Metoda sila (1) V. S. & K. F.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Metoda sila (1) V. S. & K. F."

Transcript

1 . Temejna zamisao Metoda sia () V. S. & K. F. Rješavajući zadatak izračunavanja sia u jednostrano upetoj gredi Navier je dodatnu jednadžu izveo iz uvjeta kompatiinosti pomakâ u desnom ežaju (pogavje Statički neodredeni sistemi definicija i osnovne karakteristike, od stranice 5. nadaje). Kjučni je korak pritom io anaitičko rješavanje diferencijane jednadže progine inije grede. Znamo, medutim, da je u soženijim sučajevima naaženje tog rješenja dugotrajno i mukotrpno. U Navierovu postupku vaja uočiti dvije pojedinosti: anaitički izraz za proginu iniju potrean je samo za uvrštavanje runoga uvjeta na mjestu i po pravcu djeovanja odarane prekorojne sie, reakcije B; u tom se izrazu od nepoznanica pojavjuje samo vrijednost B sie B pa se ona može iz njega neposredno izračunati. Umjesto zadane jednostrano upete grede AB promatrat ćemo sada konzou Ā B istoga raspona i istih geometrijskih i materijanih karakteristika EI, opterećenu siom u istom poožaju te siom X, zasad nepoznate vrijednosti X, na pravcu koji odgovara pravcu djeovanja reakcije B (sika..). Sia X zamjenjuje reakciju B, a time i ežaj B jednostrano upete grede. (U n puta statički neodredenom nosaču pojavit će se n sia čije su vrijednosti na početku proračuna nepoznate; označavat ćemo ih sa X, X 2,..., X n.) Zamisit ćemo da na konzou u početku djeuje samo sia (sika.c.). Reakcije i unutarnje sie jednake su tada reakcijama i unutarnjim siama u mogućem ravnotežnom stanju grede AB uz pretpostavku B 0; usporedite, primjerice, momentni dijagram prikazan na sici.d. s dijagramom na sici 3.c. na stranici 4. pogavja Statički neodredeni sistemi. No, vidjei smo da to moguće stanje ravnoteže nije stvarno stanje. Sada Õ možemo dati još jedno tumačenje te tvrdnje: kako je reakcija B izraz otpora ežaja B vertikanom pomaku, pretpostavka B 0znači da se ežaj tom pomaku ne odupire. Vrijednost vertikanoga pomaka ežajne točke stoga i ia jednaka vrijednosti vertikanog pomaka soodnoga kraja konzoe: dx EI ³± a2ô2. 6EI δ BÔÕ 0 IÔxÕ ÔxÕ M 0ÔxÕm E a2»¹ ³± »¹

2 a. A a B x z. Ā B c. X d. a M 0 e. f. m g. δ B() h. X δ B(X ) i. j. M 0 X m k. M(0) M(a) M Sika. 2

3 Vrijednost pomaka izračunai smo primjenom metode jedinične sie. Momentni dijagram za jediničnu siu u točki B, orijentiranu kao X (sika e.), prikazan je na sici.f. δ B δ BÔÕ δ BÔX Õ. Sada ćemo zamisiti da je, nakon što se konzoa prognua pod siom (sika.g.), počea djeovati i sia X. Na temeju principa superpozicije ukupni je vertikani pomak točke B zroj pomakâ zog neovisnih djeovanja sia i X pa je njegova vrijednost: S pogedom unaprijed, na proračun n puta statički neodredenih sistema, uvest ćemo sustavan način označavanja vrijednostî pomakâ: δ i,j. rvi indeks, ièö, n, označava da je riječ o pomaku hvatišta sie X i po pravcu njezina djeovanja:øδ i,j δ i,jøe i, pri čemu jeøe i jedinični vektor na pravcu djeovanja sie X i, orijentiran kao ta sia:øx i X iøe i uz X 0. Očito je da predznak vrijednosti δ i,j daje smisao pomaka u odnosu na smisao djeovanja sie X i. Drugi indeks, j, oznaka je uzroka pomaka: j 0 označava sva zadana djeovanja, a jèö, n jediničnu siu u hvatištu, na pravcu i u smisu djeovanja sie X j. rema tom su načinu označavanja δ BÔÕ δ,0 i δ BÔX Õ X δ,. Dake: δ,0 vrijednost je pomaka hvatišta sie X po pravcu njezina djeovanja (dake, po vertikanom pravcu kroz točku B), izazvanog zadanim opterećenjem (u našem primjeru siom ), dok je δ, vrijednost pomaka hvatišta sie X po pravcu njezina djeovanja zog jedinične sie, orijentirane kao X, u toj točki i na tom pravcu. Za δ,0 doii smo negativnu vrijednost kako sia X djeuje prema gore,øδ,0 pomak je prema doje. Desna strana izraza δ BÔX Õ X δ, pokazuje da i u izračunavanju te vrijednosti primjenjujemo princip superpozicije: uzrokuje i jedinična sia pomak čija je vrijednost δ,, sia vrijednosti X prouzročit će pomak čija je vrijednost X δ,. ritom je, primjenom metode jedinične sie, δ, EI ³± 3 0 3EI ; ÔxÕ m 2 E IÔxÕdx δ, ima isti smisao kao i sia koja ga je izazvaa. 2»¹ ³±2»¹ 2 3 δ B δ BÔÕ δ BÔX Õ 0. Budući da sia X zamjenjuje ežaj B jednostrano upete grede, njezinu ćemo vrijednost odarati tako da točku B vrati u početni poožaj (sika.h.): Iz tog uvjeta, koji ćemo, dosjednije, napisati u oiku δ, X δ,0 0, () Ostajemo u okviru Bernoui Euerove teorije savijanja. retpostavjat ćemo uvijek da je po pojedinim dijeovima sistema E const (iako razičiti dijeovi mogu imati razičiti modu eastičnosti; mogu, primjerice, iti izvedeni od razičitih gradiva: etona, čeika, drva...). A kao što zapis IÔxÕu općem izrazu za pomak pokazuje, poprečni se presjeci mogu i duž pojedinih dijeova mijenjati. 3

4 Õ možemo izračunati potrenu vrijednost X sie X : δ, 6EI X δ a2ô2,0 uvrstimo i još a, doit ćemo 3 3EI X 3 a2 a Õ a2ô2 ; 2 3 Usporeda doivenoga izraza s izrazom za vrijednost B reakcije B, koji smo izvei Navierovim postupkom (Statički neodredeni sistemi, stranica 6.), pokazuje da je, zaista, X B. Ukratko, zamjena jednostrano upete grede konzoom općenitije: statički neodredena sistema odredenim omogućia je izračunavanje vrijednosti pomaka odarane točke metodom jedinične sie, čime smo izjegi potreu za rješavanjem diferencijane jednadže progine inije. I k tomu još, primjena principa superpozicije itno je pojednostavia postupak učinivši ga pritom zornijim i pregednijim: izrazi za vrijednosti pomaka izazvanih neovisnim djeovanjima zadane i jedinične sie znatno su kraći i stoga manje podožni greškama no što je to izraz za vrijednost ÔxÕ pomaka pri istodonom djeovanju sia i X. Izvest ćemo, kontrasta radi, i taj izraz. Momentni dijagram pri zajedničkom djeovanju sia i X (sika 2.a.; podsjećamo, vrijednost X zasad je neodredena) skiciran je na sici 2.. pa je M XÔxÕm δ B dx 0 EIÔxÕ Õ»¹»¹ ³± EI ³± 2 X a»¹ ³± a 6EI 2Ô2 2X a 2 a a 2 3. Iz uvjeta δ B 0 sijedi»¹ Õa»¹ ³± 2 2Ôa X 3 3 X a uvrštavanje a daje već poznati izraz za X. Õ a 2Ô2 2Ôa 2 a a 2 3Õ, ³± 2 X 2»¹ ³±2 Kao što je vrijednost konačnoga pomaka točke B zroj vrijednosti pomakâ zog sie i zog sie X, tako se i vrijednosti drugih kinematičkih i statičkih veičina mogu izračunati zrajanjem utjecajâ jedne i druge sie. Time nismo reki ništa novo riječ je tek, ponovo, o neposrednoj primjeni principa superpozicije. No, tim postupkom, a to je za rješavanje statički neodredenih zadataka svakako vro važna spoznaja, doivamo ujedno i vrijednosti odgovarajućih veičina u jednostrano upetoj gredi. Ako, naime, s pomoću sie X zadovojimo na konzoi Ā B uvjet δ B 0, tada su konzoa i jednostrano upeta greda AB u istim mehaničkim stanjima: ponajprije, sia X mora iti jednaka reakciji B; potom, iz uvjetâ je 4

5 a. a X. a X X M X c. m Sika 2. ravnoteže očito da su i ostae reakcije i unutarnje sie u konzoi i gredi medusono jednake. A jasno je da su jednake i njihove progine inije: sike.h. i.i. na stranici 2. rema tome, vrijednost momenta savijanja MÔxÕu presjeku x jednostrano upete grede, na primjer, možemo izračunati 0ÔxÕ Ôa xõ prema izrazu m ÔxÕ, (2) gdje su za 0 x a, M Ô xõ 0 za a x i 0ÔaÕ X m ÔxÕ X vrijednosti momenata u presjeku x od neovisnih djeovanja sia i X na konzou. Napose, MÔaÕ M X a2 2 4 a 3 a rimjena principa superpozicije u duhu je prethodnih koraka pa se takav postupak oično smatra kanonskim. Crtanje dijagrama M na temeju otprije poznatih dijagrama M 0 i m (sike.d. i f.; str. 2.) prikazano je na sikama j. i k. No, za crtanje momentnog dijagrama na jednostrano upetoj gredi (sika.k.) potrene su nam samo vrijednosti MÔ0Õ M A, MÔaÕiMÔÕ M B. Budući da je B X, iz ravnoteže momenata oko točke x 0 za dioü0, jednostrano upete grede doivamo MÔ0Õ a B a X 2 a2 3 a 2 a 3, 2 2 a iz ravnoteže momenata oko x a za dioüa, MÔxÕ M 0ÔxÕ X m ÔaÕ 0 X MÔaÕ B X X Ô aõ 3 Ô aõ 3 5 a2 2 4 a 3 a ;

6 znamo da je M B 0. Dake, kad je vrijednost odarane prekorojne sie poznata, vrijednosti ostaih reakcija i unutarnjih sia možemo izračunati iz jednadži ravnoteže; taj postupak može iti kraći od primjene principa superpozicije. (Dijagram poprečnih sia možemo, ako je poznat momentni dijagram, nacrtati i na temeju diferencijanoga odnosa T M½. [Nacrtajte taj dijagram na sva tri načina!]) U oradenom su primjeru sadržani svi itni koraci proračuna statički neodredenih sistema metodom sia. Zamišjenim raskidanjem veza zadani se sistem pretvara u statički odredeni, koji nazivamo osnovnim sistemom, a raskinute se veze nadomještaju siama koje odgovaraju siama koje su te veze prenosie. Vrijednosti tih sia potom izračunavamo iz uvjetâ kompatiinosti pomakâ na mjestima raskinutih veza sie moraju povratiti narušenu neprekinutost poja pomaka ii osigurati podudaranje pomakâ na mjestima ukonjenih ežajeva sa stvarnim ežajnim uvjetima. Vrijednosti pomakâ koji se pojavjuju u uvjetima kompatiinosti proračunavamo metodom jedinične sie; na temeju principa superpozicije možemo to uraditi za zasena djeovanja zadanoga opterećenja i pojedinih jediničnih sia u raskinutim vezama. Iako smo dosad, govoreći o pomacima, misii samo na transacijske, sve što je rečeno može se primijeniti i na rotacijske pomake. Umetanjem zgoa umjesto krute veze omogućavamo zaokret osi grede 2 ; raskinuta je veza prenosia moment savijanja. Tako upeti ežaj A naše jednostrano upete grede (sika 3.a.) sprečava pomak te točke i zaokret osi u njoj tangenta na proginu iniju mora se u toj točki pokapati s osi nedeformirane grede. Uacivanjem zgoa nastaje prosta greda Ā B u kojoj se os u ežaju može soodno zaokretati. Reaktivni moment M A, a time i upetu vezu jednostrano upete grede, nadomjestit ćemo u osnovnom sistemu momentom X (sika.); njegovu ćemo vrijednost odarati tako da poništi zaokret zog zadanoga opterećenja, sie. Kut zaokreta osi u ežaju Ā proste grede zog djeovanja sie (sika 3.e.) je ĀÔÕ»¹»¹ ϕ dx 0 ³± EI ³± a a 2 2 IÔxÕ ÔxÕ M 0ÔxÕm E a»¹ ³± 3 2 3»¹ ³± a2 3 a 2 a 3. 6 EI Dijagrami M 0 i m na osnovnom sistemu za siu i za jedinični moment u Ā, istoga smisa kao X, prikazani su na sikama 3.c. i d. Dijagram M 0 podudara se, naravno, s dijagramom za moguće ravnotežno stanje zadane grede uz pretpostavku M A 0, sika 3.e. na stranici 4. pogavja Statički neodredeni sistemi. 2 risjetite se usput: u Timošenkovoj je teoriji savijanja odgovarajuća veičina zaokret normae na ravninu poprečnoga presjeka. 6

7 a. A B. Ā B X c. a M 0 d. m e. ϕ Ā () f. ϕ Ā (X ) X g. X m ĀÔÕ M M 0 Sika 3. Uvjet kompatiinosti pomakâ naaže iščezavanje zaokreta osi pri istodonom djeovanju sia i X (sika 3.f.): ÔxÕ ϕ Ā ϕ ϕ ĀÔX Õ 0. ritom je kut zaokret samo od momenta X ϕ ĀÔX Õ X δ,, pri čemu je m δ, 2 0 E IÔxÕdx EI ³± 2»¹ ³±2 Uz ϕ ĀÔÕ δ i ϕ ĀÔX Õ X δ, uvjet kompatiinosti pomakâ imat će formano isti zapis kao jednadža () na stranici 3.:,0 Iz njega sijedi δ,0 X δ, X δ, a2 3 a 2 a 3. δ, »¹ 3 EI.

8 Superpozicija dijagramâ M 0 i X m, kojom doivamo konačni momentni dijagram na jednostrano upetoj gredi, prikazana je sici 3.g. Funkcijski izraz za vrijednost momenta savijanja formano je ponovo 0ÔxÕ ³²³±Ô aõ 0ÔxÕ Ô xõ MÔxÕ M X m ÔxÕ, no sada su x za 0 x a, M a za a x ; x m ÔxÕ. oseno, za x 0 doivamo MÔ0Õ X 2 a2 3 a 2 a 3 Ô Õ X. 2 2 Dok smo umetanjem zgoa na mjestu upetoga ežaja omogućii apsoutni zaokret osi u ežaju, zgoom unutar raspona grede (sika 4..) omogućavamo reativni zaokret osi neposredno ijevo u odnosu na os neposredno desno pa se progina inija omi : sika e. Da zagadimo nastai šijak, dodati moramo par momenata jednakih intenziteta, ai suprotna smisa vrtnje: sika f. Dijagrami momenata savijanja na osnovnom sistemu, koji je sada jednostavni Gererov nosač (sika 4..), pri djeovanju sie te pri djeovanju para jediničnih momenata oko zgoa prikazani su na sikama c. i d. (Uacivanjem zgoa upravo u hvatište sie oakšai smo izračunavanje vrijednosti pomaka metodom jedinične sie. Smjestimo i zgo u neki presjek ijevo od tog hvatišta, dijagram M 0 it će soženijeg oika [nacrtajte ga!]. Za sve poožaje zgoa desno od hvaišta taj dijagram ostaje kao na sici c. [dokažite!]. No, ako je zgo u hvatištu, vrijednosti u dijagramu m izražene su samo s pomoću već poznatih geometrijskih veičina, dok i se pri drugim poožajima pojavie još neke veičine [provjerite!].) ri prijeazu preko umetnutoga zgoa kut je reativnog zaokreta prognute osi Gererova nosača zog djeovanja sie,0 EI ³± ϕ zôõ δ 3»¹ a2ô3 a2»¹ ³± EIÔ aõ; to je kut izmedu tangenata na proginu iniju u točkama neposredno ijevo i neposredno desno od zgoa (sika 4.e.). Kako su u zadanoj jednostrano upetoj gredi u točki koja odgovara poožaju umetnutoga zgoa ijevi i desni dio medusono kruto spojeni, progina se inija ne smije somiti možemo reći (možda uz stanoviti nedostatak matematičke strogosti) da u toj točki dijeovi imaju zajedničku tangentu. Dodani momenti X moraju 8

9 a. A B. Ā B X X c. a M 0 d. m e. ϕ z() f. ϕ ijevo z (X ) ϕ z desno (X ) X X g. M 0 X m M Sika 4. stoga dovesti tangente na siom somjenu Õ proginu iniju do pokapanja. Svaki moment zatvara dio kuta na svojoj strani (sika 4.f.): ϕ ijevo ÔX z ϕ z desno ÔX Õ ϕ zôx Õ. Kako je ϕ zôx Õ X»¹ δ,, gdje je δ, aõô aõ EI ³±»¹ ³± , EIÔ aõ2 uvjet kompatiinosti pomakâ δ, X δ,0 0 (taj ste izraz već vidjei, zar ne?) daje δ X a2ô3 δ, 3 a2 2 4 a 3 a ,0 Kao i ranije, s drugim osnovnim sistemima, uz poznatu vrijednost X momenata X, vrijednosti reakcija i unutarnjih sia u odaranim presjecima jednostrano upete grede možemo 9

10 izračunati primjenom principa superpozicije ii iz jednadži ravnoteže njezinih pogodno odaranih dijeova. Na isti način možemo izvesti i funkcijske izraze za vrijednosti unutarnjih sia duž cijeog raspona. rimjerice, 0ÔxÕ prema principu superpozicije funkcijski je izraz za vrijednost momenta savijanja 0ÔxÕ Ôa xõ i sada formano MÔxÕ M X m ÔxÕ, ai se u nj uvrštavaju izrazi za 0 x a, M 0 za a x ; ÔxÕ x m a. oseno je MÔaÕ X 3 a2 2 4 a 3 a Crtanje momentnog dijagrama superpozicijom dijagrama M 0 i X m prikazano je na sici 4.g. [Izvedite funkcijske izraze i nacrtajte dijagrame momenata savijanja i poprečnih sia ako je zadano jednoiko distriuirano opterećenje po cijeoj dujini grede! Za osnovni sistem uzmite prostu gredu. Izvedite funkcijske izraze za momente i poprečne sie i nacrtajte dijagrame ako jednoiko distriuirano opterećenje djeuje samo na dijeuö0, a! Za osnovni sistem uzmite sada Gererov nosač sa zgoom u x a.] 0

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

STATIČKI ODREĐENI SUSTAVI

STATIČKI ODREĐENI SUSTAVI STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje

Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje Osnovne vrste napreanja: ksijalno napreanje Smicanje Uvijanje Savijanje Ivijanje 1 SVIJNJE GREDE SI Greda je opterećena na desnom kraju silom paralelno jednoj od glavnih centralnih osa inercije (y osi).

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Helena Prović GRAFIČKI POSTUPCI ANALIZE RAVNINSKIH REŠETKASTIH NOSAČA

Helena Prović GRAFIČKI POSTUPCI ANALIZE RAVNINSKIH REŠETKASTIH NOSAČA Sveučilište u Zagrebu Građevinski fakultet Helena rović GRFIČKI OSTUCI NLIZE RVNINSKIH REŠETKSTIH NOSČ (ZVRŠNI RD) Zagreb, 00. 0 Sadržaj. Uvod. Rešetkasti nosači. Grafičke metode određivanja sila rešetkastih

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole Izvođenje diferencijalne jednačine elastične linije Elastična linija, čija je jednačina y(z), je krivolinijski oblik ose nosača izazvan opterećenjem. Koordinatni sistem ćemo uvek uzimati tako da je koordinatni

Διαβάστε περισσότερα

Proračun graničnih nosivosti (1)

Proračun graničnih nosivosti (1) Proračun graničnih nosivosti () K. F.. Linearno elastičan idealno plastičan materijal Poveća li se opterećenje toliko da naprezanja u dijelovima nekih poprečnih presjeka dosegnu granicu popuštanja/tečenja,

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

SILE U PRESEKU GREDNOG NOSAČA

SILE U PRESEKU GREDNOG NOSAČA SIE U PRESEKU GREDNOG NOSAČA DEFINICIJE SIA U PRESECIMA Projektovanje bilo kog konstruktivnog elemenata podrazumeva određivanje unutrašnjih sila u tom elementu da bi se obezbedilo da materijal od koga

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15.07.2015 Marko Srdanović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

Derivacija funkcije Materijali za nastavu iz Matematike 1

Derivacija funkcije Materijali za nastavu iz Matematike 1 Derivacija funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 45 Definicija derivacije funkcije Neka je funkcija f definirana u okolini točke x 0 i

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Proračun štapova na zatezanje i pritisak. Osnova za proračun je zadovoljenje nejednačine σ σ, σ d

Proračun štapova na zatezanje i pritisak. Osnova za proračun je zadovoljenje nejednačine σ σ, σ d Proračun štapova na zatezanje i pritisak Osnova za proračun je zadovojenje nejednačine, max d gde je max maksimum apsoutne vrednosti normanog napona štapa a d je dozvojeni normani napon Ovakva nejednakost

Διαβάστε περισσότερα

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1.

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1. . U zračnom rasporu d magnetnog kruga prema slici akumulirana je energija od,8 mj. Odrediti: a. Struju I; b. Magnetnu energiju akumuliranu u zračnom rasporu d ; Poznato je: l = l =, m; l =, m; d = d =

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci Numerička integracija O problemima integriranja

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7.

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7. ODSEK ZA KONSTRUKCIJE 28.01.2015. grupa A g=50 kn/m p=60 kn/m 60 45 15 75 MB 35, RA 400/500 7.5 m 5 m 25 1.1 Odrediti potrebnu površinu armature u karakterističnim presecima (preseci na mestima maksimalnih

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ : BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja

Διαβάστε περισσότερα