PAU XUÑO 2013 FÍSICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PAU XUÑO 2013 FÍSICA"

Transcript

1 PAU XUÑO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución ás cuestións; deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O/a alumno/a elixirá unha das dúas opcións. OPCIÓN A C.1.- Disponse de varias cargas eléctricas puntuais. Se nun punto do espazo próximo ás cargas o potencial eléctrico é nulo: a) pode haber campo eléctrico nese punto; b) as liñas do campo córtanse nese punto; c) o campo non é conservativo. C.2.- Dous focos O 1 y O 2 emiten ondas en fase da mesma amplitude (A), frecuencia (ν) e lonxitude de onda (λ) que se propagan á mesma velocidade, interferindo nun punto P que está a unha distancia λ m de O 1 e 3λ m de O 2. A amplitude resultante en P será: a) nula; b) A; c) 2A. C.3.- Prodúcese efecto fotoeléctrico cando fotóns de frecuencia ν, superior a unha frecuencia limiar ν 0, inciden sobre certos metais. Cal das seguintes afirmacións é correcta? a) emítense fotóns de menor frecuencia; b) emítense electróns; c) hai un certo retraso temporal entre o instante da iluminación e o da emisión de partículas. C.4.- A constante elástica dun resorte pódese medir experimentalmente mediante o método dinámico. Explica brevemente o procedemento seguido no laboratorio. P.1.- Un satélite de 200 kg describe unha órbita circular de 600 km sobre a superficie terrestre; a) deduce a expresión da velocidade orbital; b) calcula o período de xiro; c) calcula a enerxía mecánica. (Datos R T = km; g 0 = 9,8 m s -2 ) P.2.- Un raio de luz pasa da auga (índice de refracción n = 4/3) ó aire (n = 1). Calcula: a) o ángulo de incidencia se os raios reflectido e refractado son perpendiculares entre si; b) o ángulo límite; c) hai ángulo límite se a luz incide do aire á auga? OPCIÓN B C.1.- Un planeta describe unha órbita plana e elíptica arredor do Sol. Cal das seguintes magnitudes é constante? a) o momento lineal; b) a velocidade areolar; c) a enerxía cinética. C.2.- Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b) unha lente converxente; c) un espello cóncavo. C.3.- Na reacción U n Ba + A Z X n cúmprese que: a) é unha fusión nuclear; b) libérase enerxía correspondente ó defecto de masa; c) o elemento X é X. C.4.- Na medida experimental da aceleración da gravidade g cun péndulo simple, que precaucións se deben tomar con respecto á amplitude das oscilacións e con respecto á medida do período de oscilación? P.1.- Un protón con velocidade v = i m s -1 penetra nunha zona onde hai un campo magnético B = 1 j T. a) Debuxa a forza que actúa sobre o protón e deduce a ecuación para calcular o raio da órbita; b) calcula o número de voltas nun segundo; c) varía a enerxía cinética do protón ó entrar nesa zona? (Datos: m protón = 1, kg; q protón = 1, C) P.2.- Unha partícula de masa m = 0,1 kg, suxeita no extremo dun resorte, oscila nun plano horizontal cun M.H.S., sendo a amplitude A = 0,20 m e a frecuencia ν = 5 s -1, no instante inicial a posición é x = A. Calcular para t = T/8 s: a) a velocidade e aceleración; b) a enerxía mecánica; c) a frecuencia con que oscilaría se se duplica a masa.

2 PAU SETEMBRO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución ás cuestións; deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións OPCIÓN A C.1.- A ecuación dunha onda transversal de amplitude 4 cm e frecuencia 20 Hz, que se propaga no sentido negativo do eixe x cunha velocidade de 20 m s -1 é: a) y(x,t) = cos π (40t + 2x) m; b) y(x,t) = cos π (40t - 2x) m; c) y(x,t) = cos 2π (40t + 2x) m. C.2.- Un espello cóncavo ten 80 cm de raio de curvatura. A distancia do obxecto ó espello para que a súa imaxe sexa dereita e 4 veces maior é: a) 50 cm; b) 30 cm; c) 60 cm. C.3.- Unha radiación monocromática, de lonxitude de onda 300 nm, incide sobre Cesio. Se a lonxitude de onda limiar do cesio é 622 nm, o potencial de freado é: a) 12,5 V; b) 2,15 V; c) 125 V. (Datos 1nm = 10-9 m; h = 6, J s; c = m s -1 ; q c = -1, C) C.4.- Se temos un resorte de constante elástica coñecida, como podemos determinar o valor dunha masa descoñecida? Describe as experiencias que debemos realizar. P.1.- Deséxase poñer un satélite de masa 10 3 kg en órbita arredor da Terra e a unha altura dúas veces o raio terrestre. Calcular: a) a enerxía que hai que comunicarlle desde a superficie da Terra; b) a forza centrípeta necesaria para que describa a órbita; c) o período do satélite en dita órbita. (Datos: g 0 = 9,8 ms -2 ; R T = km) P.2.- Acelérase unha partícula alfa mediante unha diferenza de potencial de 1 kv, penetrando a continuación, perpendicularmente ás liñas de indución, nun campo magnético de 0,2 T. Achar: a) o raio da traxectoria descrita pola partícula; b) o traballo realizado pola forza magnética; c) o módulo, dirección e sentido dun campo eléctrico necesario para que a partícula alfa non experimente desviación ningunha ó seu paso pola rexión na que existen os campos eléctrico e magnético. (Datos: m α = 6, kg; q α = 3, C) OPCIÓN B C.1.- A actividade no instante inicial de medio mol dunha substancia radioactiva cuxo período de semidesintegración é de 1 día, é: a) 2, Bq; b) 3, Bq; c) 0,5 Bq. (Dato: N A = 6, mol -1 ) C.2.- A lonxitude de onda asociada a un electrón de 100 ev de enerxía cinética é: a) 2, m; b) 1, m; c) 10-7 m. (h = 6, J s; m e = 9, kg; q c = -1, C) C.3.- As liñas de indución do campo magnético son: a) sempre pechadas; b) abertas ou pechadas, xa que dependen do axente creador do campo magnético; c) sempre abertas, por semellanza co campo eléctrico. C.4.- Se na práctica de óptica xeométrica a lente converxente ten unha distancia focal imaxe de + 10 cm. a que distancias da lente podes situar o obxecto para obter imaxes sobre a pantalla, se se cumpre que s + s = 80 cm? Debuxa a marcha dos raios. P.1.- Tres cargas eléctricas puntuais de 10-6 C atópanse situadas nos vértices dun cadrado de 1 m de lado. Calcula: a) a intensidade do campo e o potencial electrostático no vértice libre; b) módulo, dirección e sentido da forza do campo electrostático sobre unha carga de C situada en dito vértice; c) o traballo realizado pola forza do campo para trasladar dita carga desde o vértice ó centro do cadrado. Interpretar o signo do resultado. (Dato: k = N m 2 C -2 ) P.2.- Unha bóla colgada dun fío de 2 m de lonxitude desvíase da vertical un ángulo de 4, sóltase e obsérvanse as súas oscilacións. Achar: a) a ecuación do movemento harmónico simple; b) a velocidade máxima da bóla cando pasa pola posición de equilibrio; c) comproba o resultado obtido no apartado anterior, utilizando a ecuación da conservación da enerxía mecánica.

3 CONVOCATORIA DE XUÑO Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por Os erros de cálculo,... 0,25 (por Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. OPCIÓN A C.1. Disponse de varias cargas eléctricas puntuais. Se nun punto do espazo próximo ás cargas o potencial eléctrico é nulo: a) pode haber campo eléctrico nese punto; b) as liñas do campo córtanse nese punto; c) o campo non é conservativo. C.2. Dous focos O 1 e O 2 emiten ondas en fase da mesma amplitude (A), frecuencia ( ) e lonxitude de onda (l) que se propagan á mesma velocidade, interferindo nun punto P que está a unha distancia m de O 1 e 3 m de O 2. A amplitude resultante en P será: a)nula; b) A; c)2a. C.3. Prodúcese efecto fotoeléctrico cando fotóns de frecuencia, superior a unha frecuencia limiar 0, inciden sobre certos metais. Cal das seguintes afirmacións é correcta? a) emítense fotóns de menor frecuencia; b) emítense electróns; c) hai un certo retraso temporal entre o instante de iluminación e o da emisión de partículas. C.4. A constante elástica dun resorte pódese medir experimentalmente mediante o método dinámico. Explica brevemente o procedemento seguido no laboratorio. SOL:a máx. 1,00 SOL:c máx. 1,00 SOL:b máx. 1,00 Xustificación do procedemento...máx 1,00 P.1. Un satélite de 200 kg de masa describe unha órbita circular de 600 km sobre a superficie terrestre: a) Deduce a expresión da velocidade orbital. b) Calcula o período de xiro. c) Calcula a enerxía mecánica. P.2. Un raio de luz pasa da auga (índice de refracción n=4/3) ó aire (n=1). Calcula: a) o ángulo de incidencia se os raios reflectido e refractado son perpendiculares entre si. b) o ángulo límite; c) hai ángulo límite se a luz incide do aire á auga? a. Dedución da ecuación.. 1,00 b. Cálculo do período de xiro: T= 5, ms ,00 c. Cálculo da enerxía mecánica: E=-5, J.1,00 a. ángulo= 36,9º 1,00 b. ángulo límite=48,6º... 1,00 c. xustificación correcta 1,00

4 OPCIÓN B C.1 Un planeta describe unha órbita plana e elíptica arredor do Sol. Cal das seguintes magnitudes é constante? a) o momento lineal; b) a velocidade areolar; c) a enerxía cinética. C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b) unha lente converxente; c) un espello cóncavo. C.3. Na reacción cúmprese que: a) é unha fusión nuclear; b) libérase enerxía correspondente ó defecto de masa; c) o elemento X é 92 35X. C.4. Na medida experimental da aceleración da gravidade g cun péndulo simple, que precaucións se deben tomar con respecto á amplitude das oscilacións e con respecto á medida do período de oscilación? P.1. Un protón con velocidade v= im s -1 penetra nunha zona onde hai un campo magnético B=1jT. a) Debuxa a forza que actúa sobre o protón e deduce a ecuación para calcular o raio da órbita; b) Calcula o número de voltas nun segundo; c) Varía a enerxía cinética do protón ó entrar nesa zona? P.2. Unha partícula de masa m=0,1 kg suxeita no extremo dun resorte, oscila nun plano horizontal cun M.H.S., sendo a amplitude A=0,20 m e a frecuencia =5 s -1 ; no instante inicial a posición é x=a. Calcular para t=t/8 s: a) a velocidade e aceleración; b) a enerxía mecánica; c) a frecuencia con que oscilaría se se duplica a masa. SOL:b..máx. 1,00 SOL:a..máx. 1,00 SOL:b...máx. 1,00 Respecto á amplitude..máx 0,50 Respecto á medida do período...máx 0,50 a. Debuxo e explicación Lorentz 0,50 Dedución da ecuación do raio da órbita..0,50 b. Número de voltas por segundo= 1, s -1..1,00 c. Explicación de que E c =0...1,00 a. v= -4,4 m s ,50 a= -1, m s ,50 b. E=1,97 J. 1,00 c. =3,5 s -1. 1,00 CONVOCATORIA DE SETEMBRO Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por Os erros de cálculo... 0,25 (por Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas.

5 OPCIÓN A C.1. A ecuación dunha onda transversal de amplitude 4 cm e frecuencia 20 Hz, que se propaga no sentido negativo do eixe x cunha velocidade de 20 m s-1 é: a) y(x,t)= cos (40t+2x)m; b) y(x,t)= cos (40t-2x)m; c) y(x,t)= cos2 (40t+2x)m; C.2. Un espello cóncavo ten 80 cm de raio de curvatura. A distancia do obxecto ó espello para que a súa imaxe sexa dereita e catro veces maior é: a) 50 cm; b) 30 cm; c) 60 cm C.3. Unha radiación monocromática, de lonxitude de onda 300 nm, incide sobre cesio. Se a lonxitude de onda limiar do cesio é 622 nm, o potencial de freado é: a) 12,5 V; b) 2,15 V; c) 125 V. (Datos: 1nm=10-9m; h=6, J s; c=3 108m s-1; qe=1, C) C.4. Se temos un resorte de constante elástica coñecida, como podemos determinar o valor dunha masa descoñecida? Describe as experiencias que debemos realizar. P.1. Deséxase poñer un satélite de masa 10 3 kg en órbita arredor da Terra a unha altura dúas veces o raio terrestre. Calcular: a) a enerxía que hai que comunicarlle desde a superficie da Terra; b) a forza centrípeta necesaria para que describa a órbita; c) o período do satélite na devandita órbita. (Datos: g0=9,8 m s-2; RT=6370 km) P.2. Acelérase unha partícula alfa mediante unha diferenza de potencial de 1kV, penetrando a continuación, perpendicularmente ás liñas de indución, nun campo magnético de 0,2 T. Achar: a) o raio da traxectoria descrita pola partícula; b) o traballo realizado pola forza magnética; c) o módulo, dirección e sentido dun campo eléctrico necesario para que a partícula alfa non experimente desviación ningunha ó seu paso pola rexión na que existen os campos eléctrico e magnético. (Datos: m =6, kg; q =3, C) SOL:a máx. 1,00 SOL:b máx. 1,00 SOL: b máx. 1,00 Xustificación do procedemento...máx 1,00 a. E=5,2 1010J.... 1,00 b. F= 1,1 103 N 1,00 c. T=2,6 104 s ,00 a. R= 3, m..1,00 b. W=0 1,00 c. E= 6,2 104 NC-1 (incluíndo debuxo da dirección e sentido do campo) ,00 OPCIÓN B C.1 A actividade no instante inicial de medio mol dunha substancia radiactiva cuxo período de semidesintegración dura un día é: a) 2, Bq; b) 3, Bq; c) 0,5 Bq. (Datos: NA=6, mol-1) SOL: a..máx. 1,00

6 C.2. A lonxitude de onda asociada a un electrón de 100 ev de enerxía cinética é: a) 2,3 10-5m; b) 1, m; c) 10-7m. (Datos: h=6, J s; me=9, kg; qe=-1, C) C.3. As liñas de indución no campo magnético son: a) sempre pechadas; b) abertas ou pechadas, xa que dependen do axente creador do campo magnético; c) sempre abertas, por semellanza co campo eléctrico. C.4. Se na práctica de óptica xeométrica a lente converxente ten unha distancia focal imaxe de +10 cm, a que distancias da lente podes situar o obxecto para obter imaxes sobre a pantalla, se se cumpre que???. Debuxa a marcha dos raios. P.1. Tres cargas eléctricas puntuais de 10-6 C atópanse situadas nos vértices dun cadrado de 1 m de lado. Calcula: a) a intensidade do campo e o potencial electrostático no vértice libre; b) módulo, dirección e sentido da forza do campo electrostático sobre unha carga de C situada no devandito vértice; c) o traballo realizado pola forza do campo para trasladar esta carga desde o vértice ó centro do cadrado. Interpretar o signo do resultado. (Dato: k= N m2 C-2) P.2. Unha bóla colgada dun fío de 2 m de lonxitude desvíase da vertical un ángulo de 4º, sóltase e obsérvanse as súas oscilacións. Achar: a) a ecuación do movemento harmónico simple; b) a velocidade máxima da bóla cando pasa pola posición de equilibrio; c) comproba o resultado obtido no apartado anterior, utilizando a ecuación da conservación da enerxía mecánica. SOL:b..máx. 1,00 SOL:a...máx. 1,00 Distancias: -11,7 cm e -68,3 cm 0,50 Marcha dos raios ,50 a. Campo eléctrico: E=1,7 104NC ,50 Potencial: V= 2,4 104V ,50 b. F= -2,4 10-2(i+j) N.....1,00 (dependendo do sistema de referencia empregado) c. W= 2, J. Traballo realizado polas forzas do campo...1,00 a. x= 0,14 sen(2,21t+ /2) (m) ou x=0,14 cos(2,21t) m....1,00 b. v=0,31m s ,00 c. Aplicación do principio de conservación da enerxía mecánica e comprobación do resultado... 1,00

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA PAAU (LOXSE) XUÑO 2001 Código: 22 ÍSICA Elixir e desenrolar unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Expresións alxébricas... páx. 64 De expresións a ecuacións Valor numérico Expresión en coeficientes

Polinomios. Obxectivos. Antes de empezar. 1.Expresións alxébricas... páx. 64 De expresións a ecuacións Valor numérico Expresión en coeficientes 4 Polinomios Obxectivos Nesta quincena aprenderás: A traballar con expresións literais para a obtención de valores concretos en fórmulas e ecuacións en diferentes contextos. A regra de Ruffini. O teorema

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS 5 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora:

Διαβάστε περισσότερα

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionario Trigonometría ACTIVIDADES INICIALES.I. En una recta r hay tres puntos: A, B y C, que distan, sucesivamente, y cm. Por esos puntos se trazan rectas paralelas que cortan otra, s, en M, N y P.

Διαβάστε περισσότερα

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais PROGRAMACIÓN DE AULA MAPA DE CONTIDOS propagan enerxía, pero non materia clasifícanse ONDAS exemplos PROGRAMACIÓN DE AULA E magnitudes características segundo o medio de propagación segundo a dirección

Διαβάστε περισσότερα

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl CUANTIFICACIÖN 26/VI/2013 S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA - ESPECTROFOTÓMETRO: Cuantificación da concentración do ADN extraido. Medimos a absorbancia a dúas lonxitudes

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

Uso e transformación da enerxía

Uso e transformación da enerxía Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 4 Unidade didáctica 5 Uso e transformación da enerxía Páxina 1 de 50 Índice 1. Introdución...3

Διαβάστε περισσότερα

13 Estrutura interna e composición da Terra

13 Estrutura interna e composición da Terra 13 composición da Terra EN PORTADA: Un mensaxeiro con diamantes En Kimberley (África do Sur) atópase unha das minas de diamantes máis importantes do planeta. En honor a esa cidade, déuselle o nome de kimberlita

Διαβάστε περισσότερα

Radiotelescopios. Resumo: Contidos: Nivel: Segundo ciclo de ESO e Bacharelato

Radiotelescopios. Resumo: Contidos: Nivel: Segundo ciclo de ESO e Bacharelato Radiotelescopios Resumo: Nesta unidade introdúcense os alumnos no estudo dos radiotelescopios mediante a comparación destes cos telescopios ópticos, a explicación do seu funcionamento e a descrición das

Διαβάστε περισσότερα

ƒπ à ª ΣΗΜΕΙΩΣΗ Ó ÙÚ ÍÙ ÛÙÈ ÂÈÎfiÓ ÛÙËÓ apple Ûˆ ÛÂÏ ÙÔ ÂÍˆÊ ÏÏÔ ÛÙÔ ÔappleÈÛıfiÊ ÏÏÔ ÁÈ Ù. 1 ˆ 6 ÛÙ ÔappleÔ Á ÓÂÙ È Ó ÊÔÚ ÛÙËÓ appleúfiù ÛË.

ƒπ à ª ΣΗΜΕΙΩΣΗ Ó ÙÚ ÍÙ ÛÙÈ ÂÈÎfiÓ ÛÙËÓ apple Ûˆ ÛÂÏ ÙÔ ÂÍˆÊ ÏÏÔ ÛÙÔ ÔappleÈÛıfiÊ ÏÏÔ ÁÈ Ù. 1 ˆ 6 ÛÙ ÔappleÔ Á ÓÂÙ È Ó ÊÔÚ ÛÙËÓ appleúfiù ÛË. ƒ  ÚÈÛÙÔ Ì appleô ÁÔÚ Û Ù ÌÈ ΓΕΝΝΗΤΡΙΑΣ ROBIN. Ô ÂÁ ÂÈÚ ÈÔ Ùfi appleâúè ÂÈ Ô ËÁ  ÁÈ ÙË ÏÂÈÙÔ ÚÁ Î È ÙË Û ÓÙ ÚËÛË ÙË ΓΕΝΝΗΤΡΙΑΣ ROBIN. Ù Ë ΓΕΝΝΗΤΡΙΑΣ ROBIN ÌappleÔÚÂ Ó ÚËÛÈÌÔappleÔÈËı ÁÈ ËÏÂÎÙÚÈÎfi

Διαβάστε περισσότερα

1 O Universo. e a Vía Láctea IMOS COÑECER QUE SABES DISTO? QUÉ SABES DE ESTO?

1 O Universo. e a Vía Láctea IMOS COÑECER QUE SABES DISTO? QUÉ SABES DE ESTO? 6 1 O Universo e a Vía Láctea IMOS COÑECER A observación do universo: planetas, estrelas e galaxias. A Vía Láctea A evolución histórica do coñecemento do universo O sistema solar: O Sol e outros corpos

Διαβάστε περισσότερα

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ

ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ KΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2005 ΚΟΙΝΗ ΕΞΕΤΑΣΗ ΟΛΩΝ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΣΤΑ ΙΣΠΑΝΙΚΑ Α. Να αποδώσετε στο τετράδιό σας στην ελληνική γλώσσα το παρακάτω κείμενο,

Διαβάστε περισσότερα

με ίσες μάζες ισορροπούν κρεμασμένα από κατακόρυφα ιδανικά ελατήρια με σταθερές k 1 και k 2 /2. Απομακρύνουμε τα σώματα Σ 1

με ίσες μάζες ισορροπούν κρεμασμένα από κατακόρυφα ιδανικά ελατήρια με σταθερές k 1 και k 2 /2. Απομακρύνουμε τα σώματα Σ 1 ΑΣΚΗΣΕΙΣ ( Σε όλα τα προβλήματα - εκτός από το 9 - στα οποία υπεισέρχεται βαρύτητα να θεωρήσετε την τιμή της βαρυτικής επιτάχυνσης ίση με και 10 m/s 2, Να θεωρήσετε επίσης για την τιμή του π ότι π 2 =

Διαβάστε περισσότερα

PAU XUÑO 2011 QUÍMICA OPCIÓN A

PAU XUÑO 2011 QUÍMICA OPCIÓN A AU XUÑO 011 Código: 7 QUÍMICA Cualificación: O alumno elixirá UNA das dúas opcións. Cada pregunta cualificarase con puntos OCIÓN A 1. 1.1. Que sucedería se utilizase unha culler de aluminio para axitar

Διαβάστε περισσότερα

Άσκηση 1. Το σχήµα δείχνει το διάγραµµα των ενεργειακών σταθµών του ατόµου υδρογόνου. Τα µήκη κύµατος λ 1

Άσκηση 1. Το σχήµα δείχνει το διάγραµµα των ενεργειακών σταθµών του ατόµου υδρογόνου. Τα µήκη κύµατος λ 1 Άσκηση 1 Το σχήµα δείχνει το διάγραµµα των ενεργειακών σταθµών του ατόµου υδρογόνου. Τα µήκη κύµατος λ 1, λ 2 και λ 3 είναι µήκη κύµατος της ακτινοβολίας που εκπέµπεται κατά τις µεταβάσεις του ηλεκτρονίου

Διαβάστε περισσότερα

PRODUCIÓN DE LEITE NA UE

PRODUCIÓN DE LEITE NA UE COMPOSICIÓN DA DIETA E CALIDADE DO LEITE NAS EXPLOTACIÓNS DE VACÚN DE GALICIA Gonzalo Flores e Sonia Pereira CIAM, 25 de setembro de 2014 PRODUCIÓN DE LEITE NA UE Produción de leite en kg / ha (EU/27,

Διαβάστε περισσότερα

PAU Xuño 2015 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II

PAU Xuño 2015 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II PAU Xuño 015 Código: 36 MATEMÁTICAS APLICADAS ÁS CIENCIAS SOCIAIS II (O alumno/a debe responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1 = 3 puntos,

Διαβάστε περισσότερα

PAU XUÑO 2010 BIOLOXÍA

PAU XUÑO 2010 BIOLOXÍA P XÑO 2010 Código: 21 BIOLOXÍ proba componse de dúas opcións: 1 e 2. Só se poderá contestar a unha das dúas opcións, desenvolvendo integramente o seu contido. OPCIÓN 1 1. Cuestións (Valoración: 8 puntos,

Διαβάστε περισσότερα

1.2. Ένα ιδανικό αέριο βρίσκεται στην κατάσταση Α. Το αέριο µπορεί να µεταβεί στην κατάσταση Β µε µια από τις µεταβολές (1), (2) που παριστάνονται στο

1.2. Ένα ιδανικό αέριο βρίσκεται στην κατάσταση Α. Το αέριο µπορεί να µεταβεί στην κατάσταση Β µε µια από τις µεταβολές (1), (2) που παριστάνονται στο ΡΧΗ 1ΗΣ ΣΕΛΙ Σ ΠΡΟΩΙΚΕΣ ΕΞΕΤΣΕΙΣ ΤΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΙΟΥ ΛΥΚΕΙΟΥ ΠΡΣΚΕΥΗ 8 ΜΪΟΥ 004 ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤ (7) ΘΕΜ 1ο ια κάθε µια από τις προτάσεις

Διαβάστε περισσότερα

ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ Φ 250 25,6 275 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,800 Φ 250 1,800 Υ: 1.75 B:0.59 Π: 0.

ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ Φ 250 25,6 275 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,700 Φ 250 1,800 Φ 250 1,800 Υ: 1.75 B:0.59 Π: 0. ΚΑΜΙΝΑΔΑΣ Kw ΒΑΡΟΣ 1 B:0.59 150 25,6 275 1,700 2 3 4 5 ΣΤΡΟΓΓΥΛΟ Τ 90 B:0.73 B:0.76 Υ: 1.72 B:0.62 Π: 0.98 B:0.66 Π:1.06 150 150 24 20 20 20 288 295 305 1,700 1,700 1,700 1,800 ΤΖΑΚΙΑ ΕΝΕΡΓΕΙΑΚΑ ΑΕΡΟΘΕΡΜΑ

Διαβάστε περισσότερα

www.thriassio.gr AÑ. ÖÕËËÏÕ 1977 Τρίτη 27 Μαρτίου 2012 ôïò 9ï e-mail:info@thriassio.gr ôçë.:210 5571855 Óåë. 2-4 στην επιχειρούµενη εκκένωση οικίσκων

www.thriassio.gr AÑ. ÖÕËËÏÕ 1977 Τρίτη 27 Μαρτίου 2012 ôïò 9ï e-mail:info@thriassio.gr ôçë.:210 5571855 Óåë. 2-4 στην επιχειρούµενη εκκένωση οικίσκων ÈÑÉÁÓÉÏ ê.2239 HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & ÁÔÔÉÊÇÓ www.thriassio.gr AÑ. ÖÕËËÏÕ 1977 Τρίτη 27 Μαρτίου 2012 ôïò 9ï e-mail:info@thriassio.gr ôçë.:210 5571855 ÔéìÞ: 0,10 åõñþ «Στο

Διαβάστε περισσότερα

TEST DE INDEPENDENCIA EN SERIES TEMPORALES

TEST DE INDEPENDENCIA EN SERIES TEMPORALES TEST DE INDEPENDENCIA EN SERIES TEMPORALES Titulación: Doctorado en Tecnologías Industriales Alumno/a: Salvador Vera Nieto Director/a/s: José Salvador Cánovas Peña Antonio Guillamón Frutos Cartagena, 10

Διαβάστε περισσότερα

Diseño, análisis y optimización de engranajes cilíndricos de dentadura curvilínea

Diseño, análisis y optimización de engranajes cilíndricos de dentadura curvilínea Diseño, análisis y optimización de engranajes cilíndricos de dentadura curvilínea Titulación: Periodo de Formación de Doctorado en Tecnologías Industriales Alumno/a: Ramón Ruiz Orzáez Directores: Alfonso

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΙΩΑΝΝΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 2014. ΤΑΞΗ: Β Ενιαίου Λυκείου ΗΜΕΡ.

ΛΥΚΕΙΟ ΑΓΙΟΥ ΙΩΑΝΝΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 2014. ΤΑΞΗ: Β Ενιαίου Λυκείου ΗΜΕΡ. ΛΥΚΕΙΟ ΓΙΟΥ ΙΩΝΝΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙ 2013-2014 ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ- ΙΟΥΝΙΟΥ 2014 ΤΞΗ: Β Ενιαίου Λυκείου ΗΜΕΡ. : 26 /05/2014 ΜΘΗΜ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Χρόνος : 2,5 ώρες Το εξεταστικό δοκίμιο αποτελείται

Διαβάστε περισσότερα

DOG Núm. 247 Martes, 29 de decembro de 2015 Páx. 49285

DOG Núm. 247 Martes, 29 de decembro de 2015 Páx. 49285 DOG Núm. 247 Martes, 29 de decembro de 2015 Páx. 49285 III. OUTRAS DISPOSICIÓNS INSTITUTO ENERXÉTICO DE GALICIA RESOLUCIÓN do 16 de decembro de 2015 pola que se establecen as bases reguladoras e se anuncia

Διαβάστε περισσότερα

ΑΡΧΗ 1Η ΕΛΙΔΑ ΣΕΛΟ 1Η ΑΠΟ 5 ΕΛΙΔΕ

ΑΡΧΗ 1Η ΕΛΙΔΑ ΣΕΛΟ 1Η ΑΠΟ 5 ΕΛΙΔΕ ΘΔΜΑ ΑΡΧΗ Η ΕΛΙΔΑ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΣΔΣΑΡΣΖ 9 ΗΟΤΛΗΟΤ 05 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΦΤΗΚΖ ΘΔΣΗΚΖ & ΣΔΥΝΟΛΟΓΗΚΖ ΚΑΣΔΤΘΤΝΖ ΤΝΟΛΟ ΔΛΗΓΩΝ: ΠΔΝΣΔ (5) Α) Γηα θάζε κία από ηηο εξωηήζεηο - 5 λα

Διαβάστε περισσότερα

Μονάδες 5. 1.4 Σε μια ελαστική κρούση δύο σωμάτων

Μονάδες 5. 1.4 Σε μια ελαστική κρούση δύο σωμάτων ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 26 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1 ο Για τις ημιτελείς

Διαβάστε περισσότερα

Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης

Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης Ασκήσεις Προβλήματα Μετρήσεις Μονάδες Γνωρίσματα της Ύλης 19. Ποιες μονάδες χρησιμοποιούν συνήθως οι χημικοί για την πυκνότητα των: α) στερεού, β) υγρού και γ) αερίου σώματος; Να εξηγήσετε τη διαφορά.

Διαβάστε περισσότερα

HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & ÁÔÔÉÊÇÓ

HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & ÁÔÔÉÊÇÓ ÈÑÉÁÓÉÏ ê.2239 www.thriassio.gr AÑ. ÖÕËËÏÕ 1919 Παρασκευή 30 εκεµβρίου 2011 ôïò 7ï e-mail:info@thriassio.gr ôçë.:210 5571855 Πρόγραµµα 150.000 νέων θέσεων εργασίας και κοινωνικές δράσεις σε συνεργασία

Διαβάστε περισσότερα

ENLACE QUÍMICO 1. CONCEPTO DE ENLACE EN RELACIÓN COA ESTABILIDADE ENERXÉTICA DOS ÁTOMOS ENLAZADOS.

ENLACE QUÍMICO 1. CONCEPTO DE ENLACE EN RELACIÓN COA ESTABILIDADE ENERXÉTICA DOS ÁTOMOS ENLAZADOS. ENLACE QUÍMICO 1. Concepto de enlace en relación coa estabilidade enerxética dos átomos enlazados. 2. Enlace iónico. Propiedades das substancias iónicas. Concepto de enerxía de rede. Ciclo de orn-haber.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 ΘΕΜΑ 1 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

www.thriassio.gr AÑ. ÖÕËËÏÕ 2232 Πέµπτη 25 Απριλίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855

www.thriassio.gr AÑ. ÖÕËËÏÕ 2232 Πέµπτη 25 Απριλίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 ÈÑÉÁÓÉÏ ê.2239 Óåë. 16 www.thriassio.gr AÑ. ÖÕËËÏÕ 2232 Πέµπτη 25 Απριλίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 Πρόσφορο έδαφος η Αυτοδιοίκηση για τη διαφθορά Μεγάλα ποσοστά κακοδιαχείρισης

Διαβάστε περισσότερα

HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & ÁÔÔÉÊÇÓ

HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & ÁÔÔÉÊÇÓ ÈÑÉÁÓÉÏ ê.2239 HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & ÁÔÔÉÊÇÓ www.thriassio.gr AÑ. ÖÕËËÏÕ 1930 ευτέρα 16 Ιανουαρίου 2012 ôïò 7ï e-mail:info@thriassio.gr ôçë.:210 5571855 ÔéìÞ: 0,10 åõñþ

Διαβάστε περισσότερα

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS TEMA 6.- BIMLÉCULAS RGÁNICAS IV: ÁCIDS NUCLEICS A.- Características generales de los Ácidos Nucleicos B.- Nucleótidos y derivados nucleotídicos El esqueleto covalente de los ácidos nucleicos: el enlace

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ)

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ) ΑΡΧΗ ΜΗΝΥΜΑΤΟΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Eφαρμογές Περιστροφική κίνηση Άσκηση 1 Η κυματοσυνάρτηση ψ(φ) για

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 01 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

www.thriassio.gr AÑ. ÖÕËËÏÕ 2223 Παρασκευή 12 Απριλίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 Óåë. 2-7

www.thriassio.gr AÑ. ÖÕËËÏÕ 2223 Παρασκευή 12 Απριλίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 Óåë. 2-7 ÈÑÉÁÓÉÏ ê.2239 «Lets Do It Greece» Καθαρίζουµε τη υτική Αττική σε µία µέρα Μεγάλη κινητοποίηση από την Αντιπεριφέρεια και εκατοντάδες εθελοντές σε 13 σηµεία Óåë. 5 www.thriassio.gr AÑ. ÖÕËËÏÕ 2223 Παρασκευή

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ

2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ 2 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ Διαθέτουμε τροχό ο οποίος αποτελείται από έναν ομογενή λεπτό δακτύλιο μάζας m = 1 kg και ακτίνας R και τέσσερις λεπτές ομογενείς ράβδους μάζας Μ ρ = ¾m και μήκους l = 2R η

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO. Datos Cifras significativas: 3 Gas: Volume V = 2,00 dm³. Ecuación de estado dos gases ideais

Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO. Datos Cifras significativas: 3 Gas: Volume V = 2,00 dm³. Ecuación de estado dos gases ideais Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO PROBLEMAS FASE GAS 1. A 670 K, un rcipint d 2 dm³ contén unha mstura gasosa n quilibrio d 0,003 mols d hidróxno, 0,003 mols d iodo 0,024 mols d ioduro

Διαβάστε περισσότερα

EΠΙΣΡΟΠΗ ΔΙΕΡΕΤΝΗΗ ΑΣΤΥΗΜΑΣΩΝ & ΑΦΑΛΕΙΑ ΠΣΗΕΩΝ

EΠΙΣΡΟΠΗ ΔΙΕΡΕΤΝΗΗ ΑΣΤΥΗΜΑΣΩΝ & ΑΦΑΛΕΙΑ ΠΣΗΕΩΝ EΠΙΣΡΟΠΗ ΔΙΕΡΕΤΝΗΗ ΑΣΤΥΗΜΑΣΩΝ & ΑΦΑΛΕΙΑ ΠΣΗΕΩΝ Πόρισμα Διερεύνησης Ατυχήματος Αλεξιπτώτου Πλαγιάς Στην Περιοχή Ορέων Βάλτου, Θυάμου Ν. Αιτωλοαικαρνανίας Την 3 η Σεπτεμβρίου 2011 ΑΡ. ΠΟΡΙΜΑTΟ 5 / 2012 YΠΟΤΡΓΕΙΟ

Διαβάστε περισσότερα

www.thriassio.gr AÑ. ÖÕËËÏÕ 1910 Σάββατο 17 εκεµβρίου 2011 ôïò 7ï e-mail:info@thriassio.gr ôçë.:210 5571855 Óåë. 7

www.thriassio.gr AÑ. ÖÕËËÏÕ 1910 Σάββατο 17 εκεµβρίου 2011 ôïò 7ï e-mail:info@thriassio.gr ôçë.:210 5571855 Óåë. 7 ÈÑÉÁÓÉÏÔéìÞ: 0,10 åõñþ ÈÑÉÁÓÉÏ ê.2239 HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & Ä. ÁÔÔÉÊÇÓ www.thriassio.gr AÑ. ÖÕËËÏÕ 1910 Σάββατο 17 εκεµβρίου 2011 ôïò 7ï e-mail:info@thriassio.gr ôçë.:210

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

C12, C13, C14, αποθήκευσης ΙΚΑΝΟΤΗΤΕΣ: σκοπό τη βελτίωση των διαθέσιµων πιάτων π.χ. µενού. M5 Προετοιµασία και συντήρηση των τροφίµων C6

C12, C13, C14, αποθήκευσης ΙΚΑΝΟΤΗΤΕΣ: σκοπό τη βελτίωση των διαθέσιµων πιάτων π.χ. µενού. M5 Προετοιµασία και συντήρηση των τροφίµων C6 Επαγγελµατικό Προφίλ: ΜΑΓΕΙΡΑΣ Επίπεδο: 2 εξιότητες Θέµατα Συνδεδεµένες εξιότητες C1 ΕΤΟΙΜΑΖΕΙ ΤΟ ΧΩΡΟ ΠΡΟΣ ΧΡΗΣΗ M1 Υγιεινή και ασφάλεια. Οργάνωση της καθηµερινής εργασίας. C2 ΚΑΘΑΡΙΖΕΙ ΤΟΝ ΕΞΟΠΛΙΣΜΟ,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2003 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

C5,C6,C8,C10,C11, C12,C13,C14,C16, C15,C16,C17,C18, C1,C2,C3,C4,C18, C1,C2,C3,C4,C9, C20 C20 C19. M5 Εµπορική ροή και έλεγχος

C5,C6,C8,C10,C11, C12,C13,C14,C16, C15,C16,C17,C18, C1,C2,C3,C4,C18, C1,C2,C3,C4,C9, C20 C20 C19. M5 Εµπορική ροή και έλεγχος Επαγγελµατικό Προφίλ: ΕΠΙΚΕΦΑΛΗΣ ΡΕΣΕΨΙΟΝΙΣΤ Επίπεδο: 3 C1 C2 εξιότητες Θέµατα ΚΑΘΟ ΗΓΕΙ, ΕΠΙΒΛΕΠΕΙ ΚΑΙ ΣΧΕ ΙΑΖΕΙ ΟΛΕΣ ΤΙΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΣΤΟ ΧΩΡΟ ΤΗΣ ΥΠΟ ΟΧΗΣ ΣΥΝΕΡΓΑΖΕΤΑΙ ΚΑΙ ΣΥΜΜΕΤΕΧΕΙ ΣΤΗ ΙΟΙΚΗΣΗ ΜΑΖΙ

Διαβάστε περισσότερα

MARKSCHEME BARÈME DE NOTATION ESQUEMA DE CALIFICACIÓN

MARKSCHEME BARÈME DE NOTATION ESQUEMA DE CALIFICACIÓN IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI M06/2/ABMGR/SP1/GRE/TZ0/XX/M MARKSCHEME BARÈME DE NOTATION ESQUEMA DE CALIFICACIÓN May / mai / mayo 2006 MODERN GREEK / GREC

Διαβάστε περισσότερα

La experiencia de la Mesa contra el Racismo

La experiencia de la Mesa contra el Racismo La experiencia de la Mesa contra el Racismo Informe Di icultad para identi icarse como discriminado Subsistencia de mecanismos individuales para enfrentar el racismo Las propuestas de las organizaciones

Διαβάστε περισσότερα

M14/1/AYMGR/HP1/GRE/TZ0/XX

M14/1/AYMGR/HP1/GRE/TZ0/XX M14/1/AYMGR/HP1/GRE/TZ0/XX 22142045 MODERN GREEK A: LANGUAGE AND LITERATURE HIGHER LEVEL PAPER 1 GREC MODERNE A : LANGUE ET LITTÉRATURE NIVEAU SUPÉRIEUR ÉPREUVE 1 GRIEGO MODERNO A: LENGUA Y LITERATURA

Διαβάστε περισσότερα

ε x = du dx ε(x) = ds ds = du(x) dx

ε x = du dx ε(x) = ds ds = du(x) dx Capítulo 8 ECUCIONES DIFERENCIES Cálculo de desplazamientos Dr. Fernando Flores 8.. INTRODUCCIÓN En este capítulo se sistematizan las ecuaciones que gobiernan el comportamiento de vigas. En general se

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ Θέμα Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Στις

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

www.thriassio.gr AÑ. ÖÕËËÏÕ 2353 Tετάρτη 6 Νοεµβρίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 Óåë. 3-12

www.thriassio.gr AÑ. ÖÕËËÏÕ 2353 Tετάρτη 6 Νοεµβρίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 Óåë. 3-12 ÈÑÉÁÓÉÏ ê.2239 Σåë. 3 www.thriassio.gr AÑ. ÖÕËËÏÕ 2353 Tετάρτη 6 Νοεµβρίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 ΤΕΙΧΟΣ γύρω από το ΧΥΤΑ Φυλής Σχεδιάζει ο Ε ΣΝΑ για τον περιορισµό του

Διαβάστε περισσότερα

HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & Ä. ÁÔÔÉÊÇÓ

HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & Ä. ÁÔÔÉÊÇÓ ÈÑÉÁÓÉÏ ê.2239èñéáóéï HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & Ä. ÁÔÔÉÊÇÓ www.thriassio.gr AÑ. ÖÕËËÏÕ 1547 Tρίτη 8 Ιουνίου 2010 ôïò 6ï e-mail:info@thriassio.gr ôçë.:210 5571855 «Στον αέρα»

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4 να γράψετε

Διαβάστε περισσότερα

THΛ: THΛ: 7077 594 919113 9494 #&"'"%$ #"%$!"#$ '"(#"')%$ Α. Για τις παρακάτω προτάσεις 1-4 να γράψετε το γράµµα α, β, γ ή δ, που αντιστοιχεί στην σωστή απάντηση 1. Σε ένα στάσιµο κύµα που έχει δηµιουργηθεί

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 2ο Φυλλάδιο - Οµαλή Κυκλική Κίνηση

Φυσική Β Λυκειου, Γενικής Παιδείας 2ο Φυλλάδιο - Οµαλή Κυκλική Κίνηση Φυσική Β Λυκειου, Γενικής Παιδείας - Οµαλή Κυκλική Κίνηση Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com Οι έννοιες που σχετίζονται µε την µελέτη της κυκλικής κίνησης

Διαβάστε περισσότερα

ÚËÛΠÙÈÎ ÌÓ Û Ô. Ï È È ı ÎË appleúô ÛÙÔÚ ÙÔ ÃÚÈÛÙÈ ÓÈÛÌÔ. Ï È È ı ÎË. appleúôèûùôú ÙÔ ÃÚÈÛÙÈ ÓÈÛÌÔ ÚËÛΠÙÈÎ ÌÓ Û Ô. À Àƒ π π π π ƒ Àª ø π ø π π π À

ÚËÛΠÙÈÎ ÌÓ Û Ô. Ï È È ı ÎË appleúô ÛÙÔÚ ÙÔ ÃÚÈÛÙÈ ÓÈÛÌÔ. Ï È È ı ÎË. appleúôèûùôú ÙÔ ÃÚÈÛÙÈ ÓÈÛÌÔ ÚËÛΠÙÈÎ ÌÓ Û Ô. À Àƒ π π π π ƒ Àª ø π ø π π π À À Àƒ π π π π ƒ Àª ø π ø π π π À ƒ À à ª Àª 75% Àƒø π ø π ª π π 25% π À ƒ À ISBN 960-06-1907-7 Ï È È ı ÎË. appleúôèûùôú ÙÔ ÃÚÈÛÙÈ ÓÈÛÌÔ ÚËÛΠÙÈÎ ÌÓ Û Ô ŸÏÁ ÚÈ ÔappleÔ ÏÔ ËÁ Ï ÚË ÚËÛΠÙÈÎ ÌÓ Û Ô Ï È È

Διαβάστε περισσότερα

FORMULARIO DE ELASTICIDAD

FORMULARIO DE ELASTICIDAD U. D. Resistencia de Mateiales, Elasticidad Plasticidad Depatamento de Mecánica de Medios Continuos Teoía de Estuctuas E.T.S. Ingenieos de Caminos, Canales Puetos Univesidad Politécnica de Madid FORMULARIO

Διαβάστε περισσότερα

Τεχνικό Επιμελητήριο Ελλάδας. Τμήμα Κεντρικής και Δυτικής Θεσσαλίας. 25 Απριλίου 2010 ΕΚΛΟΓΕΣ στο ΤΕΕ

Τεχνικό Επιμελητήριο Ελλάδας. Τμήμα Κεντρικής και Δυτικής Θεσσαλίας. 25 Απριλίου 2010 ΕΚΛΟΓΕΣ στο ΤΕΕ Τεχνικό Επιμελητήριο Ελλάδας Τμήμα Κεντρικής και Δυτικής Θεσσαλίας 25 Απριλίου 2010 ΕΚΛΟΓΕΣ στο ΤΕΕ ΕΝΗΜΕΡΩΤΙΚΟ ΔΕΛΤΙΟ 02 Στο παρόν τεύχος του Ενημερωτικού Δελτίου, παρουσιάζονται οι θέσεις των παρατάξεων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5o ΔΙΑΓΩΝΙΣΜΑ ΔΙΑΓΩΝΙΣΜΑ - ΘΕΜΑΤΑ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5o ΔΙΑΓΩΝΙΣΜΑ ΔΙΑΓΩΝΙΣΜΑ - ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5o ΔΙΑΓΩΝΙΣΜΑ ΔΙΑΓΩΝΙΣΜΑ - ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 013 - ΕΞΕΤΑΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 25963 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1850 29 Ιουλίου 2013 ΠΕΡΙΕΧΟΜΕΝΑ ΑΠΟΦΑΣΕΙΣ Τύπος και περιεχόμενο της δήλωσης στοιχείων ακι νήτων (Ε9) φυσικών και νομικών

Διαβάστε περισσότερα

HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & Ä. ÁÔÔÉÊÇÓ

HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & Ä. ÁÔÔÉÊÇÓ ÈÑÉÁÓÉÏ ê.2239èñéáóéï HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & Ä. ÁÔÔÉÊÇÓ www.thriassio.gr AÑ. ÖÕËËÏÕ 1573 Παρασκευή 16 Ιουλίου 2010 ôïò 6ï e-mail:info@thriassio.gr ôçë.:210 5571855 ÔéìÞ:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ 009 ΘΕΜΑΤΑ ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 11 ΙΟΥΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

r 2 r 1 επιφάνεια. Όταν ο ανιχνευτής μεταλλική επιφάνεια απόσταση

r 2 r 1 επιφάνεια. Όταν ο ανιχνευτής μεταλλική επιφάνεια απόσταση ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΩΝΙΣΜΑΤΟΣ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ 3/03/04 ΘΕΜΑ Ο δ, γ, 3 γ, 4 δ, 5 α, 6 β, γ, 8 α, 9 α, 0: α Λ, β Λ, γ, δ Λ, ε Λ. ΘΕΜΑ Ο. Α. ωστό το (γ). Β. το χώρο μεταξύ του πομπού και της μεταλλικής επιφάνειας

Διαβάστε περισσότερα

Μεζνδνινγία επίιπζεο αζθήζεωλ

Μεζνδνινγία επίιπζεο αζθήζεωλ Μεζνδνινγία επίιπζεο αζθήζεωλ ακείσησλ κεραληθώλ ηαιαληώζεωλ Α. H ηππηθή άζθεζε Μηα ηππηθή άζθεζε κεραληθώλ ηαιαληώζεσλ (ρσξίο θόιπα), μεθηλάεη κε δεδνκέλo όηη ην είδνο ηεο θίλεζεο είλαη ΓΑΣ θαη κία από

Διαβάστε περισσότερα

1 o K E F A L A I O ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΚΑΙ ΒΙΟΧΗΜΕΙΑ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ

1 o K E F A L A I O ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΚΑΙ ΒΙΟΧΗΜΕΙΑ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ 1 o K E F A L A I O ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΚΑΙ ΒΙΟΧΗΜΕΙΑ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Ερωτήσεις πολλαπλής επιλογής Να βάλετε σε κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση ή στη φράση που συµπληρώνει σωστά

Διαβάστε περισσότερα

www.thriassio.gr AÑ. ÖÕËËÏÕ 2151 Παρασκευή 21 εκεµβρίου 2012 ôïò 9ï e-mail:info@thriassio.gr ôçë.:210 5571855

www.thriassio.gr AÑ. ÖÕËËÏÕ 2151 Παρασκευή 21 εκεµβρίου 2012 ôïò 9ï e-mail:info@thriassio.gr ôçë.:210 5571855 ÈÑÉÁÓÉÏ ê.2239 HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & ÁÔÔÉÊÇÓ www.thriassio.gr AÑ. ÖÕËËÏÕ 2151 Παρασκευή 21 εκεµβρίου 2012 ôïò 9ï e-mail:info@thriassio.gr ôçë.:210 5571855 Óåë. 2 ιχάζει

Διαβάστε περισσότερα

www.thriassio.gr AÑ. ÖÕËËÏÕ 2332 ευτέρα 7 Οκτωβρίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 Σåë. 9 Óåë. 2

www.thriassio.gr AÑ. ÖÕËËÏÕ 2332 ευτέρα 7 Οκτωβρίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 Σåë. 9 Óåë. 2 ÈÑÉÁÓÉÏ ê.2239 HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & ÁÔÔÉÊÇÓ www.thriassio.gr AÑ. ÖÕËËÏÕ 2332 ευτέρα 7 Οκτωβρίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 Αποκαλυπτικοί οι

Διαβάστε περισσότερα

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Τβριδιςμόσ Υβριδικά τροχιακά και γεωμετρίεσ Γηαίξεζε

Διαβάστε περισσότερα

Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΕΡΥΘΡΑΙΑΣ 1-12134 -ΠΕΡΙΣΤΕΡΙ Τ ΗΛ 210-5757255

Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΕΡΥΘΡΑΙΑΣ 1-12134 -ΠΕΡΙΣΤΕΡΙ Τ ΗΛ 210-5757255 ΕΡΥΘΡΑΙΑΣ - -ΠΕΡΙΣΤΕΡΙ Τ ΗΛ 0-77 ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

Για φοροδιαφυγή άνω των 150.000

Για φοροδιαφυγή άνω των 150.000 BPETANIA ME ΛITOTHTA ΞEKINAEI H ΠPΩTH KYBEPNHΣH ΣYNAΣΠIΣMOY /ΣΕΛ. 14-15 35Ô Ú. Ê ÏÏÔ 10.448 Àƒø 1,30 EM TH 13 MA OY 2010 www.enet.gr Mπαράζ µέτρων και ελέγχων κατά φοροφυγάδων Δεσμεύσεις καταθέσεων Για

Διαβάστε περισσότερα

www.thriassio.gr AÑ. ÖÕËËÏÕ 2263 Τετάρτη 12 Ιουνίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855

www.thriassio.gr AÑ. ÖÕËËÏÕ 2263 Τετάρτη 12 Ιουνίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 ÈÑÉÁÓÉÏ ê.2239 HÌÅÑÇÓÉÁ ÅÊÄÏÓÇ ÃÉÁ ÔÇÍ ÐÅÑÉÏ Ç ÔÏÕ ÈÑÉÁÓÉÏÕ ÐÅÄÉÏÕ & ÁÔÔÉÊÇÓ www.thriassio.gr AÑ. ÖÕËËÏÕ 2263 Τετάρτη 12 Ιουνίου 2013 ôïò 10ï e-mail:info@thriassio.gr ôçë.:210 5571855 Μόνο πέντε ενεργές

Διαβάστε περισσότερα

È ÛÙÂ ÚÔÛÂÎÙÈÎ Ù ÙÔ È ÏÈ Ú ÎÈ Ô ËÁÈÒÓ

È ÛÙÂ ÚÔÛÂÎÙÈÎ Ù ÙÔ È ÏÈ Ú ÎÈ Ô ËÁÈÒÓ EL È ÛÙÂ ÚÔÛÂÎÙÈÎ Ù ÙÔ È ÏÈ Ú ÎÈ Ô ËÁÈÒÓ ˉÚ ÛË ÚÈÓ ÂÁÎ Ù ÛÙ ÛÂÙÂ Î È ˉÚËÛÈÌÔ ÔÈ ÛÂÙÂ ÙË Û ÛÎÂ. ª ÓÔÓ ÙÛÈ ı ÂÙ ˉÂÙÂ Ù Î Ï ÙÂÚ ÔÙÂÏ ÛÌ Ù Î È ÙË Ì ÁÈÛÙË ÛÊ ÏÂÈ Î Ù ÙË ˉÚ ÛË. ƒπ ƒ º À À (βλ. σχέδιο στο εξώφυλλο)

Διαβάστε περισσότερα

ΗΛΙΑΣ ΕΥΘΥΜΙΟΠΟΥΛΟΣ. παράθυρο. κρίση ΟΙ ΠΑΡΑΞΕΝΟΙ ΕΛΚΥΣΤΕΣ ΚΑΙ Η ΠΡΑΣΙΝΗ ΟΙΚΟΝΟΜΙΑ. στην

ΗΛΙΑΣ ΕΥΘΥΜΙΟΠΟΥΛΟΣ. παράθυρο. κρίση ΟΙ ΠΑΡΑΞΕΝΟΙ ΕΛΚΥΣΤΕΣ ΚΑΙ Η ΠΡΑΣΙΝΗ ΟΙΚΟΝΟΜΙΑ. στην ΗΛΙΑΣ ΕΥΘΥΜΙΟΠΟΥΛΟΣ παράθυρο στην κρίση ΟΙ ΠΑΡΑΞΕΝΟΙ ΕΛΚΥΣΤΕΣ ΚΑΙ Η ΠΡΑΣΙΝΗ ΟΙΚΟΝΟΜΙΑ ƒπ Ã ª π ø............................................................................................... 11 π ƒ π

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο

Διαβάστε περισσότερα

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h. 1 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 1. Ποια είναι η συχνότητα και το μήκος κύματος του φωτός που εκπέμπεται όταν ένα e του ατόμου του υδρογόνου μεταπίπτει από το επίπεδο ενέργειας με: α) n=4 σε n=2 b) n=3 σε n=1 c)

Διαβάστε περισσότερα