ŽILINSKÁ UNIVERZITA V ŽILINE. Diplomová práca

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ŽILINSKÁ UNIVERZITA V ŽILINE. Diplomová práca"

Transcript

1 ŽILINSKÁ UNIVERZITA V ŽILINE Elektrotechnická fakulta Diplomová práca 2006 Simona Vaňková

2 DIPLOMOVÁ PRÁCA Priezvisko a meno: VAŇKOVÁ Simona Rok: Názov diplomovej práce: Nízkoenergetický dom 2 3 Fakulta: elektrotechnická Katedra: výkonových elektrotechnických systémov Počet strán: 62 Počet obrázkov: 12 Počet tabuliek: 29 Počet grafov: 0 Počet príloh: 2 Počet použitých literatúr: 13 Anotácia: Táto diplomová práca sa zaoberá problematikou rekonštrukcie existujúcej budovy na budovu s nízkou energetickou spotrebou. Návrh dodatočných rekonštrukčných opatrení je robený na základe výpočtu tepelných strát a ziskov budovy podľa normy. Výsledkom práce je komplexný návrh rekonštrukcie z hľadiska zefektívnenia energetickej náročnosti prevádzky budovy a vyčíslenie nákladov. Annotation: In my graduation thesis is described themes of reconstruction of present building. Design of additional modifications for house with less energy losses is made in according with standards and thermal equations. Result of this work is complex project of reconstruction, cut-down losses, energy frugality and calculation of costs. Kľúčové slová: nízkoenergetický dom, solárny kolektor, TÚV, tepelná izolácia, tepelné straty, tepelné zisky Vedúci diplomovej práce: doc. Ing. Milan NOVÁK, PhD. Recenzent diplomovej práce: Konzultant diplomovej práce: Dátum odovzdania diplomovej práce:

3 Zoznam skratiek a symbolov A' (m 2 ) plocha celková počítanej časti pri výpočte tepelnej straty A 0 (m 2 ) plocha otvorov pri výpočte tepelnej straty A (m 2 ) rozdiel plôch A' a A 0 A op (m 2 ) plocha zasklenia pri výpočte tepelných ziskov A J (m 2 ) plocha použitého južného okna A s (m 2 ) plocha ktorú chceme izolovať A SJ (m 2 ) plocha skla použitého južného okna A S (m 2 ) plocha použitého severného okna A SS (m 2 ) plocha skla použitého severného okna A V (m 2 ) plocha použitého východného okna A SV (m 2 ) plocha skla použitého východného okna A Z (m 2 ) plocha použitého západného okna A SZ (m 2 ) plocha skla použitého západného okna c m (-) činiteľ využitia slnečného žiarenia c n (-) činiteľ dopadu slnečného žiarenia c V (J kg -1 K -1 ) merné tepelná kapacita vzduchu d i (m) hrúbka jednotlivých materiálov D (-) počet deňstupňov E gm (kw h mes -1 m -1 ) globálne slnečné žiarenie za mesiac i LV (m 3 m -1 s -1 Pa -0,67 ) koeficient prievzdušnosti i LVD (m 3 m -1 s -1 Pa -0,67 ) koeficient prievzdušnosti dverí i LVO (m 3 m -1 s -1 Pa -0,67 ) koeficient prievzdušnosti okna L (m) súčet dĺžok cez ktoré môže vzduch prechádzať M (-) charakteristika miestnosti NED nízkoenergetický dom n 0 (-) počet otvorov v ploche pri výpočte tepelnej straty n min (h -1 ) minimálna intenzita výmeny vzduchu n 50 (h -1 ) intenzita výmeny vzduchu pri tlakovom rozdiele 50 Pa n J (-) počet okien na južnej stene n S (-) počet okien na severnej stene n V (-) počet okien na východnej stene n Z (-) počet okien na západnej stene

4 P (m) obvod podlahy P L (W) tepelný výkon obyvateľov P M (W) tepelný výkon muža P Z (W) tepelný výkon ženy p 1 (-) prirážka na vyrovnanie vplyvu chladných konštrukcií p 2 (-) prirážka na urýchlenie vykúrenia domu p 3 (-) prirážka na svetovú stranu Q (W) maximálna tepelné strata prestupom a vetraním Q 0 (W) celková tepelná strata prestupom s prirážkou p3 Q 0J (W) tepelná strata prestupom južnej steny s prirážkou p3 Q 0J (W) čiastkové tepelné straty prestupom južnej steny Q vj (W) tepelná strata vetraním južnej steny Q 0S (W) tepelná strata prestupom severnej steny s prirážkou p3 Q 0S (W) čiastkové tepelné straty prestupom severnej steny Q vs (W) tepelná strata vetraním severnej steny Q 0Z (W) tepelná strata prestupom západnej steny s prirážkou p3 Q 0Z (W) čiastkové tepelné straty prestupom západnej steny Q vz (W) tepelná strata vetraním západnej steny Q 0V (W) tepelná strata prestupom východnej steny s prirážkou p3 Q 0V (W) čiastkové tepelné straty prestupom východnej steny Q vv (W) tepelná strata vetraním východnej steny Q 0PS (W) tepelná strata prestupom podlahy a stropu s prirážkou p3 Q 0PS (W) čiastkové tepelné straty prestupom podlahy a stropu Q P (W) celkové straty prestupom vrátane prirážok p 1, p 2 a p 3 Q v (W) straty vetraním počítanej časti Q vd (W) dodatočná straty vetraním Q vh (W) celkové straty prirodzeným vetraním Q VO (kw h) celkové tepelná energia potrebná cez vykurovacie obdobie Q VO (kw h) celkové tepelná energia potrebná cez vykurovacie obdobie po odčítaní tepelných ziskov Q Zm (kw h mes -1 ) priemerný solárny tepelný zisk za mesiac R se (m 2 K W -1 ) odpor pri prestupe tepla na vonkajšej strane konštrukcie R si (m 2 K W -1 ) odpor pri prestupe tepla na vnútornej strane konštrukcie R SM (m 2 K W -1 ) tepelný odpor materiálu obvodovej steny

5 s (-) tieniaci súčiniteľ pri výpočte solárnych ziskov S (m 2 ) podlahová plocha domu S PD (m 2 ) zastavaná plocha domu t e ( C) priemerná teplota vo vykurovacom období t em ( C) vonkajšia najnižšia výpočtová teplota t i ( C) vnútorná výpočtová teplota t m ( C) súčtová teplota miestnosti t v ( C) teplota vzduchu t p ( C) priemerná teplota vnútorných plôch miestnosti T (-) celková priepustnosť skla T 1 (-) priepustnosť slnečného žiarenia T 2 (-) koeficient znečistenia skla T 3 (-) činiteľ zasklenia TČ tepelné čerpadlo TOE tona ekvivalentného oleja TÚV teplá úžitková voda U (W m -2 K -1 ) tepelná vodivosť U 1 (W m -2 K -1 ) tepelná vodivosť obvodovej steny U 2 (W m -2 K -1 ) tepelná vodivosť stropu U 3 (W m -2 K -1 ) tepelná vodivosť podlahy U C (W m -2 K -1 ) celková tepelná vodivosť U O (W m -2 K -1 ) tepelná vodivosť okien U D (W m -2 K -1 ) tepelná vodivosť dverí v (m) výška budovy V VH (m 3 h -1 ) objem vzduchu, ktorý sa vymení za hodinu V Vmin (m 3 h -1 ) min. objem vzduchu ktorý sa musí vymeniť za hodinu V m (m 3 ) objem budovy V VD (m 3 h - ) objem vzduchu, ktorý sa musí ešte dodatočne vymeniť λ i (W m -1 K -1 ) merná tepelná vodivosť materiálov λ D (W m -1 K -1 ) súčiniteľ tepelnej vodivosti dverí β (Pa 0,67 ) charakteristické číslo budovy ε (-) súčiniteľ zohľadňujúci nesúčasnosť vplyvov ρ V (kg m -3 ) hustota vzduchu

6 Obsah Zoznam skratiek a symbolov... 6 Úvod Problematika nízkoenergetického domu, podmienky, úspory energie, ekológia Nízkoenergetické rodinné domy Úspory energie Ekológia Technická a ekonomická analýza energetickej náročnosti rodinného domu Základné parametre rodinného domu Určenie tepelnej vodivosti stavebných častí a variantné výpočty Vonkajšia obvodová stena Strop Podlaha Typ okien a vonkajších dverí Energetická náročnosť prevádzky rodinného domu Výpočet tepelnej straty podľa STN Tepelné zisky Solárne zisky oknami Tepelné zisky od zariadení v dome Tepelné zisky od obyvateľov domu Odčítanie tepelných ziskov od tepelných strát a bilancia spotreby tepelnej energie na kúrenie Aplikácia zásad projektovania nízkoenergetického domu na rodinný dom Tepelná izolácia Rozdelenie tepelných izolácií Oblasti použitia tepelných izolácií Dôvody zatepľovania obvodových stien Slnečná energia Pasívne využitie slnečnej energie Pasívne solárne systémy Aktívne využitie slnečnej energie Slnečné kolektory Solárne články Tepelné čerpadlá Mechanické vetranie s rekuperáciou tepla Nízkoteplotný vykurovací systém Návrh opatrení Určenie dodatočnej izolácie pre obálku budovy Pasívne a aktívne využitie slnečnej energie Nízkoteplotný vykurovací systém Technicko-ekonomické vyhodnotenie zvoleného riešenia Technické vyhodnotenie zvoleného riešenia... 52

7 6.2. Ekonomické vyhodnotenie zvoleného riešenia Záver Zoznam použitej literatúry Zoznam príloh... 62

8 4 Úvod Už celé storočia ľudia používali energiu na zabezpečenie tepla, svetla a varenie jedla v ich príbytkoch. Energia bola zvyčajne získavaná z ohňa, pálením dreva, oleja alebo sviečok. Neskôr boli skonštruované výkonné elektrické generátory, ktoré dodnes dodávajú elektrickú energiu elektrickým spotrebičom takmer po celom svete. Elektrická energia je často vhodnejší zdroj energie pretože môže byť použitá na premenu na všetky druhy energie. Od tepelnej cez mechanickú, elektromagnetickú až po chladiacu. Takmer všetky aj bez nášho vedomia používame v našich príbytkoch. Či už je to žiarovka, magnetofón, televízor, chladnička alebo mikrovlná rúra. Energetické nároky na náš pohodlný život stále rastú a približne 90 % zdrojov na výrobu elektrickej energie sú zdroje vyčerpateľné. Každý z nás si začína uvedomovať ako sa zásoby fosílnych palív na našej planéte vyčerpávajú, zatiaľ čo využitie obnoviteľných zdrojov je iba v začiatkoch. Stále viac je počuť o potrebe šetrenia elektrickou energiou a o ohľaduplnosti k životnému prostrediu. V neposlednom rade je to stále rastúca cena za elektrinu. Každý z nás môže prispieť k tomu, aby sme žili a bývali ekologicky, aby sme chránili svoje životné prostredie a zároveň ušetrili. Cieľom mojej diplomovej práce je analýza energetickej náročnosti rodinného domu. Aké stavebné materiály a v akých rozmeroch sú použité, aké druhy energie a v akej miere sú spotrebúvané. V práci by som sa ďalej chcela venovať výpočtom tepelných strát a návrhom riešenia na ich zníženie. Aplikovať opatrenia, ktoré sú potrebné pre dosiahnutie parametrov nízkoenergetického domu a zvážiť či sú tieto opatrenia ekonomicky výhodné. 1. Problematika nízkoenergetického domu, podmienky, úspory energie, ekológia Posledné desaťročia sa dostáva do povedomia ľudstva výraz ekoenergia. Vzniká veľa hnutí, ktoré bojujú proti výrobe energie v jadrových, tepelných, dokonca aj vodných elektrárňach. Často počujeme o alternatívnych zdrojoch energie a ich neobmedzených a nevyčerpateľných možnostiach využívania. Ale pravda je tiež taká, že ak by sme chceli vyrábať energiu týmto spôsobom, boli by zastavané obrovské plochy pôdy a ekonomicky by to bolo pre ľudstvo nevýhodné. Nastáva teda otázka: Ako sa dá skĺbiť ekológia s ekonómiou tak, aby sme mohli mať z toho osoh, a nie len dobrý pocit. Jeden zo spôsobov riešenia by mohol byť nízkoenergetický dom (NED).

9 4.1.1 Charakteristika vnútornej klímy v NED Tepelná pohoda - miestnosti majú vzhľadom na ich spôsob využitia optimálne zvolenú stabilnú teplotu, ktorá má vo vertikálnom smere takmer rovnomerný priebeh. Pohyb vzduchu - nevzniká prievan a pocit chladu z prúdenia vzduchu. Kvalita a vlhkosť vzduchu - riadeným vetraním sa zabezpečuje odvedenie vlhkosti a stály prívod čerstvého vzduchu. Bezprašnosť - nízkou rýchlosťou pohybu vzduchu nevzniká prašnosť. Osvetlenie - vďaka väčšiemu preskleniu okien je zabezpečené dostatočné presvetlenie interiéru. Psychologická pohoda - pocit pohody umocňujú použité prírodné materiály. Škodliviny zo stavebných materiálov - sú vylúčené dôsledným výberom neškodných materiálov. Škodlivé žiarenia - eliminácia pôsobenia rôznych žiarení (pozemské žiarenie, elektrosmog,..) už v návrhu domu. 1.1 Nízkoenergetické rodinné domy Pojem nízkoenergetický dom nie je u nás už neznámy pojem, ide o bývanie s nízkou spotrebou energie. Ide o progresívne riešené rodinné domy, s kvalitnou termoizoláciou a teda s nízkymi prevádzkovými nákladmi, čo je výhodné najmä v čase neustáleho nárastu cien energií. Aj v takýchto domoch je potrebné vykurovanie ústredným kotlom, lenže úspora nákladov na kúrenie a klimatizáciu je štyridsať až päťdesiat percent. To znamená, že vynaložené peniaze na stavbu takéhoto domu sa veľmi rýchlo vrátia, systém vykurovania zabezpečí pohodu v interiéri podľa momentálnych požiadaviek. Za nízkoenergetický dom sa pokladá taký, ktorého spotreba za rok na vykurovanie je nižšia ako päťdesiat kwh na meter štvorcový vykurovanej podlahovej plochy. Problematiku nízkoenergetického domu nemôžeme zúžiť len na charakteristické prvky, akými sú energetické úspory, výber ekologicky vhodných stavebných materiálov alebo tvorba zdravej vnútornej klímy. Nízkoenergetický dom by mal v plnej miere vyhovovať popri škále všeobecných požiadaviek a nárokov kladených na budovy aj špecifickým požiadavkám, akými sú napr. efektívny spôsob výstavby pri použití optimálnych stavebných materiálov, technických prvkov a najmodernejších šetrných technológií, ako aj trvanlivosť a bezporuchovosť stavebných konštrukcií, zhodnotenie vložených investícií a v neposlednom rade ohľaduplnosť k prostrediu. 4.2 Tri dôvody, prečo sa rozhodnúť pre nízkoenergetický ekologický dom: 1.) zabezpečenie optimálnej, zdravotne neškodnej vnútornej klímy, vyššia kvalita bývania, 2.) nízke prevádzkové náklady,

10 3.) priaznivý vplyv na životné prostredie a maximálne zníženie nepriaznivých vplyvov na životné prostredie. 4.3 Zásady pre návrh nízkoenergetického domu 5 1.) Navrhnutie budovy v súlade s okolitým prostredím Zvoliť kompaktnú stavebnú formu, umiestniť budovu s ohľadom na miestnu klímu, tvar terénu, vegetáciu, orientáciu na svetové strany a spôsob okolitej zástavby. 6 2.) Využitie slnečného žiarenia Použitie primerane veľkých južne orientovaných okien, využitie transparentných tepelných izolácií, prípadne zriadenie zimnej záhrady. Dôležitým opatrením je akumulácia pasívnych energetických ziskov a letná tepelná ochrana (tienenie) proti prehrievaniu budovy. 7 3.) Zvýšenie tepelnej ochrany budovy Realizácia veľkého tepelnoizolačného štandardu a zabránenie vzniknutiu tepelných mostov. 8 4.) Využitie riadeného vetrania a zabezpečenie vzduchotesnosti obalových konštrukcií Riadené vetranie zabezpečuje potrebný prísun čerstvého vzduchu v požadovanej kvalite s minimálnymi energetickými stratami, pretože časť tepla odvádzaného vzduchu sa dá spätne využiť. Pre zamedzenie energetických strát je dôležité vyhotovenie vzduchotesných stien a strechy. 9 5.) Zvoliť optimálny zdroj na pokrytie zvyškovej potreby tepla Využitie obnoviteľných zdrojov tepla. Nízkoenergetické domy majú nízku spotrebu tepla a vystačia so zariadeniami s menším výkonom (napr. tepelné čerpadlá), prípadne s malým množstvom paliva (napr. drevo) ) Zvoliť nízkoteplotný vykurovací systém pre distribúciu tepla, zvoliť energeticky úspornú výrobu teplej vody Nízke teploty vykurovacích médií vedú k menším tepelným stratám, to platí pre distribúciu aj pre prípravu tepla. Použitie aktívneho solárneho zariadenia (solárne kolektory), alebo tepelné čerpadlá. 7.) Správne "používanie" domu, využívanie energeticky úsporných spotrebičov Pre optimálnu prevádzku je nevyhnutné správne nastavenie technických zariadení pre dennú a nočnú prevádzku, a pre rôzne ročné obdobia. 1.2 Úspory energie

11 Tab Porovnanie energetickej spotreby a potrebného úpravy pre jej dosiahnutie Typ domu Energetická spotreba (kwh m Opatrenia za rok) Bežný dom zvýšenie tepelnoizolačných hodnôt obvodového plášťa Energeticky úsporný dom cielené využitie pasívnych solárnych prvkov využitie aktívnych solárnych prvkov úsporný konvenčný vykurovací systém. použitie vysokokvalitnej tepelnej izolácie plášťa Nízkoenergetický dom Energeticky pasívny dom Ekológia pasívne aj aktívne využitie slnečnej energie mechanické vetranie s rekuperáciou tepla nízkoteplotný vykurovací systém dokonalý obal budovy pasívne aj aktívne využitie slnečnej energie mechanické vetranie s rekuperáciou tepla bez konvenčného vykurovacieho systému Globálne otepľovanie a klimatické zmeny, ku ktorým dochádza, spôsobil človek vytvorením skleníkového efektu. Spaľovaním fosílnych zdrojov energie, odlesňovaním, vysušovaním povrchu Zeme a intenzívnou poľnohospodárskou a živočíšnou produkciou sa dostáva do atmosféry veľké množstvo plynov, ktoré celkovo spôsobujú, že sa okrem iných dôsledkov počas nasledujúcich rokov bude zvyšovať teplota vzduchu na Zemi a následkom toho vzrastie hladina morí. To bude mať ďalekosiahly dopad na všetkých obyvateľov planéty. K zhoršovaniu stavu životného prostredia prispieva svojou mierou aj stavebníctvo: - vyčerpávaním neobnoviteľných zdrojov energie, nadmernou ťažbou niektorých obnoviteľných zdrojov energie a stavebných surovín (vplyv na ekosystém, zmena charakteru krajiny), - lokálnym znehodnotením prostredia (hluk, emisie,...), - zaberaním vysokohodnotnej pôdy a zelene. Budovy sú produktom stavebnej činnosti človeka, ich hlavnou úlohou je ochrana pred klimatickými zmenami, t. j. pred teplom, chladom, dažďom atď. Ich úlohou je tiež zabezpečiť pre zdravie a pohodu človeka okrem primeraného priestoru s estetickými kvalitami aj pocit bezpečia a optimálne

12 hygienické podmienky vnútornej klímy. Súčasné budovy mnohé z týchto úloh nedokážu splniť bez dodania neúmerne vysokého množstva energie. Nízkoenergetický dom spája a optimalizuje obytný komfort, kvalitu stavebných konštrukcií, energetickú a finančnú úspornosť a ochranu životného prostredia [3].

13 2. Technická a ekonomická analýza energetickej náročnosti rodinného domu 2.1 Základné parametre rodinného domu Je to samostatne stojaci celopodpivničeny dvojpodlažný rodinný dom v oblasti Žiliny. Má sedem obytných miestností a veľkú samostatnú chodbu. podlahová plocha domu S 160,7 m 2, zastavaná plocha domu S PD 114,24 m 2, vonkajšia výpočtová teplota (oblasť Žiliny) t em - 18 C, vnútorná výpočtová teplota t i + 21 C, výpočtová teplota pivnice t p + 12 C, priemerná teplota vo vykurovacom období t e 3,7 C, plocha použitého južného okna 1,8x1,35 A J1 2,34 m 2, z toho plocha skla A SJ1 1,39 m 2, počet okien na južnej stene n J 4, plocha použitého západného okna 1,8x1,35 A Z1 2,34 m 2, z toho plocha skla A SZ1 1,39 m 2, počet okien na západnej stene n Z 4, plocha použitého východného okna 1,3x1,35 A V1 1,755 m 2, z toho plocha skla A SV1 1,08 m 2, počet okien na východnej stene n V 2, plocha použitého severného okna 1,2x1,35 A S1 1,62 m 2, z toho plocha skla A SS1 0,93 m 2, plocha použitého severného okna 0,6x0,9 A S2 0,54 m 2, z toho plocha skla A SS2 0,22 m 2, počet okien na severnej stene n S 8, priepustnosť slnečného žiarenia (dve sklá) T 1 0,81, koeficient znečistenia skla T 2 0,9, činiteľ zasklenia (dvojité sklo) T 3 0,9, činiteľ dopadu slnečného žiarenia c n 0,9, koeficient prievzdušnosti okna i LVO 0,21 m 3 m -1 s -1 Pa -0,67, koeficient prievzdušnosti dverí i LVD 0.21 m 3 m -1 s -1 Pa -0,67,

14 merná tepelná vodivosť dverí λ D 2,5 W m -1 K -1, výška budovy v 7,4 m, obvod podlahy P 37,55 m, charakteristické číslo budovy β 8 Pa 0,67, Počet deňstupňov pre oblasť Žiliny D Výpočet tepelných strát som robila podľa normy STN [5]. Počítala som iba tepelné straty prestupom cez obálku domu keďže uvažujem rovnakú výpočtovú vnútornú teplotu vo všetkých miestnostiach. 2.2 Určenie tepelnej vodivosti stavebných častí a variantné výpočty U R si 1 d + + λ R se (W m -2 K -1 ), (2.1) kde R si (m 2 K W -1 ) je odpor pri prestupe tepla na vnútornej strane konštrukcie, R se (m 2 K W -1 ) je odpor pri prestupe tepla na vonkajšej strane konštrukcie, d i (m) je hrúbka jednotlivých materiálov, λ i (W m -1 K -1 ) je merná tepelná vodivosť materiálov, R si 0,17 m 2 K W -1 (tepelný tok zhora nadol), R si 0,10 m 2 K W -1 (tepelný tok zdola nahor), R si 0,13 m 2 K W -1 (tepelný tok vodorovne), R se 0,04 m 2 K W Vonkajšia obvodová stena Obvodove murivo je prevedené z pórobetónových tvárnic o rozmeroch 30x30x40 cm. Vrstvy ktoré tvoria vonkajšiu obvodovú stenu sú: tvárnica PÓROBETÓN: d 0,40 m, λ 0,308 W m -1 K -1, vnútorná omietka: d 0,03 m, λ 0,698 W m -1 K -1, vonkajšia omietka: d 0,03 m, λ 0,872 W m -1 K -1. U 1 1 0, , 4 0, 03 0, 03 W m -2 K , , 04 0, 308 0, 698 0, 872

15 Hodnota U 1 0,6468 W m -2 K -1 sa dá znížiť použitím dodatočnej izolácie, pričom jej hrúbka nesmie byť ani veľmi tenká kvôli zvýšeniu strát a ani moc hrubá kvôli zbytočným investíciám [6] Strop Nad suterénom a prízemím sú stropy prevedené z prefabrikovaných betónových panelov PZD 50/450. Strop nad prvým podlažím je prevedený zo stropných drevených trámov, chranený krovom, ktorý je z drevenej konštrukcie. Zastrešenie sa uskutočnilo z pozinkovaného plechu, ktorého podklad tvorí debnenie (husté latovanie). Vrstvy ktoré tvoria strop nad prvým podlažím sú: sklená vata: d 0,20 m, λ 0,04 W m -1 K -1, betónový poter: d 0,03 m, λ 1,28 W m -1 K -1, doska vonkajšia: d 0,025 m, λ 0,41 W m -1 K -1, vzduchová medzera (hrady): d 0,18 m, λ 0,0251W m -1 K -1, doska vnútorná: d 0,025 m, λ 0,29 W m -1 K -1, vnútorná omietka(malta): d 0,02 m, λ 0,698 W m -1 K -1 1 U 0,1903 W m -2 K - 2 0,2 0,03 0,025 0,18 0,025 0,02 010, , 04 0, 04 1,28 0,41 0,0251 0,29 0,698 Z veľkosti hodnoty U 2 je zrejmé, že dodatočná izolácia je potrebná Podlaha Tepelnú vodivosť podlahy rátam pre prízemie (zároveň to je aj strop suterénu), nakoľko je suterén nevykurovaný. betónový panel(suterén, prízemie): d 0,12 m, λ 0,23 W m -1 K -1, vnútorná omietka(malta): d 0,02 m, λ 0,698 W m -1 K U , W m -2 K ,12 0,02 017, , 04 0, 23 0, Typ okien a vonkajších dverí

16 V celom dome sú použité drevené kastlové okná (dvojokná). Hodnota tepelnej vodivosti celého okna je približne U O 3,5 W m -2 K -1. Hodnotu U O budem ďalej používať pri výpočte tepelnej straty prestupom. Dvere vonkajšie Použité vchodové dvere sú drevené s vákuovým dvojsklom s koeficientom prievzdušnosti i LVD 0,21 m 3 s -1 m -1 Pa -0,67 a tepelnou vodivosťou U D 3,5 W m -2 K -1. Hodnotu U D budem ďalej používať pri výpočte tepelnej straty prestupom. 2.3 Energetická náročnosť prevádzky rodinného domu Rok Spotreba Cena (Sk) TOE kw h Plyn m ,- 1, m ,- 0, m ,- 0, El. energia kw h 15041,- 0, kw h 18406,- 0, kw h 25275,- 1, Drevo m ,- 3, m ,- 3, m ,- 3, Voda m , m , m ,- - Spotreba vody klesla kvôli napojeniu úžitkovej vody na vlastnú studňu. TOE tona ekvivalentného oleja (1 TOE J) [8].

17 11 3. Výpočet tepelnej straty podľa STN Všetky okná, ktoré sú na dome použité sa dajú otvárať preto musíme uvažovať aj straty vetraním [5]. Straty Q v vetraním sa počítajú: Q v ( i L) β M ( t t ) 1300 LV i e (W), (3.1) kde i LV (m 3 m -1 s -1 Pa -0,67 ) je súčiniteľ prievzdušnosti, L (m) je súčet dĺžok, cez ktoré môže vzduch prechádzať, β (Pa 0,67 ) je charakteristika budovy a je rovné 8 ak je budova v normálnej krajine, nechránená, M (-) je charakteristika miestnosti a je rovné 0,7 ak prievzdušnosť vnútorných dverí je väčšia ako u okien. ( 21 3,7) 109, 49 4 Q 1300 (0, ,4) 8 0,7 W, VJ kde dĺžka cez ktorú môže prúdiť vzduch pre okna na južnej stene je L 4 ((6 0,6) +(5 1,35)) 41,4 m. Podobne postupujem aj pri výpočte tepelnej straty vetraním pre vchodové dvere ( ) 24, 59 4 Q 1300 (0, ,3) 8 0,7 W. VJ Základná tepelná strata prestupom Q 0 je daná vzorcom Q ( t t ) 0 U j Aj i ej (W), (3.2) j keď j je index j-tej časti konštrukcie. Tab Tabuľka hodnôt p 3 - prirážok na svetovú stranu Svetová strana J S SZ Z V SV prirážka p 3 (-) -0,05 0,1 0,05 0 0,05 0,05

18 Tepelné straty som počítala postupne pre každú stenu zvlášť [5]. Uvádzam vzorový výpočet pre južnú stenu Q ( t t ) ( 0, ,25) + ( 3,5 9,72) + ( 3,5 3,2) U A ( ) ( 21 ( 18) ) 0 j j i emj j 1645, , , ,5 W ( 1+ ) 3409,5 ( 1 0,05) 2702, 8 0 Q0 ' p3 Q J W Tab Hodnoty výpočtu tepelnej straty južnej steny Južná stena označenie časti domu S J O J O VJ D J D VJ L (m) 11,9 1,8 41,4 1,5 9,3 v (m) 6,3 1,35-2,1 - A' (m 2 ) 74,97 2,43-3,15 - n o (-) A 0 (m 2 ) 9, A (m 2 ) 65,25 9,72-3,15 - U J (W m -2 K -1 ) 0,6468 3,5-3,5 - (t i -t em ) (K) Q 0J (W) 1645,9 1326,8-436,8 - Q vj (W) ,5 24,6 Q 0J (W) 3409,5 p 3 (-) -0,05 Q 0J (W)vrátane prirážky p3 3239,0 kde L (m) je dĺžka počítanej časti, v (m) je výška počítanej časti, A' (m 2 ) je plocha počítanej časti celková, n o A o A Q 0 (-) je počet otvorov v počítanej časti, (m 2 ) je plocha otvorov počítanej časti, (m 2 ) je plocha počítanej časti bez otvorov, (W) je celková tepelná strata prestupom s prirážkou na svetovú stranu, Q 0 (W) je tepelná strata prestupom bez prirážky na svetovú stranu, Q v (W) je tepelná strata vetraním počítanej časti.

19 Analogicky som postupovala pri výpočte všetkých stien, podlahy a stropu. Výsledky uvádzam v tabuľkách 3.2, 3.3, 3.4, 3.5 a 3.6. Tab Hodnoty výpočtu tepelnej straty severnej steny Severná stena časť domu S S O SV O vsv O SM O vsm D B D vb L (m) 11,9 1,2 12,9 0,6 18 0,74 6,68 v (m) 6,3 1,35-0,9-1,03 - A' (m 2 ) 74,97 1,62-0,54-0,762 - n o (-) A 0 (m 2 ) 6, A (m 2 ) 68,49 3,24-3,24-1,524 - U (W m -2 K -1 ) 0,6468 3,5-3,5-3,5 - (t i -t em ) (K) Q 0S (W) 1727,7 442,3-442,3-208,0 - Q vs (W) ,12-47,6-17,67 Q 0S (W) 2820,3 p 3 (-) 0,1 Q 0S (W) vrátane prirážky p3 2538,3 Tab Hodnoty výpočtu tepelnej straty západnej steny Západná stena časť domu S Z O Z O vz L (m) 9,6 1,8 41,4 v (m) 6,3 1,35 - A' (m 2 ) 60,48 2,43 - n o (-) A 0 (m 2 ) 9, A (m 2 ) 50,76 9,72 - U (W m -2 K -1 ) 0,6468 3,5 - (t i -t em ) (K) Q 0Z (W) 1280,4 1326,8 - Q vz (W) ,5 Q 0Z (W) 2607,2 P 3 (-) 0 Q 0Z (W) 2607,2 Tab Hodnoty výpočtu tepelnej straty východnej steny

20 Východná stena časť domu S V O V O vv D B D vb L (m) 9,6 1,3 13,3 0,74 6,68 v (m) 6,3 1,35-1,03 - A' (m 2 ) 60,48 1,755-0,762 - n o (-) A 0 (m 2 ) 5, A (m 2 ) 55,446 3,51-1,524 - U (W m -2 K -1 ) 0,6468 3,5-3,5 - (t i -t em ) (K) Q 0V (W) 1398,6 479,1-208,0 - Q vv (W) ,2-17,67 Q 0V (W) 2085,7 p 3 (-) 0,05 Q 0V (W) 2190,0 Tab Hodnoty výpočtu tepelnej straty stropu a podlahy Strop + Podlaha časť domu podlaha Strop A (m 2 ) 80,35 80,35 U (W m -2 K -1 ) 1,315 0,1903 (t i -t em ) (K) Q 0PS (W) 4120,75 596,33 Q 0PS (W) 4717,08 Celkový súčiniteľ prestupu tepla Q0i i 3239, , , , ,08 U c 0,908 W m -2 K - A i 1. i ( t t ) 2 ( 74, , ,35) ( 21 ( 18) ) i em -1 Ak U c 0,9085 W m -2 K prirážka na vyrovnanie vplyvu chladných konštrukcií p 1 0,15 k c 0,15 0,9085 0,1363 W m -2 K -1. Prirážka p 2 je prirážka na urýchlenie vykúrenia domu a uvažuje sa 0,1. Keďže v dome je nepretržité vykurovanie nebudem ju uvažovať a teda p 2 0. Celkové straty prestupom

21 Q ( + p + ) 15291,58 ( 1+ 0, ) 17375, 82 P Q0 i 1 1 p2 W. i Celkové straty vetraním ( 2 109,5 ) + 24,6 + 34, ,6 + ( 2 17,67 ) + 35,2 395, 86 Q υ H Q Vi W, i čomu odpovedá objem vzduchu, ktorý sa vymení za jednu hodinu: 4 ( i L) M 3600 ( 0, ,66) 8 0, , 36 VVH LV β m 3 h -1. i Minimálnu výmenu vzduchu za jednu hodinu danú hygienickými požiadavkami som určila zo vzťahu nmin Vmin nmin 0,5 Vm 0,5 0,5 524,66 V V min 131,17 m 3 h -1, kde V m (m 3 ) je objem budovy, V min (m 3 ) je polovičný objem budovy, n min (h -1 ) je minimálna intenzita výmeny vzduchu a je rovná 0,5. Potrebný objem výmeny vzduchu za hodinu sa rovná V V V 131,17 63,36 67,81 m 3 h -1. VD V min VH Z objemu V VD som určila potrebný výkon na ohrev tohto vzduchu čo je vlastne dodatočná strata: ( t t ) 1,2 67, ( 21 3,6) ρv VVD cv i e Qυ D 397,23 W, kde ρ V (kg m -3 ) je hustota vzduchu, c V (J kg -1 K -1 ) je merná tepelná a kapacita vzduchu. Teda maximálna tepelné strata prestupom a vetraním je: Q QP D + Qυ QP + QυH + Qυ 17375, , , ,9 W. Spotreba tepelnej energie počas vykurovacieho obdobia Celkovú spotrebu tepla som počítala zo vzorca

22 Q' VO ε Q 24 D 10 ( t t ) i e 3, (3.3) kde Q' VO ε Q 24 D , , ( t t ) ( 21 3,7) i e ,03 kw h, ε (-) je zmenšujúci súčiniteľ, ktorý zohľadňuje nesúčasnosť hodnôt pôsobiacich na maximálnu tepelnú stratu. Uvažuje sa 0,9.

23 4. Tepelné zisky 4.1 Solárne zisky oknami Priemerný tepelný zisk sa stanový zo vzťahu: Q Zm E A T c c kw h mes -1, (4.1) gm op m n kde E gm (kw h mes -1 m -1 ) je globálne slnečné žiarenie za mesiac, uvedené v tab. 4.2, A op (m 2 ) je plocha zasklenia, T (-) je celková priepustnosť skla a stanoví sa: T T, 1 T2 T3 T 1 (-) je priepustnosť slnečného žiarenia a je rovné 0,81 pre dvojsklo, T 2 (-) je znečistenie zasklenia a je rovné 0,9, T 3 (-) je činiteľ tienenia zasklenia a rovná sa s (-) je tieniaci súčiniteľ, T 0,9 s 0,9 0,9 0,81, 3 c n (-) je činiteľ korigujúci nekolmý dopad lúčov na sklo okna uvažuje sa 0,9, c m (-) je činiteľ využitia slnečného žiarenia, uvedený v tab Tab Činiteľ využitia slnečného žiarenia c m orientácia mesiac S SV, SZ V, Z JV, JZ J X 1 0,95 0,85 0,73 0,67 XI 1 0,98 0,95 0,86 0, ,97 0,95 I ,97 0,95 II ,97 0,95 III 1 0,98 0,95 0,86 0,81 IV 1 0,95 0,85 0,73 0,67 Tab Globálne slnečné žiarenie pre rôzne mesiace E gm orientácia mesiac H S SV, SZ V, Z JV, JZ J X 52,74 10,36 14,06 32,23 57,61 71,57 XI 25,53 5,52 6,98 15,87 31,99 41,07 XII 18,62 4,03 5,09 11,18 23,86 30,95 I 23,06 5,21 6,42 15,01 32,2 41,94 II 36,75 7,26 9,55 22,21 42,17 53,31 III 76,12 15,6 23,25 48,89 76,16 89,73 IV 110,53 4,04 38,30 65,84 84,33 88,42 Potom môžem určiť solárny zisk cez južné okná pre mesiac december T T1 T2 T3 0,81 0,81 0,59049

24 Q 30,95 1,39 4 0, ,95 0,9 86,879 kw h mes -1 Zm Podobne som určila tepelné zisky aj v iných mesiacoch pre každú svetovú stranu. Výsledky sú uvedené v tabuľkách 4.3, 4.4, 4.5 a 4.6. Tab Výpočet solárnych ziskov na južnej strane Mesiac X XI XII I II III IV spolu Q qmj (kw h) 71,57 41,07 30,95 41,94 53,31 89,73 88,42 416,99 C m (-) 0,67 0,81 0,95 0,95 0,95 0,81 0,67 0,83 Q ZmJ (kw h) 141,689 98,297 86, , , , , ,045 Tab Výpočet solárnych ziskov na západnej strane Mesiac X XI XII I II III IV spolu Q qmz (kw h) 32,23 15,87 11,18 15,01 22,21 48,89 65,84 211,23 C m (-) 0,85 0, ,95 0,85 0,94286 Q ZmZ (kw h) 80,949 44,548 33,035 44,352 65, , , ,111 Tab Výpočet solárnych ziskov na východnej strane Mesiac X XI XII I II III IV spolu Q qmv (kw h) 32,23 15,87 11,18 15,01 22,21 48,89 65,84 211,23 C m (-) 0,85 0, ,95 0,85 0,94286 Q ZmV (kw h) 31,448 17,307 12,834 17,230 25,495 53,315 64, ,871 Tab Výpočet solárnych ziskov na severnej strane Mesiac X XI XII I II III IV spolu Q qms (kw h) 10,36 5,52 4,03 5,21 7,26 15,6 4,04 52,02 C m (-) 0,95 0, ,98 0,95 0,98 Q ZmS (kw h) 12,842 7,058 5,258 6,798 9,473 19,948 5,008 66,385 Celkové solárne zisky za vykurovacie obdobie získame sčítaním ziskov zo všetkých stien Q Zm Q ZmJ + Q ZmZ + Q ZmV + Q ZmS 984, , , , ,42 kw h

25 4.2 Tepelné zisky od zariadení v dome Tab Tepelná energia zo zariadení v domácnosti v kw h za vykurovacie obdobie Prístroj Staršie Dnes Najmodernejšie Chladnička Kombinovaná chladnička Mraznička Umývačka riadu Práčka Sušička Elektrický sporák Osvetlenie Televízor Ostatné Domácnosť je vybavená kombinovanou chladničkou, elektrickým sporákom, osvetlením, televízorom a ostatnými zariadeniami. Na výpočet tepelných ziskov od zariadenia berieme dnešný technologický stav, takže tepelný zisk v dome je súčtom vybraných hodnôt z tabuľky 4.7 a to je Q p 1012 kw h za vykurovacie obdobie. 4.3 Tepelné zisky od obyvateľov domu Veľkosť ziskov je veľmi závislá na aktivite človeka. Ako základ sa berie tepelný výkon muža 62 W pri mierne aktívnej práci za stolom a teplote okolia 26 C. Ak je teplota okolia iná ako 26 C, tepelný výkon muža sa počíta zo vzťahu: ( t ) P M 6,2 36 i W, (4.1) teda pri teplote 21 C je tepelný výkon muža ( 36 t ) 6,2 ( 36 21) 93 P M 6,2 W. i Tepelný výkon žien je 85 % z tepelného výkonu muža u detí je to 75 %. Počítam dvojčlennú rodinu a celkový tepelný výkon je: ( 1+ 0,85) 172, 05 P L P M + P Z 93 W, čomu zodpovedá energia za vykurovacie obdobie ak uvažujem priemernú 12 hodinovú prítomnosť osôb a počet dní 210 PL 12 d 172, QL 441,126 kw h

26 4.4 Odčítanie tepelných ziskov od tepelných strát a bilancia spotreby tepelnej energie na kúrenie Ak od celkovej spotreby tepelnej energie za vykurovacie obdobie odpočítame tepelné zisky získame skutočnú spotrebu energie na vykurovanie: Q Q Q Q Q 64425, , , ,49 kw h. VO Sm P L Z toho som určila ukazovatele a to spotrebu tepelnej energie na m 2 a m 3. Kde úžitková plocha je S 160,7 m 2 a vnútorný objem je V 433,89 m 3. ukazovateľ ( m ukazovateľ ( m 3 2 Q ) V VO Q ) S VO 61128,49 140,88 433, ,49 380,38 160,7 kw h m -3 rok -1, kw h m -2 rok -1. Keďže nízkoenergetický dom je definovaný rozmedzím hodnôt kw h m -2 rok -1 a dom ktorým sa zaoberám presahuje tieto hodnoty 8-násobne budem sa v ďalších kapitolách venovať opatreniam na zníženia tepelných strát a zvýšenie tepelných ziskov.

27 13 5. Aplikácia zásad projektovania nízkoenergetického domu na rodinný dom 5.1 Tepelná izolácia Požiadavka, ktorá je kladená na tepelnú izoláciu je odstránenie nežiadúcich tepelných strát (ziskov) a zabezpečiť požadovaný stav vnútorného prostredia. Hlavnou úlohou tepelnoizolačnej vrstvy je spomalenie odovzdávania tepla v čase. Týmto sa zmenší postup tepla do chladného exteriéru a dosiahne sa trvalé udržiavanie teploty vo vykurovanej miestnosti. Tepelnoizolačná vrstva musí zabraňovať vzniku tepelných mostov, tvorbe kondenzácie, ale predovšetkým znižuje straty energie pri vykurovaní. Tepelnú vodivosť tepelnoizolačnej vrstvy určuje druh materiálu, obsah vlhkosti, veľkosť, rozdelenie a množstvo pórov v ňom obsiahnutých. Dôležitá je aj tepelná absorpcia, schopnosť akumulovať teplo a podiel odrazu. Kondenzovanie vodných pár, ktoré prenikajú do tepelnoizolačnej vrstvy, majú za následok nasýtenie tepelnoizolačného materiálu vodou a tým značne znižujú jeho tepelnoizolačnú schopnosť. Tepelná vodivosť jednotlivých materiálov používaných pre tepelnoizolačnú vrstvu je rozličná. Výber tepelnoizolačného materiálu treba robiť nielen podľa jeho schopnosti zabezpečiť tepelnú ochranu pri rozličných vplyvoch a počas mnohých rokov využívania. Veľkú pozornosť treba venovať kondenzácii vodnej pary prenikajúcej cez konštrukciu. Princíp väčšiny tepelných izolácií je minimálnou hmotou obaliť maximálne množstvo vzduchu, s využitím skutočnosti že vzduch je lacná a vhodná izolácia. Penové plasty a všeobecne penené materiály majú takýto princíp už v názve. Napenené základné suroviny vytvárajú štruktúru buniek (viac alebo menej uzavretých), ktorých plnivom je vzduch. V prípade vláknitých materiálov jednotlivé vlákna vymedzujú priestory, v ktorých je vzduch. Tento základný rozdiel je charakterizovaný nasiakavosťou jednotlivých izolačných materiálov. Všeobecne platí, že vláknité materiály sú výrazne nasiakavejšie ako penové. Pri tepelnotechnickom navrhovaní jednotlivých konštrukcií treba dodržať normatívne hodnoty týchto kritérií: - požiadavky na najnižšiu vnútornú povrchovú teplotu, - požiadavky na spotrebu energie na vykurovanie,

28 - požiadavky na súčiniteľ prechodu tepla a na tepelný odpor konštrukcie, - požiadavky na teplotný útlm, - požiadavky na difúziu a kondenzáciu vodnej pary v stavebných konštrukciách, - požiadavky na vzduchovú priepustnosť stavebných konštrukcií, - požiadavky na tepelnú prijímavosť podlahových konštrukcií, - požiadavky na tepelnú stabilitu v zimnom období, - požiadavky na tepelnú stabilitu v letnom období Rozdelenie tepelných izolácií Tepelné izolácie rozdeľujeme na: Vláknité materiály - minerálne vlákna, - kamenné vlákna, - sklenené vlákna. Penové plasty - penový polystyrén, - penový polyuretán, - extrudovaný polystyrén, - penový polyvinylchlorid, - penový polyetylén. Minerálne materiály - dosky z penového skla, - perlitové dosky, - expandované minerálne materiály (perlit, sľuda, keramzit). Tepelné izolácie na biologickom základe - drevovláknité a drevotrieskové dosky, - korok, asfaltokorok, - recyklovaný papier, - bavlna, ľan, slama, kokosové vlákna, - ovčia vlna. Ľahčené betóny - sú to silikátové vrstvy s plnivom z ľahčeného minerálneho alebo iného materiálu. Minerálny sypaný materiál je napríklad perlit, keramzit alebo izolačný granulát (penový polystyrén) Oblasti použitia tepelných izolácií Konštrukcie, v ktorých sa používajú zabudované tepelné izolácie: Podlaha - v podlahe na teréne sa používa tepelná izolácia nad hydroizoláciou ako tepelná ochrana v podlahovej konštrukcii na teréne. Jedná sa o tepelné izolácie s väčšou objemovou hmotnosť, ktoré sú schopné preniesť zaťaženie z prevádzky podlahy.

29 Obvodové steny - tepelnoizolačné vrstvy sú pridávané na vonkajší povrch nosnej konštrukcie tak, aby sa dosahoval minimálny požadovaný tepelný odpor (viď. obr. 5.1). Obr Dodatočná tepelná izolácia na vonkajšej strane obvodnej steny Pri navrhovaní skladby vrstvených obvodových stien sa odporúča, aby sa dodržala zásada, že tepelný odpor vrstiev radených smerom z interiéru do exteriéru narastá a ich difúzny odpor sa zmenšuje (parotesné materiály sú na interiérovej strane a difúzne otvorené sú na exteriérovej strane obvodového plášťa). Rešpektovanie tejto zásady vedie k eliminácií kondenzácie vodnej pary v konštrukcii. Zatepľovanie z exteriérovej strany rozdeľujeme na kontaktný zatepľovací systém, a bezkontaktný (odvetraný) zatepľovací systém. Navrhnúť tepelnú izoláciu je možné aj z interiérovej strany (viď. obr. 5.2), ale výpočtom treba dokázať že v konštrukcii nebude kondenzovať vodná para, tento druh zatepľovania nemá akumulačnú schopnosť s porovnaním na zatepľovanie z exteriérovej strany.

30 Obr Dodatočná tepelná izolácia na vnútornej strane obvodnej steny s naznačením tepelného mostu Na ilustráciu uvádzam na obrázku 5.3. priebehy povrchových teplôt pri rôznych zhotoveniach a to bez izolácie, s dodatočnou izoláciou na vnútornej strane a dodatočnou izoláciou na vonkajšej strane. Strecha - tepelná izolácia sa nachádza v strešnom plášti v plochej alebo v šikmej streche obytného podkrovia nad parozábranou. Pre ploché strechy sa používajú tepelné izolácie väčších objemových hmotností (minerálne vlákna 150 kg m -3 ). Podľa tepelotechnickej normy STN je potrebné strechy navrhovať na tepelný odpor R 4,9 m 2 K W -1, to znamená hrúbka tepelnej izolácie cca od mm (podľa teplotechnického výpočtu) [9]. Obr Ilustračný priebeh teplôt pri jednotlivých typoch dodatočného zateplenia

31 Tepelné mosty - tepelná izolácia sa používa na zamedzenie nepriaznivých účinkov tepelných mostov. Tepelný most je také miesto v konštrukcii, ktoré spôsobuje nižšiu teplotu na vnútornom povrchu, aká je v bežnom mieste konštrukcie (napr. kúty miestností, v miestach styku stropnej konštrukcie a obvodovej steny, styk obvodovej steny a základovej konštrukcie, v miestach výplní otvorov v obvodovej stene ako okno dvere a pod. ). Tieto miesta sa potom z exteriérovej strany dopĺňajú o tepelnú izoláciu Dôvody zatepľovania obvodových stien V priemernej domácnosti sa približne 60 % z celkovej spotreby energie minie na vykurovanie. Zatepľovanie obvodových stien bytových domov a rodinných domov sa uskutočňuje zo snahy zabezpečiť technické parametre zodpovedajúce požiadavkám kladeným na stavebné konštrukcie a budovy v súčasnosti. Zabezpečenie tepelnej ochrany budovy dodatočným zatepľovaním obvodových stien má tieto zásadné priaznivé účinky: - zníženie spotreby energie na vykurovanie (aspoň o 30 %), - odstránenie hygienických nedostatkov (plesne), - vytváranie podmienok pre tepelnú pohodu v bytoch, zvýšením vnútornej povrchovej teploty, - zvýšenie tepelnej zotrvačnosti stavebných konštrukcií a spomalenie chladnutia miestností pri vykurovacej prestávke, - eliminovanie zatekania, - zamedzenie korózii výstuže v stykoch a paneloch, - zníženie vplyvu teplotného rozdielu pôsobiaceho na nosné konštrukcie. Cez steny prechádza 34 % celkových tepelných strát budov. Znižovanie spotreby energie je požiadavkou, súvisiacou s rozvojom spoločnosti, ekonomickým vývojom a racionalizáciou čerpania zdrojov palív a energie. Zvyšujúce sa ceny energií a tepla vyvolávajú potrebu znižovať tepelné straty pri vykurovaní budov zlepšovaním tepelnotechnických vlastností. Čím sú lepšie východiskové tepelnotechnické parametre pôvodných stavebných konštrukcií, tým je nižšia účinnosť dodatočnej tepelnoizolačnej vrstvy uplatnenej v rovnakej hrúbke. Pri kombinácii zatepľovacieho systému obvodových stien s výmenou okien alebo ich úpravou možno dosiahnuť zníženie spotreby energie na vykurovanie o viac ako 50 %, ale len pri budovách postavených do roku Pri budovách postavených neskôr sa dá dosiahnuť zníženie spotreby energie približne o 30 %. [10] Slnečná energia Na jeden m 2 zemského povrchu pri bezoblačnom počasí dopadá slnečné žiarenie s výkonom priemerne 1000 W. Slnečné žiarenie sa po dopade na Zem mení na teplo a chemickú energiu. Na Slovensku Slnko vyžiari ročne kw h m -2, rok má 8760 hodín. Slnko svieti podľa oblastí hodín. Tri štvrtiny tohto slnečného žiarenia pripadá na letné mesiace.

32 Podľa toho, či sa slnečná energia využíva vo svojej pôvodnej forme, alebo pomocou technických prostriedkov, môžeme hovoriť o jej pasívnom alebo aktívnom využití. Pasívne využitie. Architektonické riešenia, na základe ktorých sa slnečné žiarenie priamo využíva na ohrievanie priestorov, napr. okná situované na juh, zimné záhrady - vhodné realizovať najmä u novovybudovaných domov. Aktívne využitie. Použitie kolektorov na výrobu tepla, napr. na prípravu teplej úžitkovej vody (TÚV). Použitie solárnych článkov na výrobu elektriny (fotovoltaický proces). Použitie tepelných čerpadiel na využitie teploty prostredia zo vzduchu, vody a pôdy Pasívne využitie slnečnej energie Jedná sa predovšetkým o pasívne solárne systémy, ktorými môže byť celá budova, alebo len niektoré z jej častí. Transport energie sa deje len prirodzenou cestou, bez pomoci technických zariadení. Vhodným návrhom možno pri pasívnom slnečnom vykurovaní znížiť spotrebu tepla až o 60 %. Zásady pre navrhovanie pasívnych solárnych systémov: - budovu treba postaviť v mieste závetria (vietor zväčšuje tepelnú stratu infiltráciou), - z južnej strany má byť krajina otvorená, aby na zasklené plochy pasívneho systému mohlo bez obmedzenia dopadať slnečné žiarenie, - južnú stranu treba ochrániť pred preteplením v letnom období - použitím napr. vhodného tienenia listnatými stromami (v zime opadávajú). Južná orientácia čelnej strany domu je najvýhodnejšia, ale nemusí byť úplne splnená. Tepelné zisky zo slnečného žiarenia sa zmenšujú nepatrne do odchýlky o ± 30 od južného smeru na východ alebo na západ. Na južnej strane so slnečnými oknami majú byť trvalo obývané miestnosti, napr. obývacia izba, prípadne pracovňa a kuchyňa s jedálňou. Miestnosti používané len v určitom dennom čase môžu byť na východnej alebo na západnej strane Pasívne solárne systémy Akumulačné solárne steny Jedná sa o základný prvok solárnej architektúry. Južná strana funguje ako kolektor, steny a podlaha sú z masívnych stavebných materiálov s vysokou tepelnou kapacitou. Plní funkciu tepelného zásobníka, ktorý zabraňuje prehriatiu pri slnečnom svite a následne uvoľňuje teplo, pri poklese teploty. Teplo sa dovnútra budovy šíri sálaním. Nezasklený solárny vzduchový kolektor Základom je tmavý, dierovaný trapézový plech, ktorý sa umiestňuje na fasádu vo vzdialenosti 2 4 cm od zateplenej obvodovej steny. Ventilátor vytvára podtlak medzi fasádou a plechom a tým

33 dochádza k nasávaniu vzduchu do dutiny cez dierovanie. Vzduch stúpa dutinou, zohrieva sa a je ďalej rozvádzaný bežným vetracím zariadením. Energetická fasáda Energetické fasády sú jednoduché vzduchové kolektory, ktorých transparentnú vrstvu tvorí sklenená doska a absorpčný povrch normálna fasáda. Výhodou je, že pomocou týchto kolektorov môžeme zásobovať teplom celú budovu. Dvojité transparentné fasády Jedná sa podobne ako v predchádzajúcom prípade o vzduchový kolektor, ktorý je tvorený sklenenými doskami predsadenými pred obvodovou presklenou konštrukciou. Vo vzniknutej dutine sú ešte umiestnené tieniace prvky a otvory umožňujúce reguláciu vzduchu vo vonkajšom plášti. Energetická strecha Jedná sa o vzduchový kolektor zabudovaný do roviny strešnej konštrukcie. Väčšinou sa tento spôsob kombinuje práve so stenovým vzduchovým kolektorom. K dosiahnutiu dostatočného účinného vztlaku pri letnej prevádzke s prirodzenou cirkuláciou vzduchu je nutný určitý výškový rozdiel medzi vstupom a výstupom vzduchu. Z tohto dôvodu je systém vhodný pre šikmé strechy s uhlom sklonu najmenej Transparentná tepelná izolácia Skladá sa z materiálov, ktoré výhodne kombinujú dve základné vlastnosti požadované pri zasklievacích prvkoch v solárnej technike - dobrú priepustnosť slnečného žiarenia a nízku tepelnú stratu. Sú vyrábané zo skla alebo z plastov Aktívne využitie slnečnej energie Aktívne solárne systémy sú odlišné od pasívnych tým, že k využívaniu energie slnečného žiarenia nedochádza priamo, ale prostredníctvom slnečných kolektorov, ktoré pohlcujú slnečné žiarenie a premieňajú ho na teplo alebo prostredníctvom slnečných (fotovoltaických) článkov premieňajúcich slnečné žiarenie na elektrinu Slnečné kolektory Na efektívne využitie slnečných kolektorov pre NED sa predpokladá zo splnením nasledovných kritérií. Účinnosť slnečného kolektora závisí od klimatickej oblasti, od ročného obdobia, od čistoty ovzdušia a od sklonu plochy, na ktorú slnečné žiarenie dopadá. V lete je vyžarovanie slnečnej energie mimoriadne veľké (v tomto čase možno prakticky úplne zohriať vodu slnkom, v zime je intenzita slnečného žiarenia slabšia). Správna orientácia slnečného kolektora je veľmi dôležitá. Najväčšie množstvo slnečnej energie vyžaruje z juhu (najlepší výsle dok sa dosiahne nasmerovaním slnečných kolektorov na juh). Pri nasmerovaní mierne na západ (asi o 8 15 ) možno využiť aj energiu zapadajúceho slnka. Kolektor je maximálne účinný, ak slnečné žiarenie naň dopadá v pravom uhle.

34 Pri využívaní letného slnka je výhodné, aby bol kolektor relatívne plocho uložený. Na zimu je vhodnejšie strmé uloženie. Optimálny sklon pre celoročnú prevádzku je 45. Pri premene slnečného žiarenia na teplo dochádza k strate určitej časti energie, napr. cez krycie sklo, cez spodnú a bočné steny. Preto čím lepšia je izolácia medzi vnútrom kolektora a okolím tým lepšia je jeho účinnosť. Rozdelenie užívateľských systémov podľa jednotlivých hľadísk: Podľa prevádzkového režimu: - systémy so sezónnou prevádzkou: voda sa ohrieva priamo v kolektore, - systémy s celoročnou prevádzkou: teplonosnou kvapalinou je vždy nemrznúca zmes, potrebné sú vždy dva okruhy. Podľa obehu teplonosnej kvapaliny: - samoťažné: teplonosná kvapalina prirodzene cirkuluje, - s núteným obehom: teplonosná kvapalina prúdi pomocou obehového čerpadla. Podľa okruhov: - jednookruhový systém kolektorov je zároveň aj zásobníkom teplej vody, napr. voda z vodovodu môže byť priamo ohrievaná slnkom. Nie je potrebné čerpadlo, ktoré by vyžadovalo prídavnú energiu. Dobrá tepelná izolácia, transparentné krytie, ako aj termická nosnoť systému zabezpečia ochranu zariadenia pred zamŕzaním v zimných mesiacoch, - dvojokruhový systém: kolektor je napojený na výmenník tepla primárnym okruhom a naň je napojený sekundárny okruh. V praxi sa bežne používajú nasledovné druhy slnečných kolektorov. Kvapalinové slnečné kolektory Premieňajú slnečné žiarenie zachytené absorbérom na tepelnú energiu. Tá sa koncentruje v teplonosnej kvapaline, ktorá ju odvádza do miesta spotreby, napríklad do solárneho zásobníka. Ploché kolektory Používajú sa pre nízkoteplotné systémy (do 100 C). Pre svoje dobré parametre, prijateľnú cenu a jednoduchosť použitia sú najrozšírenejšie. Ich účinnosť je cca. 70 %. Koncentrické kolektory Koncentrujúce kolektory využívajú zrkadliace povrchy, ktoré koncentrujú slnečné žiarenie do ohniska, v ktorom sa nachádza absorbátor. Majú cca. 90 % účinnosť, sú však oveľa drahšie a náročnejšie na montáž ako predchádzajúce typy. Celková zostava solárneho systému na prípravu TÚV sa skladá z nasledovných komponentov: - slnečný kolektor, - zásobník teplej vody, - výmenník tepla, - obehové čerpadlo, - regulácia, - potrubia, - systém doplnkového ohrevu.

35 Jadrom solárneho zariadenia na prípravu TÚV je kolektor, v ktorom sa v absorbéri premieňa slnečné žiarenie na teplo (viď. obr. 5.4.). Na prípravu TÚV sa používajú zariadenia s plochým alebo vákuovým rúrovým kolektorom, ale tiež aj akumulačné kolektory. Akumulačný zásobník teplej vody (bojler) môže mať objem aj niekoľko sto litrov. Tento relatívne vysoký objem pomôže preklenúť krátkodobý pokles slnečného tepla. Veľké poklesy počas ročných období je možné vyrovnať zodpovedajúcim dodatočným ohrevom. Je potrebné dbať na to, aby sme nemali veľké straty tepla v potrubí (krátke a dobre izolované potrubia). Ak energia získaná zo Slnka nepostačuje, možno použiť nasledujúce systémy dodatočného ohrevu: - vykurovacím systémom (plyn) s ďalším výmenníkom tepla v bojleri, - elektrickým vykurovacím telesom v hornej časti bojlera, - cez decentralizované bojlery na ohrev TÚV na mieste odberu vody. Obr Schéma zapojenia slnečných kolektorov na ohrev TÚV Na vykurovanie bytových priestorov sa kolektory veľmi nehodia, pretože práve v čase, keď je potreba tepla najvyššia (večer a v zimných mesiacoch), môžu dodávať len veľmi obmedzené množstvo úžitkového tepla.

36 Pri použití kolektorov na kúrenie sa musí rátať s kolektorovou plochou, ktorá sa rovná asi 50 % vykurovanej obytnej plochy. Nutné je tiež obstarať veľký ( litrov) a cenove náročný zásobník so zariadením pre celoročné vyrovnávanie teplotných rozdielov alebo prídavné ohrievacie zariadenie. Na takéto vykurovanie je vhodné len veľkoplošné vykurovanie (podlahové), umožňujúce využívať vodu s nižšou teplotou Solárne články Fotovoltika bola objavená už pred 150 rokmi francúzskym fyzikom Edmondom Alexandrom Bequerelom (1839). Tento vedec objavil, že je možné premeniť slnečné žiarenie priamo na elektrickú energiu. Dlhé roky bol tento efekt využívaný vo fotografovaní na meranie osvetlenia. Potom uprostred 50-tich rokov nastal zlom. Fotovoltika sa začala používať vo vesmírnej technike. Zistilo sa, že je to jediná možnosť ako zásobovať satelity a vesmírne lode vo vesmíre elektrickou energiou. Potom, ako sa začala fotovoltika využívať pri vesmírnych letoch, nasledovali postupné kroky na jej využitie na Zemi. Bola použitá pre napájanie od vreckových kalkulačiek a náramkových hodiniek, cez signalizáciu pohotovosti až po rádio reléové stanice, neskôr na napájanie horských chát a hospodárskych budov vo vyšších polohách. Vo všetkých týchto prípadoch ide o výrobu elektrickej energie z fotovoltických článkov v tzv. ostrovnej prevádzke, teda bez spojenia s verejnou energetickou sieťou, ktorou sa zásobujú spotrebiče alebo budovy (viď. obr. 5.5). Pri takejto ostrovnej prevádzke sa dá získať konštantné zásobovanie elektrickou energiou pomocou akumulátorových batérií. Pre menšie spotrebiče postačuje napätie tejto siete 12 alebo 24 V. Akumulátorová batéria zásobuje spotrebiteľa v čase, keď je výroba elektrickej energie zo slnka nedostatočná. U malých zariadení (do 300 W) sa používajú spotrebiče, ktoré môžu byt priamo zásobované z akumulátorovej batérie (svietidlá, rádio, TV). Väčšie systémy bývajú prevádzkované striedavým prúdom. Aby sa takéto spotrebiče mohli zásobovať (sušič vlasov, TV) elektrickou energiou je potrebné nainštalovať do takejto ostrovnej prevádzky napäťový menič, ktorý premení jednosmerné napätie na striedavých 230 V. Do všetkých väčších fotovoltických zariadení sa na ochranu proti preťaženiu akumulátorových batérií montujú regulátory. Regulátor sa tiež stará o to, aby nedošlo k napäťovému preťaženiu spotrebičov. V zahraničí sa dnes montujú fotovoltické zariadenia pre decentralizované zásobovanie elektrickou energiou do všetkých vyššie položených objektov, ako sú chaty, vysielače, stanice prvej pomoci a pod. aj ako zálohové zdroje. Fotovoltické zariadenia sú ešte stále náročné na investičné náklady. Avšak tam, kde vôbec nie je možné zásobovanie z verejných energetických sietí alebo náklady na prevádzku dieselagregátov sú vysoké z dôvodov dopravnej nedostupnosti, montujú sa fotovoltické zariadenia na zásobovanie elektrickou energiou. Základným elementom fotovoltického zariadenia je solárny článok. Takéto články môžu premeniť slnečnú energiu priamo na elektrickú. Základným materiálom solárneho článku je kremík v polykryštalickej, monokryštalickej alebo amorfnej forme. Doteraz boli vyvinuté 3 typy solárnych článkov:

Výpočet potreby tepla na vykurovanie NOVÝ STAV VSTUPNÉ ÚDAJE. Č. r. ZÁKLADNÉ ÚDAJE O BUDOVE. 1 Názov budovy: 2

Výpočet potreby tepla na vykurovanie NOVÝ STAV VSTUPNÉ ÚDAJE. Č. r. ZÁKLADNÉ ÚDAJE O BUDOVE. 1 Názov budovy: 2 Výpočet potreby tepla na vykurovanie NOVÝ STAV Č. r. ZÁKLADNÉ ÚDAJE O BUDOVE 1 Názov budovy: 2 Ulica, číslo: Obec: 3 Zateplenie budovy telocvične ZŠ Mierová, Bratislava Ružinov Mierová, 21 Bratislava Ružinov

Διαβάστε περισσότερα

Príprava teplej úžitkovej vody

Príprava teplej úžitkovej vody Príprava teplej úžitkovej vody Skratka TÚV alebo OPV znamená teplá úžitková voda alebo ohrev pitnej vody. To, že je v našich krajinách teplá voda 24 hodín denne, sa berie dnes ako samozrejmosť. No ešte

Διαβάστε περισσότερα

Prevádzkové hodnotenie budov

Prevádzkové hodnotenie budov TECHNICKÝ A SKÚŠOBNÝ ÚSTAV STAVEBNÝ BUILDING TESTING AND RESEARCH INSTITUTE Prevádzkové hodnotenie budov Technický skúšobný ústav stavebný, n.o. Studená 3, Bratislava Energetická hospodárnosť budov v centre

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Technické detaily. Baumit. Myšlienky s budúcnosťou.

Technické detaily. Baumit. Myšlienky s budúcnosťou. Baumit. Myšlienky s budúcnosťou. 1. Konštrukčné systémy Prehľad detailov 1.1 Kontaktný poter rez 1.2 Kontaktný poter axonometria 1.3 Oddelený poter rez 1.4 Oddelený poter axonometria 1. Plávajúci poter

Διαβάστε περισσότερα

SLOVENSKO maloobchodný cenník (bez DPH)

SLOVENSKO maloobchodný cenník (bez DPH) Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.

Διαβάστε περισσότερα

Budova s takmer nulovou potrebou energie?

Budova s takmer nulovou potrebou energie? Budova s takmer nulovou potrebou energie? Materská škola Dubová Žilina, 25.5.2015 Ing. Vladimír Šimkovic Aktuálny stav MŠ Dubová Prevádzka 2013-2014: 1 rok Počet detí: 45 Personál: dospelých 5 Merná

Διαβάστε περισσότερα

Zatepľovanie nie je módnou záležitosťou, ale krok k zdravému bývaniu a k šetreniu energií

Zatepľovanie nie je módnou záležitosťou, ale krok k zdravému bývaniu a k šetreniu energií Zatepľovanie nie je módnou záležitosťou, ale krok k zdravému bývaniu a k šetreniu energií V súčasnosti hádam ani nenájdeme človeka, ktorý by nepočul o zatepľovaní budov. Zatepľujú sa staré rodičovské domy,

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

Okrem finančnej a energetickej úspore má však zateplenie aj množstvo ďalších výhod:

Okrem finančnej a energetickej úspore má však zateplenie aj množstvo ďalších výhod: Prečo zatepľovať V každej priemernej domácnosti sa takmer dve tretiny všetkej energie spotrebuje na vykurovanie. Cez steny domov a bytov uniká tretina tepla a spolu so stratou tepla, ktoré uniká cez nekvalitné

Διαβάστε περισσότερα

TEPLA S AKUMULACÍ DO VODY

TEPLA S AKUMULACÍ DO VODY V čísle prinášame : Odborný článok ZEMNÉ VÝMENNÍKY TEPLA Odborný článok ZÁSOBNÍK TEPLA S AKUMULACÍ DO VODY Odborný článok Ekonomika racionalizačných energetických opatrení v bytovom dome s následným využitím

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Správa. (príloha k energetickému certifikátu)

Správa. (príloha k energetickému certifikátu) Správa (príloha k energetickému certifikátu) Správa k energetickému certifikátu podľa 7 ods. 2 písm. c) zákona obsahuje najmä tieto údaje: a) identifikačné údaje o budove (adresa, parcelné číslo), b) účel

Διαβάστε περισσότερα

alu OKNÁ, ZA KTORÝMI BÝVA POHODA DREVENÉ OKNÁ A DVERE Profil Mirador Alu 783 Drevohliníkové okno s priznaným okenným krídlom.

alu OKNÁ, ZA KTORÝMI BÝVA POHODA DREVENÉ OKNÁ A DVERE Profil Mirador Alu 783 Drevohliníkové okno s priznaným okenným krídlom. DREVENÉ OKNÁ A DVERE m i r a d o r 783 OKNÁ, ZA KTORÝMI BÝVA POHODA EXTERIÉROVÁ Profil Mirador Alu 783 Drevohliníkové okno s priznaným okenným krídlom. Je najviac používané drevohliníkové okno, ktoré je

Διαβάστε περισσότερα

Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu

Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm

Διαβάστε περισσότερα

ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ

ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM Teplo na prípravu teplej vody Ing. Zuzana Krippelová doc. Ing.Jana Peráčková, PhD. STN EN 15316-3-1- Vykurovacie systémy v budovách. Metóda

Διαβάστε περισσότερα

Tepelné, zvukové a protipožiarne izolácie

Tepelné, zvukové a protipožiarne izolácie fasády prevetrávané Tepelné, zvukové a protipožiarne izolácie www.rockwool.sk Základné informácie Spoločnosť Rockwool v Českej republike je súčasťou medzinárodného koncernu Rockwool na Slovensku International,

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

TEPELNOTECHNICKÝ POSUDOK PRE KONŠTRUKCIE MONTOVANÉHO DOMU FIRMY Mgr. Radovan Kuzma Ekoline - Montované stavby

TEPELNOTECHNICKÝ POSUDOK PRE KONŠTRUKCIE MONTOVANÉHO DOMU FIRMY Mgr. Radovan Kuzma Ekoline - Montované stavby ENERGETICKÁ HOSPODÁRNOSŤ BUDOV TEPELNOTECHNICKÝ POSUDOK PRE KONŠTRUKCIE MONTOVANÉHO DOMU FIRMY Mgr. Radovan Kuzma Ekoline - Montované stavby Objednávateľ: Vypracoval: Mgr. Radovan Kuzma Ekoline - Montované

Διαβάστε περισσότερα

100626HTS01. 8 kw. 7 kw. 8 kw

100626HTS01. 8 kw. 7 kw. 8 kw alpha intec 100626HTS01 L 8SplitHT 8 7 44 54 8 alpha intec 100626HTS01 L 8SplitHT Souprava (tepelná čerpadla a kombivané ohřívače s tepelným čerpadlem) Sezonní energetická účinst vytápění tepelného čerpadla

Διαβάστε περισσότερα

200% Atrieda 4/2011. www.elite.danfoss.sk. nárast počtu bodov za tento výrobok MAKING MODERN LIVING POSSIBLE

200% Atrieda 4/2011. www.elite.danfoss.sk. nárast počtu bodov za tento výrobok MAKING MODERN LIVING POSSIBLE Atrieda 4/2011 ROČNÍK 9 MAKING MODERN LIVING POSSIBLE Súťažte o skvelé ceny! Zdvojnásobte tento mesiac svoju šancu setmi Danfoss RAE! Zapojte sa do veľkej súťaže inštalatérov Danfoss a vyhrajte atraktívne

Διαβάστε περισσότερα

Prehľad základných produktov a ceny Platný od februára Ušetrite za energiu, priestor a čas...

Prehľad základných produktov a ceny Platný od februára Ušetrite za energiu, priestor a čas... Prehľad základných produktov a ceny Platný od februára 2010 Ušetrite za energiu, priestor a čas... Izolácie zo sklenenej vlny Ušetrite za energiu, priestor a čas... Novinky Izolačná rohož URSA DF 37 Kód

Διαβάστε περισσότερα

RODINNÝ DOM - CHMEĽOVEC

RODINNÝ DOM - CHMEĽOVEC RODINNÝ DOM - CHMEĽOVEC STAVEBNÁ FYZIKA TEPELNOTECHNICKÝ POSUDOK STAVEBNÍK: MIESTO STAVBY: INVESTOR: STUPEŇ: VYPRACOVAL: Jozef Kandra, Chmeľovec Chmeľovec, okr. Prešov Jozef Kandra, Chmeľovec PROJEKT STAVBY

Διαβάστε περισσότερα

FUNKČNÉ POŽIADAVKY NA OBVODOVÉ PLÁŠTE

FUNKČNÉ POŽIADAVKY NA OBVODOVÉ PLÁŠTE FUNKČNÉ POŽIADAVKY NA OBVODOVÉ PLÁŠTE A) Architektonicko-estetické požiadavky celková kompozícia budovy (priestorové riešenie s dopadom na vylúčenie monotónnych nezaujímavých priečelí), architektonické

Διαβάστε περισσότερα

Projektové hodnotenie energetickej hospodárnosti budovy

Projektové hodnotenie energetickej hospodárnosti budovy Olicon s.r.o. prevádzka Kap. Nálepku 6, 080 01 Prešov, ICO : 44 380 640, DIC: 2022696016 Obchodný register :Okresného súdu Prešov oddiel: SRo, vložka: 20730/P Kontakt: Tel.:0902 100 103, www.olicon.sk,

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

1. IDENTIFIKAČNÉ ÚDAJE STAVBY A INVESTORA Úvod Vstupné podklady Okrajové podmienky... 2

1. IDENTIFIKAČNÉ ÚDAJE STAVBY A INVESTORA Úvod Vstupné podklady Okrajové podmienky... 2 Strana 1 z 12 OBSAH 1. IDENTIFIKAČNÉ ÚDAJE STAVBY A INVESTORA... 2 1.1. Úvod... 2 1.2. Vstupné podklady... 2 1.3. Okrajové podmienky... 2 2. ZÁKLADNÉ ÚDAJE O BUDOVE A STAVEBNÝCH KONŠTRUKCIACH OBJEKU...

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Ks/paleta Hmotnosť Spotreba tehál v murive. [kg] PENA DRYsystem. Orientačná výdatnosť (l) 5 m 2 /dóza ml m 2 /dóza 2.

Ks/paleta Hmotnosť Spotreba tehál v murive. [kg] PENA DRYsystem. Orientačná výdatnosť (l) 5 m 2 /dóza ml m 2 /dóza 2. SUPRA SUPRA PLUS ABSOLÚTNA NOVINKA NA STAVEBNOM TRHU! PENA DRYsystem / Lepiaca malta zadarmo! Rozmery dxšxv [mm] Ks/paleta Hmotnosť Spotreba tehál v murive ks [kg] paleta [kg] Pevnosť v tlaku P [N/mm²]

Διαβάστε περισσότερα

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom... (TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23

Διαβάστε περισσότερα

Informačná brožúra EKOLOGICKÉ MATERIÁLY PRE ENERGETICKY PASÍVNE DOMY (EPD)

Informačná brožúra EKOLOGICKÉ MATERIÁLY PRE ENERGETICKY PASÍVNE DOMY (EPD) Informačná brožúra EKOLOGICKÉ MATERIÁLY PRE ENERGETICKY PASÍVNE DOMY (EPD) OBSAH ÚVOD...3 Tabuľka...6 I. NOSNÉ KONŠTRUKCIE...7 Charakteristika...7 II. TEPELNÉ IZOLÁCIE...9 Tabuľka...10-11 Materiály: celulóza,

Διαβάστε περισσότερα

PROJEKT STAVBY PRE STAVEBNÉ POVOLENIE A REALIZÁCIU

PROJEKT STAVBY PRE STAVEBNÉ POVOLENIE A REALIZÁCIU ARCHSTUDIO spol. s.r.o. architektonický ateliér Hraničná ul. 4716, 058 01 Poprad, tel: 0905741686, 0948196016 www.archstudio.eu Investor: Stavba: Miesto stavby: Mesto Vysoké Tatry Nájomné bytové domy -

Διαβάστε περισσότερα

STROP YTONG EKONOM Jedinečný konštrukčný systém bez nadbetónovania a KARI siete

STROP YTONG EKONOM Jedinečný konštrukčný systém bez nadbetónovania a KARI siete STROP YTONG EKONOM Jedinečný konštrukčný systém bez nadbetónovania a KARI siete Inovatívne riešenie s úsporou nákladov na nadbetonávku Maximálna variabilita dispozície Štíhlosť konštrukcie (od 200 mm)

Διαβάστε περισσότερα

Výpočet. sledu skrátenia koľajníc v zloženom oblúku s krajnými prechodnicami a s medziľahlou prechodnicou a. porovnanie

Výpočet. sledu skrátenia koľajníc v zloženom oblúku s krajnými prechodnicami a s medziľahlou prechodnicou a. porovnanie Výpočet sledu skrátenia koľajníc v zloženo oblúku s krajnýi prechodnicai a s edziľahlou prechodnicou a porovnanie výsledkov výpočtového riešenia a grafického riešenia Príloha.4 Výpočet sledu skrátenia

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Odborná konferencia Energetická hospodárnosť budov v centre pozornosti, december 2012, WELLNESS HOTEL PATINCE. Ing. Matej Kerestúr LOGO

Odborná konferencia Energetická hospodárnosť budov v centre pozornosti, december 2012, WELLNESS HOTEL PATINCE. Ing. Matej Kerestúr LOGO Odborná konferencia Energetická hospodárnosť budov v centre pozornosti, 4. - 5. december 2012, WELLNESS HOTEL PATINCE Efektívne opatrenia na zlepšenie energetickej hospodárnosti budov Ing. Matej Kerestúr

Διαβάστε περισσότερα

1. TEPELNO-TECHNICKÉ VLASTNOSTI KONŠTRUKCIE NA BÁZE MODULOV φ-ha:

1. TEPELNO-TECHNICKÉ VLASTNOSTI KONŠTRUKCIE NA BÁZE MODULOV φ-ha: 1. TEPELNO-TECHNICKÉ VLASTNOSTI KONŠTRUKCIE NA BÁZE MODULOV φ-ha: Simulácia tepelného toku naprieč modulom v miestach bez výstuh Obrázok: 1 Simulácia tepelného toku naprieč modulom v miestach bez výstuh

Διαβάστε περισσότερα

1.1. Simulácia tepelného toku naprieč modulom v miestach bez výstuh

1.1. Simulácia tepelného toku naprieč modulom v miestach bez výstuh 1. Tepelno-technické vlastnosti koštrukčného systému Modul-Leg: 1.1. Simulácia tepelného toku naprieč modulom v miestach bez výstuh Obrázok: 1 Simulácia tepelného toku naprieč modulom v miestach bez výstuh

Διαβάστε περισσότερα

Parametre ovplyvňujúce spotrebu paliva automobilu

Parametre ovplyvňujúce spotrebu paliva automobilu 1 Portál pre odborné publikovanie ISSN 1338-0087 Parametre ovplyvňujúce spotrebu paliva automobilu Matej Juraj Elektrotechnika, Strojárstvo 20.03.2013 Nasledujúci príspevok pojednáva o fyzikálnych veličinách,

Διαβάστε περισσότερα

platný od 1. 1. 2009 Konverzný kurz 1A = 30,1260 Sk CENNÍK 2009

platný od 1. 1. 2009 Konverzný kurz 1A = 30,1260 Sk CENNÍK 2009 platný od 1. 1. 2009 Konverzný kurz 1A = 30,1260 Sk CENNÍK 2009 Myslieť na budúcnosť Dobrý stavebný materiál zvyšuje kvalitu bývania, bezpečnosť a trvácnosť hodnoty vášho domu. Preto by ste sa mali rozhodnúť

Διαβάστε περισσότερα

Piešťany, Bytový dom Úsporné energetické opatrenia bytového domu

Piešťany, Bytový dom Úsporné energetické opatrenia bytového domu Energetická štúdia Miesto: Názov: Spracovateľ štúdie: Piešťany, Bytový dom Úsporné energetické opatrenia bytového domu Ing. Andrej Fáber, faberand@gmail.com Bratislava, máj 2013 OBSAH 1 PREDMETA A CIEĽ

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ

ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM STN EN 15316-1, STN EN 15316-2-1, STN EN 15316-2-3 24 25.9.2012 2012 JASNÁ Tepelná energia potrebná na odovzdanie tepla STN EN 15316-1,

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

ENERGETICKÝ AUDIT. budovy Okresný úrad Košice - okolie Hroncová 13

ENERGETICKÝ AUDIT. budovy Okresný úrad Košice - okolie Hroncová 13 ENERGETICKÝ AUDIT budovy Okresný úrad Košice - okolie Hroncová 13 ENERGETICKÝ AUDIT BUDOVY Okresný úrad Košice - okolie Hroncová 13 Spracovateľ: Slovenská inovačná a energetická agentúra Energetický audítor:

Διαβάστε περισσότερα

Ma-Go-20-T List 1. Obsah trojuholníka. RNDr. Marián Macko

Ma-Go-20-T List 1. Obsah trojuholníka. RNDr. Marián Macko Ma-Go-0-T List 1 Obsah trojuholníka RNDr Marián Macko U: Čo potrebuješ poznať, aby si mohol vypočítať obsah trojuholníka? Ž: Potrebujem poznať jednu stranu a výšku na túto stranu, lebo základný vzorec

Διαβάστε περισσότερα

PRÉMIOVÉ RIEŠENIA PRE OBVODOVÉ STENY

PRÉMIOVÉ RIEŠENIA PRE OBVODOVÉ STENY YTONG Multipor minerálne zateplovacie dosky PRÉMIOVÉ RIEŠENIA PRE OBVODOVÉ STENY YTONG MULTIPOR 3 YTONG MULTIPOR MATERIÁL PRE LEPŠIU BUDÚCNOSŤ Obvodové steny pre dom s takmer nulovými účtami za kúrenie

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Prečo Vaillant? Cenník tepelných čerpadiel a rekuperačných jednotiek

Prečo Vaillant? Cenník tepelných čerpadiel a rekuperačných jednotiek Cenník tepelných čerpadiel a rekuperačných jednotiek Prečo Vaillant? Naša planéta v sebe skrýva nepredstaviteľnú energiu, ktorá teraz môže slúžiť i Vám. platný od 1. 9. 2014 Označovanie výrobkov Vaillant

Διαβάστε περισσότερα

Téma 1. AKO ZNÍŽIŤ SPOTREBU ENERGIE V DOMÁCNOSTI 1 z 15 AKO ZNÍŽIT SPOTREBU ENERGIE V DOMÁCNOSTI

Téma 1. AKO ZNÍŽIŤ SPOTREBU ENERGIE V DOMÁCNOSTI 1 z 15 AKO ZNÍŽIT SPOTREBU ENERGIE V DOMÁCNOSTI Téma 1. AKO ZNÍŽIŤ SPOTREBU ENERGIE V DOMÁCNOSTI 1 z 15 AKO ZNÍŽIT SPOTREBU ENERGIE V DOMÁCNOSTI Energia nie je len stále vzácnejšou a drahšou, ale výroba neustále sa zvyšujúceho množstva energie poškodzuje

Διαβάστε περισσότερα

PLÁVAJÚCE PODLAHY. Tepelné, zvukové a protipožiarne izolácie

PLÁVAJÚCE PODLAHY. Tepelné, zvukové a protipožiarne izolácie PLÁVAJÚCE PODLAHY Tepelné, zvukové a protipožiarne izolácie Plávajúca podlaha základ zvukovej pohody v interiéri Prečo používať tepelné a zvukové izolácie? Tepelné izolácie používame všade tam, kde prichádza

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

TEPELNOTECHNICKÝ POSUDOK BUDOVY spracovaný podľa STN : 2012 a STN : 2012

TEPELNOTECHNICKÝ POSUDOK BUDOVY spracovaný podľa STN : 2012 a STN : 2012 Energetická certifikácia budov Konzultačná a projekčná činnosť v oblasti stavebnej fyziky PROJEKTOVÉ HODNOTENIE podľa vyhlášky MDVRR SR č. 364/2012 Z.z. TEPELNOTECHNICKÝ POSUDOK BUDOVY spracovaný podľa

Διαβάστε περισσότερα

ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ

ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM JASNÁ ENERGETICKÁ EFEKTÍVNOSŤ A VYUŽÍVANIE OZE PODĽA TECHNICKÝCH NORIEM 1. Úvod 2. Základný princíp NTV / VTCH 3. Základné typy NTV a VTCH z noriem 4. NTV / VTCH v normách STN EN 15 377 5. NTV / VTCH v normách

Διαβάστε περισσότερα

KERAMICKÉ MUROVACIE TVAROVKY LEIERTHERM A LEIERPLAN. www.leier.sk TECHNICKÁ PODPORA

KERAMICKÉ MUROVACIE TVAROVKY LEIERTHERM A LEIERPLAN. www.leier.sk TECHNICKÁ PODPORA TECHNICKÁ PODPORA Program pre zhotovenie cenových ponúk a vizualizácie Podklady pre projektantov CAD detaily Informácie o produktoch k KERAMICKÉ MUROVACIE TVAROVKY LEIERTHERM A LEIERPLAN LEIERTHERM, LEIERPLAN

Διαβάστε περισσότερα

VYNIKAJÍCÍ VLASTNOSTI TEPELNÝCH IZOLACÍ KNAUF INSULATION

VYNIKAJÍCÍ VLASTNOSTI TEPELNÝCH IZOLACÍ KNAUF INSULATION Magazine Ú p p y December 2/2010 pre firemných partnerov 2008 Knauf Insulation Aktuální téma: VYNIKAJÍCÍ VLASTNOSTI TEPELNÝCH IZOLACÍ KNAUF INSULATION Základné minimum certifikovaného Naša práca Multibalení

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Podklady pre projektovanie

Podklady pre projektovanie Podklady pre projektovanie Podklady pre projektovanie Vydanie 01/2008 Dimenzovanie a výber zásobníkových ohrievačov vody Teplo je náš element Obsah Obsah 1 Zásobníky Buderus Logalux pre ohrev pitnej vody2

Διαβάστε περισσότερα

Vzorce pre polovičný argument

Vzorce pre polovičný argument Ma-Go-15-T List 1 Vzorce pre polovičný argument RNDr Marián Macko U: Vedel by si vypočítať hodnotu funkcie sínus pre argument rovný číslu π 8? Ž: Viem, že hodnota funkcie sínus pre číslo π 4 je Hodnota

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

podlahy Podlahy Akustické a tepelné izolácie podláh kamennou vlnou

podlahy Podlahy Akustické a tepelné izolácie podláh kamennou vlnou podlahy Podlahy Akustické a tepelné izolácie podláh kamennou vlnou Preverené na projektoch Izolácie ROCKWOOL z kamennej vlny zaistia akustickú a tepelnú pohodu a zvýšia požiarnu bezpečnosť konštrukcií

Διαβάστε περισσότερα

Nepredpokladám, že niekto

Nepredpokladám, že niekto Šetrenie energiou nie je len módna záležitosť, a nejde len o nižšie účty či nezávislosť od monopolov. Znižovanie spotreby energie a využívanie obnoviteľných zdrojov je otázkou našej ďalšej existencie na

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

ENERGETICKÁ ŠTÚDIA T E C H N I C K Ý C H R I E Š E N Í, N Á V R A T N O SŤ T E C H N I C K Ý C H R I E Š E N Í.

ENERGETICKÁ ŠTÚDIA T E C H N I C K Ý C H R I E Š E N Í, N Á V R A T N O SŤ T E C H N I C K Ý C H R I E Š E N Í. ENERGETICKÁ ŠTÚDIA V Ý P OČET TEPELNÝCH STRÁT, NÁVRH T E C H N I C K Ý C H R I E Š E N Í, N Á V R A T N O SŤ T E C H N I C K Ý C H R I E Š E N Í. Predkladateľ: Obchodné meno: a-energie Ing. Karol Skočik

Διαβάστε περισσότερα

Trapézové profily Lindab Coverline

Trapézové profily Lindab Coverline Trapézové profily Lindab Coverline Trapézové profily - produktová rada Rova Trapéz T-8 krycia šírka 1 135 mm Pozink 7,10 8,52 8,20 9,84 Polyester 25 μm 7,80 9,36 10,30 12,36 Trapéz T-12 krycia šírka 1

Διαβάστε περισσότερα

OCHRANA PRED ATMOSFÉRICKOU ELEKTRINOU (STN EN 62 305-3)

OCHRANA PRED ATMOSFÉRICKOU ELEKTRINOU (STN EN 62 305-3) OCHRANA PRED ATMOSFÉRICKOU ELEKTRINOU (STN EN 62 305-3) Jozef Jančovič* ÚVOD Od 1.11.2006 a od 1.12.2006 sú v platnosti nové normy rady STN EN 62 305 na ochranu pred účinkami atmosférickej elektriny. Všetky

Διαβάστε περισσότερα

Naša planéta v sebe skrýva nepredstaviteľnú enegiu, ktorá môže slúžiť i Vám.

Naša planéta v sebe skrýva nepredstaviteľnú enegiu, ktorá môže slúžiť i Vám. Cenník tepelných čerpadiel a rekuperačných jednotiek Naša planéta v sebe skrýva nepredstaviteľnú enegiu, ktorá môže slúžiť i Vám. platný od 1. 3. 2016 Dobrý pocit robiť správne veci. Pretože myslí dopredu.

Διαβάστε περισσότερα

Komplexné posúdenie tepelnotechnických vlastností stavebných konštrukcií podľa normy STN (2012) Výpočet a posúdenie tepelného odporu a

Komplexné posúdenie tepelnotechnických vlastností stavebných konštrukcií podľa normy STN (2012) Výpočet a posúdenie tepelného odporu a Komplexné posúdenie tepelnotechnických vlastností stavebných konštrukcií podľa normy STN 73 0540 (2012) Výpočet a posúdenie tepelného odporu a súčiniteľa prechodu tepla konštrukcie Výpočet tepelného odporu

Διαβάστε περισσότερα

o podrobnostiach o ochrane zdravia pred záťažou teplom a chladom pri práci

o podrobnostiach o ochrane zdravia pred záťažou teplom a chladom pri práci Vyhláška č. / Z. z.vyhláška Ministerstva zdravotníctva Slovenskej republiky o podrobnostiach o ochrane zdravia pred záťažou teplom a chladom pri práci Účinnosť od 1. 3. VYHLÁŠKA Ministerstva zdravotníctva

Διαβάστε περισσότερα

t e c h n i c k é ú d a j e a v ý r o b n ý p r o g r a m plocha (m²)

t e c h n i c k é ú d a j e a v ý r o b n ý p r o g r a m plocha (m²) HML technická dokumentácia vykurovacia rohož s ochrannou Al vrstvou 80 W/m² použitie: vykurovanie plávajúcich podláh vykurovanie drevených podláh t e c h n i c k é ú d a j e a v ý r o b n ý p r o g r a

Διαβάστε περισσότερα

PROJEKTOVÉ ENERGETICKÉ HODNOTENIE podľa zákona č. 555/2005 Z.z., vyhlášky MDVRR SR č. 364/2012 Z.z.

PROJEKTOVÉ ENERGETICKÉ HODNOTENIE podľa zákona č. 555/2005 Z.z., vyhlášky MDVRR SR č. 364/2012 Z.z. Energetická certifikácia budov s.r.o., Estónska 26, 821 06 Bratislava IČO: 44 297 149, IČ DPH: 202266 4831, PROJEKTOVÉ ENERGETICKÉ HODNOTENIE podľa zákona č. 555/2005 Z.z., vyhlášky MDVRR SR č. 364/2012

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

strechy odkvapy trapézy TRAPÉZOVÉ PROFILY A FASÁDNE SYSTÉMY www.satjam.sk

strechy odkvapy trapézy TRAPÉZOVÉ PROFILY A FASÁDNE SYSTÉMY www.satjam.sk strechy odkvapy trapézy TRAPÉZOVÉ PROFILY A FASÁDNE SYSTÉMY www.satjam.sk Trapézové profily a fasádne systémy Trapézové profi ly SATJAM nachádzajú uplatnenie pri konštrukciách strešných plášťov ako strešná

Διαβάστε περισσότερα

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S

Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S 1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava

Διαβάστε περισσότερα

YTONG U-profil. YTONG U-profil

YTONG U-profil. YTONG U-profil Odpadá potreba zhotovovať debnenie Rýchla a jednoduchá montáž Nízka objemová hmotnosť Ideálna tepelná izolácia železobetónového jadra Minimalizovanie možnosti vzniku tepelných mostov Výborná požiarna odolnosť

Διαβάστε περισσότερα

TEPELNOTECHNICKÝ POSUDOK A

TEPELNOTECHNICKÝ POSUDOK A e ADRESA : PRIBINOVA 33, ŽILINA TEL., FAX : 0905 35 85 93 E MAIL : mancik@enerma.sk PROJEKTOVANIE, POSUDKY, ENERGETICKÁ CERTIFIKÁCIA A ENERGETIKA STAVIEB TEPELNOTECHNICKÝ POSUDOK A PROJEKTOVÉ ENERGETICKÉ

Διαβάστε περισσότερα

Extrudovan polystyrén

Extrudovan polystyrén Extrudovan polystyrén Produktov katalog platné od novembra 2007 02 Úvod Tallinn Petrohrad Lond n Tchudovo Madrid (Uralita S.A.) Tarragona Barcelona Desselgem Noisiel (ParíÏ) St. Avold Biel Queis Delitzsch

Διαβάστε περισσότερα

Projektové a montážne podklady. Systémy podlahového vykurovania

Projektové a montážne podklady. Systémy podlahového vykurovania Projektové a montážne podklady Systémy podlahového vykurovania xx/2014 Systémy vykurovania a rozvodov vody na rôzne použitie Rodinný dom, byt podlahové vykurovanie 1.2.3, TAC, KB 12 stenové a stropné vykurovanie/chladenie

Διαβάστε περισσότερα

KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU

KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU DVOJEXCENTRICKÁ KLAPKA je uzatváracia alebo regulačná armatúra pre rozvody vody, horúcej vody, plynov a pary. Všetky klapky vyhovujú smernici PED 97/ 23/EY a sú tiež vyrábané pre výbušné prostredie podľa

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

OMIETKOVÉ SYSTÉMY PRE KAŽDÚ STENU

OMIETKOVÉ SYSTÉMY PRE KAŽDÚ STENU OMIETKOVÉ SYSTÉMY PRE KAŽDÚ STENU Omietka je ozdobou a ochranou budovy. Úlohou vonkajšej omietky je predovšetkým ochrana obalovej konštrukcie budovy pred pôsobením škodlivých vplyvov vonkajšieho prostredia.

Διαβάστε περισσότερα

KATALÓG VÝROBKOV. Stavebných a technických izolácií. Sklená vlna Kamenná vlna Polystyrén Styrodur C

KATALÓG VÝROBKOV. Stavebných a technických izolácií. Sklená vlna Kamenná vlna Polystyrén Styrodur C KATALÓG VÝROBKOV Stavebných a technických izolácií Sklená vlna Kamenná vlna Polystyrén Styrodur C Júl 2011 OBSAH ISOVER SVETOVÁ JEDNOTKA V IZOLÁCIACH Spoločnosť ISOVER s celosvetovou pôsobnosťou, vyvíja

Διαβάστε περισσότερα

Tepelné žiarenie. Kapitola 2. 2.1 Viditeľné svetlo

Tepelné žiarenie. Kapitola 2. 2.1 Viditeľné svetlo Kapitola 2 Tepelné žiarenie V tejto kapitole sa budeme venovať tepelnému žiareniu telies, ktoré sa riadi Planckovým vyžarovacím zákonom. Zdrojom tepelného žiarenia je každé teleso, a v menej komplikovanej

Διαβάστε περισσότερα

TEPELNOTECHNICKÝ POSUDOK

TEPELNOTECHNICKÝ POSUDOK e ADRESA : PRIBINOVA 33, ŽILINA TEL., FAX : 0905 35 85 93 E MAIL : mancik@enerma.sk PROJEKTOVANIE, POSUDKY, ENERGETICKÁ CERTIFIKÁCIA A ENERGETIKA STAVIEB TEPELNOTECHNICKÝ POSUDOK (PODĽA STN 73 0540 A STN

Διαβάστε περισσότερα

Energetická hodnota potravín

Energetická hodnota potravín Súťažný odbor 02 Matematika, Fyzika Energetická hodnota potravín Stredoškolská odborná činnosť Sivek Michal, sexta Gymnázium Ivana Bellu L. Novomeského 15, Handlová Konzultant: Mgr. Zuzana Černáková Handlová

Διαβάστε περισσότερα

DIGITÁLNÍ MULTIMETR KT831. CZ - Návod k použití

DIGITÁLNÍ MULTIMETR KT831. CZ - Návod k použití DIGITÁLNÍ MULTIMETR KT831 CZ - Návod k použití 1. INFORMACE O BEZPEČNOSTI 1 1.1. ÚVOD 2 1.2. BĚHEM POUŽÍVÁNÍ 2 1.3. SYMBOLY 2 1.4. ÚDRŽBA 3 2. POPIS PŘEDNÍHO PANELU 3 3. SPECIFIKACE 3 3.1. VŠEOBECNÉ SPECIFIKACE

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.10. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.10. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.10 Vzdelávacia

Διαβάστε περισσότερα

Menovky na dvere, čísla, prívesky, kľúčenky

Menovky na dvere, čísla, prívesky, kľúčenky Menovky na dvere, čísla, prívesky, kľúčenky Farby výrobkov: Von Dnu apex Banská Bystrica - List 10,44 - Žbirkovci 8,70 116 x 140 Benka 7,32 96 x 82-6,10 94 x 38 Sisi 8,16 6,80 Zurich - Hrončekovci 6,00

Διαβάστε περισσότερα

RIGIPS KATALÓG PRODUKTOV Z PENOVÉHO POLYSTYRÉNU EPS

RIGIPS KATALÓG PRODUKTOV Z PENOVÉHO POLYSTYRÉNU EPS RIGIPS KATALÓG PRODUKTOV Z PENOVÉHO POLYSTYRÉNU EPS O spoločnosti Základné vlastnosti výrobkov z penového (expandovaného) polystyrénu (EPS) Rigips Výborné tepelno izolačné vlastnosti Penový polystyrén

Διαβάστε περισσότερα

Monitoring mikrobiálnych pomerov pôdy na kalamitných plochách Tatier

Monitoring mikrobiálnych pomerov pôdy na kalamitných plochách Tatier Monitoring mikrobiálnych pomerov pôdy na kalamitných plochách Tatier Erika Gömöryová Technická univerzita vo Zvolene, Lesnícka fakulta T. G.Masaryka 24, SK960 53 Zvolen email: gomoryova@tuzvo.sk TANAP:

Διαβάστε περισσότερα

MOŽNOSTI ÚSPOR ELEKTRICKÉ ENERGIE

MOŽNOSTI ÚSPOR ELEKTRICKÉ ENERGIE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE POSSIBILITIES OF ENERGY SAVINGS BAKALÁŘSKÁ

Διαβάστε περισσότερα

POKYNY PRE NAVRHOVANIE vonkajšieho tepelnoizolačného kontaktného systému

POKYNY PRE NAVRHOVANIE vonkajšieho tepelnoizolačného kontaktného systému Stránka 1 z 18 Tento dokument slúži ako predpis k navrhovaniu (ďalej iba ETICS alebo systém) s tepelnou izoláciou z penového polystyrénu (EPS). I. SÚVISIACE TECHNICKÉ PREDPISY 1.1 Pokyny pre montáž vonkajších

Διαβάστε περισσότερα

ŠNEKÁČI mýty o přidávání CO2 založenie akvária Poecilia reticulata REPORTÁŽE

ŠNEKÁČI mýty o přidávání CO2 založenie akvária Poecilia reticulata REPORTÁŽE bulletin občianskeho združenia 2 /6.11.2006/ ŠNEKÁČI mýty o přidávání CO2 založenie akvária Poecilia reticulata REPORTÁŽE akvá ri um pr pree kre vet y, raky a krab y akva foto gr afi e Ji Jiřříí Plí š

Διαβάστε περισσότερα

ENERGETICKÝ AUDIT. administratívnej budovy Národná kriminálna agentúra Národná protikorupčná jednotka expozitúra Východ Rastislavova 69 Košice

ENERGETICKÝ AUDIT. administratívnej budovy Národná kriminálna agentúra Národná protikorupčná jednotka expozitúra Východ Rastislavova 69 Košice ENERGETICKÝ AUDIT administratívnej budovy Národná kriminálna agentúra Národná protikorupčná jednotka expozitúra Východ Rastislavova 69 Košice ENERGETICKÝ AUDIT ADMISTRATÍVNEJ BUDOVY Národná kriminálna

Διαβάστε περισσότερα

Dozretá kvalita

Dozretá kvalita Cenník produktov TERMOBRIK C e n n í k p l a t n ý o d 1. 5. 2 0 1 2 V e r í m e t r a d í cii, t v o r í m e h o d n o t y. Dozretá kvalita cennik maj 2012.indd 1 doprava zdarma 14.4.2012 11:02 2 D R

Διαβάστε περισσότερα