Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1"

Transcript

1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci

2 Numerička integracija O problemima integriranja Ako je f : [a, b] R neprekidna funkcija, a G njena primitivna funkcija, onda se Riemannov integral na segmentu [a, b] može izračunati primjenom Newton-Leibnizove formule I = b a f (x) dx = G(b) G(a). U praksi se najčešće pojavljuju situacije gdje nije moguće primjeniti ovu formulu. Može se dogoditi da: primitivnu funkciju G nije moguće dobiti elementarnim metodama podintegralna funkcija je poznata u samo nekoliko točaka

3 Numerička integracija O problemima integriranja Ako je f : [a, b] R neprekidna funkcija, a G njena primitivna funkcija, onda se Riemannov integral na segmentu [a, b] može izračunati primjenom Newton-Leibnizove formule I = b a f (x) dx = G(b) G(a). U praksi se najčešće pojavljuju situacije gdje nije moguće primjeniti ovu formulu. Može se dogoditi da: primitivnu funkciju G nije moguće dobiti elementarnim metodama podintegralna funkcija je poznata u samo nekoliko točaka

4 Numerička integracija Aproksimativno izračunavanje vrijednosti integrala na segmentu Kako bismo ipak aproksimativno izračunali vrijednost integrala I, podintegralnu funkciju moramo interpolirati nekom jednostavnijom funkcijom ϕ i na taj način dobiti aproksimaciju integrala I koju označavamo s I : b I = ϕ(x) dx = G(b) G(a). a Pri tome, aproksimirajuća funkcija treba biti takva da za zadanu točnost ε > 0 bude I = I I < ε. Uz pretpostavku poznavanja funkcije f u n + 1 točaka x 0, x 1,... x n [a, b] za funkciju ϕ možemo uzeti, primjerice, Lagrangeov interpolacijski polinom.

5 Numerička integracija Aproksimativno izračunavanje vrijednosti integrala na segmentu Kako bismo ipak aproksimativno izračunali vrijednost integrala I, podintegralnu funkciju moramo interpolirati nekom jednostavnijom funkcijom ϕ i na taj način dobiti aproksimaciju integrala I koju označavamo s I : b I = ϕ(x) dx = G(b) G(a). a Pri tome, aproksimirajuća funkcija treba biti takva da za zadanu točnost ε > 0 bude I = I I < ε. Uz pretpostavku poznavanja funkcije f u n + 1 točaka x 0, x 1,... x n [a, b] za funkciju ϕ možemo uzeti, primjerice, Lagrangeov interpolacijski polinom.

6 Numerička integracija Aproksimativno izračunavanje vrijednosti integrala na segmentu Kako bismo ipak aproksimativno izračunali vrijednost integrala I, podintegralnu funkciju moramo interpolirati nekom jednostavnijom funkcijom ϕ i na taj način dobiti aproksimaciju integrala I koju označavamo s I : b I = ϕ(x) dx = G(b) G(a). a Pri tome, aproksimirajuća funkcija treba biti takva da za zadanu točnost ε > 0 bude I = I I < ε. Uz pretpostavku poznavanja funkcije f u n + 1 točaka x 0, x 1,... x n [a, b] za funkciju ϕ možemo uzeti, primjerice, Lagrangeov interpolacijski polinom.

7 Trapezna formula Trapezna formula Funkciju f : [a, b] R interpolirat ćemo linearnom funkcijom P 1 (interpolacijskim polinomom stupnja 1) u čvorovima interpolacije x 0 = a, x 1 = b. Graf funkcije P 1 je pravac koji prolazi točkama T 0 = (a, f (a)), T 1 = (b, f (b)), odnosno vrijedi Lako se dobije I = P 1 (x) = f (a) + b a f (b) f (a) (x a). b a P 1 (x) dx = b a (f (a) + f (b)). 2

8 Trapezna formula Trapezna formula Funkciju f : [a, b] R interpolirat ćemo linearnom funkcijom P 1 (interpolacijskim polinomom stupnja 1) u čvorovima interpolacije x 0 = a, x 1 = b. Graf funkcije P 1 je pravac koji prolazi točkama T 0 = (a, f (a)), T 1 = (b, f (b)), odnosno vrijedi Lako se dobije I = P 1 (x) = f (a) + b a f (b) f (a) (x a). b a P 1 (x) dx = b a (f (a) + f (b)). 2

9 Trapezna formula Trapezna formula Funkciju f : [a, b] R interpolirat ćemo linearnom funkcijom P 1 (interpolacijskim polinomom stupnja 1) u čvorovima interpolacije x 0 = a, x 1 = b. Graf funkcije P 1 je pravac koji prolazi točkama T 0 = (a, f (a)), T 1 = (b, f (b)), odnosno vrijedi Lako se dobije I = P 1 (x) = f (a) + b a f (b) f (a) (x a). b a P 1 (x) dx = b a (f (a) + f (b)). 2

10 Trapezna formula Trapezna formula Geometrijski, I predstavlja površinu trapeza sa stranicama f (a) i f (b) i visinom h = b a. Apsolutna greška predstavlja površinu izmedu pravca L 1 i grafa funkcije f.

11 Trapezna formula Trapezna formula Teorem Neka je f C[a,b] 3. Tada postoji c a, b takav da je I = b a f (x) dx = b a 2 (b a)3 (f (a) + f (b)) f (c). 12

12 Trapezna formula Produljena trapezna formula Ako je segment integracije [a, b] relativno velik, greška E će biti velika. U cilju postizanja bolje aproksimacije I integrala I, segment [a, b] podijelit ćemo na podsegmente i na svakom od njih primjeniti trapeznu formulu. Pretpostavimo da funkciju f poznajemo u n + 1 točaka x 0, x 1,... x n [a, b], ali je pri tome ispunjeno: x 1 x 0 = = x n x n 1 = h, x 0 = a, x n = b.

13 Trapezna formula Produljena trapezna formula

14 Trapezna formula Produljena trapezna formula Očigledno vrijedi h = b a n, a točke x 0,... x n dijele segment [a, b] na n jednakih dijelova duljine h. Označimo y i = f (x i ), i = 0,..., n. Na svakom podsegmentu primjenjujemo trapeznu formulu i za [x i 1, x i ] dobivamo xi x i 1 f (x) dx = h 2 (y i 1 + y i ) h3 12 f (c i ), c i x i 1, x i.

15 Trapezna formula Produljena trapezna formula Očigledno vrijedi h = b a n, a točke x 0,... x n dijele segment [a, b] na n jednakih dijelova duljine h. Označimo y i = f (x i ), i = 0,..., n. Na svakom podsegmentu primjenjujemo trapeznu formulu i za [x i 1, x i ] dobivamo xi x i 1 f (x) dx = h 2 (y i 1 + y i ) h3 12 f (c i ), c i x i 1, x i.

16 Trapezna formula Produljena trapezna formula Očigledno vrijedi h = b a n, a točke x 0,... x n dijele segment [a, b] na n jednakih dijelova duljine h. Označimo y i = f (x i ), i = 0,..., n. Na svakom podsegmentu primjenjujemo trapeznu formulu i za [x i 1, x i ] dobivamo xi x i 1 f (x) dx = h 2 (y i 1 + y i ) h3 12 f (c i ), c i x i 1, x i.

17 Trapezna formula Produljena trapezna formula Cijeli integral I postaje: b I = f (x) dx = a n i=1 xi x i 1 f (x) dx = h 2 (y 0 + 2y y n 1 + y n) h3 12 n f (c i ). i=1 Na ovaj način dobivamo produljenu (generaliziranu) trapeznu formulu: I = I + E n, gdje je I = h 2 (y 0 + 2y y n 1 + y n ), E n = b a 12 h2 f (c).

18 Trapezna formula Greška produljene trapezne formule Ako je zadana točnost ε s kojom treba izračunati integral I i ako označimo M 2 = max x [a,b] f (x), onda je apsolutna greška I b a 12 h2 M 2 < ε. Broj podsegmenata n na koji treba podijeliti početni segment da bi se postigla zadana točnost ε je M 2 n > (b a) ε b a 12.

19 Trapezna formula Greška produljene trapezne formule Ako je zadana točnost ε s kojom treba izračunati integral I i ako označimo M 2 = max x [a,b] f (x), onda je apsolutna greška I b a 12 h2 M 2 < ε. Broj podsegmenata n na koji treba podijeliti početni segment da bi se postigla zadana točnost ε je M 2 n > (b a) ε b a 12.

20 Trapezna formula Zadatak 1. Produljenom trapeznom formulom izračunati približnu vrijednost odredenog integrala uz korak h = 0.2. Rješenje. 4 3 x ln x dx

21 Trapezna formula Zadatak 2. (vježba) Produljenom trapeznom formulom izračunati približnu vrijednost odredenog integrala x sin x dx uz korak h = 0.3. Rješenje x sin x dx

22 Trapezna formula Zadatak 3. Produljenom trapeznom formulom izračunati približnu vrijednost broja π računajući površinu jediničnog kruga pomoću odredenog integrala za korak h = 0.1. Rješenje.

23 Trapezna formula Zadatak 4. (vježba) Neka je zadano 2 0 dx 1 + x 2. Koristimo li produljenu trapeznu formulu za izračunavanje aproksimacije vrijednosti zadanog integrala, koliki bi trebao biti n ako je uvjet da je greška aproksimacije E n ? Rješenje. n 517.

24 Newton - Cotesove formule Newton - Cotesove formule Newton - Cotesova formula reda n + 1 za aproksimaciju odredenog integrala b f (x) dx a dobiva se tako da se funkcija f zamijeni Lagrangeovim interpolacijskim polinomom stupnja n koji interpolira vrijednosti funkcije f u n + 1 ekvidistantnih točaka. Ukoliko su krajnje točke segmenta [a, b] ujedno i interpolacijske točke, onda govorimo o zatvorenoj Newton - Cotesovoj formuli, a u protivnom o otvorenoj.

25 Newton - Cotesove formule Newton - Cotesove formule Promotrimo zatvorenu Newton - Cotesovu formulu reda n + 1. Interpolacijske točke su x i = a + h i, h = b a, i = 0, 1, 2,... n. n Lagrangeov interpolacijski polinom je oblika L n (x) = n f (x i )L i (x), i=0 gdje je L i (x) = j=0,j i (x x j) j=0,j i (x i x j ).

26 Newton - Cotesove formule Newton - Cotesove formule Lako dolazimo do formule: b a f (x) dx n i=0 b f (x i ) L i (x) dx. a U ovoj formuli integrale na desnoj strani uvijek možemo egzaktno izračunati pa nakon zamjene varijabli x = a + th dobivamo: b a n L i (x) dx = h 0 j=0,j i t j i j dt = hλ n,i, što nam daje eksplicitnu ovisnost koeficijenata formule o parametru h.

27 Newton - Cotesove formule Newton - Cotesove formule Konačno, Newton - Cotesova formula reda n + 1 ima oblik: b a f (x) dx h n f (x i )λ n,i, gdje koeficijenti λ n,i ne ovise o a, b. Newton - Cotesova formula reda n + 1 točna je na polinomima stupnja manjeg ili jednakog n. Greška n + 1-ve Newton - Cotesove formule dana je formulom gdje je E n+1 (f ) = b a i=0 f [x 0, x 1,... x n, x]w n (x) dx, w n (x) = n (x x j ). j=0

28 Newton - Cotesove formule Simpsonova formula Ako koristeći Newton - Cotesove formule funkciju aproksimiramo kvadratnim polinomom kroz točke ( ( )) a + b a + b (a, f (a)), 2, f, (b, f (b)) 2 dobivamo specijalan slučaj Newton-Cotesove formule kojeg nazivamo Simpsonova formula. Vrijedi I b a 6 ( f (a) + 4f ( a + b 2 ) ) + f (b).

29 Newton - Cotesove formule Simpsonova formula Za grešku Simpsonove formule vrijedi E 3 = I I = (b a)5 f (4) (c), 90 c a, b.

30 Newton - Cotesove formule Produljena Simpsonova formula Ako je segment integracije [a, b] relativno velik, i greška E će biti velika. U cilju postizanja bolje aproksimacije I integrala I segment [a, b] podijelit ćemo na paran broj (n = 2m) podsegmenata duljine h = b a n u čvorovima x i = a + ih, i = 0, 1,..., n. Uz oznaku y i = f (x i ), i = 0, 1,..., n redom, na po dva podsegmenta primjenjujemo Simpsonovo pravilo Na ovaj način dobivamo produljeno (generalizirano) Simpsonovo pravilo

31 Newton - Cotesove formule Produljena Simpsonova formula

32 Newton - Cotesove formule Produljena Simpsonova formula Vrijedi: I = I + E n, I = h 3 ((y 0 + y 2m + 4(y y 2m 1 ) + 2(y y 2m 2 )), E n = b a 180 h4 f (4) (c), c a, b.

33 Newton - Cotesove formule Greška produljene Simpsonove formule Ako je zadana točnost ε s kojom treba izračunati integral I i ako označimo M 4 = max x [a,b] f (4) (x), onda je apsolutna greška I b a 180 h4 M 4 < ε. Broj podsegmenata n na koji treba podijeliti početni segment da bi se postigla zadana točnost ε je n > (b a) 4 M 4 ε b a 180.

34 Newton - Cotesove formule Zadatak 1. Produljenom Simpsonovom formulom izračunati približnu vrijednost odredenog integrala uz korak h = Rješenje. 2 1 x 2 arctan x dx

35 Newton - Cotesove formule Zadatak 2. Produljenom Simpsonovom formulom izračunati približnu vrijednost broja ln 2 računajući ga pomoću odredenog integrala za korak h = 0.1. Rješenje. ln

36 Newton - Cotesove formule Zadatak 3. Neka je zadano 2 0 dx 1 + x 2. Koristimo li produljenu Simpsonovu formulu za izračunavanje aproksimacije vrijednosti zadanog integrala, koliki bi trebao biti n ako je uvjet da je greška aproksimacije E n ? Rješenje. n 31.

37 Newton - Cotesove formule Simpsonova formula 3/8 Simpsonova formula 3/8 je još jednan način aproksimativne integracije izveden iz Newton - Cotesovih formula (za n = 4) koji se oslanja na aproksimaciju kubičnim polinomom na zadanom segmentu b a f (x) dx b a 8 ( f (a) + 3f Greška ove metode je ( 2a + b 3 ) + 3f E 4 = (b a) f (4) (ζ), ζ a, b. ( ) ) a + 2b + f (b), b a = 3h. 3

38 Newton - Cotesove formule Produljena Simpsonova formula 3/8 Za h = b a n, x i = a + ih, i = 0, 1,... n 1 definiramo Produljenu Simpsonovu formulu 3/8: b f (x) dx 3 8 (f (x 0) + 3f (x 1 ) + 3f (x 2 ) + 2f (x 3 ) + 3f (x 4 ) + 3f (x 5 ) + 2f (x 6 ) + + f (x n)). a Greška koja se dogada pri aproksimaciji vrijednosti integrala ovim pravilom je E n = 1 80 (b a)4 f (4) (ζ), ζ a, b.

39 Newton - Cotesove formule Boolova formula Boolova formula je način aproksimativne integracije izveden iz Newton - Cotesovih formula za n = 5. x5 x 1 f (x) dx 2h 45 (7f (x 1) + 32f (x 2 ) + 12f (x 3 ) + 32f (x 4 ) + 7f (x 5 )), b a = 4h. Greška ove metode je E 5 = h7 f (6) (c), ζ x 1, x 5

40 Gaussova kvadratura Gaussova kvadratura Sve metode koje smo do sad upoznali za aproksimativno izračunavanje vrijednosti odredenog integrala b a f (x) dx n ω j f (x j ), j=0 gdje su x j, j = 0,..., n imale su svojstvo da su zadani čvorovi bili ekvidistantni. Možemo li drugačije rasporediti te čvorove kako bi smanjili grešku integracije? Cilj je rasporediti čvorove tako da minimiziramo grešku

41 Gaussova kvadratura Gaussova kvadratura Početni problem ostaje isti b a f (x) dx n ω j f (x j ), j=0 gdje su nepoznanice ω j, x j, j = 0, 1,..., n. Promatramo n + 1 nepoznatu točku x j [a, b], a x 0 < x 1 <... x n 1 < x n b i n + 1 realan koeficijent ω j što znači da u ovom slučaju postoje 2n + 2 nepoznanice U slučaju trapezne formule postoje dvije nepoznanice U slučaju Simpsonove formule postoje tri nepoznanice U slučaju Newton - Cotesovih formula, općenito, postoji n + 1 nepoznanica

42 Gaussova kvadratura Gaussova kvadratura Promatramo slučaj za n = 1 (2 točke) i [a, b] = [ 1, 1] radi jednostavnosti Znamo da je trapezna formula u ovom slučaju primjenjiva i interesira nas kako konstruirati što točniju formulu 1 1 f (x) dx ω 0 f (x 0 ) + ω 1 f (x 1 ).

43 Gaussova kvadratura Gaussova kvadratura

44 Gaussova kvadratura Gaussova kvadratura Cilj je pronaći ω 0, ω 1, x 0, x 1 tako da je aproksimacija 1 f (x) dx ω 0 f (x 0 ) + ω 1 f (x 1 ) 1 bude točna za polinome do trećeg stupnja - ovako dobivamo još jednu metodu za aproksimaciju integracije koju nazivamo Gauss - Legendreova kvadratura Definiramo Dobivamo: 1 1 f (x) dx = f (x) = c 0 + c 1 x + c 2 x 2 + c 3 x (c 0 + c 1 x + c 2 x 2 + c 3 x 3 ) dx = = ω 0 (c 0 + c 1 x + c 2 x 2 + c 3 x 3 ) + ω 1 (c 0 + c 1 x + c 2 x 2 + c 3 x 3 ).

45 Gaussova kvadratura Gaussova kvadratura Jednostavnim računom dobivamo: Vrijedi: ω 0 + ω 1 = ω 0 x 0 + ω 1 x 1 = ω 0 x ω 1 x 2 1 = dx = 2, x dx = 0, x 2 dx = 2 3, 1 ω 0 x0 3 + ω 1x1 3 = x 3 dx = 0. 1 ω 0 = 1, ω 1 = 1, x 0 = 3 3 3, x 1 = 3.

46 Gaussova kvadratura Gaussova kvadratura Dobivamo: 1 1 ( ) ( ) 3 3 f (x) dx f + f. 3 3 Jednostavnim transformacijama možemo doći i do izraza za integraciju na općenitom segmentu [a, b] b a f (x) dx = 1 1 ( ) (b a)t + b + a b a f dt. 2 2

47 Gaussova kvadratura Gaussova kvadratura Potrebno je poopćiti ovu formulu, odnosno odrediti čvorove u slučaju da ih je više unutar zadanog segmenta Formula koja bi odgovarala jednom čvoru na segmentu [ 1, 1] koristila bi čvor x = 0 što je korijen od Brojevi ± 1 3 su korijeni od Koji je opći izraz za Φ(x)? Φ(x) = x. Φ(x) = 3x 2 1.

48 Gaussova kvadratura Legendreovi polinomi Radi se o Legendreovim polinomima Φ 0 (x) = 1, Općenito, Φ 1 (x) = x, Φ 2 (x) = 3x 2 1, 2 Φ 3 (x) = 5x 3 3x, Φ n (x) = 2n 1 n xφ n 1 (x) n 1 n Φ n 2(x).

49 Gaussova kvadratura Legendreovi polinomi n x i ω i 2 ± = ± = 8 9 ± = ± = ± = ± (3 2 6/5)/ = ± = ± ( /5)/ = = 128/225 ± = ± / = ± ± / =

50 Gaussova kvadratura Zadatak 1. Aproksimirati x 2 ln x dx koristeći Gaussovu kvadraturu s n = 1.

51 Gaussova kvadratura Zadatak 2. Aproksimirati 1 0 x 2 e x dx koristeći Gaussovu kvadraturu s n = 1.

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

5. Aproksimacija i interpolacija

5. Aproksimacija i interpolacija APROKSIMACIJA I INTERPOLACIJA 56 5. Aproksimacija i interpolacija 5.. Opći problem aproksimacije Što je problem aproksimacije? Ako su poznate neke informacije o funkciji f, definiranoj na nekom skupu X

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Numerička matematika 12. predavanje

Numerička matematika 12. predavanje Numerička matematika 12. predavanje Saša Singer singer@math.hr web.math.hr/~singer PMF Matematički odjel, Zagreb NumMat 2009, 12. predavanje p.1/101 Sadržaj predavanja Numerička integracija (nastavak):

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler Nizovi i redovi Franka Miriam Brückler Nabrajanje brojeva poput ili 1, 2, 3, 4, 5,... 1, 2, 4, 8, 16,... obično se naziva nizom, bez obzira je li to nabrajanje konačno (do nekog zadnjeg broja, recimo 1,

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA 1 1 / 192

MATEMATIČKA ANALIZA 1 1 / 192 MATEMATIČKA ANALIZA 1 1 / 192 2 / 192 prof.dr.sc. Miljenko Marušić Kontakt: miljenko.marusic@math.hr Konzultacije: Utorak, 10-12 WWW: http://web.math.pmf.unizg.hr/~rus/ nastava/ma1/ma1.html 3 / 192 Sadržaj

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivan Krijan, Sara Muhvić MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA Zagreb, 2013. Ovaj rad izraden je na Zavodu

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

ΣΥΜΒΟΥΛΟΙ ΚΑΘΗΓΗΤΕΣ Εισαχθέντων 2011-12

ΣΥΜΒΟΥΛΟΙ ΚΑΘΗΓΗΤΕΣ Εισαχθέντων 2011-12 ΑΓΓΕΛΑΚΗ ΚΡΥΣΤΑΛΙΑ 4441 ΚΟΥΒΙ ΑΚΗΣ Z303 Παρασκευή, 10:15-11 Z303 ΑΓΓΕΛΕΤΟΥ ΘΕΚΛΑ 4458 ΓΑΡΕΦΑΛΑΚΗΣ Z303 ευτέρα, 1:15-2 ΑΓΙΩΤΑΚΗ ΝΙΚΗ 4459 ΠΑΠΑ ΟΠΟΥΛΟΥ Ε304 Πέµπτη, 5:15-6 Ε304 ΑΚΤΟΥ ΙΑΝΑΚΗ ΓΕΩΡΓΙΑ 4485

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija Funkcije Pojam unkcije Funkcija, preslikavanje, pridruživanje, transormacija Primjer.: a) Odredite površinu kvadrata kojem je stranica 5cm. b) Odredite površinu pravokutnika sa stranicama duljine 7 i 5.

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcije 9 i 10 Elementarne funkcije. Funkcije važne u primjenama Vjeºbe iz Matematike 1. 9. i 10. Elementarne funkcije. Funkcije vaºne u primjenama

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» ΘΕΜΑ 1 Ο 1. Ένα σώµα εκτελεί απλή αρµονική ταλάντωση. Στο διπλανό σχήµα φαίνεται η γραφική παράσταση της ταχύτητας του σώµατος µε το χρόνο. Η αρχική φάση της ταλάντωσης

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA I N Ž E N J E R S K A M A T E M A T I K A 64 Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA 4 Osnovni pojmovi Činjenica da se mnogi zakoni fizike i drugih nauka iskazuju uz pomoć diferencijalnih jednačina

Διαβάστε περισσότερα

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola Hasan Jamak Prirodno-matematički fakultet Sarajevo January 24, 2012 Uvod U Bosni i Hercegovini već pedesetak godina se organizuju

Διαβάστε περισσότερα

Geometrija ravnine i prostora I. Vektori u ravnini i prostoru

Geometrija ravnine i prostora I. Vektori u ravnini i prostoru Geometrija ravnine i prostora I. Vektori u ravnini i prostoru Rudolf Scitovski, Darija Brajković 2. prosinca 2013. Sadržaj 1 Uvod 2 2 Operacije s vektorima 4 2.1 Zbrajanje vektora...............................

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Teoremi koje ćemo avesti u ovom poglavlju su osovi teoremi koji osiguravaju ispravost primjea diereijalog

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima.

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Sažetak vjerojatnost Skup ishoda U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Jednostavne događaje u nekom pokusu zvat

Διαβάστε περισσότερα

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone.

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone. Matrice Uvod u matrice i vektore Pretpostavite da ste odgovorni za iznajmljivanje automobila zaposlenicima svoje firme Sedmični najmovi za različite veličine automobila su: kompaktni 9KM, srednji 60KM,

Διαβάστε περισσότερα

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5 Μ Ρ : 0 9 / 0 1 / 2 0 1 6 Ρ. Ρ Ω. : 7 Λ Γ Μ - Λ Γ Μ Μ Η Γ Δ Κ Δ Μ Β Ρ Υ 2 0 1 5 Δ Γ Ρ Ϋ Λ Γ Θ Δ ΚΔ Μ Β Δ Β Ω Θ Δ Δ Ρ Υ Θ Δ 0111 Χ / Γ Δ Θ Μ Θ Δ Ρ Ω Κ - - - 0112 Χ / Γ Λ Ρ Γ Κ Δ 2 3. 2 1 3. 0 0 0, 0 0-2

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Αξιολόγηση των Επιδράσεων του Σχεδίου Τοποθέτησης Άνεργων Νέων Αποφοίτων Γυμνασίων, Λυκείων, Τεχνικών Σχολών και Μεταλυκειακής Εκπαίδευσης μέχρι και

Αξιολόγηση των Επιδράσεων του Σχεδίου Τοποθέτησης Άνεργων Νέων Αποφοίτων Γυμνασίων, Λυκείων, Τεχνικών Σχολών και Μεταλυκειακής Εκπαίδευσης μέχρι και Αξιολόγηση των Επιδράσεων του Σχεδίου Τοποθέτησης Άνεργων Νέων Αποφοίτων Γυμνασίων, Λυκείων, Τεχνικών Σχολών και Μεταλυκειακής Εκπαίδευσης μέχρι και ιετούς ιάρκειας για Απόκτηση Εργασιακής Πείρας σε Επιχειρήσεις/Οργανισμούς

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y . ANALITICKA GEOMETRIJA. Pravac Imlicitni oblik jednadzbe pravca: a + by + c = 0 Opci oblik pravca: gdje je : y = k+ l k koeficijent smjera pravca, k = tan α l odsjecak pravca na osi y k > 0 pravac je

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

MATEMATIKA 2 š.g. 2010./2011.

MATEMATIKA 2 š.g. 2010./2011. MATEMATIKA 2 š.g. 2010./2011. Matematika 2 1. Funkcije više varijabli 2. Višestruki integral 3. Vektorska Analiza 4. Obi cne diferencijalne jednadbe MATEMATIKA 2 1 Literatura: Petar Javor, Matematicka

Διαβάστε περισσότερα