΕΩΡΓΙΑΣ ΣΥΝΕΡΓΑΖΟΜΕΝΟ ΤΜΗΜΑ: ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

του συνεργάτη μας Λογιστή Α Τάξεως Γεωργίου Μακρίδη 1. Ποιο από τα παρακάτω δεν περιλαμβάνεται στο Πραγματικό Παθητικό

του συνεργάτη μας Λογιστή Α Τάξεως Γεωργίου Μακρίδη 1. Ποιο από τα παρακάτω δεν περιλαμβάνεται στο Πραγματικό Παθητικό του συνεργάτη μας Λογιστή Α Τάξεως Γεωργίου Μακρίδη 1. Ποιο από τα παρακάτω δεν περιλαμβάνεται στο Πραγματικό Παθητικό μιας οικονομικής μονάδος: Α) Υποχρεώσεις προς τον Παπαδόπουλο, συνιδιοκτήτη της επιχείρησης.

Διαβάστε περισσότερα

Projects για το εργαστήριο. των Βάσεων Δεδομένων

Projects για το εργαστήριο. των Βάσεων Δεδομένων Projects για το εργαστήριο των Βάσεων Δεδομένων Θεσσαλονίκη, Νοέμβριος Δεκέμβριος 2013 1. Το πολυκατάστημα Το πολυκατάστημα έχει ένα σύνολο από εργαζομένους. Κάθε εργαζόμενος χαρακτηρίζεται από έναν κωδικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣ/ΝΙΚΗΣ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΦΥΣΙΚΟΘΕΡΑΠΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣ/ΝΙΚΗΣ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΦΥΣΙΚΟΘΕΡΑΠΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣ/ΝΙΚΗΣ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΦΥΣΙΚΟΘΕΡΑΠΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΑΠΟΚΑΤΑΣΤΑΣΗ ΜΕΤΑ ΑΠΟ ΟΛΙΚΗ ΡΗΞΗ ΠΡΟΣΘΙΟΥ ΧΙΑΣΤΟΥ ΣΥΝΔΕΣΜΟΥ ΤΟΥ ΓΟΝΑΤΟΣ» Εισηγητής:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ

ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΚΑΛΦΑΚΗ ΕΛΠΙΔΑ Α.Μ:4370 ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΧΑΝΙΑ ΙΟΥΝΙΟΣ 2013 Καλφάκη Ελπίδα Σελίδα 1 Καλφάκη Ελπίδα Σελίδα 2 "ΔΗΛΩΝΩ ΥΠΕΥΘΥΝΑ ΟΤΙ

Διαβάστε περισσότερα

ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ

ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ 1. Κριτήριο για ολιγόλεπτη εξέταση 91 (15 ) Στοιχεία µαθητή Ονοµατεπώνυµο:... Εξεταζόµενο µάθηµα: Αρχαία Ελληνική Γραµµατεία (µάθηµα κατεύθυνσης) Τάξη:... Ηµεροµηνία

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ και ΚΑΤΑΜΕΤΡΗΣΗ ΘΕΜΕΛΙΑΚΩΝ ΣΥΝ ΥΑΣΤΙΚΩΝ ΜΟΡΦΩΝ

ΟΡΙΣΜΟΣ και ΚΑΤΑΜΕΤΡΗΣΗ ΘΕΜΕΛΙΑΚΩΝ ΣΥΝ ΥΑΣΤΙΚΩΝ ΜΟΡΦΩΝ ΟΡΙΣΜΟΣ και ΚΤΜΤΡΗΣΗ ΘΜΛΙΚΩΝ ΣΥΝ ΥΣΤΙΚΩΝ ΜΟΡΦΩΝ. ΣΥΝΥΣΤΙΚΣ ΜΟΡΦΣ: η μορφολογία. Όλες οι συνδυαστικές μορφές που θα εξετάσουμε είναι διαφόρων ειδών συναρτήσεις. Οι «παράμετροι» που παραλλάσονται είναι οι

Διαβάστε περισσότερα

«Διεργασίες μεταφοράς και διασποράς της αέριας ρύπανσης

«Διεργασίες μεταφοράς και διασποράς της αέριας ρύπανσης ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ «Διεργασίες μεταφοράς και διασποράς της αέριας ρύπανσης 1 Ατμοσφαιρικός κύκλος της ρύπανσης Ως γνωστόν, οι ανθρωπογενείς εκπομπές ρύπων είναι υπεύθυνες για τα υψηλά επίπεδα ρύπανσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ Διδάσκων : Βασίλειος Σταματόπουλος, Δικηγόρος, Δ.Μ.Σ. Συνάντηση 4 η ΕΝΟΧΕΣ ΔΙΑΖΕΥΚΤΙΚΕΣ Εννοιολογική προσέγγιση. Διαζευκτική είναι η ενοχή που έχει ως αντικείμενο δύο ή περισσότερες

Διαβάστε περισσότερα

1. Εισαγωγή: Οπτικά Δίκτυα

1. Εισαγωγή: Οπτικά Δίκτυα 1. Εισαγωγή: Οπτικά Δίκτυα Τα οπτικά δίκτυα υψηλής χωρητικότητας έχουν γνωρίσει αξιοσημείωτη ανάπτυξη τις δύο τελευταίες δεκαετίας, καθώς παρέχουν εύρος ζώνης το οποίο δεν είναι δυνατόν να προσεγγιστεί

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης

ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης 2 ιά ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ Δρ Φασουλάς Χαράλαμπος Συντονιστής, Υπεύθυνος του Τμήματος Γεωποικιλότητας του Μουσείο Φυσικής Ιστορίας Κρήτης ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ Δρ Αμπαρτζάκη Μαρία, Παιδαγωγικό

Διαβάστε περισσότερα

ΕΚΠΑ, ΠΡΟΓΡΑΜΜΑ ΝΑΥΤΙΛΟΣ

ΕΚΠΑ, ΠΡΟΓΡΑΜΜΑ ΝΑΥΤΙΛΟΣ ΣΧΟΛΙΑ Οι κληρούχοι συντάκτες της αίτησης και οι εμπλεκόμενοι Πτολεμαϊκοί αξιωματούχοι Η αίτηση υποβάλλεται από δύο κληρούχους ιππείς, το Μακεδόνα Αντίμαχο, γιο του Αριστομήδη, και το Θράκα Ηρακλείδη,

Διαβάστε περισσότερα

ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ

ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ Eugene T. GENDLIN University of Chicago, U.S.A Αυτό το άρθρο είναι μια αναθεωρημένη έκδοση της πλήρους

Διαβάστε περισσότερα

Κεφάλαιο 68 Σχεδιασμός κλινικών μελετών και διαχείριση δεδομένων έρευνας

Κεφάλαιο 68 Σχεδιασμός κλινικών μελετών και διαχείριση δεδομένων έρευνας Κεφάλαιο 68 Σχεδιασμός κλινικών μελετών και διαχείριση δεδομένων έρευνας Γ. Η. Πανάγος 1195 ΟΡΘΗ ΠΡΑΚΤΙΚΗ ΔΙΕΞΑΓΩΓΗΣ ΚΛΙ ΝΙΚΩΝ ΜΕΛΕΤΏΝ Η ορθή πρακτική διεξαγωγής των κλινικών δοκιμών (GCP) είναι ένα διεθνές

Διαβάστε περισσότερα

Σπηλαιολογική Κατασκήνωση Βρωμονέρα Κύμης 26 Ιουλίου 6 Αυγούστου 2009

Σπηλαιολογική Κατασκήνωση Βρωμονέρα Κύμης 26 Ιουλίου 6 Αυγούστου 2009 Σπηλαιολογική Κατασκήνωση Βρωμονέρα Κύμης 26 Ιουλίου 6 Αυγούστου 2009 Βασίλης Τριζώνης μέλος ΣΠΕΛΕΟ Περιεχόμενα: Σπήλαια που εξερευνήθηκαν...3 1. Κολέθρα Μετοχίου...3 2. Καταβόθρα στην Λάκκα του Τσεκούρα...6

Διαβάστε περισσότερα

Επιλέγοντας τις κατάλληλες γλάστρες

Επιλέγοντας τις κατάλληλες γλάστρες Επιλέγοντας τις κατάλληλες γλάστρες Το τι γλάστρες θα χρησιμοποιήσετε εξαρτάται κυρίως από το πορτοφόλι σας αλλά και το προσωπικό σας γούστο. Οι επιλογές σας είναι αμέτρητες, τόσο σε ποιότητες όσο και

Διαβάστε περισσότερα

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Διδαγμένο Κείμενο ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Α1. Επομένως οι αρετές δεν υπάρχουν μέσα μας εκ φύσεως ούτε αντίθετα προς τη φύση μας, αλλά έχουμε από τη φύση την ιδιότητα να τις δεχτούμε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΣΕΠΕ ΟΑΕ ΙΚΑ ΕΤΑΜ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΣΤΟΝ ΙΔΙΩΤΙΚΟ ΤΟΜΕΑ ΔΕΚΕΜΒΡΙΟΣ 2013

ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΣΕΠΕ ΟΑΕ ΙΚΑ ΕΤΑΜ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΣΤΟΝ ΙΔΙΩΤΙΚΟ ΤΟΜΕΑ ΔΕΚΕΜΒΡΙΟΣ 2013 ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ ΣΕΠΕ ΟΑΕ ΙΚΑ ΕΤΑΜ ΡΟΕΣ ΜΙΣΘΩΤΗΣ ΑΠΑΣΧΟΛΗΣΗΣ ΣΤΟΝ ΙΔΙΩΤΙΚΟ ΤΟΜΕΑ ΔΕΚΕΜΒΡΙΟΣ 2013 2013: Ο ΠΡΩΤΟΣ ΧΡΟΝΟΣ ΕΦΑΡΜΟΓΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ ΠΣ «ΕΡΓΑΝΗ» Μονάδα Ανάλυσης

Διαβάστε περισσότερα

Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων ΚΟΛΛΙΝΤΖΑ

Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων ΚΟΛΛΙΝΤΖΑ 1 Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων ΚΟΛΛΙΝΤΖΑ Ο δημόσιος προϋπολογισμός είναι σχεδόν πάντοτε τεχνικά ισοσκελισμένος. Ένα τέτοιο όμως

Διαβάστε περισσότερα

Για την οικιακή εργασία

Για την οικιακή εργασία Για την οικιακή εργασία Μέσα στους τοίχους του νοικοκυριού η γυναικεία εργασία πραγματοποιείται έτσι ώστε να συμβάλει στην αναπαραγωγή του εμπορεύματος «εργασιακή δύναμη»: η αναπαραγωγή αυτή δεν πραγματοποιείται

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Σημειώσεις για το μάθημα ΣΤΑΤΙΣΤΙΚΗ ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Παπάνα Αγγελική http://users.auth.gr/~agpapana/statlogistics E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ

Διαβάστε περισσότερα

Επίσης, καθώς το κρύο θα υποχωρεί, βγάλτε πάλι έξω όσα φυτά μεταφέρατε στο σπίτι για να τα προστατέψατε από την παγωνιά.

Επίσης, καθώς το κρύο θα υποχωρεί, βγάλτε πάλι έξω όσα φυτά μεταφέρατε στο σπίτι για να τα προστατέψατε από την παγωνιά. Μάρτιος Καλό μήνα και καλή άνοιξη! Μπορεί ο Φεβρουάριος να μας τα χάλασε αλλά τελείωσε κι αυτός. Ότι κι αν φέρει ο Μάρτης ελπίζουμε να μην περιλαμβάνει ούτε χιόνι ούτε παγωνιά, φτάνει για φέτος και το

Διαβάστε περισσότερα

Καλλιεργήστε φρέσκα μυρωδικά στο μπαλκόνι

Καλλιεργήστε φρέσκα μυρωδικά στο μπαλκόνι Καλλιεργήστε φρέσκα μυρωδικά στο μπαλκόνι Ο άνηθος χρειάζεται βαθιά γλάστρα. Ο μαϊντανός θέλει συχνό πότισμα. Το κάρδαμο σε 40 μέρες από τη σπορά θα το απολαύσετε στη σαλάτα σας. Όλα αυτά συμβαίνουν στο

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...

Διαβάστε περισσότερα

Δίκαιο και Οικονομικά: Οι Εξετάσεις

Δίκαιο και Οικονομικά: Οι Εξετάσεις Δίκαιο και Οικονομικά: Οι Εξετάσεις Το κείμενο αυτό ανανεώνεται με τη δική σας παρέμβαση, τις ερωτήσεις, τα σχόλια και τις παρατηρήσεις σας. Θα συνεχίζει να ανανεώνεται μέχρι την ημέρα των εξετάσεων. Αυτή

Διαβάστε περισσότερα