13. ΚΑΘΑΡΙΣΜΟΣ ΗΕΓ 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "13. ΚΑΘΑΡΙΣΜΟΣ ΗΕΓ 1"

Transcript

1 1 13. ΚΑΘΑΡΙΣΜΟΣ ΗΕΓ

2 ΜΟΛΥΝΣΗ ΗΕΓ eye blinks muscle movements eye blinks Time, s eye movements line (mains) noise 2

3 ΠΑΡΑΜΟΡΦΩΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΗΕΓ ΛΟΓΟΥ ΘΟΡΥΒΟΥ Αλλαγή στην αντίσταση των ηλεκτροδίων, τάση του δέρματος, κίνηση ηλεκτροδίων, ακατάλληλο φιλτράρισμα σήματα που μοιάζουν με SCPs Κίνηση μυών (ΗΜΓ) παραμόρφωση φάσματος ΗΕΓ στις ψηλές συχνότητες Κίνηση μερών σώματος, π.χ. γλώσσας, στόμα κλπ θόρυβος με μεγάλο πλάτος που «κρύβει» τη δραστηριότητα ΗΕΓ Αν δε γίνει αφαίρεση του θορύβου επηρεάζονται τα χαρακτηριστικά που εξάγονται από το ΗΕΓ με αρνητικά αποτελέσματα για την ακρίβεια και την ταχύτητα του συστήματος. Σε μερικές ΔΕΥ δε γίνεται καν αναφορά σε αφαίρεση θορύβου, ή γίνεται αφαίρεση συγκεκριμένου θορύβου μόνο. 3

4 ΙΔΑΝΙΚΗ ΜΕΘΟΔΟΣ ΚΑΘΑΡΙΣΜΟΥ An ideal artefact removal method should be: An ideal artefact removal method should be: entirely entirely automatic; automatic; applicable for general for general situations situations and general and artefact general types; artefact types; computationally cheap; cheap; and and requiring requiring few few assumptions assumptions regarding regarding the characteristics the characteristics of artefact of signals artefact for its signals operation. for its operation. M. Browne T. R. H. Cutmore, "Low-probability event-detection and separation via Statistical Wavelet Thresholding: an application to psychophysiological de-noising", in Clinical Neurophysiology, 113(9): , Μια ιδανική μέθοδος καθαρισμού ΗΕΓ πρέπει να είναι: απολύτως αυτόματη, εφαρμόσιμη σε γενικές περιπτώσεις και γενικά είδη θορύβου, υπολογιστικά «φτηνή», και η λειτουργία της να βασίζεται σε ελάχιστες υποθέσεις για τα χαρακτηριστικά των σημάτων θορύβου. 4

5 ΣΥΣΤΗΜΑ ΑΥΤΟΜΑΤΟΥ ΚΑΘΑΡΙΣΜΟΥ Σήματα ΗΕΓ ICA: TDSEP Αμοιβαία Αυτοπληροφορία Clustering: LAMIC απόρριψη Ανασυγκρότηση καθαρών σημάτων 5 θόρυβος ΗΕΓ Αναγνώριση ομάδων 4 5

6 CASE STUDY Αυτόματος καθαρισμός ERP (από ακουστικό oddball πρωτόκολλο) από θόρυβο κίνησης ματιών [V. Calhoun] (σχήμα: V. Calhoun, ενημέρωση διαγωνισμού) 6

7 ΜΟΝΕΣ ΔΟΚΙΜΕΣ ERP 7

8 INDEPENDENT COMPONENTS 8

9

10 ΑΝΑΚΑΤΑΣΚΕΥΗ ΚΑΘΑΡΩΝ ΣΗΜΑΤΩΝ 10

11 ΑΠΟΔΟΣΗ CNR max ( y e ) max y j e j p 550 N s e e ( x y ) ik k k 50 i 1 1 N p N i 1 y e i 2 x e : αρχικά σήματα; και y e : καθαρά σήματα ERP στο ηλεκτρόδιο e N s : αριθμός στόχων-ερεθισμάτων που παρουσιάστηκαν N p : αριθμός δειγμάτων πριν από το ερέθισμα Μεγιστοποίηση για j, όπου j [350,450], είναι η κορυφή του ERP. 11

12 ΜΕΘΟΔΟΙ ΚΑΘΑΡΙΣΜΟΥ: ΧΡΟΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΠΟΡΡΙΨΗ Απόρριψη δοκιμών που περιέχουν θόρυβο : απλή, δε χρειάζεται πολύπλοκους υπολογισμούς : (1) συλλογή σημάτων ΗΕΓ είναι χρονοβόρα, άρα όλα τα σήματα είναι πολύτιμα (2) επηρεασμός του signal-to-noise ratio, π.χ. όταν ανάλυση βασίζεται σε μέσο όρο σημάτων, ο οποίος επηρεάζεται από τον αριθμό των σημάτων (3) επηρεασμός αποτελεσμάτων αφού τα δεδομένα που απομένουν μπορεί να μην είναι αντιπροσωπευτικά του συνόλου 12

13 ΧΡΟΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΤΩΦΛΙΟ : απλή μέθοδος κατώφλι : (1) αφαίρεση ΗΕΓ που βρίσκεται κάτω από το θόρυβο (2) ο θόρυβος δεν αφαιρείται εντελώς (3) το κατώφλι 13 δεν είναι σταθερό για διάφορες δοκιμές

14 ΧΡΟΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Κυρίως για αφαίρεση θορύβου από κίνηση ματιών. Τοποθέτηση ηλεκτροδίων γύρω από τα μάτια για συλλογή σημάτων EOG για παλινδρόμηση: EEG i obs ( t) a HEOG( t) + a i 1 VEOG( t) + i 2 EEG i true ( t) όπου: EEG i obs (t) EEG ˆ i true EEG i obs ( t) a i 1 HEOG( t) a : ΗΕΓ από το ηλεκτρόδιο i σε χρόνο t VEOG( t) i 2 HEOG(t) και VEOG(t): οριζόντιο και κάθετο EOG EEG i true (t) : πραγματική εγκεφαλική δραστηριότητα στο ηλεκτρόδιο i, ηοποία δεν παρατηρείται λόγω μόλυνσης από την κίνηση των ματιών. 14

15 Σχήμα από: G.L. Wallstrom, et al., Intl. J. of Psychophysiology, 53: ,

16 ΜΕΘΟΔΟΙ ΚΑΘΑΡΙΣΜΟΥ: ΧΩΡΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ PCAΩΣ ΦΙΛΤΡΟ Ιδιοδιανύσματα σημάτων χωρικές τοπογραφίες για κατασκευή φίλτρων PCA Υπόθεση: τοπογραφίες είναι σταθερές για όλες τις δοκιμές PCs με μεγαλύτερες ιδιοτιμές, δηλ. μεγαλύτερη διασπορά, αντιστοιχούν σε σήματα κίνησης ματιών (λόγω του μεγάλου πλάτους τους έναντι των σημάτων του εγκεφάλου) αφαίρεση PCs με μεγαλύτερες ιδιοτιμές : (1) κατάλληλη μόνο για θόρυβο με πλάτος πολύ διαφορετικό από των σημάτων ΗΕΓ. (2) υποθέτει ορθογώνια σχέση μεταξύ των σημάτων, η οποία μπορεί να μην αντιστοιχεί στην πραγματικότητα 16

17 FIG. 2. Spatial filtering of ocular movement artifacts with use of the PCA results in Fig. 1. A: A 12-2 epoch of EEG on the same subject as in Fig. 1, recorded at the end of a partial seizure, shows rhythmic and polymorphic delta activity obscured by ocular movement artifacts. B: The same EEG after applying the spatial filter. Ocular movement artifacts have been largely removed, allowing the underlying slow waves to be seen. Some slow components in the frontal channels are attenuated but not removed; they 17 are probably not ocular movement artifacts. From: Lagerlund: J Clin Neurophysiol, Volume 14(1).January

18 Left: a 5s portion of an EEG time series containing a prominent slow eye movement. Right: Principal component waveforms and scalp maps for 5 selected components of the 5s EEG epoch shown on the left. Image from: T.-P. Jung, et al., Neural Networks for Signal Processing, 8:63-72,

19 RECONSTRUCTED EEG SIGNALS The same epoch corrected for artifacts using PCA by subtracting the 5 selected principal components. Image from: T.-P. Jung, et al., Neural Networks for Signal Processing, 8:63-72,

20 ΣΤΑΤΙΣΤΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ICA Διαχωρισμός σε ICs που αντιστοιχούν σε σήματα εγκεφάλου και σήματα από άλλες πηγές : Κατάλληλη για πολλά είδη θορύβου, αρκεί να είναι στατιστικά ανεξάρτητα από τα σήματα ΗΕΓ Δε βασίζεται στη συλλογή σημάτων θορύβου Επιτρέπει την ανακατασκευή καθαρών σημάτων χρησιμοποιώντας μόνο ICs που αντιστοιχούν σε ΗΕΓ Διατηρεί περισσότερη εγκεφαλική δραστηριότητα από PCA Σήματα με ίδιες τοπογραφίες μπορεί να διαχωριστούν βάση στατιστικής ανεξαρτησίας Καλύτερο localisation των τοπογραφιών 20

21 21

22 Σχήμα από: T.-P. Jung, et al., Neural Networks for Signal Processing, 8:63-72,

23 Διόρθωση θορύβου με ICA Διόρθωση θορύβου με PCA 23

24 Σχήμα από: T.-P. Jung, et al., Psychophysiology, 37: ,

25 ΜΕΘΟΔΟΙ ΚΑΘΑΡΙΣΜΟΥ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΥΧΝΟΤΗΤΑΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΚΥΜΑΤΙΟΥ (WAVELET TRANSFORM) Κατασκευή φίλτρων συχνότητας βασισμένων σε μετασχηματισμούς κυματίων (wavelets) Ομαδοποίηση σημάτων βάση των συντελεστών μετασχηματισμού κυματίου Υπόθεση: οι συντελεστές των κυματίων διαφέρουν αν αντιστοιχούν σε ΗΕΓ ή θόρυβο π.χ. θόρυβος EOG έχει μεγαλύτερο πλάτος από το ΗΕΓ, άρα και μεγαλύτερες τιμές συντελεστών οι (τιμές συντελεστών) > (κατώφλι) τίθενται 0 Αντίστροφος μετασχηματισμός κυματίου αφαιρεί σήματα που έχουν μηδενικούς συντελεστές 25

26 : αφαίρεση μη-χαρακτηριστικής μεταβατικής δραστηριότητας σε συγκεκριμένες συχνότητες, π.χ. EMG : δυνατότητα αφαίρεσης θορύβου μόνο αν είναι εστιακός (localised) στο πεδίο χρόνου-συχνότητας, ή αν έχει φάσμα εντελώς διαφορετικό από το ΗΕΓ, άρα και εντελώς διαφορετικούς συντελεστές κυματίου Σχήμα από: Browne & Cutmore, Clinical Neurophysiology, 113: ,

27 27 Σχήμα από: Browne & Cutmore, Clinical Neurophysiology, 113: , 2002

28 ΜΕΘΟΔΟΙ ΚΑΘΑΡΙΣΜΟΥ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΥΧΝΟΤΗΤΑΣ ΦΙΛΤΡΑ Βασική υπόθεση: για αφαίρεση θορύβου από το σήμα πρέπει να μην υπάρχουν κοινές συχνότητες των δύο. Δύο βασικά είδη φίλτρων: Αναλογικά επεξεργασία αναλογικών σημάτων Ψηφιακά επεξεργασία ψηφιακών σημάτων Αναλογικά Κλασικά ηλεκτρικά κυκλώματα, άμεση επεξεργασία σημάτων Χαρακτηριστικές εξαρτώνται από τιμές των στοιχείων κυκλωμάτων Δύσκολη η προσέγγιση ιδανικών προδιαγραφών Κλασικά φίλτρα Ορισμένα φίλτρα μόνο αναλογικά Ψηφιακά Ψηφιακοί επεξεργαστές, καθυστερημένη επεξεργασία (πολυπλοκότητα, ταχύτητα) Απολύτως σταθερές χαρακτηριστικές Προσέγγιση ιδανικών προδιαγραφών με οποιαδήποτε επιθυμητή ακρίβεια Ευελιξία στο σχεδιασμό Ορισμένα φίλτρα δεν υπάρχουν ψηφιακά 28

29 ΤΙ ΕΙΝΑΙ ΣΥΣΤΗΜΑ Είναι ένα σύνολο αντικειμένων συνδεδεμένων με τέτοιο τρόπο έτσι ώστε να πετυχαίνουν ένα συγκεκριμένο σκοπό μετατρέποντας ένα σήμα (είσοδος) σε άλλο (έξοδος). Μετατροπή σήματος μέσω μετασχηματισμού ή εξαγωγής πληροφοριών. Φυσικά συστήματα, π.χ. ηλεκτρικά, μηχανικά, ή αλγόριθμοι. Αριθμός εισόδων δεν ισούται απαραίτητα με τον αριθμό εξόδων. Σύστημα X(t) { X ( )} Y ( t) T t Y(t) 29

30 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ένα σύστημα είναι γραμμικό αν έχει τις ιδιότητες: Ομοιογένεια: Αν η είσοδος x[n] έχει έξοδο y[n], τότε μια είσοδος kx[n] έχει έξοδο ky[n]. Αν Προσθετικότητα: k x [ n] x k [ n] y[ n] y k [ n], k όπου η είσοδος στο γραμμικό σύστημα, τότε η έξοδος: y k [n]: η έξοδος του συστήματος στην είσοδο x k [n] 30

31 Γραμμικότητα (linearity): ένα σύστημα είναι γραμμικό μόνο και μόνο αν ισχύει: Θεώρημα της επαλληλίας (Principle of superposition): T { ax [ n] + bx [ n]} at { x [ n]} + bt { ax [ n]} όπου α και b: σταθερές 31

32 ΓΡΑΜΜΙΚΑ ΧΡΟΝΙΚΑ-ΑΝΑΛΛΟΙΩΤΑ ΣΥΣΤΗΜΑΤΑ Linear Time-Ivariant Systems: Χαρακτηρίζονται εξ ολοκλήρου από την κρουστική τους απόκριση (απόκριση συστήματος όταν η είσοδος είναι παλμός δέλτα) Συνδυάζουν ταυτόχρονα τη γραμμική ιδιότητα και την ιδιότητα χρονικής αμεταβλητότητας: ένα σύστημα είναι χρονικά αμετάβλητο αν για όλα τα n 0 η είσοδος με τιμές x 1 [n]x 1 [n- n 0 ] έχει έξοδο y 1 [n]y 1 [n- n 0 ]. Έξοδος, y[n], ενός συστήματος ΓΧΑ, με κρουστική απόκριση h[n], για κάθε είσοδο, x[k]: [ ] y n x[ k] h[ n k] k - Συνέλιξη 32

33 Κρουστική απόκριση γραμμικού συστήματος: έξοδος του συστήματος όταν η είσοδος είναι συνάρτηση δέλτα (συνάρτηση μοναδιαίου παλμού) Αν δύο συστήματα είναι διαφορετικά η κρουστική απόκρισή τους διαφέρει Γνωρίζοντας την κρουστική απόκριση ενός συστήματος γνωρίζουμε την απόκριση για κάθε μετατοπισμένη και κλιμακωμένη συνάρτηση δέλτα. Γνωρίζοντας την κρουστική απόκριση του συστήματος γνωρίζουμε την απόκριση για κάθε σήμα εισόδου! Δηλ. τα γνωρίζουμε ΟΛΑ για το σύστημα. 33

34 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ Μετασχηματισμός z(μζ):μέθοδος εκπροσώπησης, ανάλυσης και σχεδιασμού συστημάτων και σημάτων διακριτού χρόνου. Ό,τι είναι η μέθοδος Laplace στο συνεχή χρόνο. n X ( z) x( n) z n z: μιγαδικός αριθμός Για αιτιατά συστήματα, δηλ. όλα τα πρακτικά συστήματα: X ( z) n 0 x( n) z n 34

35 Μέσω του ΜΖ Υπολογισμός συχνοτικής απόκρισης συστήματος: π.χ. στο σχεδιασμό ψηφιακών φίλτρων η εξέταση του φάσματος συχνότητας είναι απαραίτητη για έλεγχο αν τηρούνται οι προδιαγραφές του φίλτρου. jωt Θέτοντας z e : H ( z) h( n) z n n z e jωt H ( ) jωt e n h( n) e jnωt j T όπου ( e ): H ω Απόκριση συχνότητας, μιγαδικός 35

36 36 Εξισώσεις διαφοράς: N k M k k k k n y b k n x a n y 0 1 ) ( ) ( ) ( όπου y(n): έξοδος, x(n):είσοδος, y(n-k): έξοδος σε προηγούμενα δείγματα, και α k & b k : συντελεστές συστήματος. Οι ίδιες εξισώσεις μπορούν να γραφτούν στο πεδίο z: M k k k N k k k z Y z b z X z a z Y 0 0 ) ( ) ( ) ( + M k k k N k k k z b z a z X z Y z H ) ( ) ( ) ( Άρα: - Σύστημα IIR

37 37 Αν οι συντελεστές b k είναι μηδέν, τότε: N k k k N k k z a z X z Y z H k n x a n y 0 0 ) ( ) ( ) ( ) ( ) ( - Σύστημα FIR

38 ΙΔΑΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ ΦΙΛΤΡΩΝ Ιδανικά χαρακτηριστικά συνίστανται στον: Προσδιορισμό των ζωνών διάβασης και αποκοπής Προσδιορισμό των ιδανικών χαρακτηριστικών στις ζώνες διάβασης Η επίδραση των φίλτρων στο συχνοτικό περιεχόμενο ενός σήματος είναι: jω jω jω Y e D e X e ( ) ( ) ( ) όπου Χ(.) και Υ(.): συχνοτικό περιεχόμενο της εισόδου και της εξόδου αντίστοιχα, και D(.): ιδανική απόκριση συχνότητας του φίλτρου. Επιλογή του D(.) έτσι ώστε να είναι μηδέν στις συχνότητες του θορύβου και μονάδα στις συχνότητες της πληροφορίας πλήρες φιλτράρισμα θορύβου. 38

39 Στην πράξη: σήματα περιέχουν ζώνες συχνοτήτων. Τα ιδανικά φίλτρα είναι συνήθως παραθυρικής μορφής όπου τα παράθυρα εφαρμόζονται στις ζώνες συχνοτήτων της πληροφορίας. Ζώνες αποκοπής: οι ζώνες συχνοτήτων που θέλουμε να αφαιρέσουμε. Ζώνες διάβασης: οι ζώνες συχνοτήτων που θέλουμε να διατηρήσουμε. Πέρα από αφαίρεση θορύβου τροποποίηση της πληροφορίας. 39

40 Γενική περίπτωση ιδανικής απόκρισης συχνότητας: jω ( ) D e Di jω ( e ) 0, ω ω ω l i ui αλλου, [ ωli ui ω ] : ζώνες διάβασης Για την ιδανική απόκριση συχνότητας, D(.), ισχύουν: Είναι γνωστή σε όλες τις συχνότητες Ζώνες διάβασης είναι δυνατό να συνδιαστούν έτσι ώστε να μην είναι επικαλυπτόμενες, ούτε να έχουν κοινό άκρο εναλάσσονται Εμφανίζει ασυνέχειες στα άκρα των ζωνών διάβασης 40

41 ΕΙΔΗ ΚΛΑΣΙΚΩΝ ΙΔΑΝΙΚΩΝ ΦΙΛΤΡΩΝ Κατωπερατά ή Κατωδιαβατά (χαμηλοπερατά): jω ( ) D e 1, 0 0, ω ω αλλού c Ανωπερατά ή Ανωδιαβατά (ψηλοπερατά): jω ( ) D e 1, 0 ωc ω π αλλού 41

42 Ζωνοπερατά ή Ζωνοδιαβατά: jω ( ) D e ω ω 1, ωc 1 c2 0, αλλού [ ω ω c1 c2 ] : συχνότητες αποκοπής Φίλτρα αποκοπής ζώνης: jω ( ) D e ω ω 0, ωc 1 c2 1, αλλού [ ωc ω 1 c2 ] : συχνότητες αποκοπής 42

43 Πολυπερατά ή Πολυδιαβατά: jω ( ) D e 1, ωl ω ωu, i 1,2, , αλλού [ ω ω li ui ] : άνω και κάτω συχνότητα αποκοπής της i-οστής ζώνης διάβασης Ολοπερατά ή Ολοδιαβατά: ( jω ) 1 D e Δηλ. δεν απομακρύνουν καμιά συχνότητα 43

44 ΠΡΑΚΤΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ ΦΙΛΤΡΩΝ Οι προδιαγραφές που είναι απαραίτητο να ορισθούν για το σχεδιασμό ενός φίλτρου είναι: Προσδιορισμός των ζωνών διάβασης, αποκοπής και μετάβασης Προσδιορισμός ιδανικών χαρακτηριστικών στις ζώνες διάβασης Προσδιορισμός συνάρτησης βάρους και μέγιστου αποδεκτού σφάλματος προσέγγισης στις ζώνες διάβασης και αποκοπής. 44

45 ΓΕΝΙΚΑ ΒΗΜΑΤΑ ΓΙΑ ΣΧΕΔΙΑΣΜΟ ΦΙΛΤΡΩΝ (1) Προσδιορισμός χαρακτηριστικών του φίλτρου: Χαρακτηριστικά σήματος (π.χ. μέγιστη συχνότητα) Χαρακτηριστικά φίλτρου (π.χ. απόκριση μεγέθους ή/και φάσης, ταχύτητα) Τρόπος υλοποίησης (π.χ. σε υπολογιστή ή εξειδικευμένο επεξεργαστή) Άλλα χαρακτηριστικά (π.χ. κόστος) Για φίλτρα επιλογής συχνότητας: προδιαγραφές μέσω σχημάτων ανοχής (tolerance schemes). δ p : απόκλιση ζώνης διάβασης δ s : απόκλιση ζώνης αποκοπής f p : συχνότητα άκρου ζώνης διάβασης f s : συχνότητα άκρου ζώνης αποκοπής 45

46 (2) Υπολογισμός κατάλληλων συντελεστών φίλτρου: IIR: βασίζονται σε μετασχηματισμό χαρακτηριστικών αναλογικών φίλτρων σε ψηφιακά. 3 βασικές μέθοδοι: (ι) impulse invariant, (ιι) bilinear transformation, και (iii) pole-zero placement. FIR: (ι) window, (ιι)frequency sampling, και (ιιι) optimal (Parks-McClellan algorithm) (3) Απεικόνιση φίλτρου με κατάλληλη δομή: μετατροπή μίας συνάρτησης μεταφοράς H(z) σε κατάλληλη μορφή φίλτρου. IIR: direct, cascade και parallel μορφές FIR: direct, frequency sampling και fast convolution technique μορφές (4) Ανάλυση επίδρασης πεπερασμένης ακρίβειας του αριθμού bits: επιλογή κατάλληλου αριθμού bits για αποφυγή υποβάθμισης της απόδοσης του φίλτρου. Παράγοντες που επηρεάζουν απόδοση: κβαντοποίηση (εισόδου/εξόδου, συντελεστών φίλτρου), στρογγυλοποίηση, υπερροή. (5) Υλοποίηση φίλτρου: λογισμικό ή υλισμικό. Χρειάζονται: μνήμες ROM και RAM, πολλαπλασιαστές και αθροιστές ή αριθμητική λογική. 46

47 ΦΙΛΤΡΑ FIR Βασικό FIR φίλτρο χαρακτηρίζεται από: y( n) H ( z) N 1 k 0 N 1 k 0 h( k) x( n k) h( k) z όπου h(k): συντελεστές κρουστικής απόκρισης του φίλτρου Η(z): συνάρτηση μεταφοράς φίλτρου Ν: μέγεθος φίλτρου, δηλ. αριθμός συντελεστών φίλτρου k0,1,,ν-1 (1): στο πεδίο χρόνου. Μη-αναδρομική μορφή (υπάρχουν και αναδρομικά φίλτρα FIR). Μη-αναδρομικά φίλτρα FIR είναι πάντοτε σταθερά. (2): μέθοδος ανάλυσης φίλτρου, π.χ. υπολογισμός συχνοτικής απόκρισης k (1) (2) 47

48 ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΩΝ: ΜΕΘΟΔΟΣ ΠΑΡΑΘΥΡΟΥ Ιδανική απόκριση συχνότητας, Η D (ω), και κρουστική απόκριση, h D (ω), φίλτρου: h 1 2π π kωn ( n) D H D ( ω) e dω - Αντίστροφος ΜΦ π Π.χ. Χαμηλοπερατό φίλτρο - ιδανική απόκριση: h D 1 π ( n) 1 2π e π jωn dω 2 f 2 f c c sin( nωc), nω, c n 0, n n 0 ( κανο νας L'Hopital) 48

49 Πίνακας 1: Ιδανική κρουστική απόκριση για συγκεκριμένα φίλτρα: 49

50 Φίλτρα που σχεδιάζονται με τη μέθοδο παραθύρου έχουν ίση απόκλιση ζωνών διάβασης και αποκοπής, δηλ. δ p δ s h D (n)h D (-n) γραμμική και μηδενική φάση Παρατηρούμε ότι υπάρχει κρουστική απόκριση θεωρητικά και για n±, άρα δεν είναι FIR φίλτρο πολλαπλασιασμός της ιδανικής κρουστικής απόκρισης με κατάλληλο πεπερασμένο παράθυρο, w(n), για υπολογισμό συντελεστών φίλτρου. Στο πεδίο χρόνου: h(n)h D (n)w(n) Στο πεδίο συχνότητας: H(ω)H D (ω)*w(ω) 50

51 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΣΤΩΝ ΠΑΡΑΘΥΡΩΝ ΣΤΑ ΠΕΔΙΑ ΧΡΟΝΟΥ ΚΑΙ ΣΥΧΝΟΤΗΤΑΣ Rectangular Hamming 51

52 Blackman Για το παράθυρο Hamming το πλάτος ζώνης μετάβασης: Δf3.3/Ν, όπου Ν: μέγεθος φίλτρου, Δf: κανονικοποιημένο πλάτος ζώνης μετάβασης Μέγιστη εξασθένιση (attenuation) ζώνης αποκοπής: 53dΒ Ελάχιστη κορυφή κυματισμού ζώνης διάβασης: dB 52

53 Παράθυρο Kaiser: I 0 α 1 I 0 2n N 1 [ α ] 2, ( N 1) / 2 n < ( N 1) / 2 όπου I 0 : τροποποιημένη συνάρτηση Bessel 1 ου είδους & L k 2 μηδενικής τάξης: x I ( x) 1+ 0 k k 1 2 k! με L<25 συνήθως, α: τρόπος που το παράθυρο tapers στις άκριες στο πεδίο χρόνου (α0 rectangular) Υπολογισμός α ανάλογα με τις προδιαγραφές εξασθένισης ζώνης αποκοπής: α 0, αν A 21dB α α A log ( A 21) ( A 8.7), 10 δ, 0.4 δ ( A 21), min( δ, δ ) p s αν 21dB < αν A 50dB A < 50dB 53

54 Αριθμός συντελεστών φίλτρου: N A Δf Οι τιμές των α και Ν χρησιμοποιούνται για υπολογισμό των συντελεστών του παραθύρου Kaiser, w(n). 54

55 ΕΙΔΗ ΠΑΡΑΘΥΡΩΝ (1) Bartlett (τριγωνικό): M 1 2 n 2 1, 0 n M 1 M 1 (2) Blackman: 2πn 4πn cos cos, 0 n < M 1 M 1 M 1 55

56 (3) Hamming: (4) Hanning: 2πn cos, 0 n < M 1 M 1 1 2πn 1 cos, 2 M 1 0 n < M 1 56

57 57 (6) Lanczos: (5) Kaiser: 1 0, < M n M I M n M I α α ( ) 1 0 0,, sin > M n L M M n M M n L π π ! 2 1 ) ( k k k k x x I I 0 : τροποποιημένη συνάρτηση Bessel 1 ου είδους & μηδενικής τάξης:

58 58 (7) Tukey: ( )( ) ( )( ) ) / ( 1 0, 2 / / 1 1 cos < + + M M n M M n M M n α π α α α1 α0.5 α0

59 ΠΙΝΑΚΑΣ 2: ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΥΝΗΘΕΙΣ ΠΑΡΑΘΥΡΩΝ 59

60 Παράδειγμα: Υπολογίστε τους συντελεστές ενός χαμηλοπερατού FIR φίλτρου που να πληρεί τις πιο κάτω προδιαγραφές: συχνότητα διάβασης, f c πλάτος ζώνης μετάβασης εξασθένιση ζώνης αποκοπής συχνότητα δειγματοληψίας 1.5 khz 0.5 khz >50 db 8 khz Κρουστική απόκριση χαμηλοπερατού φίλτρου: h h D D ( n) ( n) 2 f 2 f c c sin( nω ) c, n 0 nω c, n 0 60

61 Σύμφωνα με τον πίνακα 2, τα παράθυρα Hamming, Blackman ή Kaiser πληρούν τις προδιαγραφές εξασθένισης ΖΑ. Hamming (απλό): w(n) cos(2πn/53), -26 n 26 Κανονικοποίηση πλάτους ΖΜ: Δf 0.5 / Μέγεθος φίλτρου: Ν 3.3 / Δf 3.3 / Ν53 Συντελεστές φίλτρου υπολογίζονται από: h(n)h D (n)w(n) f c f c + Δf/2 ( )kHz 1.75/ (αναπροσαρμογή f c στο κέντρο ΖΜ) 61

62 ) ( (26) ) 26 / 0.46 cos( (26) ) 2 sin( (26) 26 : (1) (1) 1) ( (1) ) / 0.46 cos( ) / 0.46 cos( (1) ) sin( ) sin( (1) 1: (0) (0) (0) cos(0) 0.54 (0) (0) 0 : h h w h n w h h h w h n w h h w f h n D D D D c D π π π π π π π M M M o o

63 μεθόδου παραθύρου: Απλή κατανοητή και εύκολη, ελάχιστή υπολογιστική προσπάθεια ακόμα και για περίπλοκα παράθυρα όπως το Kaiser μεθόδου παραθύρου: Έλλειψη flexibility απόκλιση ζωνών διάβασης και αποκοπής περίπου ίση Λόγω συνέλιξης του συχνοτικού περιεχομένου του παραθύρου και της επιθυμητής απόκρισης, οι συχνότητες αποκοπής και διάβασης δεν μπορούν να προσδιοριστούν ακριβώς Για συγκεκριμένο παράθυρο (εκτός Kaiser) το μέγιστο πλάτος των κυματισμών είναι σταθερό, ανεξάρτητα από το Ν συγκεκριμένη εξασθένιση ΖΑ Για μερικές εφαρμογές HD(ω) είναι πολύ πολύπλοκο για υπολογισμό του hd(n) μέθοδος frequency sampling πριν τη μέθοδο παραθύρου 63

64 ΠΑΡΑΔΕΙΓΜΑΤΑ (1) Χαμηλοπερατό Φίλτρο (ΧΦ): γενική μορφή αποτελείται από συνεχόμενα θετικά δείγματα, δηλ. κάθε δείγμα της εξόδου είναι σταθμισμένο άθροισμα πολλών συνεχόμενων δειγμάτων της εισόδου. Αυτό ισοδυναμεί με εξομάλυνση του σήματος αφαίρεση υψηλών συχνοτήτων. Μείωση θορύβου, διαχωρισμός σημάτων κλπ. Πιο στενό / πλατύ φίλτρο αλλαγή της συχνότητας κοπής. Figure από Scientist s and engineer s guide to DSP. 64

65 x[ n] 3sin[2πn] 2cos[6πn] 1, 11 n 17 f [ n] y conv( x, f ) 0, αλλού Φασματο- Φασματο- γράφημα x γράφημα y 65

66 (2) Υψηλοπερατό Φίλτρο (ΥΦ): κοινή στρατηγική δημιουργία ενός χαμηλοπερατού φίλτρου & μετατροπή του σε ο,τιδήποτε άλλο φίλτρο χρειαζόμαστε! Από το θεώρημα της επαλληλίας: φίλτρο με παλμό δέλτα πλην ΧΦ ΥΦ. Γιατί; Ο παλμός δέλτα αφήνει όλες τις συχνότητες να περάσουν, άρα σε συνδυασμό με το χαμηλοπερατό φίλτρο μόνο ψηλές συχνότητες περνούν! Ο παλμός δέλτα συνήθως προστίθεται στο κέντρο συμμετρίας του χαμηλοπερατού φίλτρου ή στο δείγμα για n0 για μησυμμετρικά ΧΦ. Figure από Scientist s and engineer s guide to DSP. 66

67 x[ n] 3sin[2πn] 2cos[6πn] 0.2, f [ n] 1, 0, 11 n 13& 15 n 17 n 14 αλλού y conv( x, f ) Φασματογράφημα x Φασματογράφημα y 67

68 ΓΕΝΙΚΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΓΙΑ ΚΑΘΑΡΙΣΜΟ ΗΕΓ Προκαθορισμός αριθμού και είδους θορύβου Περισσότερες μέθοδοι είναι κατάλληλες μόνο για μερικά είδη θορύβου. Ίσως να μην είναι εφικτή η επέκτασή τους και για άλλα είδη. Βασίζονται σε οπτική αναγνώριση του θορύβου από ειδικούς δεν είναι αυτόματες Συλλογή θορύβου ταυτόχρονα με τη συλλογή ΗΕΓ φυσικοί και υπολογιστικοί περιορισμοί Ανακριβή μοντέλα θορύβου όταν αυτά συλλέγονται πριν από την εκτέλεση του πειράματος 68

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής 15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος

Διαβάστε περισσότερα

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient

Διαβάστε περισσότερα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα 3-Φεβ-2009 ΗΜΥ 429 4. Σήματα 1 Σήματα Σήματα είναι: σχήματα αλλαγών που αντιπροσωπεύουν ή κωδικοποιούν πληροφορίες σύνολο πληροφορίας ή δεδομένων σχήματα αλλαγών στο χρόνο, π.χ. ήχος, ηλεκτρικό σήμα εγκεφάλου

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Ημιτονοειδή σήματα Σ.Χ.

Ημιτονοειδή σήματα Σ.Χ. Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα

Διαβάστε περισσότερα

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ DTFT και Περιοδική/Κυκλική Συνέλιξη Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»

Διαβάστε περισσότερα

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters)

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

ΒΙΟΛΟΓΙΚΑ ΣΗΜΑΤΑ. Επιμέλεια - προσαρμογή : Α. Καναπίτσας. Βιβλιογραφία :

ΒΙΟΛΟΓΙΚΑ ΣΗΜΑΤΑ. Επιμέλεια - προσαρμογή : Α. Καναπίτσας. Βιβλιογραφία : ΒΙΟΛΟΓΙΚΑ ΣΗΜΑΤΑ Επιμέλεια - προσαρμογή : Α. Καναπίτσας Βιβλιογραφία : 1. Ελπινίκη Παπαγεωργίου Σηµειώσεις Παρουσίαση : Μελέτη της απαγωγής βιοϊατρικούσήματος, εφαρμογή σε θεραπευτικά μηχανήματα και ανάλυση

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Βιοϊατρική τεχνολογία

Βιοϊατρική τεχνολογία Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 4: Γενικές Αρχές Επεξεργασίας Βιολογικών Σημάτων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία

Διαβάστε περισσότερα

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 /07.12.2014 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.ppt, και octave_matlab_tutorial_v1.ppt

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΣΕΡΡΩΝ Τμήμα ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ Ενέργεια. 2.2.3.στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ 5 σιμοποιούμε, δηλαδή όσο περισσότερα bits χρησιμοποιούμε για την αναπαράσταση της κάθε τιμής του πλάτους. ΕΝΟΤΗΤΑ.. ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Στην ενότητα αυτή θα ασχοληθούμε με τα σήματα διακριτού χρόνου.

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

1.5 1 Ο νόμος των ρευμάτων του Kirchhoff 11 1.5 2 Ο νόμος των τάσεων του Kirchhoff 12 1.5 3 Το θεώρημα του Tellegen 13

1.5 1 Ο νόμος των ρευμάτων του Kirchhoff 11 1.5 2 Ο νόμος των τάσεων του Kirchhoff 12 1.5 3 Το θεώρημα του Tellegen 13 Μέρος Α 1. Εισαγωγικές Έννοιες 3 1.1 Το αντικείμενο της θεωρίας των ηλεκτρικών κυκλωμάτων 4 1.2 Φυσικά και μαθηματικά μοντέλα 5 1.3 Συγκεντρωμένα και κατανεμημένα κυκλώματα 6 1.4 Ορισμοί Φορές αναφοράς

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

14-Σεπτ-2009 ΗΛΕΚΤΡΟΕΓΚΕΦΑΛΟΓΡΆ ΦΗΜΑ. Χαρακτηριστικά, εντολές εισόδου

14-Σεπτ-2009 ΗΛΕΚΤΡΟΕΓΚΕΦΑΛΟΓΡΆ ΦΗΜΑ. Χαρακτηριστικά, εντολές εισόδου 3. 1 ΗΛΕΚΤΡΟΕΓΚΕΦΑΛΟΓΡΆ ΦΗΜΑ Χαρακτηριστικά, εντολές εισόδου ΠΕΡΙΟΧΈΣ ΕΓΚΕΦΆΛΟΥ (από www.aph.org/cvi/brain.html) (από www.emc.maricopa.edu) 2 ΗΛΕΚΤΡΟΕΓΚΕΦΑΛΟΓΡΆΦΗΜΑ (ΗΕΓ) Εικόνα από: www.deymed.com 3 ΜΗ-ΕΠΕΜΒΑΤΙΚΉ

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Pipelining και Παράλληλη Επεξεργασία

Pipelining και Παράλληλη Επεξεργασία Pipelining και Παράλληλη Επεξεργασία Εισαγωγή Σωλήνωση - Pipelining Βασισμένη στην ιδέα σωλήνα που στέλνει νερό χωρίς να περιμένει το νερό που μπαίνει σε ένα σωλήνα να τελειώσει water pipe Μπορεί να οδηγήσει

Διαβάστε περισσότερα

25/3/2009. Η επεξεργασία του ψηφιακού σήματος υλοποιείται μέσω κατάλληλου αλγορίθμου. Φλώρος Ανδρέας Επίκ. Καθηγητής Παράμετροι ελέγχου

25/3/2009. Η επεξεργασία του ψηφιακού σήματος υλοποιείται μέσω κατάλληλου αλγορίθμου. Φλώρος Ανδρέας Επίκ. Καθηγητής Παράμετροι ελέγχου Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 4 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής (Mέρος έ ΙΙ)» Η επεξεργασία του ψηφιακού σήματος υλοποιείται μέσω κατάλληλου αλγορίθμου

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/013 ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σηµμάτων

Ψηφιακή Επεξεργασία Σηµμάτων Ψηφιακή Επεξεργασία Σηµμάτων Διάλεξη 3: DSP for Audio ΚΩΔΙΚΟΠΟΙΗΣΗ ΚΑΙ ΣΥΜΠΙΕΣΗ ΗΧΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΤΟ ΠΡΟΤΥΠΟ ISO/IEC 11172-3 MPEG-1 Δρ. Θωµμάς Ζαρούχας Επιστηµμονικός Συνεργάτης Μεταπτυχιακό Πρόγραµμµμα:

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Νιαβής Παναγιώτης Επιβλέπων: Καθ. Γ. Μουστακίδης Περιεχόμενα Εισαγωγή Μικροφωνισμός σε ακουστικά βαρηκοΐας Προσαρμοστική αναγνώριση συστήματος

Διαβάστε περισσότερα

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3

ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3 ΚΕΦΑΛΑΙΟ 3 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ- ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ...3 ΕΝΟΤΗΤΑ 3.. Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z...4 3... ΟΡΙΣΜΌΣ...4 3... ΎΠΑΡΞΗ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΎ-Z...5 3..3. ΙΔΙΌΤΗΤΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΎ-Z... ΕΝΟΤΗΤΑ 3..

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας.

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής.

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής. Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 2 η : «Βασικές Β έ αρχές ψηφιακού ήχου» Φλώρος Ανδρέας Επίκ. Καθηγητής Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 3 Καθηγητής Χ. Χαμζάς Κυκλώματα, Σήματα και Συστήματα.3- ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΕΞΙΣΩΣΕΙΣ Ένα διακριτό discree ή ψηφιακό digial σύστημα είναι μία διαδικασία προσδιορισμού

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα: ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Εύρος Ζώνης Μετάδοσης Κυματομορφών FM Απόκριση

Διαβάστε περισσότερα

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ . ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Σκοπός του κεφαλαίου αυτού είναι να δώσει μια γενική εικόνα του τι είναι σήμα και να κατατάξει τα διάφορα σήματα σε κατηγορίες ανάλογα με τις βασικές ιδιότητες τους. Επίσης,

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 4 ο Μετασχηματισμός Z ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.- Σ. Φωτόπουλος ΔΠΜΣ Ποιός είναι ο DTFT της u(n)?? u(n) e πδ(ω πk) j ω k ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ - Μετασχ.-

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες

Διαβάστε περισσότερα

Μια εισαγωγή στο φίλτρο Kalman

Μια εισαγωγή στο φίλτρο Kalman 1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,

Διαβάστε περισσότερα

Σχήμα Χαμηλοδιαβατά φίλτρα:

Σχήμα Χαμηλοδιαβατά φίλτρα: ΦΙΛΤΡΑ 6.. ΦΙΛΤΡΑ Το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων. Στο Σχήμα 6.6 δείχνουμε την απόκριση συχνότητας

Διαβάστε περισσότερα

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ενότητα: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΣ 6 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Δικτυακός τόπος: hp://ipml.ee.duh.gr/~chamzas/courses/dsp/ Οι εκπαιδευτικοί γενικά συμφωνούν ότι οι μελλοντικοί μηχανικοί προετοιμάζονται

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις

Στοχαστικές Ανελίξεις Ντετερμινιστικά Σήματα - Τυχαία Σήματα Ταξινόμηση των σημάτων ανάλογα με τη βεβαιότητα όσο αφορά την τιμή τους κάθε χρονική στιγμή. Τα ντετερμινιστικά σήματα μπορούν να αναπαρασταθούν σαν πλήρως καθορισμένες

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακός Έλεγχος Συστημάτων Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1 Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

Άσκηση 11 Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ ua741 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΩΝ

Άσκηση 11 Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ ua741 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΩΝ Άσκηση 11 Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ ua741 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΩΝ Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike Greece 3.0. Ονοματεπώνυμο: Μητρόπουλος Σπύρος Α.Ε.Μ.: 3215

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation)

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Σκοπός της άσκησης Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel)

Εξαναγκασμένη Ταλάντωση. Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel) Εξαναγκασμένη Ταλάντωση Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel) Εξαναγκασμένη Ταλάντωση: Τυχαία Φόρτιση: Απόκριση σε Τυχαία Φόρτιση: Βασική Ιδέα Δ10-2 Το πρόβλημα της κίνησης μονοβάθμιου συστήματος σε τυχαία

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace

Μετασχηματισμοί Laplace Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Ασύρματη διάδοση Εισαγωγή Κεραίες διάγραμμα ακτινοβολίας, κέρδος, κατευθυντικότητα

Διαβάστε περισσότερα

Μάθημα: Ψηφιακή Επεξεργασία Ήχου

Μάθημα: Ψηφιακή Επεξεργασία Ήχου Τμήμα Τεχνών Ήχου και Εικόνας Ιόνιο Πανεπιστήμιο Μάθημα: Ψηφιακή Επεξεργασία Ήχου Εργαστηριακή Άσκηση 1 «Διαχείριση και Δημιουργία Βασικών Σημάτων, Δειγματοληψία και Κβαντισμός» Διδάσκων: Φλώρος Ανδρέας

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ

ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ _CONT_.indd iii τίτλος: ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ συγγραφέας: Καραγιαννάκης Δημήτριος 2014 Εκδόσεις Δίσιγμα Για την ελληνική

Διαβάστε περισσότερα

Μετασχηματισμοί Παρατήρησης και Προβολές

Μετασχηματισμοί Παρατήρησης και Προβολές Μετασχ. Γραφικά Παρατήρησης Υπολογιστών και Προβολές Μετασχηματισμοί Παρατήρησης και Προβολές Γ. Γ. Παπαϊωάννου, - 2008 Στάδια Προβολής στο Επίπεδο Περνάμε από WCS στοτοπικόσύστημα συντεταγμένων του παρατηρητή

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; Ηλεκτρονικοί Υπολογιστές Κινητά τηλέφωνα Τηλεπικοινωνίες Δίκτυα Ο κόσμος της Ηλεκτρονικής Ιατρική Ενέργεια Βιομηχανία Διασκέδαση ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ Τι περιέχουν οι ηλεκτρονικές

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σηµμάτων

Ψηφιακή Επεξεργασία Σηµμάτων Ψηφιακή Επεξεργασία Σηµμάτων Διάλεξη 3: DSP for Audio Δρ. Θωµμάς Ζαρούχας Επιστηµμονικός Συνεργάτης Μεταπτυχιακό Πρόγραµμµμα: Τεχνολογίες και Συστήµματα Ευρυζωνικών Εφαρµμογών και Υπηρεσιών 1 Προεπισκόπηση

Διαβάστε περισσότερα

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε ηλεκτροµαγνητικό κύµα κυκλ. Συχνότητας ω. Παρατηρούµε ότι η πολωσιµότητα του µέσου εξαρτάται µε την εκφραση 2.42

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

6-Aνίχνευση. Ακμών - Περιγράμματος

6-Aνίχνευση. Ακμών - Περιγράμματος 6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών

Διαβάστε περισσότερα