# 10.4 Trigonometric Identities

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "10.4 Trigonometric Identities"

## Transcript

1 770 Foundations of Trigonometry 0. Trigonometric Identities In Section 0.3, we saw the utility of the Pythagorean Identities in Theorem 0.8 along with the Quotient and Reciprocal Identities in Theorem 0.6. Not only did these identities help us compute the values of the circular functions for angles, they were also useful in simplifying expressions involving the circular functions. In this section, we introduce several collections of identities which have uses in this course and beyond. Our first set of identities is the Even / Odd identities. Theorem 0.. Even / Odd Identities: For all applicable angles, cos( cos( sec( sec( sin( sin( csc( csc( tan( tan( cot( cot( In light of the Quotient and Reciprocal Identities, Theorem 0.6, it suffices to show cos( cos( and sin( sin(. The remaining four circular functions can be expressed in terms of cos( and sin( so the proofs of their Even / Odd Identities are left as exercises. Consider an angle plotted in standard position. Let 0 be the angle coterminal with with 0 0 < π. (We can construct the angle 0 by rotating counter-clockwise from the positive x-axis to the terminal side of as pictured below. Since and 0 are coterminal, cos( cos( 0 and sin( sin( 0. y y 0 0 P (cos( 0, sin( 0 x Q(cos( 0, sin( 0 x 0 We now consider the angles and 0. Since is coterminal with 0, there is some integer k so that 0 + π k. Therefore, 0 π k 0 + π ( k. Since k is an integer, so is ( k, which means is coterminal with 0. Hence, cos( cos( 0 and sin( sin( 0. Let P and Q denote the points on the terminal sides of 0 and 0, respectively, which lie on the Unit Circle. By definition, the coordinates of P are (cos( 0, sin( 0 and the coordinates of Q are (cos( 0, sin( 0. Since 0 and 0 sweep out congruent central sectors of the Unit Circle, it As mentioned at the end of Section 0., properties of the circular functions when thought of as functions of angles in radian measure hold equally well if we view these functions as functions of real numbers. Not surprisingly, the Even / Odd properties of the circular functions are so named because they identify cosine and secant as even functions, while the remaining four circular functions are odd. (See Section.6.

2 0. Trigonometric Identities 77 follows that the points P and Q are symmetric about the x-axis. Thus, cos( 0 cos( 0 and sin( 0 sin( 0. Since the cosines and sines of 0 and 0 are the same as those for and, respectively, we get cos( cos( and sin( sin(, as required. The Even / Odd Identities are readily demonstrated using any of the common angles noted in Section 0.. Their true utility, however, lies not in computation, but in simplifying expressions involving the circular functions. In fact, our next batch of identities makes heavy use of the Even / Odd Identities. Theorem 0.3. Sum and Difference Identities for Cosine: For all angles α and β, cos(α + β cos(α cos(β sin(α sin(β cos(α β cos(α cos(β + sin(α sin(β We first prove the result for differences. As in the proof of the Even / Odd Identities, we can reduce the proof for general angles α and β to angles α 0 and β 0, coterminal with α and β, respectively, each of which measure between 0 and π radians. Since α and α 0 are coterminal, as are β and β 0, it follows that α β is coterminal with α 0 β 0. Consider the case below where α 0 β 0. y y P (cos(α 0, sin(α 0 α 0 β 0 Q(cos(β 0, sin(β 0 A(cos(α 0 β 0, sin(α 0 β 0 α 0 β 0 α 0 β 0 O x O B(, 0 x Since the angles P OQ and AOB are congruent, the distance between P and Q is equal to the distance between A and B. The distance formula, Equation., yields (cos(α0 cos(β 0 + (sin(α 0 sin(β 0 (cos(α 0 β 0 + (sin(α 0 β 0 0 Squaring both sides, we expand the left hand side of this equation as (cos(α 0 cos(β 0 + (sin(α 0 sin(β 0 cos (α 0 cos(α 0 cos(β 0 + cos (β 0 + sin (α 0 sin(α 0 sin(β 0 + sin (β 0 cos (α 0 + sin (α 0 + cos (β 0 + sin (β 0 cos(α 0 cos(β 0 sin(α 0 sin(β 0 In the picture we ve drawn, the triangles P OQ and AOB are congruent, which is even better. However, α 0 β 0 could be 0 or it could be π, neither of which makes a triangle. It could also be larger than π, which makes a triangle, just not the one we ve drawn. You should think about those three cases.

3 77 Foundations of Trigonometry From the Pythagorean Identities, cos (α 0 + sin (α 0 and cos (β 0 + sin (β 0, so (cos(α 0 cos(β 0 + (sin(α 0 sin(β 0 cos(α 0 cos(β 0 sin(α 0 sin(β 0 Turning our attention to the right hand side of our equation, we find (cos(α 0 β 0 + (sin(α 0 β 0 0 cos (α 0 β 0 cos(α 0 β sin (α 0 β 0 + cos (α 0 β 0 + sin (α 0 β 0 cos(α 0 β 0 Once again, we simplify cos (α 0 β 0 + sin (α 0 β 0, so that (cos(α 0 β 0 + (sin(α 0 β 0 0 cos(α 0 β 0 Putting it all together, we get cos(α 0 cos(β 0 sin(α 0 sin(β 0 cos(α 0 β 0, which simplifies to: cos(α 0 β 0 cos(α 0 cos(β 0 + sin(α 0 sin(β 0. Since α and α 0, β and β 0 and α β and α 0 β 0 are all coterminal pairs of angles, we have cos(α β cos(α cos(β + sin(α sin(β. For the case where α 0 β 0, we can apply the above argument to the angle β 0 α 0 to obtain the identity cos(β 0 α 0 cos(β 0 cos(α 0 + sin(β 0 sin(α 0. Applying the Even Identity of cosine, we get cos(β 0 α 0 cos( (α 0 β 0 cos(α 0 β 0, and we get the identity in this case, too. To get the sum identity for cosine, we use the difference formula along with the Even/Odd Identities cos(α + β cos(α ( β cos(α cos( β + sin(α sin( β cos(α cos(β sin(α sin(β We put these newfound identities to good use in the following example. Example Find the exact value of cos (.. Verify the identity: cos sin(. Solution.. In order to use Theorem 0.3 to find cos (, we need to write as a sum or difference of angles whose cosines and sines we know. One way to do so is to write 30. cos ( cos ( 30 cos ( cos (30 + sin ( sin (30 ( ( ( (

4 0. Trigonometric Identities 773. In a straightforward application of Theorem 0.3, we find cos cos cos ( + sin sin ( (0 (cos( + ( (sin( sin( The identity verified in Example 0.., namely, cos sin(, is the first of the celebrated cofunction identities. These identities were first hinted at in Exercise 7 in Section 0.. From sin( cos, we get: [ π ] sin cos cos(, which says, in words, that the co sine of an angle is the sine of its co mplement. Now that these identities have been established for cosine and sine, the remaining circular functions follow suit. The remaining proofs are left as exercises. Theorem 0.. Cofunction Identities: For all applicable angles, cos sin( sec csc( tan cot( sin cos( csc sec( cot tan( With the Cofunction Identities in place, we are now in the position to derive the sum and difference formulas for sine. To derive the sum formula for sine, we convert to cosines using a cofunction identity, then expand using the difference formula for cosine sin(α + β cos (α + β ([ π ] cos α β cos α cos(β + sin α sin(β sin(α cos(β + cos(α sin(β We can derive the difference formula for sine by rewriting sin(α β as sin(α + ( β and using the sum formula and the Even / Odd Identities. Again, we leave the details to the reader. Theorem 0.. Sum and Difference Identities for Sine: For all angles α and β, sin(α + β sin(α cos(β + cos(α sin(β sin(α β sin(α cos(β cos(α sin(β

5 77 Foundations of Trigonometry Example Find the exact value of sin ( 9π. If α is a Quadrant II angle with sin(α 3, and β is a Quadrant III angle with tan(β, find sin(α β. 3. Derive a formula for tan(α + β in terms of tan(α and tan(β. Solution.. As in Example 0.., we need to write the angle 9π as a sum or difference of common angles. The denominator of suggests a combination of angles with denominators 3 and. One such combination is 9π π 3 + π. Applying Theorem 0., we get ( ( 9π π sin sin 3 + π ( π ( π sin cos + cos sin 3 3 ( ( ( 3 + ( 6. In order to find sin(α β using Theorem 0., we need to find cos(α and both cos(β and sin(β. To find cos(α, we use the Pythagorean Identity cos (α + sin (α. Since sin(α 3, we have cos (α + ( 3, or cos(α ± 3. Since α is a Quadrant II angle, cos(α 3. We now set about finding cos(β and sin(β. We have several ways to proceed, but the Pythagorean Identity + tan (β sec (β is a quick way to get sec(β, and hence, cos(β. With tan(β, we get + sec (β so that sec(β ±. Since β is a Quadrant III angle, we choose sec(β so cos(β sec(β. We now need to determine sin(β. We could use The Pythagorean Identity cos (β + sin (β, but we opt instead to use a quotient identity. From tan(β sin(β cos(β, we have sin(β tan(β cos(β ( so we get sin(β (. We now have all the pieces needed to find sin(α β: sin(α β sin(α cos(β cos(α sin(β ( ( ( (

6 0. Trigonometric Identities We can start expanding tan(α + β using a quotient identity and our sum formulas tan(α + β sin(α + β cos(α + β sin(α cos(β + cos(α sin(β cos(α cos(β sin(α sin(β Since tan(α sin(α sin(β cos(α and tan(β cos(β, it looks as though if we divide both numerator and denominator by cos(α cos(β we will have what we want tan(α + β sin(α cos(β + cos(α sin(β cos(α cos(β sin(α sin(β cos(α cos(β cos(α cos(β sin(α cos(β cos(α sin(β + cos(α cos(β cos(α cos(β cos(α cos(β sin(α sin(β cos(α cos(β cos(α cos(β sin(α cos(β cos(α cos(β + cos(α sin(β cos(α cos(β cos(α cos(β sin(α sin(β cos(α cos(β cos(α cos(β tan(α + tan(β tan(α tan(β Naturally, this formula is limited to those cases where all of the tangents are defined. The formula developed in Exercise 0.. for tan(α+β can be used to find a formula for tan(α β by rewriting the difference as a sum, tan(α+( β, and the reader is encouraged to fill in the details. Below we summarize all of the sum and difference formulas for cosine, sine and tangent. Theorem 0.6. Sum and Difference Identities: For all applicable angles α and β, cos(α ± β cos(α cos(β sin(α sin(β sin(α ± β sin(α cos(β ± cos(α sin(β tan(α ± β tan(α ± tan(β tan(α tan(β In the statement of Theorem 0.6, we have combined the cases for the sum + and difference of angles into one formula. The convention here is that if you want the formula for the sum + of

7 776 Foundations of Trigonometry two angles, you use the top sign in the formula; for the difference,, use the bottom sign. For example, tan(α tan(β tan(α β + tan(α tan(β If we specialize the sum formulas in Theorem 0.6 to the case when α β, we obtain the following Double Angle Identities. Theorem 0.7. Double Angle Identities: For all applicable angles, cos ( sin ( cos( cos ( sin ( sin( sin( cos( tan( tan( tan ( The three different forms for cos( can be explained by our ability to exchange squares of cosine and sine via the Pythagorean Identity cos ( + sin ( and we leave the details to the reader. It is interesting to note that to determine the value of cos(, only one piece of information is required: either cos( or sin(. To determine sin(, however, it appears that we must know both sin( and cos(. In the next example, we show how we can find sin( knowing just one piece of information, namely tan(. Example Suppose P ( 3, lies on the terminal side of when is plotted in standard position. Find cos( and sin( and determine the quadrant in which the terminal side of the angle lies when it is plotted in standard position.. If sin( x for π π, find an expression for sin( in terms of x. 3. Verify the identity: sin( tan( + tan (.. Express cos(3 as a polynomial in terms of cos(. Solution.. Using Theorem 0.3 from Section 0. with x 3 and y, we find r x + y. Hence, cos( 3 and sin(. Applying Theorem 0.7, we get cos( cos ( sin ( ( 3 ( 7, and sin( sin( cos( ( ( 3. Since both cosine and sine of are negative, the terminal side of, when plotted in standard position, lies in Quadrant III.

8 0. Trigonometric Identities 777. If your first reaction to sin( x is No it s not, cos( x! then you have indeed learned something, and we take comfort in that. However, context is everything. Here, x is just a variable - it does not necessarily represent the x-coordinate of the point on The Unit Circle which lies on the terminal side of, assuming is drawn in standard position. Here, x represents the quantity sin(, and what we wish to know is how to express sin( in terms of x. We will see more of this kind of thing in Section 0.6, and, as usual, this is something we need for Calculus. Since sin( sin( cos(, we need to write cos( in terms of x to finish the problem. We substitute x sin( into the Pythagorean Identity, cos ( + sin (, to get cos ( + x, or cos( ± x. Since π π, cos( 0, and thus cos( x. Our final answer is sin( sin( cos( x x. 3. We start with the right hand side of the identity and note that + tan ( sec (. From this point, we use the Reciprocal and Quotient Identities to rewrite tan( and sec( in terms of cos( and sin(: ( sin( tan( + tan tan( ( sin( ( sec ( cos ( cos( cos( cos ( ( sin( cos( cos( cos( sin( cos( sin(. In Theorem 0.7, one of the formulas for cos(, namely cos( cos (, expresses cos( as a polynomial in terms of cos(. We are now asked to find such an identity for cos(3. Using the sum formula for cosine, we begin with cos(3 cos( + cos( cos( sin( sin( Our ultimate goal is to express the right hand side in terms of cos( only. We substitute cos( cos ( and sin( sin( cos( which yields cos(3 cos( cos( sin( sin( ( cos ( cos( ( sin( cos( sin( cos 3 ( cos( sin ( cos( Finally, we exchange sin ( for cos ( courtesy of the Pythagorean Identity, and get and we are done. cos(3 cos 3 ( cos( sin ( cos( cos 3 ( cos( ( cos ( cos( cos 3 ( cos( cos( + cos 3 ( cos 3 ( 3 cos(

9 778 Foundations of Trigonometry In the last problem in Example 0..3, we saw how we could rewrite cos(3 as sums of powers of cos(. In Calculus, we have occasion to do the reverse; that is, reduce the power of cosine and sine. Solving the identity cos( cos ( for cos ( and the identity cos( sin ( for sin ( results in the aptly-named Power Reduction formulas below. Theorem 0.8. Power Reduction Formulas: For all angles, cos ( + cos( sin ( cos( Example 0... Rewrite sin ( cos ( as a sum and difference of cosines to the first power. Solution. We begin with a straightforward application of Theorem 0.8 sin ( cos ( ( ( cos( + cos( ( cos ( cos ( Next, we apply the power reduction formula to cos ( to finish the reduction sin ( cos ( cos ( ( + cos(( 8 8 cos( 8 8 cos( Another application of the Power Reduction Formulas is the Half Angle Formulas. To start, we apply the Power Reduction Formula to cos ( cos ( + cos ( ( + cos(. We can obtain a formula for cos ( by extracting square roots. In a similar fashion, we may obtain a half angle formula for sine, and by using a quotient formula, obtain a half angle formula for tangent. We summarize these formulas below.

10 0. Trigonometric Identities 779 Theorem 0.9. Half Angle Formulas: For all applicable angles, ( + cos( cos ± ( cos( sin ± ( cos( tan ± + cos( where the choice of ± depends on the quadrant in which the terminal side of lies. Example Use a half angle formula to find the exact value of cos (.. Suppose π 0 with cos( 3. Find sin (. 3. Use the identity given in number 3 of Example 0..3 to derive the identity ( tan sin( + cos( Solution.. To use the half angle formula, we note that 30 and since is a Quadrant I angle, its cosine is positive. Thus we have + cos (30 cos ( Back in Example 0.., we found cos ( by using the difference formula for cosine. In that case, we determined cos ( 6+. The reader is encouraged to prove that these two expressions are equal.. If π 0, then π 0, which means sin ( < 0. Theorem 0.9 gives ( ( cos ( 3 sin

11 780 Foundations of Trigonometry 3. Instead of our usual approach to verifying identities, namely starting with one side of the equation and trying to transform it into the other, we will start with the identity we proved in number 3 of Example 0..3 and manipulate it into the identity we are asked to prove. The identity we are asked to start with is sin( tan(. If we are to use this to derive an identity for tan ( +tan (, it seems reasonable to proceed by replacing each occurrence of with sin ( ( tan ( + tan ( tan ( sin( + tan ( We now have the sin( we need, but we somehow need to get a factor of + cos( involved. To get cosines involved, recall that + tan ( sec (. We continue to manipulate our given identity by converting secants to cosines and using a power reduction formula tan ( sin( + tan ( sin( tan ( sec ( sin( tan ( cos ( sin( tan ( ( + cos ( ( sin( tan ( ( + cos( ( sin( tan + cos( Our next batch of identities, the Product to Sum Formulas, 3 are easily verified by expanding each of the right hand sides in accordance with Theorem 0.6 and as you should expect by now we leave the details as exercises. They are of particular use in Calculus, and we list them here for reference. Theorem 0.0. Product to Sum Formulas: For all angles α and β, cos(α cos(β [cos(α β + cos(α + β] sin(α sin(β [cos(α β cos(α + β] sin(α cos(β [sin(α β + sin(α + β] 3 These are also known as the Prosthaphaeresis Formulas and have a rich history. The authors recommend that you conduct some research on them as your schedule allows.

12 0. Trigonometric Identities 78 Related to the Product to Sum Formulas are the Sum to Product Formulas, which we will have need of in Section 0.7. These are easily verified using the Product to Sum Formulas, and as such, their proofs are left as exercises. Theorem 0.. Sum to Product Formulas: For all angles α and β, ( ( α + β α β cos(α + cos(β cos cos ( ( α + β α β cos(α cos(β sin sin ( ( α ± β α β sin(α ± sin(β sin cos Example Write cos( cos(6 as a sum.. Write sin( sin(3 as a product. Solution.. Identifying α and β 6, we find cos( cos(6 [cos( 6 + cos( + 6] cos( + cos(8 cos( + cos(8, where the last equality is courtesy of the even identity for cosine, cos( cos(.. Identifying α and β 3 yields ( 3 sin( sin(3 sin cos sin ( cos ( sin ( cos (, ( + 3 where the last equality is courtesy of the odd identity for sine, sin( sin(. The reader is reminded that all of the identities presented in this section which regard the circular functions as functions of angles (in radian measure apply equally well to the circular (trigonometric functions regarded as functions of real numbers. In Exercises 38-3 in Section 0., we see how some of these identities manifest themselves geometrically as we study the graphs of the these functions. In the upcoming Exercises, however, you need to do all of your work analytically without graphs.

13 78 Foundations of Trigonometry 0.. Exercises In Exercises - 6, use the Even / Odd Identities to verify the identity. Assume all quantities are defined.. sin(3π sin( 3π. cos ( π ( t cos t + π 3. tan( t + tan(t. csc( csc( +. sec( 6t sec(6t 6. cot(9 7 cot(7 9 In Exercises 7 -, use the Sum and Difference Identities to find the exact value. You may have need of the Quotient, Reciprocal or Even / Odd Identities as well. 7. cos(7 8. sec(6 9. sin(0 0. csc(9. cot(. tan(37 ( ( 3π π 3. cos. sin ( ( 7π 7π 6. cos 7. tan ( ( π π 9. cot 0. csc. If α is a Quadrant IV angle with cos(α, and sin(β. tan ( 3π 8. sin (. sec π 0 0, where π (a cos(α + β (b sin(α + β (c tan(α + β (d cos(α β (e sin(α β (f tan(α β < β < π, find 3. If csc(α 3, where 0 < α < π, and β is a Quadrant II angle with tan(β 7, find (a cos(α + β (b sin(α + β (c tan(α + β (d cos(α β (e sin(α β (f tan(α β. If sin(α 3, where 0 < α < π, and cos(β 3 where 3π < β < π, find (a sin(α + β (b cos(α β (c tan(α β

14 0. Trigonometric Identities 783. If sec(α 3, where π < α < π, and tan(β 7, where π < β < 3π, find (a csc(α β (b sec(α + β (c cot(α + β In Exercises 6-38, verify the identity. 6. cos( π cos( 7. sin(π sin( ( 8. tan + π cot( 9. sin(α + β + sin(α β sin(α cos(β 30. sin(α + β sin(α β cos(α sin(β 3. cos(α + β + cos(α β cos(α cos(β 3. cos(α + β cos(α β sin(α sin(β 33. sin(α + β + cot(α tan(β sin(α β cot(α tan(β cos(α + β tan(α tan(β cos(α β + tan(α tan(β sin(t + h sin(t h cos(t + h cos(t h tan(t + h tan(t h tan(α + β 3. tan(α β ( ( sin(h cos(h cos(t + sin(t h h ( cos(h cos(t h sin(t ( ( tan(h sec (t h tan(t tan(h ( sin(h h sin(α cos(α + sin(β cos(β sin(α cos(α sin(β cos(β In Exercises 39-8, use the Half Angle Formulas to find the exact value. You may have need of the Quotient, Reciprocal or Even / Odd Identities as well. 39. cos(7 (compare with Exercise 7 0. sin(0 (compare with Exercise 9. cos(67.. sin(7. ( 7π 3. tan(.. cos (compare with Exercise 6. sin (compare with Exercise 8 6. cos 8 7. sin ( π 8 8. tan ( 7π 8

15 78 Foundations of Trigonometry In Exercises 9-8, use the given information about to find the exact values of sin( ( sin 9. sin( 7 where 3π cos( ( cos tan( ( tan < < π 0. cos( 8 3 where 0 < < π. tan( where π < < 3π. csc( where π < < π 3. cos( 3 where 0 < < π. sin( where π < < 3π. cos( 3 where 3π < < π 6. sin( 3 where π < < π 7. sec( where 3π < < π 8. tan( where π < < π In Exercises 9-73, verify the identity. Assume all quantities are defined. 9. (cos( + sin( + sin( 60. (cos( sin( sin( 6. tan( tan( + tan( 6. csc( cot( + tan( sin ( cos( cos( cos ( cos( + cos( sin(3 3 sin( sin 3 ( 66. sin( sin( cos 3 ( sin 3 ( cos( sin ( cos ( + cos( cos( cos( sin ( cos ( cos( cos( + cos(6 69. cos( 8 cos ( 8 cos ( cos(8 8 cos 8 ( 6 cos 6 ( + 60 cos ( 3 cos ( + (HINT: Use the result to sec( cos( cos( + sin( + sin( cos( sin( cos( sin( + cos( + sin( cos( cos( cos( sin( cos( + sin( sin( cos(

16 0. Trigonometric Identities 78 In Exercises 7-79, write the given product as a sum. You may need to use an Even/Odd Identity. 7. cos(3 cos( 7. sin( sin(7 76. sin(9 cos( 77. cos( cos(6 78. sin(3 sin( 79. cos( sin(3 In Exercises 80-8, write the given sum as a product. You may need to use an Even/Odd or Cofunction Identity. 80. cos(3 + cos( 8. sin( sin(7 8. cos( cos(6 83. sin(9 sin( 8. sin( + cos( 8. cos( sin( 86. Suppose is a Quadrant I angle with sin( x. Verify the following formulas (a cos( x (b sin( x x (c cos( x 87. Discuss with your classmates how each of the formulas, if any, in Exercise 86 change if we change assume is a Quadrant II, III, or IV angle. 88. Suppose is a Quadrant I angle with tan( x. Verify the following formulas (a cos( x + (b sin( x x + (c sin( x x + (d cos( x x Discuss with your classmates how each of the formulas, if any, in Exercise 88 change if we change assume is a Quadrant II, III, or IV angle. 90. If sin( x for π < < π, find an expression for cos( in terms of x. 9. If tan( x 7 for π < < π, find an expression for sin( in terms of x. 9. If sec( x for 0 < < π, find an expression for ln sec( + tan( in terms of x. 93. Show that cos ( sin ( cos ( sin ( for all. 9. Let be a Quadrant III angle with cos(. Show that this is not enough information to ( determine the sign of sin by first assuming 3π < < 7π and then assuming π < < 3π ( and computing sin in both cases.

17 786 Foundations of Trigonometry 9. Without using your calculator, show that In part of Example 0..3, we wrote cos(3 as a polynomial in terms of cos(. In Exercise 69, we had you verify an identity which expresses cos( as a polynomial in terms of cos(. Can you find a polynomial in terms of cos( for cos(? cos(6? Can you find a pattern so that cos(n could be written as a polynomial in cosine for any natural number n? 97. In Exercise 6, we has you verify an identity which expresses sin(3 as a polynomial in terms of sin(. Can you do the same for sin(? What about for sin(? If not, what goes wrong? 98. Verify the Even / Odd Identities for tangent, secant, cosecant and cotangent. 99. Verify the Cofunction Identities for tangent, secant, cosecant and cotangent. 00. Verify the Difference Identities for sine and tangent. 0. Verify the Product to Sum Identities. 0. Verify the Sum to Product Identities.

18 0. Trigonometric Identities Answers 6 7. cos( sin(0 8. sec( csc(9 6 ( + 6. cot( 3. cos tan( ( 3π 6 +. sin ( π ( 3π. tan ( 7π cos ( 7π 7. tan + ( π sin ( π 9. cot ( + ( π 3 0. csc 6 (. sec π 6. (a cos(α + β (c tan(α + β 7 0 (b sin(α + β 7 0 (d cos(α β (e sin(α β (f tan(α β 3. (a cos(α + β (c tan(α + β (b sin(α + β 8 30 (d cos(α β (e sin(α β (a sin(α + β 6 6 (b cos(α β 33 6 (f tan(α β (c tan(α β 6 33

19 788 Foundations of Trigonometry. (a csc(α β (b sec(α + β 7 (c cot(α + β cos( sin( cos( tan(. +. cos. sin(7. ( 7π 3 ( π 3. sin ( π + 7. sin cos 8 8. tan ( 7π sin( sin ( 0 0. sin( sin ( sin( 0 69 sin ( sin( 8 sin ( sin( sin ( cos( 7 6 cos ( 7 0 cos( 809 cos ( cos( 9 69 cos ( 3 3 cos( 7 8 cos ( 8 cos( 7 cos ( tan( tan ( 7 tan( 0 tan ( 9 tan( 0 9 tan ( 3 tan( 7 tan ( tan ( + tan( 7 tan (

20 0. Trigonometric Identities 789. sin( sin (. sin( 0 69 sin ( sin( 0 69 sin ( 6 6 cos( 7 cos ( cos( 9 69 cos ( 6 6 cos( 9 69 cos ( 6 6 tan( 7 tan ( tan( 0 9 tan ( tan( 0 9 tan ( 7. sin( sin ( cos( 3 cos ( tan( 3 tan ( + tan ( 0 8. sin( sin ( cos( 3 cos ( tan( 3 tan ( + tan ( cos( + cos(8 cos( + cos(8 80. cos( cos( cos( cos(9 cos( cos( ( 9 8. cos 83. cos( sin( 8. cos ( π ( sin 76. sin(8 + sin(0 sin( + sin( 79. ( ( 8. sin sin 8. ( sin π 90. x 9. x x ln x + x + 6 ln(

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

### Section 8.3 Trigonometric Equations

99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

### 9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

### Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

### Section 9.2 Polar Equations and Graphs

180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

### MATH 150 Pre-Calculus

MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

### Finite Field Problems: Solutions

Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

### Lecture 2. Soundness and completeness of propositional logic

Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### Second Order RLC Filters

ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

### Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

### HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

### 6.3 Forecasting ARMA processes

122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

### Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### w o = R 1 p. (1) R = p =. = 1

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

### Instruction Execution Times

1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### Strain gauge and rosettes

Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

### A Note on Intuitionistic Fuzzy. Equivalence Relation

International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### Forced Pendulum Numerical approach

Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

### Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

### Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

### Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

### Code Breaker. TEACHER s NOTES

TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

### ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

### CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

### Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

### ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

### Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

### Συντακτικές λειτουργίες

2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

### LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

### Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

### Partial Trace and Partial Transpose

Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

### Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

### Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

### Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

### 2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

### ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,

Διαβάστε περισσότερα

### Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

Chapter 5 Chapter 5 Exercise 5. minor arc = 50 60.4 0.8cm. major arc = 5 60 4.7 60.cm. minor arc = 60 90 60 6.7 8.cm 4. major arc = 60 0 60 8 = 6 = cm 5. minor arc = 50 5 60 0 = cm 6. major arc = 80 8

Διαβάστε περισσότερα

### Exercises to Statistics of Material Fatigue No. 5

Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

### Solution Series 9. i=1 x i and i=1 x i.

Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

### Variational Wavefunction for the Helium Atom

Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

### Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

### Risk! " #\$%&'() *!'+,'''## -. / # \$

Risk! " #\$%&'(!'+,'''## -. / 0! " # \$ +/ #%&''&(+(( &'',\$ #-&''&\$ #(./0&'',\$( ( (! #( &''/\$ #\$ 3 #4&'',\$ #- &'',\$ #5&''6(&''&7&'',\$ / ( /8 9 :&' " 4; < # \$ 3 " ( #\$ = = #\$ #\$ ( 3 - > # \$ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

### Three-Dimensional Rotations as Products of Simpler Rotations

Physics 116A Winter 011 Three-Dimensional Rotations as Products of Simpler Rotations 1. The most general 3 3 rotation matrix In a class handout entitled, Three-Dimensional Proper and Improper Rotation

Διαβάστε περισσότερα

### Advanced Subsidiary Unit 1: Understanding and Written Response

Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

### Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x

Διαβάστε περισσότερα

### Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

### 3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

### Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες

Διαβάστε περισσότερα

### Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

### UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

### Durbin-Levinson recursive method

Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

### Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

### Formula for Success a Mathematics Resource

A C A D E M I C S K I L L S C E N T R E ( A S C ) Formula for Success a Mathematics Resource P e t e r b o r o u g h O s h a w a Contents Section 1: Formulas and Quick Reference Guide 1. Formulas From

Διαβάστε περισσότερα

### On an area property of the sum cota + cotb + cotγ in a triangle

On an area property of the sum cota + cotb + cot in a triangle 1. Introduction Rummaging through an obscure trigonometry book published in Athens, Greece (and in the Greek language), and long out of print,

Διαβάστε περισσότερα