NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)"

Transcript

1 NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) Trenutna vrednost naizmeničnog napona: u(t) = U max sin(ωt + θ) Trenutna vrednost naizmenične struje: i(t) = I max sin(ωt + Ψ) a kružna (ugaona) frekvencija θ početna faza napona Ψ početna faza struje E max, U max, I max temene vrednosti signala Efektivna vrednost ems, napona i struje (za harmonijske oscilacije): Emax Umax Imax E =, U =, I =. Kompleksni predstavnici signala napona i struje: U = Ue jθ, I = Ie jψ Fazorski predstavnici signala napona i struje: U = U θ, I = Iψ Reaktansa kalema: X L = ωl (L koeficijent samoindukcije kalema) Reaktansa kondenzaora: X C 1 = (C kapacitet kondenzaora) ωc Kompleksna impedansa kola otpornosti R: Z = R Kompleksna impedansa idealnog kalema: Z = jx L Kompleksna impedansa idealnog kondenzatora: Z = jx C Kompleksna impedansa rednog kola: Z = R + j(x L X C )

2 Reaktansa kola: X = X L X C X L > X C kolo pretežno induktivno (ind.) X C > X L kolo pretežno kapacitivno (cap.) Kompleksna impedansa kola: Y = G + jb G aktivna provodnost ( konduktansa ) [S] B reaktivna provodnost ( susceptansa ) [S] Admitansa rednog RLC kola: Y = G + B, B = BC + BL Omov zakon za deo kola: U I =, Z impedansa dela kola Z Fazna razlika između napona i struje: X ϕ = θ ψ, tgϕ = R Kompleksna prividna snaga kola: S = U I * = P + jq I * konjugovana vrednost struje P (aktivna snaga kola): P = UIcosφ [W] Q ( reaktivna snaga kola ): Q = UIsinφ [VAr] Faktor snage kola: cosϕ = P S Uslov rezonancije u kolu naizmenične struje sa RLC vezom: 1 1 ωl= ; ωr = rezonantna frekvencija RLC kola. ωc LC

3 TEST 1 IME I PREZIME: GRUPA 1 SMER: 1. Kolika je ugaona učestanost, a koliki je period signala čija je frekvencija f = 100 MHz? a) ω = rad b) ω = rad c) ω = 6, rad s s s T = s T = 10ns T = s. Koji od izraza nije tačan? p: 5 Imax Imax a) I = b) ISR = c) ISR < I d) Imax = Kako glasi kompleksni izraz za struju it ( ) = sin( ωt 10)A? I p: 5 a) I = 10 e j10 A b) I = 7,07 e j10 A c) I = 10 A d) I = 5 e j10 A 4. Analitički izraz kompleksnog napona U = (10 j10 3)V glasi: p: 6 a) ut ( ) = 0sin( ωt 30)V b) ut () = 0 sin( ωt 60)V c) ut ( ) = 0 sin( ωt 30)V d) N.O.N p: 6

4 5. Prosto kolo sadrži generator naizmenične ems e(t) = Esin(ωt π/4) V. U kom trenutku posle t = 0 će ems prvi put dostignuti maksimalnu vrednost za f = 50 Hz? a) t 1 = 7,5 ms b) t 1 = 5 ms c) t 1 =,5 ms d) t 1 = 10 ms 6. Za fazor prostoperiodične struje prikazan na slici naći kompleksan izraz za struju. p:7 I a) I = A b) I = j A c) I = j A d) I = j A 7. Za prostoperiodičan signal napona prikazan na slici naći fazor napona: 10 V 10 V a) U b) f.o. c) O V 10V 10V U 60 f.o. O 8. a) Koja tri parametra potpuno određuju svaki prostoperiodičan signal? [p] b) Definicija efektivne vrednosti prostoperiodične struje. [3p] c) Podela naizmeničnih struja. [1p] d) Kako se dobijaju naizmenične struje? [1p] U p :7

5 TEST 1 IME I PREZIME: GRUPA SMER: 1. Kolika je frekvencija, a koliki je period signala čija je ugaona učestalost rad s? a) f = 100 khz b) f = 100 MHz c) f = 100 MHz T = s T = 10 ns T = s. Koji od izraza je tačan? p: 5 Imax Im π a) I = b) ISR = c) ISR < I d) ω = e) T = π f π f Kako glasi kompleksni izraz za struju it ( ) = sin( ωt+ 10)A? p :5 a) I = 10 e j10 A b) I = 5 e j10 10 A c) I = A d) I = 7,07 e j10 A p: 6 4. Trenutna vrednost (analitički oblik) signala napona za kompleksan napon U = (10 j10 3)V glasi: a) ut ( ) = 0sin( ωt 30) V b) ut ( ) = 0 sin( ωt 60) V c) ut ( ) = 0 sin( ωt+ 30) V d) ut () = 0sin ωt V e) N.O.N p: 6

6 5. Prosto kolo sadrži generator naizmenične ems e(t) = Esin(ωt π/4) V. U kom trenutku posle t = 0 će ems prvi put dostignuti maksimalnu vrednost za f = 50 Hz? a) t 1 = 5 ms b) t 1 = 7,5 ms c) t 1 =,5 ms d) t 1 = 10 ms 6. Za fazor prosto periodične struje prikazan na slici naći kompleksnog predstavnika U 100 V π π π a) U = 100 b) U = 100 c) U = 100 d) U = 100 π Za prostoperiodičan signal struje prikazane na slici fazor struje je: 1A i(t) π/6 ωt 1A a) b) c) 1 A I 1 A I I 8. a) Koja tri parametra potpuno određuju prostoperiodičan signal? [p] b) Definicija srednje vrednosti prostoperiodične struje. [3p] c) Podela vremenski promenljivih struja. [1p] d) Kako se dobijaju naizmenične struje? [1p]

7 NAIZMENIČNE STRUJE REDNA KOLA NAIZMENIČNE STRUJE VEŽBA BR Za kolo prostoperiodične struje, odrediti efektivnu vrednost i početnu fazu napona U. E = (10 j0) V Z = (100 + j300) Ω I = (0 j0) ma 10. Kalem induktivnosti L = 10 mh, vezan je na red sa elementom nepoznatih karakterisitka i ova veza je priključena na izvor: ut ( ) = 50sin(5000t+ π 6) V. Struja se menja u kolu po zakonu: 1 it ( ) = sin(5000t+ π 3) A. Odrediti koji je element vezan na red sa kalemom i odrediti njegove 4 karakterisitke.

8 11. Redna R, L, C veza priključena je na prostoperiodičan napon efektivne vrednosti U = 100 V, učestalosti f = 50 Hz i početne faze θ = π/. Ako je R = 0 Ω, L = 10 mh, C = 500 μf naći: a) izraz po kome se menja struja u kolu; b) izraz za trenutnu vrednost napona na kalemu induktivnosti L. 1. Za kolo prostoperiodično struje poznato je: R = 5 Ω, X = 15 Ω. Naći R 1, da napon u 1 prednjači naponu u za π/6.

9 TEST IME I PREZIME: GRUPA 1 SMER: 13. Za C kolo poznato je: ut ( ) = 15 sin( ωt+ π ) V, ω=10 rad, C= 80 μ F. Jačina struje u kolu je: 4 s a) I = A b) I = 1 A c) I = A d) N.O.N. p: Rezonancija RLC kola nastupa pri uslovu: a) X = R b) X = 0 c) R = 0 d) N.O.N. 15. Koji element je u kolu naizmenične struje ako je: ut ( ) = U sin( m ωt+ π ) 3 it ( ) = Im sin( ωt+ π ) 6 p: 5 a) R i C b) C c) R i L d) L e) N.O.N. p: Kompleksna impedansa za deo kola je: R 1 = R = 10 Ω X = X = 10 Ω L 1 C 1 L X = 0 Ω a) Z = 0 Ω b) Z = (0 + j10) Ω c) Z = (10 + j40) Ω d) N.O.N. p: 6

10 17. Ako su kompleksni izrazi za napon i struju: U = ( 80 + j60 ) V, I = 0 A, tada je: a) P = 1600 W b) P = 1660 W c) P = 1600 W d) N.O.N. Q = 100 VAr Q = 100 VAr Q = 100 VAr S = 000 VA S = 000 VA S = 000 VA 18. Za RL kolo dato je f = 50 Hz, R = 6 Ω, kalem je idealan. I = 5 A, U L = 40 V. Koliko je U? L, R L 0 R + U L + U a) U = 50 V b) U = 5 V c) U = 40 V 19. R 1 = R = 10 Ω, ω = 1000 rad/s U 1 = 40 V, I = 1 A, tada je L : a) L = 136,64 mh b) L = 3,664 mh c) L = 36,64 mh d) N.O.N. 0. a) Trougao impedanse RLC kola. [p] b) Kada je kolo pretežno induktivno, a kada kapacitivno? [3p] c) Trougao snage RLC kola. [p]

11 TEST IME I PREZIME: GRUPA SMER: 1. Za čisto induktivno kolo L = 10 mh, ω = 10 3 rad, u(t) = 141sin( ωt + π ) V. Jačina struje u kolu s 4 je: a) I = 14,1 A b) I = 10 A c) I = 14,1 A d) N.O.N.. Za RC kolo fazna razlika između napona i struje je φ = 45. Tada između R i X C postoji odnos: p: 5 a) R = X C b) R = X C c) R = X C d) N.O.N. π j 3. Naći Z ako je dato: U = 100 e V, I = 10 0 A. p: 5 a) Z = j10 Ω b) Z = j10 Ω c) Z = 10 Ω d) N.O.N. 4. Kompleksna impedansa za deo kola je: X = X = 0 Ω L1 L X = 5 Ω C1 X C = 15 Ω Z =? p: 6 a) Z = j0 Ω b) Z = j40 Ω c) Z = 0 Ω d) N.O.N. p: 6

12 5. Analtitički izrazi za napon i struju su: ut () = 0 sin ωt V, it ( ) = 5 sin( ωt+ π ) A. Tada su P, Q, 4 S: a) P = 50 W b) P = 50 W c) P = 50 W d) N.O.N. Q = 50 VAr Q = 50 VAr Q = 50 VAr S = 100 VA S = 100 VA S = 100 VA 6. Kolo sa impedansom Z = ( + j) Ω priključeno je na napon U = (60 j40) V. Tada je početna faza struje Ψ: a) Ψ = 57,99 b) Ψ = 71,56 c) Ψ = 71,56 d) N.O.N. 7. Za prikazano RC kolo je: U R = 30 V, U = 50 V. Tada je U C : a) U C = 40 V b) U C = 40 V c) U C = 0 V d) N.O.N. 8. a) Trougao impedanse RL kola. [p] b) Kompleksna struja RL kola. [3p] c) Trougao snage RL kola. [p]

13 NAIZMENIČNE STRUJE REDNA KOLA PROSTOPERIODIČNE STRUJE VEŽBA BR 9. Naći: a) impedanse pojedinih prijemnika b) fazne razlike φ 1 i φ prijemnika c) impedansu redne veze d) faznu razliku između napona i struje kola R = 30 Ω 1 L = 6 mh 1 R L C = 50 Ω = 10 mh = μf ω = 10 3 rad s

14 30. Otpornik i idealni kalem vezani su na red i priključeni na prostoperiodičan napon U = 100V. Ako je R = 3X L, naći efektivne vrednosti napona na kalemu U L, i otporniku U R. 31. Dva prijemnika vezana su na red i priključena na prostoperiodični napon U = 0V. Reaktivna provodnost celog kola je BBe = 0,01 S, a reaktivna snaga prvog prijemnika Q 1 = 00 VAr. Naći Q drugog prijemnika. 3. U rednom RL kolu priključenom na napon U važi da je U L = 3U R. Naći cosφ i napon U (nacrtati sliku).

15 NAIZMENIČNE STRUJE REDNA KOLA NAIZMENIČNE STRUJE ZADACI 33. Za kolo naizmenične struje sa slike poznato je: R = X L = 10 Ω X C = 0 Ω ut ( ) = 100 sin(500 t+ π ) 3 a) Naći kako se menja struja u kolu, i(t) =? b) Kolika je fazna razlika između napona i struje? 34. Poznato je Z 1 = j Ω, Z = + j Ω, Z 3 = j4 Ω, U = 50 e V π j Odrediti: a) kompleksnu struju I; b) efektivnu vrednost napona na impedansi Z 3 ; c) P, Q i S. 35. R 1 L 1 Poznato je: u, f C 1 Odrediti: a) napon na krajevima veze, u(t); b) P i cosφ. + u 1 (t) R = 10 Ω 1 L = 10 mh 1 ω = X C rad s = 0 Ω 3 () = 10 sin(10 + 3) V ut π 36. Poznato je: R 1 1 = R = 0 Ω L = 0 mh 3 rad ω = 10 s U = ( 50 + j50) V Naći: a) kompleksnu struju I; b) φ; c) P, Q, S.

16 37. Odrediti: a) efektivnu vrednost U; b) faznu razliku između napona i struje; c) faktor snage kola; d) aktivnu snagu kola. L = 10 mh 1 R = R = 10 Ω 1 C = 50 μf 1 3 rad ω = 10 s π u t = t () 50 sin(10 ) V 38. R = R = 40 Ω R 1 3 U = = 0 Ω j30 0 e V rad ω = 500 s Naći: a) i 3 (t); b) pokazivanje ampermetra I A =? (otpornost ampermetra zanemariti); c) P, Q, S. 39. Naći: R1 = 10 Ω R = 0 Ω L1 = 40 mh 3 rad ω = 10 s X = 30 Ω U = 00 V a) pokazivanje voltmetra; b) faktor snage kola; c) reaktivnu snagu kola (otpornost voltmetra je mnogo veća od nule). C

17 NAIZMENIČNE STRUJE VEŽBA BR Za kola naizmenične struje naći: a) Z ekv ; b) Y ekv. L 1 = L = 10 mh R 3 = R 1 = 10 Ω ω = 10 3 rad/s 41. Za mrežu prostoperiodične struje poznato je: u(t) = 50 cos(10 4 t + π/4) V, R 1 = 40 Ω, L 1 = 10 mh, C 1 = 5 μf, R = 50 Ω, C = 1 μf. Naći: a) admitansu kola Y; b) i(t) =? c) P i cosφ.

18 4. Za kolo naizmenične struje poznato je: R = 16 Ω, X L = 10 Ω, X C = 1 Ω, U C = 4 V. A I A R Naći: a) pokazivanje ampermetra; b) faktor snage kola; c) P. u, f C L u L 43. R = 10 Ω, X L = 10 Ω, U = (50 j50) V. Naći: a) i 3 (t); b) P, Q, S; c) cosφ.

19 NAIZMENIČNE STRUJE PARALELNA VEZA KOLA NAIZMENIČNE STRUJE ZADACI 44. R = 10 Ω, L = 3 mh, R 1 = 0 Ω, C 1 = 0 μf. a) Koliko je pokazivanje ampermetra za 40V (DC)? b) Koliko je pokazivanje ampermetra za 40V (AC)? (ω = 10 3 rad/s) 45. R = X L = 1 Ω, U = jv, ω = 10 3 rad/s. Naći: a) i (t); b) cosφ; c) P. 46. R = Ω, X L = 4 Ω, U = 8e j60 V. Naći: a) I 1 i I (efektivno); b) cosφ i P. 47. U = 60 V, I R = 4 A, I L = 3 A. I Naći: a) Y; I R I L b) I; c) P. u, f R X L

20 48. R = 5 Ω, X L = 5 Ω, I = j5 A. I Naći: a) U; b) S; c) cosφ. u, f R X L 49. U = j100 V, R = 10 Ω = X L, X C = 0 Ω, f = 100 Hz. Naći: a) i(t); b) cosφ, P. 50. Y = (5 j5)10 S, P = 450 W. u, f R L Naći: a) S; b) Q; c) cosφ. 51. R 1 = R = 10 Ω, ω = 10 3 rad/s, L 3 = 10 mh, U = j100 V, C 3 = 100 μf. Odrediti: a) pokazivanje ampermetra; b) reaktivnu snagu kola.

21 NAIZMENIČNE STRUJE SLOŽENA KOLA NAIZMENIČNE STRUJE ZADACI 5. Za kolo naizmenične struje poznato je: R = 10 Ω, L = 0,1 mh, C = 100 μf, ω = 10 4 rad/s. Naći: a) Z ekv ; b) cosφ. 53. Odrediti admitansu kola Y, ako je poznato: R 1 = 0 Ω, L 1 = 10 mh, L = 0 mh, C = 00 μf, L 3 = 40 mh, f = 50 Hz. 54. Za kolo prostoperiodične struje naći sve struje kola. I g = ja, z 1 = 10Ω, Z = (5 j5) Ω, Z 3 = 10 Ω. 55. Za kolo sa slike naći kompleksnu prividnu snagu strujnog generatora I g1. I g1 = 1 A, I g = j A, Z 1 = 10 Ω, Z = (10 j10) Ω, Z 3 = 10 Ω, Z 4 = j10 Ω. A Z 1 Z I g1 Z 3 Z 4 B I g

22 56. Za kolo naizmenične struje poznato je: Y 1 = (00 + j00) ms, Y = (100 + j00) ms, u(t) = 100 cosωt V. u, f Y 1 Y Naći: a) Y ekv ; b) P, cosφ. 57. Naći vrednost nepoznate kapacitivnosti C, za popravku faktora snage, tako da napon i struja na ulazu kola budu u fazi. 58. U kolu prostoperiodične struje je: I g = ma, R = 00 Ω, X = 100 Ω, a napon kalema je u fazi sa strujom generatora. Koliko iznosi X 1? 59. Realni kalem X = 0 Ω, R = 10 Ω vezan je paralelno sa realnim kondenzatorom 1 1 X = 10 Ω, R = 0 Ω. Ova paralelna veza je priključena na napon u(t) = 100 cos(ωt + 90 ). Naći Q ove veze.

23 Naizmeniène struje Teorija : 1. Vremenski promenljive struje.. Dobijanje prosto periodičnih ems. 3. Parametri prosto periodičnih signala. 4. Predstavljanje prosto periodičnih signala. 5. Sabiranje signala. 6. Otpornik u kolu naizmenične struje. 7. Induktivnost (L) u kolu naizmenične struje. 8. Kapacitivnost (C) u kolu naizmenične struje. 9. Snage u R kolu, L kolu i C kolu. Napomena 1 : Uz svako pitanje proraditi naučeno na prostim primerima Napomena : Proraditi zadatke iz sledećih oblasti : 1. Omov i Džulov zakon.. Prosta kola j.s.s. 3. Složena kola j.s.s. (rešavanje kola direktnom primenom I i II Kirhofovog zakona. 4. Određivanje ekvivalentne kapacitivnosti više kondenzatora. 5. Elektromagnetna i elektrostatička sila. 6. Faradejev zakon. Srećno!

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Snaga naizmenicne i struje

Snaga naizmenicne i struje Snaga naizmenicne i struje Zadatak električne mreže u okviru elektroenergetskog sistema (EES) je prenos i distribucija električne energije od izvora do potrošača, uz zadovoljenje kriterijuma koji se tiču

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

2. Data je žičana otpornička mreža na slici. Odrediti ekvivalentnu otpornost između krajeva

2. Data je žičana otpornička mreža na slici. Odrediti ekvivalentnu otpornost između krajeva 1. U kolu stalne struje sa slike 1 poznato je R1 = 2R = 200 Ω, Rp> R1, E1 =-E2 = 10 V i E3 = E4 = 10 V. izračunati Ig (Ig 0) tako da snage koje razvijaju idealni naponski generator E3 i idealni strujni

Διαβάστε περισσότερα

Snage u ustaljenom prostoperiodičnom režimu

Snage u ustaljenom prostoperiodičnom režimu Snage u ustaljenom prostoperiodičnom režimu 13. januar 016 Posmatrajmo kolo koje se sastoji od dvije podmreže M i N, kao na Slici 1. U kolu je uspostavljen ustaljeni prostoperiodični režim i ulazni napon

Διαβάστε περισσότερα

PRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003.

PRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003. PVI DO ISPIT I OSNOV KTOTHNIK 8 jun 003 Napomene Ispit traje 0 minuta Nije ozvoqeno napu{tawe sale 90 minuta o po~etka ispita Dozvoqena je upotreba iskqu~ivo pisaqke i ovog lista papira Kona~ne ogovore

Διαβάστε περισσότερα

Elektronske komponente

Elektronske komponente Elektronske komponente Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2014. Sadržaj 1 Kalem Sadržaj Kalem 1 Kalem - definicije Kalem Kalem je pasivna elektronska komponenta koja

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno

Διαβάστε περισσότερα

Zadatak 1. U temenima kvadrata stranice a (Sl.1) nalaze se mala tela istoimene količine 11. naelektrisanja Q 4 10

Zadatak 1. U temenima kvadrata stranice a (Sl.1) nalaze se mala tela istoimene količine 11. naelektrisanja Q 4 10 adatak temenima kvadrata stranice a (Sl) nalaze se mala tela istoimene količine naelektrisanja Q 0 C u vakumu Koliku količinu elektriciteta negativnog znaka treba postaviti u tačku preseka dijagonala da

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE. Osnovni pojmovi

NAIZMENIČNE STRUJE. Osnovni pojmovi NAZMENČNE STRUJE Osnovni pojovi Naizenične struje i naponi su električne veličine koje toko vreena enjaju ser. Prea vreenskoj zavisnosti jačine struje, naizenične struje se ogu podeliti na sledeći način:

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

ПИТАЊА ЗА УСМЕНИ ИСПИТ ИЗ ЕЛЕКТРОТЕХНИКЕ

ПИТАЊА ЗА УСМЕНИ ИСПИТ ИЗ ЕЛЕКТРОТЕХНИКЕ ПИТАЊА ЗА УСМЕНИ ИСПИТ ИЗ ЕЛЕКТРОТЕХНИКЕ 1. Napisati vektorski izraz za Kulonov zakon i objasni značenje pojedinih članova izraza. Kada važi Kulonov zakon? 2. Šta je Faradejev kavez? 3. Kako se može detektovati

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

Trofazno trošilo je simetrično ako su impedanse u sve tri faze međusobno potpuno jednake, tj. ako su istog karaktera i imaju isti modul.

Trofazno trošilo je simetrično ako su impedanse u sve tri faze međusobno potpuno jednake, tj. ako su istog karaktera i imaju isti modul. Zadaci uz predavanja iz EK 500 god Zadatak Trofazno trošilo spojeno je u zvijezdu i priključeno na trofaznu simetričnu mrežu napona direktnog redoslijeda faza Pokazivanja sva tri idealna ampermetra priključena

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj ELEKTROTEHNIKA TZ Prezime i ime GRUPA Matični br. Napomena: U tablicu upisivati slovo pod kojim smatrate da je točan odgovor. Upisivati isključivo velika štampana slova. Točan odgovor donosi jedan bod.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Naizmenične struje. Osnovi elektrotehnike 2. i (t) + 2 ča

Naizmenične struje. Osnovi elektrotehnike 2. i (t) + 2 ča Naizmenične sruje Osnovi elekroehnike i () + ča za I i() i() Naizmenične sruje predsavljaju vremenski promenljive sruje koje salno menjaju inenzie, a povremeno i smer!!! 0 1 Karakerisike periodičnih signala

Διαβάστε περισσότερα

Rjesenja dodatnog popravnog ispitnog roka iz EK1 odrzanog god. VarijantaA Zadatak broj 2

Rjesenja dodatnog popravnog ispitnog roka iz EK1 odrzanog god. VarijantaA Zadatak broj 2 jesenja dodatnog popravnog ispitnog roka iz EK odrzanog 009008god VarijantaA Zadatak broj električnom krugu prikazanom na slici postignuta je strujna rezonancija Poznati su slijedeći podaci: (A), (A),

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Θετικού Προσανατολισµού 2ο Φυλλάδιο - Οµαλή Κυκλική Κίνηση

Φυσική Β Λυκειου, Θετικού Προσανατολισµού 2ο Φυλλάδιο - Οµαλή Κυκλική Κίνηση Φυσική Β Λυκειου, Θετικού Προσανατολισµού - Οµαλή Κυκλική Κίνηση Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://www.perifysikhs.com Οι έννοιες που σχετίζονται µε την µελέτη της κυκλικής κίνησης

Διαβάστε περισσότερα

1 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ο ΚΕΦΑΛΑΙΟ (ΤΑΛΑΝΤΩΣΕΙΣ)

1 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ο ΚΕΦΑΛΑΙΟ (ΤΑΛΑΝΤΩΣΕΙΣ) δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ (ΤΑΛΑΝΤΩΣΕΙΣ) ΔΙΑΡΚΕΙΑ: ώρες ΒΑΘΜΟΣ:.. ΗΜΕΡΟΜΗΝΙΑ: /0/009 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ΒΟΗΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΑΘΗΣΗΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

ΒΟΗΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΑΘΗΣΗΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Ηλεκτρονικά Ισχύος, συστήματα ηλεκτρικής κίνησης και βιομηχανικές εφαρμογές, ΤΕΕ, Αθήνα, 5-6 Απριλίου 006 ΒΟΗΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΑΘΗΣΗΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Π. Γ. Μαραµπέας, Σ.

Διαβάστε περισσότερα

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.

Διαβάστε περισσότερα

SNAGA POTROŠAČA NAIZMENIČNE STRUJE

SNAGA POTROŠAČA NAIZMENIČNE STRUJE NAGA OTROŠAČA NAZMENČNE TRUJE U slučaju vreenski proenljivih sruja, snaga generaora i snaga prijenika ogu bii poziivne i negaivne. so važi i za rad. Ako je snaga prijenika negaivna, on se ponaša kao generaor.

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Κεφάλαιο T1. Ταλαντώσεις

Κεφάλαιο T1. Ταλαντώσεις Κεφάλαιο T1 Ταλαντώσεις Ταλαντώσεις και µηχανικά κύµατα Η περιοδική κίνηση είναι η επαναλαµβανόµενη κίνηση ενός σώµατος, το οποίο επιστρέφει σε µια δεδοµένη θέση και µε την ίδια ταχύτητα µετά από ένα σταθερό

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

ELEKTRODINAMIKA ELEMENTI STRUJNOG KRUGA IZVOR ELEKTRIČNE ENERGIJE

ELEKTRODINAMIKA ELEMENTI STRUJNOG KRUGA IZVOR ELEKTRIČNE ENERGIJE ELEKTRODINAMIKA ELEKTRIČNA STRUJA I PRIPADNE POJAVE ELEMENTI STRUJNOG KRUGA Strujni krug je sastavljen od: izvora u kojemu se neki oblik energije pretvara u električnu energiju, spojnih vodiča i trošila

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike Osnovne akademske studije PREDMET: Upravljanje sistemima TEMA: Frekvencijske karakteristike Predmetni nastavnik: Prof. dr Milorad Stanojević Asistent: mr Marko Đogatović Kompleksna funkcija prenosa Ukoliko

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ 009 ΘΕΜΑΤΑ ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 11 ΙΟΥΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΠΕΡΙΟΔΙΚΑ ΦΑΙΝΟΜΕΝΑ Περίοδος (Τ) ενός περιοδικού φαινομένου είναι ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου. Αν σε χρόνο t γίνονται Ν επαναλήψεις

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

1. Ένα σώμα m=1 kg εκτελεί γ.α.τ. και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο φαίνεται στο σχήμα.

1. Ένα σώμα m=1 kg εκτελεί γ.α.τ. και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο φαίνεται στο σχήμα. . Ένα σώμα m= kg εκτελεί γ.α.τ. και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο φαίνεται στο σχήμα. α. Να βρείτε τη σταθερά D και την ολική ενέργεια του ταλαντωτή. β. Να γράψετε τις εξισώσεις

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

POJAČAVAČI VELIKIH SIGNALA (drugi deo)

POJAČAVAČI VELIKIH SIGNALA (drugi deo) OJAČAAČI ELIKIH SIGNALA (drugi deo) Obrtači faze 0. decembar 0. ojačavači velikih signala 0. decembar 0. ojačavači velikih signala Obrtači faze Diferencijalni pojačavač sa nesimetričnim ulazom. Rc Rb Rb

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE MJEŠOVITA SREDNJA TEHNIČKA ŠKOLA TRAVNIK AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE Električna kola Profesor: mr. Selmir Gajip, dipl. ing. el. Travnik, februar 2014. Osnovni pojmovi- naizmjenična

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ & ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2013

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ 0 ΘΕΜ ο Να γράψετε στο φύλλο απαντήσεών σας τον αριµό καεµιάς από τις ακόλοες ηµιτελείς προτάσεις και δίπλα της το γράµµα πο αντιστοιχεί στο σωστό σµπλήρωµά της..

Διαβάστε περισσότερα

Mαγνητικά Kυκλώματα. Υποθέτοντας ότι ο πυρήνας έχει άπειρη διαπερατότητα (μ r

Mαγνητικά Kυκλώματα. Υποθέτοντας ότι ο πυρήνας έχει άπειρη διαπερατότητα (μ r Μέρος 1 Mαγνητικά Kυκλώματα 1-1 Λυμένες Ασκήσεις Άσκηση 1-1 Υποθέτοντας ότι ο πυρήνας έχει άπειρη διαπερατότητα (μ r ), να υπολογισθεί η μαγνητική επαγωγή στο διάκενο του μαγνητικού κυκλώματος που απεικονίζεται

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α 3 o ΔΑΓΩΝΣΜΑ ΜΑΡΤOΣ 03: ΕΝΔΕΚΤΚΕΣ ΑΠΑΝΤΗΣΕΣ ΦΥΣΚΗ ΘΕΤΚΗΣ ΚΑ ΤΕΧΝΟΛΟΓΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΑΓΩΝΣΜΑ (ΣΤΕΡΕΟ ΣΩΜΑ) ΕΝΔΕΚΤΚΕΣ ΑΠΑΝΤΗΣΕΣ ΘΕΜΑ Α β δ 3 δ 4 β 5 Λ βσ γλ δσ ελ ΘΕΜΑ Β Σωστή είνι η πάντηση γ Ο ρυθμός

Διαβάστε περισσότερα

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Kratak uvod. EM projekti i komponente mogu se uvesti (importovati) u MW Circuit Solver na tri načina: 1. Iz biblioteke gotovih EM komponenti.

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» ΘΕΜΑ 1 Ο 1. Ένα σώµα εκτελεί απλή αρµονική ταλάντωση. Στο διπλανό σχήµα φαίνεται η γραφική παράσταση της ταχύτητας του σώµατος µε το χρόνο. Η αρχική φάση της ταλάντωσης

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Φυσική Χημεία Υλικών και Ηλεκτροχημεία. Φασματοσκοπία Εμπέδησης. κινητική μεταφοράς φορτίου. ιδανική χωρητική συμπεριφορά. φ = α π/2 έλεγχος από την

Φυσική Χημεία Υλικών και Ηλεκτροχημεία. Φασματοσκοπία Εμπέδησης. κινητική μεταφοράς φορτίου. ιδανική χωρητική συμπεριφορά. φ = α π/2 έλεγχος από την Φυσική Χημεία Υλικών και Ηλεκτροχημεία Φασματοσκοπία Εμπέδησης PE ρά C εριφο φ έλεγχος έλεγχος από από τη τη διάχυση διάχυση κινητική μεταφοράς φορτίου f *= 1 2 π Rct Cdl συμπ έλεγχος από την αγωγιμότητα

Διαβάστε περισσότερα

2 Ηλεκτρικές Ταλαντώσεις

2 Ηλεκτρικές Ταλαντώσεις 2 Ηλεκτρικές Ταλαντώσεις 2.1 Το κύκλωµα L - C ιαθέτουµε ένα κύκλωµα που περιλαµβάνει ένα πυκνωτή χωρητικότητας C, ένα ιδανικό πηνίο µε συντελεστή αυτεπαγωγής L και ένα διακόπτη συνδεδεµένα σε σειρά.αν

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ. Ενέργεια που δέχεται η Γη σε ένα έτος: 5.4 10 24 kj

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ. Ενέργεια που δέχεται η Γη σε ένα έτος: 5.4 10 24 kj ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ Ενέργεια που δέχεται η Γη σε ένα έτος: 5.4 10 4 kj Ανακλάται πίσω στο διάστημα το 30% Συνολικά απορροφούμενη ενέργεια: 3.8 10 4 kj ανά έτος (Περίπου διπλάσια της ενέργειας από όλα τα διαθέσιμα

Διαβάστε περισσότερα

PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović

PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović Univerzitet u Nišu Elektronski fakultet PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović SPISAK VEŽBI 1. Ispravljačka diodna

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006.

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006. Dr Miodrag Popović Osnovi elektronike za studente Odseka za softversko inženjerstvo Elektrotehnički fakultet Beograd, 2006. Sadržaj 1. UOD... 1 1.1 Šta je to elektrotehnika?... 1 1.2 Oblasti elektrotehnike:...

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Jednosmerne i naizmenične struje

Jednosmerne i naizmenične struje Glava 5 Jednosmerne i naizmenične struje 51 Intenzitet i gustina struje Električna struja predstavlja usmereno kretanje naelektrisanja Pokretljiva naelektrisanja koja mogu obrazovati električnu struju

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗN ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗN ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ 8-1-10 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗN ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ ΟΜΑ Α Α A.1 Ένα κύκλωµα εναλλασσόµενου ρεύµατος περιλαµβάνει ένα µόνο στοιχείο. Η ενεργός ένταση του εναλλασσόµενου ρεύµατος που διαρρέει το

Διαβάστε περισσότερα