ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ"

Transcript

1 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ:

2 Αδαμόπουλος Λεωνίδας, Δαμιανού Χαράλαμπος Σβέρκος Ανδρέας Επ Σύμβουλος Παιδαγωγικού Ινστιτούτου Αναπλ Καθηγητής Παν/μίου Αθηνών Σχολικός Σύμβουλος ΚΡΙΤΕΣ: Κουνιάς Στρατής Μακρής Κωνσταντίνος Τσικαλουδάκης Γεώργιος Καθηγητής Παν/μίου Αθηνών Σχολικός Σύμβουλος Καθηγητής Β/θμιας Εκπαίδευσης Γλωσσική Επιμέλεια: Μπουσούνη Λία Καθηγήτρια Β/θμιας Εκπαίδευσης Δακτυλογράφηση: Μπολιώτη Πόπη Σχήματα: Μπούτσικας Μιχάλης ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

3 ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΔΑΜΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΔΑΜΙΑΝΟΥ ΧΑΡΑΛΑΜΠΟΣ ΣΒΕΡΚΟΣ ΑΝΔΡΕΑΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

4 ΠΕΡΙΕΧΟΜΕΝΑ Σελίδα ΚΕΦΑΛΑΙΟ ο : Διαφορικός Λογισμός Συναρτήσεις 9 Η Έννοια της Παραγώγου 9 Παράγωγος Συνάρτησης 7 4 Εφαρμογές των Παραγώγων 9 ΚΕΦΑΛΑΙΟ ο : Στατιστική Βασικές Έννοιες 58 Παρουσίαση Στατιστικών Δεδομένων 6 Μέτρα Θέσης και Διασποράς 8 4 Γραμμική Παλινδρόμηση 04 5 Γραμμική Συσχέτιση 7 ΚΕΦΑΛΑΙΟ ο : Πιθανότητες Δειγματικός Χώρος - Ενδεχόμενα 8 Έννοια της Πιθανότητας 46 Συνδυαστική 57 4 Δεσμευμένη Πιθανότητα - Ανεξάρτητα Ενδεχόμενα 65 ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 79

5 ΠΡΟΛΟΓΟΣ Το βιβλίο Μαθηματικά και στοιχεία Στατιστικής περιλαμβάνει την ύλη των Μαθηματικών που προβλέπεται από το πρόγραμμα σπουδών της Γενικής Παιδείας της Γ τάξης του Ενιαίου Λυκείου, του οποίου η εφαρμογή αρχίζει από το σχολικό έτος Απευθύνεται σε όλους τους μαθητές ανεξάρτητα από την κατεύθυνση που ακολουθούν Γι αυτό περιορίσαμε σημαντικά στο βιβλίο τους αυστηρούς ορισμούς και τις αποδείξεις και το εμπλουτίσαμε με πολλές εφαρμογές και παραδείγματα, που ανταποκρίνονται στις δυνατότητες και στα ενδιαφέροντα όλων των μαθητών Επίσης καταβλήθηκε ιδιαίτερη προσπάθεια, ώστε, να είναι δυνατή η ολοκλήρωση της διδασκαλίας του στο χρόνο που προβλέπεται από το εγκεκριμένο ωρολόγιο πρόγραμμα Το βιβλίο αποτελείται από τρία κεφάλαια Στο πρώτο κεφάλαιο εισάγεται η έννοια της παραγώγου Για τον ορισμό της λαμβάνεται υπόψη η ιστορική πορεία της εξέλιξης της έννοιας Έτσι, προηγείται το πρόβλημα του καθορισμού της εφαπτομένης μιας καμπύλης σε ένα σημείο της και του προσδιορισμού της στιγμιαίας ταχύτητας ενός σώματος Οι βασικές ιδιότητες της παραγώγου σχετικά με τη μονοτονία και τα ακρότατα μιας συνάρτησης παρουσιάζονται εποπτικά με τη βοήθεια κατάλληλων παραδειγμάτων Στο δεύτερο κεφάλαιο παρουσιάζονται συστηματικότερα τα στοιχεία Περιγραφικής Στατιστικής που γνώρισαν οι μαθητές στο Γυμνάσιο, τα οποία συμπληρώνονται με μερικές χρήσιμες ιδιότητες της μέσης τιμής και της διασποράς καθώς και με την παλινδρόμηση και τη γραμμική συσχέτιση δύο μεταβλητών Η παρουσίαση των εννοιών και της μεθοδολογίας της Στατιστικής, όπως άλλωστε επιβάλλεται από τη φύση της, είναι πιο αναλυτική από ό,τι στην Άλγεβρα και στη Γεωμετρία Στο τρίτο κεφάλαιο γίνεται μια εισαγωγή στη Θεωρία των Πιθανοτήτων και στις σχετιζόμενες με αυτήν μεθόδους απαρίθμησης Η απόδειξη των ιδιοτήτων της πιθανότητας ενός ενδεχομένου γίνεται μόνο στην περίπτωση που τα απλά ενδεχόμενα είναι ισοπίθανα Η Θεωρία των Πιθανοτήτων ασχολείται με καταστάσεις όπου υπάρχει αβεβαιότητα, και αυτό την κάνει ιδιαίτερα σημαντική στις εφαρμογές της καθημερινής ζωής Τα οποιαδήποτε σχόλια, παρατηρήσεις ή κρίσεις για το βιβλίο από συναδέλφους, από μαθητές και από κάθε πολίτη που ενδιαφέρεται για τα ζητήματα της παιδείας θα είναι ιδιαίτερα ευπρόσδεκτα από τη συγγραφική ομάδα Παρακαλούμε να αποσταλούν στο Παιδαγωγικό Ινστιτούτο, Μεσογείων 96, 50 Αγία Παρασκευή Μάρτιος 999

6 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Εισαγωγή Στο χώρο της επιστήμης το 7ο αιώνα κυριαρχούσε η μελέτη της κίνησης των ουράνιων σωμάτων, καθώς και η μελέτη της κίνησης ενός σώματος πάνω ή κοντά στη Γη Στη μελέτη αυτή προφανώς σημαντικό ρόλο έπαιζε ο προσδιορισμός του μέτρου της ταχύτητας και της διεύθυνσης της κίνησης του σώματος σε μια δεδομένη χρονική στιγμή Όπως θα δούμε στη συνέχεια, αν η θέση του σώματος μια χρονική στιγμή t εκφράζεται με τη συνάρτηση = f (t), τότε ο προσδιορισμός του μέτρου και της διεύθυνσης της ταχύτητάς του τη χρονική στιγμή t ανάγεται στον προσδιορισμό του ρυθμού μεταβολής της = f (t) ως προς t ή, όπως ονομάστηκε αργότερα, της παραγώγου της = f (t) Έτσι, προβλήματα σχετικά με την κίνηση ενός σώματος, καθώς και άλλα που θα συναντήσουμε αργότερα, οδήγησαν στη γένεση του Διαφορικού Λογισμού Θεμελιωτές του είναι οι Newton (64-77) και Leibniz (646-76), οι οποίοι εισήγαγαν τη γενική έννοια της παραγώγου και του διαφορικού, βελτίωσαν τις μεθόδους του Διαφορικού Λογισμού και τις χρησιμοποίησαν στην επίλυση προβλημάτων της Γεωμετρίας και της Μηχανικής Η ανάπτυξη του Διαφορικού Λογισμού δε σταμάτησε το 7ο αιώνα, αλλά συνεχίστηκε το 8ο αιώνα με τη σημαντική συμβολή των αδελφών Jacob Bernoulli ( ) και Johann Bernoulli ( ), του Euler (707-78), κορυφαίου μαθηματικού της εποχής, του Lagrange (76-8) και πολλών άλλων Τέλος, η αυστηρή θεμελίωση του Διαφορικού Λογισμού έγινε από τους μαθηματικούς του 9ου αιώνα όπως του Bolzano (78-848), του Cauchy ( ) και του Weierstrass (85-897) ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός Συνάρτησης Είδαμε σε προηγούμενες τάξεις ότι συνάρτηση (function) είναι μια διαδικασία με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β

7 0 A f B Στο κεφάλαιο αυτό θα ασχοληθούμε με συναρτήσεις στις οποίες το σύνολο Α, που λέγεται πεδίο ορισμού της συνάρτησης, είναι υποσύνολο του συνόλου R των πραγματικών αριθμών, ενώ το Β συμπίπτει με το R Οι συναρτήσεις αυτές λέγονται πραγματικές συναρτήσεις πραγματικής μεταβλητής και τις οποίες στο εξής θα τις λέμε απλώς συναρτήσεις Η συνάρτηση συμβολίζεται συνήθως με ένα από τα μικρά γράμματα f, g, h, φ, σ κτλ του λατινικού ή του ελληνικού αλφαβήτου Έστω λοιπόν μια συνάρτηση f με πεδίο ορισμού το Α Αν με τη συνάρτηση αυτή το A αντιστοιχίζεται στο y B, τότε γράφουμε y = f () και διαβάζουμε y ίσον f του Το f () λέγεται τιμή της f στο Το γράμμα, που συμβολίζει οποιοδήποτε στοιχείο του Α, ονομάζεται ανεξάρτητη μεταβλητή, ενώ το y, που παριστάνει την τιμή της συνάρτησης στο και εξαρτάται από την τιμή του, λέγεται εξαρτημένη μεταβλητή Σε μια συνάρτηση συνήθως η τιμή της εκφράζεται με έναν αλγεβρικό τύπο, για παράδειγμα f ( ) = Σ αυτή την περίπτωση λέμε: η συνάρτηση f με f ( ) = ή η συνάρτηση f ( ) = ή η συνάρτηση y = ή, απλούστερα, η συνάρτηση Όταν το f () εκφράζεται μόνο με έναν αλγεβρικό τύπο, τότε το πεδίο ορισμού της συνάρτησης είναι το ευρύτερο υποσύνολο του R στο οποίο το f () έχει νόημα πραγματικού αριθμού Έτσι, η παραπάνω συνάρτηση f ( ) = έχει ως πεδίο ορισμού το σύνολο λύσεων της ανίσωσης 0, δηλαδή το διάστημα Δ = [, ], η συνάρτηση g ( ) = έχει ως πεδίο ορισμού το σύνολο A = R {}, δηλαδή το R χωρίς το, ενώ η συνάρτηση h( ) = έχει ως πεδίο ορισμού ολόκληρο το σύνολο R των πραγματικών αριθμών ΣΧΟΛΙΟ Αν και συνήθως χρησιμοποιούμε το γράμμα f για το συμβολισμό μιας συνάρτησης και τα γράμματα και y για το συμβολισμό της ανεξάρτητης και της εξαρτημένης μεταβλητής αντιστοίχως, ωστόσο μπορούμε να

8 χρησιμοποιήσουμε και άλλα γράμματα Έτσι, για παράδειγμα, οι τύποι f ( ) = g και s ( t) = gt ορίζουν την ίδια συνάρτηση Πράξεις με Συναρτήσεις Αν δύο συναρτήσεις f, g ορίζονται και οι δύο σε ένα σύνολο Α, τότε ορίζονται και οι συναρτήσεις: Το άθροισμα S = f + g, με S ( ) = f ( ) + g( ), A Η διαφορά D = f g, με D( ) = f ( ) g( ), A Το γινόμενο P = f g, με P( ) = f ( ) g( ), A και Το πηλίκο f R =, με g f ( ) R ( ) =, όπου A και g ( ) 0 g( ) Για παράδειγμα, αν f ( ) = και g( ) = +, τότε S( ) = + + = ( + ) D( ) = = = ( )( + ) P( ) = ( )( + ) = ( + ) ( ) f ( ) R ( ) = = =, όπου g( ) + Γραφική Παράσταση Συνάρτησης Έστω μια συνάρτηση f με πεδίο ορισμού ένα σύνολο Α Όπως είδαμε σε προηγούμενες τάξεις γραφική παράσταση ή καμπύλη της f σε ένα καρτεσιανό σύστημα συντεταγμένων Oy λέγεται το σύνολο των σημείων M (,( f ( )) για όλα τα A Επομένως, ένα σημείο M (, y) του επιπέδου των αξόνων ανήκει στην καμπύλη της f, μόνο όταν y = f () Η εξίσωση λοιπόν y = f () επαληθεύεται μόνο από τα ζεύγη (, y) που είναι συντεταγμένες σημείων της γραφικής παράστασης της f και λέγεται εξίσωση της γραφικής παράστασης της f Είναι πολύ χρήσιμο να σχεδιάζουμε τη γραφική παράσταση μιας συνάρτησης Στα παρακάτω σχήματα φαίνονται οι γραφικές παραστάσεις ορισμένων συναρτήσεων που γνωρίσαμε σε προηγούμενες τάξεις

9 y y= y O y= (α) Η καμπύλη της συνάρτησης f ( ) = είναι η διχοτόμος της ης και ης γωνίας των αξόνων - - y O - - y = (γ) Η καμπύλη της συνάρτησης f ( ) = είναι μια υπερβολή y O - y=ln (ε) Η καμπύλη της λογαριθμικής συνάρτησης f ( ) = ln είναι δεξιά του άξονα y y, αφού ο λογάριθμος ορίζεται μόνο για > O (β) Η καμπύλη της συνάρτησης f ( ) = είναι μια παραβολή y y=e - - O (δ) Η καμπύλη της εκθετικής συνάρτησης f ( ) = e είναι πάνω από τον άξονα, αφού e > 0 για κάθε R y y=συν O π π y y=ημ π O π (στ) Οι συναρτήσεις f ( ) = ημ και g( ) = συν είναι περιοδικές με περίοδο π

10 Παρατηρούμε ότι στη γραφική παράσταση της f ( ) = υπάρχει μια διακοπή στο σημείο = 0 Αυτό οφείλεται στο γεγονός ότι το πεδίο ορισμού της f δεν περιέχει το μηδέν Μονοτονία - Ακρότατα Συνάρτησης y y=ημ O π/ π π/ π Από τη γραφική παράσταση της συνάρτησης f ( ) = ημ, [ 0, π] προκύπτει αμέσως ότι για δύο οποιαδήποτε σημεία, του διαστήματος 0, π με < είναι ημ < ημ Αυτό το εκφράζουμε λέγοντας ότι η συνάρτηση f ( ) = ημ είναι γνησίως αύξουσα στο διάστημα 0, π Το ίδιο π συμβαίνει και στο διάστημα, π Όμως για δύο οποιαδήποτε σημεία π π, του διαστήματος, με <, παρατηρούμε ότι ημ > ημ Λέμε σ αυτή την περίπτωση ότι η συνάρτηση f ( ) = ημ είναι γνησίως φθίνουσα στο διάστημα π π, Γενικά: Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία, Δ με < ισχύει f ( ) < f ( ), και γνησίως φθίνουσα στο Δ, όταν για οποιαδήποτε σημεία, Δ με < ισχύει f ( ) > f ( ) Μια συνάρτηση που είναι γνησίως αύξουσα ή γνησίως φθίνουσα λέγεται γνησίως μονότονη Ακόμη, για την παραπάνω συνάρτηση παρατηρούμε ότι για κάθε

11 4 π π [ 0, π] είναι ημ = ημ και ημ = ημ Δηλαδή, όπως λέμε, η συνάρτηση π f ( ) = ημ έχει ολικό μέγιστο (maimum) για = και ολικό π ελάχιστο (minimum) για = 4 Από τη γραφική παράσταση της συνάρτησης g του σχήματος 4 προκύπτει y ότι για = η τιμή της g είναι y=g() μικρότερη από τις τιμές της g σε όλα τα που ανήκουν σε ένα ανοικτό διάστημα το οποίο περιέχει το, ή, όπως λέμε σε μια περιοχή του Στην περίπτωση αυτή λέμε ότι η συνάρτηση g έχει στο σημείο O 4 τοπικό ελάχιστο Το ίδιο συμβαίνει και για = Οι τιμές g ( ) και g( ) λέγονται τοπικά ελάχιστα της συνάρτησης Επίσης, για = 4 η τιμή g( 4 ) είναι μεγαλύτερη από τις τιμές της g σε όλα τα που ανήκουν σε μια περιοχή του 4 Λέμε ότι η συνάρτηση g έχει στο σημείο 4 τοπικό μέγιστο Το ίδιο συμβαίνει και για = Οι τιμές g ( ) και g( 4 ) λέγονται τοπικά μέγιστα της συνάρτησης Παρατηρούμε ότι ένα τοπικό ελάχιστο μπορεί να είναι μεγαλύτερο από ένα τοπικό μέγιστο Για παράδειγμα, το τοπικό ελάχιστο g( ) είναι μεγαλύτερο από το τοπικό μέγιστο g( 4 ) Γενικά: Μια συνάρτηση f με πεδίο ορισμού το Α λέμε ότι παρουσιάζει: Τοπικό μέγιστο στο A, όταν f ( ) f ( ) για κάθε σε μια περιοχή του, και τοπικό ελάχιστο στο A, όταν f ( ) f ( ) για κάθε σε μια περιοχή του Τα μέγιστα και τα ελάχιστα μιας συνάρτησης, τοπικά ή ολικά, λέγονται ακρότατα της συνάρτησης Όριο Συνάρτησης Έστω η συνάρτηση f ( ) =, η οποία δεν ορίζεται για = Ας εξετάσουμε όμως τη συμπεριφορά της f για τιμές του κοντά στο

12 5 Ο παρακάτω πίνακας δείχνει τις τιμές του f () για τιμές του κοντά στο < f () > f () 0,5 0,9 0,99 0,999 0,9999,500000,900000,990000,999000,999900,5,,0,00,000,500000,00000,00000,00000,00000 Από τον παραπάνω πίνακα βλέπουμε ότι όταν το παίρνει τιμές πολύ κοντά στο (και από τις δύο πλευρές του ), το f () παίρνει τιμές πολύ κοντά στο Στο ίδιο συμπέρασμα φτάνουμε, αν παρατηρήσουμε ότι για είναι ( )( + ) f ( ) = = = +, οπότε όταν το παίρνει τιμές που τείνουν στο ( ), τότε το f ( ) = + παίρνει τιμές που τείνουν στο ( + ) Λέμε λοιπόν ότι η f έχει στο σημείο όριο (limit) και γράφουμε lim f ( ) = Με το προηγούμενο παράδειγμα παρουσιάσαμε με απλό τρόπο και χωρίς μαθηματική αυστηρότητα την έννοια του ορίου μιας συνάρτησης f σε ένα σημείο O 0, που δεν ανήκει στο πεδίο ορισμού της, υπάρχουν όμως σημεία του πεδίου ορισμού της πολύ κοντά στο 0 Τίποτα βέβαια δεν αποκλείει την αναζήτηση του ορίου μιας συνάρτησης και σε ένα σημείο 0 που να ανήκει στο πεδίο ορισμού της Για παράδειγμα, έστω η συνάρτηση f ( ) = +, που είναι ορισμένη στο R Παρατηρούμε ότι όταν 0, το f ( ), δηλαδή lim f ( ) = Ομοίως, lim = 0 και lim = y y y y 5 y = y = + Ο O y= y= Ο (α) (β) (γ)

13 6 Αν οι συναρτήσεις f και g έχουν στο 0 όρια πραγματικούς αριθμούς, δηλαδή αν lim f ( ) = l και lim g( ) = l όπου l και l πραγματικοί αριθμοί, τότε 0 0 αποδεικνύεται ότι: lim ( f ( ) + g( )) = l + l 0 lim ( kf ( )) = kl 0 lim ( f ( ) g( )) = l l 0 f ( ) l lim = 0 ( ) g l lim ( 0 lim ν ν f ( )) = l ν f = ν 0 ( ) l Έτσι, για παράδειγμα, για την πολυωνυμική συνάρτηση f ( ) = + 9 έχουμε lim f ( ) = lim( + 9) = lim + lim lim9 = = Παρατηρούμε ότι για τη συνάρτηση f ( ) = + 9 ισχύει lim f ( ) = f () Αυτό το εκφράζουμε λέγοντας ότι η συνάρτηση f είναι συνεχής στο 0 = Γενικά μια συνάρτηση f με πεδίο ορισμού Α λέγεται συνεχής, αν για κάθε 0 A ισχύει lim f ( ) = f ( 0 ) 0 Χαρακτηριστικό γνώρισμα μιας συνεχούς συνάρτησης σε ένα κλειστό διάστημα είναι ότι η γραφική της παράσταση είναι μια συνεχής καμπύλη, δηλαδή για το σχεδιασμό της δε χρειάζεται να σηκώσουμε το μολύβι από το χαρτί Αποδεικνύεται ότι οι γνωστές μας συναρτήσεις, πολυωνυμικές, τριγωνομετρικές, εκθετικές, λογαριθμικές, αλλά και όσες προκύπτουν από πράξεις μεταξύ αυτών είναι συνεχείς συναρτήσεις Έτσι ισχύει για παράδειγμα lim ημ = ημ 0 0, lim συν = συν και 0 0 lim εφ = εφ 0 0 (όταν συν 0 0 ) ΕΦΑΡΜΟΓΕΣ Να υπολογιστούν τα όρια: + 5 i) lim lim ΛΥΣΗ ii) ( + ) iii) lim + 9

14 i) lim = = = ii) lim( ) = = = + = ( + )( ) iii) lim = lim = lim ( ) = ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ Αν f ( ) =, να υπολογίσετε τις τιμές f (), f (), f ( ) Αν φ( t) = t 5 t + 6, να υπολογίσετε τις τιμές φ (0) και φ () Για ποιες τιμές του t είναι φ ( t) = 0; π Αν h( θ) = συνθ ημθ, να υπολογίσετε τις τιμές h (0) και h Για ποιες τιμές της γωνίας θ [ 0, π] είναι h ( θ) = 0; 4 Αν f ( ) = ln, να υπολογίσετε τις τιμές f () και f (e) 5 Ποιο είναι το πεδίο ορισμού της συνάρτησης f ( ) = ; ( )( ) 6 Για ποιες τιμές του είναι αρνητική η συνάρτηση f ( ) = ( )( 7) ; Ποιο είναι το πεδίο ορισμού της συνάρτησης σ ( ) = ( )( 7) ; 7 Αν f ( ) = και g ( ) =, να βρείτε τις συναρτήσεις f ( ) f ( ) + g( ), f ( ) g( ), g( ) 8 Να υπολογίσετε τα όρια:

15 8 i) lim( + 4) ii) lim[( )( + 4)] 0 iv) lim(ημ + συν) v) 0 lim(ημ + συν) π 4 iii) lim Να υπολογίσετε τα όρια: 4 5 i) lim ii) lim ( ) iv) lim v) lim iii) lim[( + )συν] vi) 0 lim Β ΟΜΑΔΑΣ Αν f ( ) =, να δείξετε ότι f ( ) + f ( ) = + e Έχουμε περιφράξει με συρματόπλεγμα μήκους 00 m, μια ορθογώνια περιοχή από τις τρεις πλευρές της Η τέταρτη πλευρά είναι τοίχος Αν το μήκος του τοίχου που θα χρησιμοποιηθεί είναι, να εκφράσετε το εμβαδόν της περιοχής ως συνάρτηση του Ένα κυλινδρικό φλυτζάνι, ανοικτό από πάνω, κατασκευάζεται έτσι ώστε το ύψος του και το μήκος της βάσης του να έχουν άθροισμα 0 cm Αν το φλυτζάνι έχει ύψος h cm, να εκφράσετε τον όγκο του ως συνάρτηση του h Αν η ακτίνα της βάσης του είναι r, να εκφράσετε το εμβαδόν της επιφάνειάς του ως συνάρτηση του r 4 Σε ένα τρίγωνο ΑΒΓ είναι ΑΒ = ΑΓ = 0 Αν ΑΒΓ = θ, να εκφράσετε το ύψος υ του τριγώνου από την κορυφή Β, καθώς και το εμβαδόν του ως συνάρτηση του θ 5 Να δείξετε ότι 5 i) lim 5 5 = ii) 5 lim + h = h h 0

16 9 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Εφαπτομένη Καμπύλης Από τη Γεωμετρία γνωρίζουμε ότι η εφαπτομένη 7 ενός κύκλου ( O, R) σε ένα σημείο του Α είναι η ευθεία ε που είναι κάθετη στην ακτίνα ΟΑ στο B σημείο Α Έστω Μ ένα άλλο σημείο του κύκλου Επειδή το τρίγωνο ΜΑΒ είναι ορθογώνιο στο Μ, το Μ o άθροισμα των γωνιών του Α και Β είναι 90 Αν υποθέσουμε ότι το Μ κινούμενο πάνω στον κύκλο Ο Μ πλησιάζει το Α, η γωνία Β τείνει να γίνει μηδενική, οπότε η γωνία Α τείνει να γίνει ορθή Δηλαδή η Μ τέμνουσα ΑΜ τείνει να γίνει κάθετη στην ΟΑ που Α ε σημαίνει ότι τείνει να συμπέσει με την εφαπτομένη ε Θα μπορούσαμε επομένως να ορίσουμε ως εφαπτομένη του κύκλου ( O, R) στο σημείο Α, την οριακή θέση της τέμνουσας ΑΜ, καθώς το Μ κινούμενο πάνω στον κύκλο τείνει να συμπέσει με το Α Τον ισοδύναμο αυτό ορισμό της 8 y C εφαπτομένης ενός κύκλου θα τον f( 0 +h) Μ χρησιμοποιήσουμε στη συνέχεια για να ορίσουμε την εφαπτομένη της ε γραφικής παράστασης μιας συνάρτησης σε ένα σημείο της Μ Έστω λοιπόν f μια συνάρτηση και Α f( 0 ) Γ A( 0, f ( 0 )) ένα σημείο της γραφικής Ο ω φ της παράστασης C 0 0 +h Παίρνουμε και ένα άλλο σημείο M ( 0 + h, f ( 0 + h)) της C με h 0 Παρατηρούμε ότι καθώς το Μ κινούμενο πάνω στη C πλησιάζει το Α, όταν δηλαδή h 0, τότε η ευθεία ΑΜ φαίνεται να παίρνει μια οριακή θέση ε η οποία λέγεται εφαπτομένη (tangent) της C στο Α Από το σχήμα έχουμε ότι ο συντελεστής διεύθυνσης της ΑΜ είναι MΓ f ( 0 + h) f ( 0 ) εφφ = =, AΓ h οπότε ο συντελεστής διεύθυνσης της εφαπτομένης της C στο Α θα είναι f ( 0 + h) f ( 0 ) εφω = lim h 0 h

17 0 Στιγμιαία Ταχύτητα Όπως έχει διαπιστωθεί πειραματικά από τον Γαλιλαίο πριν από τέσσερις αιώνες, το διάστημα S που διανύεται σε χρόνο t sec (s) από ένα σώμα που αφήνεται να πέσει στο κενό εκφράζεται από τον τύπο S ( t) = gt, όπου g 9,8m/s είναι η σταθερή επιτάχυνση της βαρύτητας Ποια όμως θα είναι η ταχύτητα ενός σώματος που πέφτει ελεύθερα σε ένα οποιοδήποτε σημείο της τροχιάς του, για παράδειγμα όταν t = 5 s; Μπορούμε να προσεγγίσουμε το ζητούμενο μέγεθος υπολογίζοντας τη μέση ταχύτητα σε ένα μικρό χρονικό διάστημα για παράδειγμα του ενός δεκάτου του δευτερολέπτου, από t = 5 s στο t = 5, s Έχουμε: Μέση διανυθέν διάστημα S(5,) S(5) ταχύτητα = = χρόνος 0, 4,905(5,) 4,905 5 = = 49,5405 m/s 0, Ο πίνακας που ακολουθεί δείχνει τα αποτελέσματα όμοιων υπολογισμών της μέσης ταχύτητας για ολοένα και μικρότερα χρονικά διαστήματα Χρονικό διάστημα 5 t 6 5 t 5, 5 t 5,05 5 t 5,0 5 t 5,00 5 t 5,000 5 t 5,0000 Μέση ταχύτητα 5,955 49, ,955 49, , , , Φαίνεται ότι καθώς μικραίνει το χρονικό διάστημα, η μέση ταχύτητα πλησιάζει ολοένα και περισσότερο στην τιμή 49,05 m/s Η οριακή αυτή τιμή των μέσων ταχυτήτων σε ολοένα και μικρότερα χρονικά διαστήματα με ένα άκρο το t = 5 ορίζεται ως η στιγμιαία ταχύτητα του σώματος όταν t = 5 s Έτσι η στιγμιαία ταχύτητα του σώματος ύστερα από χρόνο 5 s θα είναι υ = 49,05 m/s Γενικότερα, ας υποθέσουμε ότι το σώμα ύστερα από t 0 βρίσκεται στο σημείο Α και ας εξετάσουμε πόσο O A t 0 B t 0 +h 9

18 αυξάνεται το διανυόμενο διάστημα, όταν ο χρόνος αυξηθεί κατά διανύει σε χρόνο διάστημα και σε χρόνο t 0 t + h 0 S = OA = S( t0 ) = gt διάστημα S = OB = S( t0 + h) = g( t0 + h) = gt0 + g(t0h + h ) Άρα, η αύξηση του διαστήματος σε χρόνο h είναι 0 Δ S = S S = AB = g(t 0h + h και η μέση ταχύτητα στο χρονικό διάστημα από υ = ( t 0 ΔS + h) t 0 = t0 g(t0 h + h ) = gt0 + h ) σε t 0 + h θα είναι gh h Το κινητό Καθώς όμως ελαττώνεται το h πλησιάζοντας το μηδέν, χωρίς ποτέ να γίνεται ίσο με το μηδέν, η μέση ταχύτητα θα πλησιάζει όλο και περισσότερο στο gt 0 Την οριακή αυτή τιμή τη λέμε στιγμιαία ταχύτητα του κινητού στη χρονική στιγμή ή απλώς ταχύτητα του κινητού στο t t0 0 Επομένως, η ταχύτητα υ του κινητού τη χρονική στιγμή S( t υ = lim h h) S( t h 0 t 0 ) ΔS = lim = gt h 0 h 0 θα είναι Προφανώς όταν t0 = 5, τότε υ = 9,8 5 = 49,05 m/s, τιμή την οποία προσεγγίσαμε και προηγουμένως με αριθμητικούς υπολογισμούς Την ίδια πορεία μπορούμε να ακολουθήσουμε και για τον υπολογισμό της ταχύτητας ενός κινητού το οποίο εκτελεί ευθύγραμμη κίνηση, στη γενικότερη περίπτωση που η τετμημένη του ή, όπως λέμε στη Φυσική, η θέση του τη χρονική στιγμή t εκφράζεται από τη συνάρτηση = f (t) O t 0 A B t 0 +h 0 Για να βρούμε την ταχύτητα του κινητού τη χρονική στιγμή t 0, θεωρούμε το χρονικό διάστημα από t0 έως t 0 + h με h 0 Το κινητό σε χρόνο h μετατοπίζεται κατά Δ = = f ( t0 + h) f ( t0 ) Επομένως, η μέση

19 ταχύτητα του κινητού στη διάρκεια του χρονικού διαστήματος h θα είναι Δ f ( t0 + h) f ( t0 ) υ = = h h Αν σκεφτούμε όπως στην προηγούμενη ειδική περίπτωση, συμπεραίνουμε ότι η ταχύτητα του κινητού τη χρονική στιγμή θα είναι Δ υ = lim = lim h 0 h h 0 t 0 f ( t 0 + h) f ( t0 ) h Δηλαδή θα είναι το όριο του λόγου της μεταβολής της τετμημένης του κινητού προς την αύξηση του χρόνου, καθώς η τελευταία τείνει προς το μηδέν χωρίς στην πραγματικότητα να γίνεται ίση με το μηδέν Παράγωγος της f στο = 0 Και τα δύο προηγούμενα προβλήματα, μολονότι αναφέρονται σε διαφορετικούς επιστημονικούς κλάδους, το πρώτο στη Γεωμετρία και το δεύτερο στη Μηχανική, οδηγούν στον υπολογισμό ενός ορίου της μορφής f ( 0 + h) f ( 0 ) lim h 0 h Υπάρχουν όμως και πολλά άλλα προβλήματα διαφορετικής φύσεως, όπως, για παράδειγμα, είναι ο ορισμός της έντασης ενός ρεύματος, της ταχύτητας μιας χημικής αντίδρασης, του οριακού κόστους στην Οικονομία, τα οποία οδηγούν στον υπολογισμό ενός ορίου της ιδίας μορφής Αν το προηγούμενο όριο υπάρχει και είναι πραγματικός αριθμός, τότε λέμε ότι η f είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της Το όριο αυτό ονομάζεται παράγωγος της f στο 0, συμβολίζεται με f ( 0 ) και διαβάζεται f τονούμενο του 0 Έχουμε λοιπόν: f ( 0 ) = lim h 0 f ( 0 + h) h f ( ) 0 Για παράδειγμα, αν θέλουμε να υπολογίσουμε την παράγωγο της συνάρτησης f ( ) = στο σημείο 4, εργαζόμαστε ως εξής: Βρίσκουμε τη διαφορά f ( 4 + h) f (4): f ( 4 + h) f (4) = (4 + h) 4 = (4 + 8h + h = h (8 + h) 4 )

20 Για h 0 βρίσκουμε το πηλίκο f ( 4 + h) f (4) : h Υπολογίζουμε το όριο lim Άρα, f ( 4) = 4 f (4 + h) f (4) h(8 + h) = = 4 + h h h h 0 f (4 + h) f (4) : h f (4 + h) f (4) lim = lim(4 + h) = 4 h 0 h h 0 Η παράγωγος της f στο 0 εκφράζει το ρυθμό μεταβολής (rate of change) του y = f () ως προς το, όταν = 0 Έτσι, σύμφωνα με όσα εκθέσαμε στην προηγούμενη παράγραφο: Ο συντελεστής διεύθυνσης της εφαπτομένης της καμπύλης που είναι η γραφική παράσταση μιας συνάρτησης f στο σημείο ( 0, f ( 0 )) θα είναι f ( 0 ), δηλαδή ο ρυθμός μεταβολής της f () ως προς όταν = 0 Η ταχύτητα ενός κινητού που κινείται ευθύγραμμα και η θέση του στον άξονα κίνησής του εκφράζεται από τη συνάρτηση = f (t) θα είναι τη χρονική στιγμή t 0 υ t ) = f ( ), ( 0 t0 δηλαδή ο ρυθμός μεταβολής της (t) ως προς t όταν f t0 t = ΣΧΟΛΙΟ Υπάρχουν και συναρτήσεις οι οποίες δεν έχουν παράγωγο σε ένα σημείο Όπως είναι, για παράδειγμα, η συνάρτηση f ( ) = στο 0 = 0 Διότι όταν h < 0, έχουμε f (0 + h) lim h 0 h f (0) h = lim =, h 0 h y O y= f (0 + h) f (0) h ενώ όταν h > 0, έχουμε lim = lim =, που σημαίνει ότι δεν h 0 h h 0 h f ( 0 + h) f (0) υπάρχει το lim h 0 h

21 4 ΕΦΑΡΜΟΓΕΣ Η θέση ενός υλικού σημείου που εκτελεί ευθύγραμμη κίνηση εκφράζεται με τη συνάρτηση ( t) = t + t, όπου το t μετριέται σε δευτερόλεπτα α) Να βρεθεί η μέση ταχύτητα στα παρακάτω χρονικά διαστήματα: (i) [ 0, ] (ii) [ 0, ] (iii) [ 0, 0,5] (iv) [ 0, 0,] β) Να βρεθεί η ταχύτητα όταν t = 0 γ) Να σχεδιαστεί η γραφική παράσταση της συνάρτησης = (t) δ) Να σχεδιαστούν οι τέμνουσες από το O(0, 0) της γραφικής παράστασης με συντελεστή διεύθυνσης τις μέσες ταχύτητες του ερωτήματος (α) Επίσης, να βρεθεί και να σχεδιαστεί η εφαπτομένη της καμπύλης της συνάρτησης = (t) στο σημείο της με t = 0 ΛΥΣΗ α) Από τον ορισμό της μέσης ταχύτητας έχουμε () (0) 6 () (0) i) υ = = = m/s ii) υ = = = m/s iii) (0,5) (0) (0,) (0) υ = =,5 m/s iv) υ = =, m/s 0,5 0, β) Η ταχύτητα υ όταν t = 0, είναι (0 + h) (0) h υ = lim = lim h 0 h h 0 + h = lim( h + ) = m/s h h 0 γ) Αν σε ένα ορθοκανονικό σύστημα ο οριζόντιος άξονας παριστάνει το χρόνο t και ο κατακόρυφος άξονας το (t), τότε η γραφική παράσταση της συνάρτησης ( t ) = t + t = t + είναι, σύμφωνα με όσα γνωρίζουμε 4 από την Α Λυκείου, μια παραβολή με κορυφή το σημείο, και άξονα 4 συμμετρίας την ευθεία t = Έτσι, έχουμε την παρακάτω γραφική παράσταση

22 (,6) =t =t =,5t =t +t =,t =t (εφαπτομένη) - Ο t δ) Επειδή οι τέμνουσες διέρχονται από το σημείο O(0, 0) και έχουν συντελεστές διεύθυνσης,,,5 και,, οι εξισώσεις τους είναι = t, = t, =, 5t και =, t αντιστοίχως Οι ευθείες αυτές έχουν σχεδιαστεί στο παραπάνω σχήμα Η εφαπτομένη της καμπύλης στο σημείο της με t = 0 θα έχει συντελεστή διεύθυνσης ίσο με τη στιγμιαία ταχύτητα όταν t = 0, δηλαδή ίσο με Επειδή η εφαπτομένη αυτή διέρχεται και από την αρχή των αξόνων, η εξίσωσή της είναι = t, δηλαδή είναι η διχοτόμος της γωνίας των θετικών ημιαξόνων Δίνεται η συνάρτηση (i) Να βρεθεί η f () f ( ) = (ii) Να βρεθεί η εξίσωση της εφαπτομένης της καμπύλης της f στο σημείο της (, f ()) και να σχεδιαστεί η εφαπτομένη αυτή ΛΥΣΗ (i) Έχουμε h h f ( + h) f () = = = και για h 0 + h + h + h Επομένως f ( + h) h h h f () = + h h = = h( + h) + h

23 6 f () = lim h 0 f ( + h) h f () = lim = h 0 + h (ii) Η εφαπτομένη της καμπύλης της f στο σημείο της με = έχει συντελεστή διεύθυνσης ίσο με f () Επομένως, η εξίσωσή της είναι y = + β y y= + y = O Επειδή όμως το σημείο (, f ()) = (, ) ανήκει στην εφαπτομένη, έχουμε = + β = + β β = Άρα, η εξίσωση της εφαπτομένης είναι y = + ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ Να βρείτε την παράγωγο της συνάρτησης i) f ( ) = + στο = ii) g( ) = + 5 στο = iii) σ( ) = + στο = 4 Να βρείτε την παράγωγο της συνάρτησης f ( t) = στο t = t + i) Το μήκος L ενός κύκλου ακτίνας r είναι L = πr Να βρείτε το ρυθμό μεταβολής του L ως προς r, όταν r = ii) Το εμβαδόν Ε ενός κύκλου ακτίνας r είναι E = πr Να βρείτε το ρυθμό μεταβολής του Ε ως προς r, όταν r =

24 7 4 i) Να βρείτε το ρυθμό μεταβολής του εμβαδού Ε ενός τετραγώνου πλευράς ως προς όταν = 5 ii) Να βρείτε το ρυθμό μεταβολής του όγκου ενός κύβου πλευράς ως προς, όταν = 0 5 Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης: i) f ( ) = στο A(, f ()) ii) f ( ) =, στο A( 4, f (4)) ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Παραγώγου Έστω μια συνάρτηση f με πεδίο ορισμού το Α, και Β το σύνολο των A στα οποία η f είναι παραγωγίσιμη Τότε ορίζεται μια νέα συνάρτηση, με την f ( + h) f ( ) οποία κάθε B αντιστοιχίζεται στο f ( ) = lim Η h 0 h συνάρτηση αυτή λέγεται (πρώτη) παράγωγος (derivative) της f και συμβολίζεται με f Για παράδειγμα, αν f ( ) =, τότε έχουμε: f ( + h) f ( ) = ( + h) = ( + h + h ) = h( + h), και για h 0 f ( + h) f ( ) h( + h) = = 6 + h h h Επομένως, f ( ) = lim(6 + h) = 6 h 0 Έτσι, η παράγωγος μιας συνάρτησης f στο 0 είναι ίση με την τιμή της παραγώγου της συνάρτησης στο σημείο αυτό Για παράδειγμα, η παράγωγος της f ( ) = στο 0 = 4 είναι ίση με την τιμή της συνάρτησης f ( ) = 6 στο 0 = 4, δηλαδή f ( 4) = 6 4 = 4 Η παράγωγος της συνάρτησης f λέγεται δεύτερη παράγωγος της f και συμβολίζεται με f Σύμφωνα με τα προηγούμενα αν η τετμημένη ενός κινητού που κινείται ευθυγράμμως είναι (t) τη χρονική στιγμή t, τότε η ταχύτητά του θα είναι υ ( t) = ( t)

25 8 Αν η συνάρτηση υ είναι παραγωγίσιμη, τότε η επιτάχυνση του κινητού τη χρονική στιγμή t θα είναι η παράγωγος της ταχύτητας, δηλαδή θα ισχύει α ( t) = υ ( t) ή ισοδύναμα α ( t) = ( t) Παραγώγιση Βασικών Συναρτήσεων Έως τώρα η παραγώγιση μιας συνάρτησης f γινόταν με τη βοήθεια του τύπου f ( + h) f ( ) f ( ) = lim Στη συνέχεια θα γνωρίσουμε μερικούς κανόνες h 0 h που διευκολύνουν τον υπολογισμό της παραγώγου πιο πολύπλοκων συναρτήσεων Η παράγωγος της σταθερής συνάρτησης Έχουμε f ( + h) f ( ) = c c = 0 και για h 0, f ( + h) h f ( ) = 0, f ( + h) f ( ) οπότε lim = 0 h 0 h Άρα ( c) = 0 y c O (α) Η παράγωγος της ταυτοτικής συνάρτησης f ( ) = c y=c f ( ) = Έχουμε f ( + h) f ( ) = ( + h) = h, και για h 0, f ( + h) f ( ) h = = (α) h h f ( + h) f ( ) Επομένως lim = lim = h 0 h h 0 Άρα ( ) = (β) ρ Η παράγωγος της συνάρτησης f ( ) = y O (β) y y O O y=0 y= y= Έστω η συνάρτηση f ( ) = Έχουμε f ( + h) f ( ) = ( + h) = + h + h = ( + h) h,

26 9 και για h 0, f ( + h) h f ( ) ( + h) h = = + h h Επομένως, lim h 0 f ( + h) h f ( ) = lim( + h) = h 0 Άρα ( ) = y y y= 4 y= O O Αποδεικνύεται ότι (α) (β) ν ν ( ) = ν, όπου ν φυσικός Ο τύπος αυτός ισχύει και στην περίπτωση που ο εκθέτης είναι ρητός αριθμός Για παράδειγμα = ( ) = = =, = ( ) = = = ( ) = ρ ρ = = = Άρα ( ) = ρ, όπου ρ ρητός αριθμός Η παράγωγος του ημ και του συν Έστω η γραφική παράσταση της συνάρτησης f ( ) = ημ (σχήμα 5) Αν λάβουμε υπόψη ότι η τιμή της f () σε ένα σημείο = 0 είναι ο συντελεστής διεύθυνσης της εφαπτομένης της καμπύλης της f στο σημείο ( 0, f ( 0 )), μπορούμε να σχεδιάσουμε προσεγγιστικά τη γραφική παράσταση της f Παρατηρούμε ότι η γραφική παράσταση της f μοιάζει με τη γραφική παράσταση της συνάρτησης συν

27 0 y y=ημ 5o 45 o 5 o π 45 o Ο π 5 y Ο π/ π π y=(ημ) Πράγματι, για τη συνάρτηση f ( ) = ημ αποδεικνύεται ότι ( ημ) = συν Επίσης για τη συνάρτηση g( ) = συν αποδεικνύεται ότι Η παράγωγος του e και του ( συν) = ημ ln Για την εκθετική και τη λογαριθμική συνάρτηση, με βάση τον αριθμό e, αποδεικνύεται ότι ( e ) = e και (ln ) = Κανόνες Παραγώγισης Η παράγωγος της συνάρτησης cf ( ) Έστω η συνάρτηση F ( ) = cf ( ) Έχουμε F( + h) F( ) = cf ( + h) cf ( ) = c( f ( + h) f ( )), και για h 0 Επομένως F ( + h) F( ) c( f ( + h) f ( ) f ( + h) f ( ) = = c h h h F( + h) F( ) lim = lim c h 0 h h 0 f ( + h) f ( ) = cf ( ) h Άρα ( c f ( )) = c f ( )

28 Για παράδειγμα, ) ( ) ( = = = = = = και 6 6 ) 6(ln ) 6ln ( = = = Η παράγωγος της συνάρτησης ( ) ) ( g f + Έστω η συναρτηση ) ( ) ( ) ( g f F + = Έχουμε )) ( ) ( ( )) ( ) ( ( ) ( ) ( g f h g h f F h F = + )) ( ) ( ( )) ( ) ( ( g h g f h f =, και για, h 0 h g h g h f h f h F h F ) ( ) ( ) ( ) ( ) ( ) ( = + Επομένως ) ( ) ( ) ( ) ( lim ) ( ) ( lim ) ( ) ( lim g f h g h g h f h f h F h F h h h + = = + Άρα ) ( ) ( )) ( ) ( ( g f g f + = + Για παράδειγμα 4 ) ( ) ( ) ( = + = + και ) ( ) ( = + = + Παράγωγος των συναρτήσεων ) ( ) ( g f και ) ( ) ( g f Για το γινόμενο και το πηλίκο συναρτήσεων αποδεικνύεται ότι ισχύουν οι παρακάτω κανόνες παραγώγισης: ) ( ) ( ) ( ) ( )) ( ) ( ( g f g f g f + = )) ( ( ) ( ) ( ) ( ) ( ) ( ) ( g g f g f g f =

29 Για παράδειγμα και ( ημ) = ( ) ημ + (ημ) = ημ + συν + ( + ) ( + ) ( ) ( + ) = = = = 4 4 ( ) Η παράγωγος σύνθετης συνάρτησης ν Γνωρίζουμε ήδη πώς παραγωγίζονται οι συναρτήσεις, ημ, συν, e και ln Επίσης, με τη βοήθεια των κανόνων παραγώγισης αθροίσματος, γινομένου και πηλίκου μπορούμε να παραγωγίσουμε και πολυπλοκότερες συναρτήσεις όπως για παράδειγμα τις ( + ) και ( + ) για τις οποίες έχουμε (( + ) ) = (( + )( + )) = ( + ) + ( + ) = 6 ( + ) και (( + ) ) = [( + ) ( + )] = 6 ( + )( + ) + ( + ) = 9 ( + ) Πώς όμως θα παραγωγίσουμε μια συνάρτηση όπως η F ( ) = + ; Παρατηρούμε ότι η συνάρτηση F() προκύπτει αν στην f ( ) = θέσουμε όπου το g ( ) = + Είναι, δηλαδή, F ( ) = + = f ( g( )) Γι αυτό η συνάρτηση F λέγεται σύνθεση της g με την f Αποδεικνύεται ότι για την παράγωγο μιας σύνθετης συνάρτησης ισχύει: ( f ( g( )) ) = f ( g( )) g ( ) Δηλαδή για να παραγωγίσουμε τη συνάρτηση f ( g( )), σε πρώτη φάση παραγωγίζουμε την f σαν να έχει ανεξάρτητη μεταβλητή την g() και στη συνέχεια πολλαπλασιάζουμε με την παράγωγο της g Επομένως, (( + ) ) = ( + ) ( + )) = ( + ) = 9 ( + ) Επίσης, επειδή όπως είδαμε, είναι ( ) =, έχουμε:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΥΠOΥΡΓΕIO ΠΑIΔΕIΑΣ ΚΑI ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΔΑΜΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΔΑΜΙΑΝΟΥ ΧΑΡΑΛΑΜΠΟΣ ΣΒΕΡΚΟΣ ΑΝΔΡΕΑΣ Η συγγραφή και η επιμέλεια

Διαβάστε περισσότερα

ρυθμός μεταβολής = παράγωγος

ρυθμός μεταβολής = παράγωγος ΠΡΟΒΛΗΜΑΤΑ Ρυθμός μεταβολής ρυθμός μεταβολής = παράγωγος Πιο σωστό είναι να λέμε «ρυθμός μεταβολής ενός μεγέθους, ως προς ένα άλλο», αλλά... :) Προσέχουμε γιατί οι συναρτήσεις, στα περισσότερα προβλήματα,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Tόμος ος -0088_l_c_math_bm_-54_8b.indd 5/08/07 09:49 ΣΥΓΓΡΑΦΕΙΣ: ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Αδαμόπουλος Λεωνίδας Επ. Σύμβουλος Παιδαγωγικού Ινστιτούτου

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το ο Γενικό Λύκειο Χανίων [00-0 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το ήθος

Διαβάστε περισσότερα

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 010-011 4 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΚΕΦ1 1 Δίνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας, Δαμιανού Χαράλαμπος Σβέρκος Ανδρέας Επ Σύμβουλος Παιδαγωγικού Ινστιτούτου Αναπλ Καθηγητής Παν/μίου Αθηνών Σχολικός

Διαβάστε περισσότερα

1 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

1 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Εισαγωγή Στο χώρο της επιστήμης το 7ο αιώνα κυριαρχούσε η μελέτη της κίνησης των ουράνιων σωμάτων, καθώς και η μελέτη της κίνησης ενός σώματος πάνω ή κοντά στη Γη Στη μελέτη αυτή προφανώς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΥΠOΥΡΓΕIO ΠΑIΔΕIΑΣ ΚΑI ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΔΑΜΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΔΑΜΙΑΝΟΥ ΧΑΡΑΛΑΜΠΟΣ ΣΒΕΡΚΟΣ ΑΝΔΡΕΑΣ Η συγγραφή και η επιμέλεια

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

1.4. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. Να βρείτε τα ακρότατα των συναρτήσεων i) f(x) = x 2x ii) f(x) = 3 x iii) f(x) = x 2x + 4

1.4. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. Να βρείτε τα ακρότατα των συναρτήσεων i) f(x) = x 2x ii) f(x) = 3 x iii) f(x) = x 2x + 4 .4 Ασκήσεις σχ. βιβλίου σελίδας 45 47 A ΟΜΑ ΑΣ. Να βρείτε τα ακρότατα των συναρτήσεων i) f() ii) f() + 6 iii) f() i) Πεδίο ορισµού είναι το R f () f () 0 0 f () > 0 > 0 > > + 4 Το πρόσηµο της f και η µονοτονία

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας, Δαμιανού Χαράλαμπος Σβέρκος Ανδρέας Επ Σύμβουλος Παιδαγωγικού Ινστιτούτου Αναπλ Καθηγητής Παν/μίου Αθηνών Σχολικός

Διαβάστε περισσότερα

( x)( x) x ( x) 2. 2x< 60 x< 30 και τελικά 0 < x < 30. = x = (παραγώγιση σύνθετης συνάρτησης)

( x)( x) x ( x) 2. 2x< 60 x< 30 και τελικά 0 < x < 30. = x = (παραγώγιση σύνθετης συνάρτησης) Β3. Από ένα φύλλο λαμαρίνας σχήματος τετραγώνου πλευράς 6 cm θα κατασκευαστεί ένα δοχείο, ανοικτό από πάνω, αφού κοπούν από τις γωνίες του τέσσερα ίσα τετράγωνα και στη συνέχεια διπλωθούν προς τα επάνω

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f) = c f, Έστω F = c f Έχουμε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί. Μια συνάρτηση f θα λέμε ότι παρουσιάζει στο o Α τοπικό μέγιστο, όταν υπάρχει δ > 0, τέτοιο ώστε f () f( o ) για κάθε A ( o δ, o δ ), όπου Α το πεδίο ορισμού της f. Το o λέγεται

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Tόμος 1ος -0088_l_c_math_bm_1-54_8b.indd 1 18/09/017 10:3 ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας Επ. Σύμβουλος Παιδαγωγικού Ινστιτούτου

Διαβάστε περισσότερα

0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ).

0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ). Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ 8 ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται

Διαβάστε περισσότερα

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1 Κεφ ο : Διαφορικός Λογισμός Συνοπτική θεωρία - Τι να προσέχουμε Θέματα από Πανελλαδικές Α Πεδίο ορισμού συνάρτησης (Περιορισμούς για το χ ) Όταν έχουμε κλάσμα πρέπει : παρονομαστής 0 Όταν έχουμε ρίζα πρέπει

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ : Αν δυο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f (, όταν f είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το στο σημείο την παράγωγο

Διαβάστε περισσότερα

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή 1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια. Σημαντική μάλιστα

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και 7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ Ενότητα 17 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ Ασκήσεις για λύση 1. Σε ένα ορθογώνιο ΑΒΓΔ η πλευρά ΑΒ αυξάνεται με ρυθμό cm / s, ενώ η πλευρά ΒΓ ελαττώνεται με ρυθμό 3 cm / s. Να βρεθούν: i) ο ρυθμός μεταβολής

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΛΙΚΥ ΒΙΒΛΙΥ Σχολικό βιβλίο: Απαντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΜΑΔΑΣ Έχουμε: = 4 i = 6 = + = + = = Άρα, η λύση του συστήματος

Διαβάστε περισσότερα

και είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0

και είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0 ΚΕΦΑΛΑΙΟ Ο 7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ (Θεώρημα Frmat) Εστω μια συναρτηση ορισμενη σ ένα διαστημα Δ και ένα εσωτερικο σημειο του Δ Αν η παρουσιάζει τοπικό ακρότατο στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β, 8B, 9 Έστω Α ένα υποσύνολο του Ονομάζουμε

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y f(x), όταν f είναι μια συνάρτηση παραγωγίσιμη στο x, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο

Διαβάστε περισσότερα

1.1 Πείραμα Τύχης - δειγματικός χώρος

1.1 Πείραμα Τύχης - δειγματικός χώρος 1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα

Διαβάστε περισσότερα

Γενικές ασκήσεις σχ. βιβλίου σελίδας 47 49

Γενικές ασκήσεις σχ. βιβλίου σελίδας 47 49 Γενικές ασκήσεις σχ. βιβλίο σελίδας 47 49. Αν µια σρµάτινη ράβδος είναι οµογενής, τότε η γραµµική της πκνότητα ρ ρ m και µετριέται σε χιλιόγραµµα l ορίζεται ως η µάζα της ανά µονάδα µήκος ( ) ανά µέτρο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΩΓΙΣΙΜΗ

Διαβάστε περισσότερα

0 είναι η παράγωγος v ( t 0

0 είναι η παράγωγος v ( t 0 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f(, όταν f

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α. 3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. και η συνάρτηση f είναι παραγωγίσιμη στο x. την παράγωγο f' ( x. 0 ) (ή και στιγμιαίο ρυθμό μεταβολής).

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. και η συνάρτηση f είναι παραγωγίσιμη στο x. την παράγωγο f' ( x. 0 ) (ή και στιγμιαίο ρυθμό μεταβολής). Ρυθμός μεταβολής Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ i Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y = f( x) και η συνάρτηση f είναι παραγωγίσιμη στο x τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής

Διαβάστε περισσότερα

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ 8 ΟΡΙΣΜΟΣ, 9 Πότε μια συνάρτηση λέγεται παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού της ; Απάντηση : Μια συνάρτηση λέμε ότι είναι παραγωγίσιμη σ ένα σημείο

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Αν η συνάρτηση f είναι παραγωγίσιμη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β). Σ Λ. * Αν η συνάρτηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης ΘΕΩΡΙΑ ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ. Να δώσετε τον ορισμό της συνάρτησης Συνάρτηση από το σύνολο Α στο Β λέγεται μια διαδικασία με την οποία κάθε στοιχείο x του Α, αντιστοιχίζεται

Διαβάστε περισσότερα

ερµηνεύσετε τα αποτελέσµατα του ερωτήµατος (α).

ερµηνεύσετε τα αποτελέσµατα του ερωτήµατος (α). Ερωτήσεις ανάπτυξης. ** Για να υπολογίσει κάποιος την (0 ) χρησιµοποιεί για + προσέγγιση τον αριθµό +, ενώ ένας άλλος τον αριθµό. 3 α) Να εκτιµήσετε ποια από τις δύο προσεγγίσεις δίνει το ελάχιστο (απόλυτο)

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός (Νο 8γ) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η Ο Κ Ε Φ Α Λ Α Ι Ο ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση

Διαβάστε περισσότερα

Συναρτήσεις. Ορισμός Συνάρτησης

Συναρτήσεις. Ορισμός Συνάρτησης Συναρτήσεις Ορισμός Συνάρτησης Συνάρτηση είναι μια διαδικασία με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Σχόλιο : Τα σύνολα Α και Β είναι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 1 Ο «ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 1 Ο «ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Α ΣΥΝΑΡΤΗΣΕΙΣ Δίνεται η συνάρτηση i Να

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα