Aplicaţii ale principiului I al termodinamicii în tehnică

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Aplicaţii ale principiului I al termodinamicii în tehnică"

Transcript

1 Aplicaţii ale principiului I al termodinamicii în tehnică Sistem termodinamic Cantitatea de materie sau substanţă supusă oricărui tip de studiu, din punct de vedere termodinamic, poartă denumirea de sistem termodinamic. Uneori există tendinţa de a se presupune că modul în care este definit sistemul termodinamic este evident şi că nu merită insistat asupra acestui aspect, existând alte noţiuni şi elemente mai importante, asupra cărora trebuie sa se concentreze atenţia studiilor. Totuşi, dacă studiile asupra aceloraşi probleme termodinamice, sunt efectuate în condiţiile în care sistemul este definit în moduri diferite, se pot obţine rezultate diferite, ceea ce este inacceptabil. Definirea sistemului care reprezintă obiectul unui studiu termodinamic oarecare, presupune şi identificarea cu precizie a mediului înconjurător, denumit şi mediul ambiant, acesta reprezentând o cantitate de materie sau substanţă, aflată în afara sistemului studiat. Suprafaţa care separă sistemul termodinamic de mediul înconjurător, poartă denumirea de frontieră. Este foarte important de menţionat că reprezentând o suprafaţă, frontiera nu are grosime, deci nu ocupă volum în spaţiu şi nu conţine materie. În aceste condiţii, valoarea oricărei mărimi termodinamice într-un punct situat pe frontieră, trebuie să fie aceeaşi atât pentru sistemul termodinamic cât şi pentru mediul înconjurător, deoarece sistemul termodinamic şi mediul înconjurător sunt în contact pe toată suprafaţa considerată frontieră. În funcţie de permeabilitatea faţă de substanţă a frontierelor sistemului termodinamic, deci în funcţie de situaţiile în care sistemul efectuează sau nu schimb de substanţă cu mediul înconjurător, pot fi definite două tipuri de sisteme termodinamice. Permeabilitatea frontierelor faţă de substanţă este caracterizată prin prezenţa unui debit masic ce străbate frontierele sistemului. Sistemele termodinamice definite prin frontiere impermeabile faţă de substantă, sunt sisteme termodinamice închise. Exemple de sisteme termodinamice închise sunt: gazele în interiorul cilindrului unui motor cu ardere internă, sau al unui compresor de aer, sau dintr-o instalaţie frigorifică, un boiler pentru prepararea apei calde menajere, în perioadele de neutilizare a apei din acesta, părţile solide din componenţa oricărui sistem termic (organele de maşini), clădiri sau părţi de clădiri cu uşile şi geamurile închise fără sisteme de ventilaţie şi climatizare, sau cu aceste sisteme oprite, aerul din pneurile unui autovehicul, gheaţa unui patinuar, apa dintr-o piscină (precizaţi în ce condiţii reprezintă un sistem închis), agentul termic din sistemul de încălzire centrală al unei locuinţe, etc.

2 Sistemele termodinamice definite prin frontiere permeabile faţă de substantă, sunt sisteme termodinamice deschise. Pentru sistemele termodinamice deschise, se utilizează o terminologoie particulară prin care sunt este definit sistemul şi frontierele sale. Sistemele deschise sunt definite prin noţiunea de volum de control, frontierele sistemelor deschise sunt definite prin noţiunea de suprafaţă de control, iar proţiunile de frontieră permeabile la substanţă sunt definite prin noţiunile de suprafeţe de intrare sau suprafeţe de ieşire. Aceste noţiuni sunt exemplificate pe exemplul din figura alaturata. Intrare Volum de control Suprafeţe de control Ieşire Exemple de utilizare a terminologiei particulare de definire a sistemelor termodinamice deschise Exemple de sisteme termodinamice deschise sunt: motoarele cu ardere internă, compresoarele de aer, sau din instalaţiile frigorifice, un boiler pentru prepararea apei calde menajere, în perioadele de utilizare a apei din acesta, clădiri sau părţi de clădiri cu uşile şi geamurile deschise sau cu sisteme de ventilaţie şi climatizare în funcţiune, apa dintr-o piscină (precizaţi în ce condiţii reprezintă un sistem deschis), cazanul mural al sistemului de încălzire centrală dintr-o locuinţă, schimbătoarele de căldură în funcţiune, turbinele cu abur sau gaze, cazanele termoenergetice, panourile solare, turbinele hidraulice, turbinele eoliene, sistemul de climatizare al unui autovehicul, etc.

3 Stare termodinamică. Parametrii de stare Starea termodinamică descrie sistemul din punct de vedere energetic, şi permite evidenţierea oricăror modificări. Prin stare termodinamică se înţelege nivelul energetic de ansamblu al sistemului, corespunzător tuturor particulelor constitutive, reprezentate prin atomi legaţi (la solide), respectiv atomi sau molecule libere (la fluide). Starea termodinamică este determinată de intensitatea mişcării (agitaţiei) termice. Dacă există o diferenţă de potenţial energetic între sistem şi mediu se va produce un schimb de energie între acestea, iar dacă repartizarea energiei în sistem este neuniformă va apare un transfer de energie în interiorul sistemului. În aceste cazuri se spune că sistemul se găseşte în dezechilibru termodinamic, starea lui modificându-se în timp. Dacă starea sistemului rămâne constantă în timp, atunci sistemul este în echilibru termodinamic. La scară macroscopică, starea termodinamică (energetică) este sesizabilă prin anumite mărimi, numite mărimi de stare. În starea de echilibru termodinamic, mărimile de stare rămân constante în timp. Pentru un sistem deschis mai intervin aşa numitele mărimi mecanice de stare: viteza () şi înălţimea faţă de o suprafaţă potenţială de referinţă. În termodinamică se folosesc mărimile de stare prezentate în tabelul 1. Tabelul 1. Mărimi de stare Mărimea de stare Simbol Mărimea de stare Simbol Presiunea p Energia internă U Temperatura T Entalpia H Volumul V Entropia S Masa m Molul n Dacă mărimile de stare nu se modifică fără o intervenţie din afară, sistemul este în echilibru termodinamic. În studiul proceselor termodinamice se întâlneşte starea de echilibru termodinamic intern şi echilibru termodinamic extern. Echilibrul intern presupune o distribuţie uniformă a energiei în interiorul sistemului, ceea ce se evidenţiază prin aceleaşi valori ale mărimilor de stare în tot domeniul de definiţie al sistemului. De exemplu dacă, gazul din interiorul cilindrului unui motor cu ardere internă are în tot spaţiul ocupat aceeaşi presiune, temperatură, volum specific etc. el este în echilibru termodinamic intern. Echilibrul extern presupune egalitatea nivelului de energie al sistemului şi al mediului exterior. Transformarea căldurii în lucru mecanic în motoarele termice este posibilă numai în condiţiile unui dezechilibru extern. Atunci când presiunea gazelor de ardere din cilindrul motor este mai mare decât presiunea creată de rezistenţa ce se opune deplasării pistonului, se produce lucru mecanic util. În consecinţă, în termotehnică se admite existenţa simultană a echilibrului termodinamic intern şi a dezechilibrului termodinamic extern. Scoaterea sistemului din starea de echilibru extern este folosită în toate maşinile şi instalaţiile termice, pentru obţinerea efectului dorit: transformarea sau schimbul de energie.

4 Forme de energie Energia este o formă de manifestare a materiei în mişcare, a cărei definiţie larg răspândită este următoarea: energia unui sistem este capacitatea acestuia de a efectua lucru mecanic, la trecerea dintr-o stare existentă într-o stare de referinţă. Există mai multe forme de energie, după natura stărilor care se modifică şi a mişcărilor care constituie suportul acesteia. În timp ce unele au ca suport o mişcare ordonată, altele se caracterizează printr-o mişcare neordonată: - energii ordonate, la care toate părţile componente ale sistemului se deplasează pe aceeaşi direcţie şi în acelaşi sens cu direcţia şi sensul general de desfăşurare a transformării. În această grupă intră energia cinetică, la care toate particulele corpului se mişcă în direcţia şi sensul vectorului viteză, energia potenţială, la care mişcarea fiecărei particule se face în sensul în care acţionează forţa gravitaţională, energia electrică, unde forţa columbiană determină deplasarea sarcinilor electrice etc. - energii neordonate, la care, în afara deplasărilor pe direcţia şi sensul de desfăşurare a transformării, particulele componente ale sistemului efectuează mişcări secundare, pe direcţii şi sensuri diferite. În această grupă intră energia internă, la care particulele constitutive au o mişcare neordonată. Caracteristic acestor grupe de energii este faptul că prezintă capacităţi diferite de trasformare. Energiile ordonate se pot transforma integral în altă formă de energie, de exemplu energia cinetică se poate transforma integral în energie potenţială, sau în energie internă, energia electrică se poate transforma total în energie internă. Energiile neordonate nu se pot transforma integral în altă formă de energie, nici măcar în cazul ideal, al transformărilor reversibile. Astfel, energia internă nu se transformă niciodată, integral în energie mecanică sau electrică. Această caracteristică este fundamentală pentru înţelegerea unor aspecte calitative, legate de procesele şi transformările termodinamice, analizate de către principiul doi al termodinamicii. Din punct de vedere al transformabilităţii în lucru mecanic, energiile se clasifică în: - energii complet transformabile, (exergii), categorie din care fac parte energiile ordonate; - energii netransformabile (anergii), de ex. energia internă acumulată în mediul ambiant; - energii parţial transformabile, formate din exergie şi anergie, din această categorie fac parte energiile neordonate. Fiecare formă de energie prezentată mai sus poate fi, în mod impropriu, descrisă ca o formă de energie acumulată sau energie de transmitere (de tranziţie). Ca formă acumulată de energie se poate aminti energia mecanică (energia cinetică şi potenţială ) şi energia internă, iar ca energie de transmitere, în termodinamică se întâlnesc lucrul mecanic şi căldura. Lucrul mecanic şi căldura nu sunt, de fapt energii ci forme de manifestare a schimbului de energie şi apar doar în procesele în care sistemele schimbă energie între ele, sau cu mediul exterior. Lucrul mecanic este o formă ordonată de transmitere a energiei, în urma unui contact mecanic între sistem şi mediul exterior, ca atare el se poate transforma integral în altă formă de energie. Ca un element cu caracter tranzitoriu, lucrul mecanic este prezent numai la nivelul suprafeţelor de control, care delimitează sistemul şi numai pe timpul cât are loc acest schimb. În mod analog, căldura nu este energie ci doar o formă neordonată de transfer de energie internă, ca urmare a unui contact termic, sub acţiunea mişcării termice. Căldura, având un caracter tranzitoriu, există numai pe durata schimbului de energie, fapt pentru care este impropriu să se folosească noţiuni de felul: acumulare de căldură, schimb de căldură, transformarea căldurii etc. Cu toate acestea se utilizează aceste exprimări dat fiind faptul că sunt încetăţenite de mult în limbajul specialiştilor şi nu s-au găsit formulări mai adecvate, care să primească o audienţă atât de largă.

5 Principiul I al termodinamicii pentru sisteme termodinamice închise Considerând că un sistem termodinamic închis, ca cel din figura 4 îşi modifică starea termodinamică din starea iniţială 1 în starea finală, datorită interacţiunilor cu mediul ambiant, sub formă de căldură Q 1 şi de lucru mecanic L 1, se produce o modificare a nivelului energetic al sistemului de la E 1 la E. E E 1 Q 1 L 1 Sistem închis Fig. 4. Reprezentarea grafică a principiului I al termodinamicii pentru sisteme închise Din punct de vedere matematic, ecuaţia principiului 1 al termodinamicii se scrie sub forma: Q 1 - L 1 = E - E 1 [J] [kj] Pentru unitatea de cantitate de substanţă, ecuaţia principiului 1 al termodinamicii se scrie sub forma: q 1 - l 1 = e - e 1 [J/kg] [kj/kg] unde: q = Q/m; l=l/m; e=e/m. Variaţia nivelului energetic al sistemului, se compune din forme de înmagazinare a energiei la nivel macroscopic (energie cinetică, energie potenţială, alte forme de înmagazinare a energiei electrică, magnetică, etc.) şi o formă de înmagazinare a energiei, care nu poate fi identificată la nivel macroscopic, denumită energie internă. m ( ) ( 1 ) E E1 = U U1 + + m g( z z1 ) + ( E' E' 1 )[][ J kj] Pentru unitatea de cantitate de substanţă, se obţine: ( ) ( 1 ) J kj e e1 = u u1 + + g( z z1 ) + ( e' e' 1 ) kg kg Cu ajutorul acestor ecuaţii, pot fi rezolvate toate aplicaţiile tehnice pentru sisteme închise, care presupun calcule referitoare la schimburile de energie.

6 Principiul I al termodinamicii pentru sisteme termodinamice deschise Considerând că un sistem termodinamic deschis, ca cel din figura 5 îşi modifică starea termodinamică din starea iniţială de la momentul τ în starea finală de la momentul τ+ τ, datorită interacţiunilor cu mediul ambiant, sub formă de putere termică Q & şi de putere P (mecanică, electrică, magnetică, etc.), se produce o modificare a nivelului energetic al sistemului. Intrare m in, V in Q & P Intrare m in, V in Q & P (m, E) deschis, τ (m, E) deschis, τ+ τ m, V Ieşire Ieşire Fig. 5. Curgerea unui sistem închis (aria haşurată) prin volumul de control, delimitat de suprafeţele de control ale unui sistem deschis Pentru a aplica acestui sistem, ecuaţiile principiului I ale sistemelor închise, se va considera că un sistem închis, curge printr-un sistem deschis şi se va identifica întâi cantitatea de substanţă având masă constantă, legată invariabil de sistemul deschis considerat. Astfel se poate considera: m închis = m deschis,τ + m in = m deschis,τ+ τ + m = constant unde m in, şi m, reprezintă cantităţile de substanţă intrate, respectiv ieşite din sistem în intervalul τ. Analog, se pot scrie ecuaţiile: E inchis,τ = E deschis,τ + E in E inchis,τ+ τ = E deschis,τ+ τ + E unde E in, şi E, reprezintă cantităţile de energie intrate, respectiv ieşite din sistem în intervalul τ. Variaţia energiei sistemului închis considerat poate fi calculată sub forma: E inchis,τ+ τ - E inchis,τ = E deschis,τ+ τ - E deschis,τ + E - E in Variaţia energiei sistemului deschis considerat, se va nota pentru simplificare cu E şi se determină cu relaţia: E = E inchis,τ+ τ - E inchis,τ (E - E in ) Pentru sistemul închis astfel considerat, care curge printr-un sistem deschis, se pot aplica ecuaţiile principiului I ale unui sistem închis: E inchis, E inchis, τ+ τ τ τ P τ + ( p V) in ( p V) Înlocuind această ecuaţie, în relaţia de calcul a variaţiei energiei pentru sisteme deschise, se obţine: E τ P τ + ( E + p V) in ( E + p V) Termenii E in, şi V in,, pot fi determinaţi în funcţie de cantitatea de substanţă, intrată, respectiv ieşită din sistem: E in, = m in, e in, ; V in, = m in, v in, unde e in, şi v in, reprezintă energiile specifice, respectiv volumele specifice intrate/ieşite.

7 Variaţia energiei sistemului deschis, în intervalul τ, se determină cu relaţia: E ( E + p V) in ( E + p V) P + τ τ τ Cu ajutorul mărimilor specifice, relaţia devine: E m m = Q & P + ( e + p v) ( e + p v) τ τ in τ Considerând că τ 0 şi notând debitul masin cu m& se obţine: P + [ m& ( e + p v) ] in [ m& ( e + p v) ] Considerând mai multe suprafeţe de intrare/ieşire în/din volumul de control al sistemului deschis considerat, ecuaţia principiului I pentru sisteme deschise se poate scrie sub forma: P + m& ( e + p v) m& ( e + p v) in Energia specifică e, intrată/ieşită în/din sistem, poate fi scrisă sub forma: e = u + + gz iar e + p v = u + p v + + gz = h + + gz Ecuaţia principiului I pentru sisteme deschise devine: P + m& h + + gz m& h + + gz in Dacă se utilizează noţiunea de entalpie frânată h fr = h + P + m& ( h fr + gz) m& ( h fr + gz) in Termenul h = h fr + gz reprezintă o noţiune introdusă în 1966 de Kestin, care poartă denumirea de metalpie (dincolo de entalpie), sau entalpia transcendentă.

Forme de energie. Principiul I al termodinamicii

Forme de energie. Principiul I al termodinamicii Forme de energie. Principiul I al termodinamicii Există mai multe forme de energie, care se pot clasifica după natura modificărilor produse în sistemele termodinamice considerate şi după natura mişcărilor

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Termodinamica. Fizica moleculara

Termodinamica. Fizica moleculara ermodinamica Fizica moleculara Mărimi legate de structura discretă a substanţei Sisteme termodinamice emperatura empirică Principiul zero al termodinamicii scări de termperatură şi conversii între acestea

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Noțiuni termodinamice de bază

Noțiuni termodinamice de bază Noțiuni termodinamice de bază Alexandra Balan Andra Nistor Prof. Costin-Ionuț Dobrotă COLEGIUL NAȚIONAL DIMITRIE CANTEMIR ONEȘTI Septembrie, 2015 http://fizicaliceu.wikispaces.com Noțiuni termodinamice

Διαβάστε περισσότερα

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE FIZICĂ Elemente de termodinamica ş.l. dr. Marius COSTACHE 1 ELEMENTE DE TERMODINAMICĂ 1) Noţiuni introductive sistem fizic = orice porţiune de materie, de la o microparticulă la întreg Universul, porţiune

Διαβάστε περισσότερα

PROBLEME - CIRCUITE ELECTRICE

PROBLEME - CIRCUITE ELECTRICE LEGEA LU OHM LEGLE LU KCHHOFF POBLEME - CCUTE ELECTCE POBLEMA 0 / Se dau : 0 Ω 0 Ω 0 Ω 0 Ω V V Se cer : ezisten a echivalent ntensitatea curentului Ampermetru ezolvare : Calculez rezisten a, i rezisten

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

CAP. 1.1 MOTORUL PAS CU PAS. CARACTERISTICI GENERALE.

CAP. 1.1 MOTORUL PAS CU PAS. CARACTERISTICI GENERALE. CAP. 1.1 MOTORUL PAS CU PAS. CARACTERISTICI GENERALE. O definiţie simplă a motorului pas cu pas este: un dispozitiv electromecanic care converteşte impulsurile electrice în mişcări mecanice discrete. [3,17,22]

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii în tehnică

Aplicaţii ale principiului I al termodinamicii în tehnică Aplicaţii ale principiului I al termodinamicii în tehnică Sisteme de încălzire a locuinţelor Scopul tuturor acestor sisteme, este de a compensa pierderile de căldură prin pereţii locuinţelor şi prin sistemul

Διαβάστε περισσότερα

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal Producerea energiei mecanice Pentru producerea energiei mecanice, pot fi utilizate energia hidraulica, energia eoliană, sau energia chimică a cobustibililor în motoare cu ardere internă sau eternă (turbine

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

ELEMENTE DE DINAMICA GAZELOR INSTALAŢII DE GPL ŞI GNL

ELEMENTE DE DINAMICA GAZELOR INSTALAŢII DE GPL ŞI GNL CAVAROPOL DAN VICTOR ELEMENTE DE DINAMICA GAZELOR INSTALAŢII DE GPL ŞI GNL EDITURA MINISTERULUI INTERNELOR ŞI REFORMEI ADMINISTRATIVE 008-1 - Referent ştiinţific: Prof. dr. ing. TCACENCO VALENTIN Facultatea

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2013

ENUNŢURI ŞI REZOLVĂRI 2013 ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

2CP Electropompe centrifugale cu turbina dubla

2CP Electropompe centrifugale cu turbina dubla 2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Studiu privind soluţii de climatizare eficiente energetic

Studiu privind soluţii de climatizare eficiente energetic Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire

Διαβάστε περισσότερα

Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice

Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice 4.. Gaze perfecte 4... Definirea gazului perfect Conform teoriei cinetico-moleculare gazul perfect este definit prin următoarele

Διαβάστε περισσότερα

Sistem termodinamic. Stare termodinamică. Parametrii de stare

Sistem termodinamic. Stare termodinamică. Parametrii de stare Sistem termodinamic. Stare termodinamică. Parametrii de stare Sistem termodinamic Cantitatea de materie sau substanţă supusă oricărui tip de studiu, din punct de vedere termodinamic, poartă denumirea de

Διαβάστε περισσότερα

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ CURS 5 ERMODINAMICĂ ŞI FIZICĂ SAISICĂ 5.. Noţiuni fundamentale. Corpurile macroscopice sunt formate din atomi şi molecule, constituenţi microscopici aflaţi într-o mişcare continuă, numită mişcare de agitaţie

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

FC Termodinamica. November 24, 2013

FC Termodinamica. November 24, 2013 FC Termodinamica November 24, 2013 Cuprins 1 Noţiuni fundamentale (FC.01.) 2 1.1 Sistem termodinamic... 2 1.2 Stări termodinamice... 2 1.3 Procese termodinamice... 3 1.4 Parametri de stare... 3 1.5 Lucrul

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Lucrul mecanic. Puterea mecanică.

Lucrul mecanic. Puterea mecanică. 1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

3.6. Formule de calcul pentru medie şi dispersie

3.6. Formule de calcul pentru medie şi dispersie Dragomirescu L., Drane J. W.,, Biostatisticã pentru începãtori. Vol I. Biostatisticã descriptivã. Editia a 6 revãzutã, Editura CREDIS, Bucureşti, 7p. ISB 78-7-74-46-8..6. Formule de calcul pentru medie

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

1.10. Lucrul maxim. Ciclul Carnot. Randamentul motoarelor

1.10. Lucrul maxim. Ciclul Carnot. Randamentul motoarelor 2a temperatura de inversie este T i =, astfel încât λT i şi Rb λ>0 pentru T

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

ffl 2e " # p Figura 1 Folosind figura de mai sus putem explica οsi evalua cantitativ procesul de ^ mpr aοstiere a particulelor ff. Consider am c a sar

ffl 2e  # p Figura 1 Folosind figura de mai sus putem explica οsi evalua cantitativ procesul de ^ mpr aοstiere a particulelor ff. Consider am c a sar Lucrarea 9 : Studiul modelului atomic al lui Rutherford 1 Consideratοii teoretice Dup a ce s-a stabilit c a ^ n atom sunt sarcini electrice atentοia a a fost ^ ndreptat a asupra formul arii unui model

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

Bilanţ termoenergetic pe centrala termică a unei fabrici de bere. Breviar de calcul

Bilanţ termoenergetic pe centrala termică a unei fabrici de bere. Breviar de calcul Bilanţ termoenergetic pe centrala termică a unei fabrici de bere Breviar de calcul Cluj-Napoca: 2013 Cuprins 1. DESCRIEREA ECHIPAMENTELOR... 3 1.1. Descrierea centralei termice... 3 1.2. Caracteristici

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

2.4. CALCULUL SARCINII TERMICE A CAPTATORILOR SOLARI

2.4. CALCULUL SARCINII TERMICE A CAPTATORILOR SOLARI .4. CALCULUL SARCINII TERMICE A CAPTATORILOR SOLARI.4.1. Caracterul variabil al radiaţiei solare Intensitatea radiaţiei solare prezintă un caracter foarte variabil, atât în timpul anului, cât şi zilnic,

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

Lucrarea Nr. 11 Amplificatoare de nivel mare

Lucrarea Nr. 11 Amplificatoare de nivel mare Lucrarea Nr. 11 Amplificatoare de nivel mare Scopul lucrării - asimilarea conceptului de nivel mare; - studiul etajului de putere clasa B; 1. Generalităţi Caracteristic etajelor de nivel mare este faptul

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Lucrul mecanic şi energia mecanică.

Lucrul mecanic şi energia mecanică. ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1 CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme

Διαβάστε περισσότερα

Termodinamica. UMF Carol Davila Catedra de Biofizica Medicala

Termodinamica. UMF Carol Davila Catedra de Biofizica Medicala Termodinamica Cuprins: Notiuni generale Principiul I al termodinamicii. Aplicatii Principiul II al termodinamicii Potentiale termodinamice Forte si fluxuri termodinamce Echilibru si stare stationara Stari

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

BAZELE TERMOENERGETICII

BAZELE TERMOENERGETICII Adrian BADEA Mihaela STAN Roxana PĂTRAŞCU Horia NECULA George DARIE Petre BLAGA Lucian MIHĂESCU Paul ULMEANU BAZELE TERMOENERGETICII Universitatea POLITEHNICA din Bucureşti Facultatea de Energetică Bucureşti,

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

4.PRINCIPIUL AL II -LEA AL TERMODINAMICII

4.PRINCIPIUL AL II -LEA AL TERMODINAMICII 4.PRINCIPIUL AL II -LEA AL ERMODINAMICII Istoria acestui principiu este una dintre fascinantele aventuri ale ştiinţei, care a generat nenumărate paradoxuri, controverse şi predicţii tulburătoare (moartea

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4

FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4 FLUXURI MAXIME ÎN REŢELE DE TRANSPORT Se numeşte reţea de transport un graf în care fiecărui arc îi este asociat capacitatea arcului şi în care eistă un singur punct de intrare şi un singur punct de ieşire.

Διαβάστε περισσότερα