Κεφάλαιο 7 : 7.1. Einstein. του Νεύτωνα, επαληθεύουν την. Σχήμα 7.1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 7 : 7.1. Einstein. του Νεύτωνα, επαληθεύουν την. Σχήμα 7.1"

Transcript

1 Κεφάλαιο 7 : Στοιχεία της Γενικής Θεωρίας της Σχετικότητας. 7. Η Αρχή της Ισοδυναμίας του Einstein. Σύμφωνα με τον Νεύτωνα η μάζα ενός σώματος ορίζεται με δύο τρόπους: Υποθέστε πως εφαρμόζουμε μια γνωστή δύναμη σε ένα σώμα και μετράμε την επιτάχυνσή του. Σύμφωνα με τον δεύτερο νόμο του Νεύτωνα, F = ma, μπορούμε να υπολογίσουμε την μάζα του. Η μάζα που υπολογίζεται με αυτόν τον τρόπο καλείται αδρανειακή μάζα. Υποθέστε πως το ίδιο σώμα το ζυγίζουμε. Το βάρος είναι η δύναμη την οποία ασκεί η Gmm Γη πάνω στο σώμα σύμφωνα με τον νόμο της βαρύτητας F =. Η μάζα του R σώματος που υπολογίζεται με αυτόν τον τρόπο καλείται βαρυτική μάζα. Ο Νεύτωνας πίστευεε πως οι δύο μάζες είναι οι ίδιες. Σύγχρονα πειράματα επαληθεύουν την ισότητα μεταξύ των μαζών με ακρίβεια της τάξης του 0. Ο Einstein αντιλήφθηκε πως η ισότητα της αδρανειακής και της βαρυτικής μάζας δεν είναι τυχαία. Το είδε ως μια βασική αρχή που ισχύειι στο σύμπαν και το ονόμασε Αρχή της Ισοδυναμίας. Σύμφωνα με την αρχή της ισοδυναμίας «δεν μπορούμε πειραματικά να διαχωρίσουμε επιταχύνσεις που οφείλονται στη βαρύτητα από επιταχύνσεις που οφείλονται σε δυνάμεις άλλου είδους». Σχήμα 7. 73

2 Στο σχήμα 7. εικονίζεται το σχετικό, με την Αρχή της Ισοδυναμίας, παράδειγμα του Einstein. Φανταστείτε τον εαυτό σας μέσα σε ένα διαστημόπλοιο το οποίο δεν έχει παράθυρα και βρίσκεται ακίνητο στην επιφάνεια της Γης. Εάν αφήνατε ένα σώμα ελεύθερο μέσα στη διαστημόπλοιο θα παρατηρούσατε ότι εκτελεί επιταχυνόμενη κίνηση με επιτάχυνση 9.8 m/sec. Τώρα υποθέστε ότι βρίσκεστε, χωρίς να το ξέρετε, με το διαστημόπλοιο στο διάστημα και αυτό κινείται επιταχυνόμεν νο με σταθερή επιτάχυνση 9.8 m/sec. Εάν αφήνατε ένα σώμα ελεύθερο μέσα στη διαστημόπλοιο θα παρατηρούσατε ξανά πως εκτελεί επιταχυνόμενη κίνηση με επιτάχυνση 9.8 m/sec. Το πιο πιθανό είναι πως θα συμπεραίνατε πως βρίσκεστε ακόμη στην επιφάνεια της Γης. Με λίγα λόγια δεν μπορείτεε κάνοντας κάποιο πείραμα μέσα στο διαστημόπλοιο να διακρίνετεε μεταξύ των φαινομένων που οφείλονται στη δύναμη της βαρύτητας και σε εκείνα που οφείλονται στη δύναμη που ασκεί η μηχανή του διαστημοπλοίου. Η Αρχή της Ισοδυναμίας μας υποδεικνύει ένανν τρόπο να εκμηδενίσουμε τοπικά την βαρύτητα. Στο σχήμα 7..a ένας παρατηρητής μέσα σε έναν ανελκυστήρα, ο οποίος εκτελεί ελεύθερη πτώση, αφήνει ελεύθερο ένα σώμα. Το σώμα αιωρείται και ο παρατηρητής μετρά μηδενική επιτάχυνση. Μέσα στον ανελκυστήρα επικρατούν συνθήκες έλλειψης βαρύτητας. Στο σχήμα 7..b ένας αστροναύτης στο διάστημα μακριά από την επίδραση κάθε ουράνιας μάζας κινείται ομαλά. Ο αστροναύτης εκτελεί το ίδιο πείραμα αφήνοντας ελεύθερο ένα σώμα. Το αποτέλεσμα αυτού του πειράματος είναι το ίδιο με το προηγούμενο. Σχήμα 7. Η Αρχή της Ισοδυναμίας είναι πρωταρχικής σημασίας στη θεμελίωση της Γενικής Θεωρίας της Σχετικότητας. 74

3 7. Η Γεωμετρία του χωρόχρονου. Μια απλή ερώτηση που μπορεί να θέσει κανείς είναι με ποιόν τρόπο συσχετίζονται η γεωμετρία του χώρου και η φυσική; Ο Νεύτωνας υπέθεσε πως η γεωμετρία του σύμπαντος είναι επίπεδη. Ο Einstein δεν έκανε την ίδια υπόθεση παρά έθεσε την παραπάνω ερώτηση σε πειραματικό έλεγχο, έτσι ώστε το πείραμα να δείξει ποια ακριβώς είναι η γεωμετρία του χωρόχρονου. Ευκλείδεια Γεωμετρία. Σύμφωνα με τo αξίωμα του Ευκλείδη δύο παράλληλες ευθείες οι οποίες εκτείνονται έως το άπειρο διατηρούν σταθερή την απόστασή τους και δεν τέμνονται. Αυτό συνεπάγεται πως η Ευκλείδεια γεωμετρία είναι Επίπεδη. Κατά συνέπεια ισχύει το θεώρημα του Πυθαγόρα σύμφωνα με το οποίο το άθροισμα των γωνιών ενός τριγώνου ισούται με 80 (σχήμα 7.3.a). Το τελευταίο αποτελεί το βασικό κριτήριο ότι μια γεωμετρία είναι επίπεδη. Μη Ευκλείδειες Γεωμετρίες. Το 89 ο Ρώσος μαθηματικός Nikolai Lobachevski υπέδειξε πως το αξίωμα του Ευκλείδη δεν είναι το μοναδικό το οποίο μπορεί να οδηγήσει σε μια αποδεκτή γεωμετρία. Πρότεινε ένα νέο αξίωμα σύμφωνα με το οποίο δύο παράλληλες ευθείες μπορούν να αποκλίνουν επιτρέποντας όμως ταυτόχρονα την ανάπτυξη μιας αποδεκτής γεωμετρίας. Στις δύο διαστάσεις η γεωμετρία που πρότεινε έχει ιδιότητες παρόμοιες με την επιφάνεια ενός σαμαριού (σχήμα 7.3.b). Η συγκεκριμένη γεωμετρία ονομάζεται Υπερβολική Γεωμετρία. Το άθροισμα των γωνιών ενός τριγώνου σύμφωνα με την υπερβολική γεωμετρία είναι μικρότερο των 80. Η υπερβολική γεωμετρία είναι άπειρη, γιατί εάν επεκτείνουμε δύο παράλληλες ευθείες αυτές δεν συναντώνται ποτέ. Γιαυτο τον λόγο τόσο η υπερβολική όσο και η επίπεδη γεωμετρία ονομάζεται και Ανοικτή Γεωμετρία (open geometry). Το 854 ο Georg Riemann πρότεινε μια νέα αποδεκτή γεωμετρία κατά την οποία δύο παράλληλες ευθείες μπορούν να συγκλίνουν (σχήμα 7.3.c). Η επιφάνεια της σφαίρας έχει αυτή τη Σφαιρική Γεωμετρία κατά την οποία το άθροισμα των γωνιών ενός τριγώνου είναι μεγαλύτερο των 80. Η Σφαιρική Γεωμετρία ονομάζεται και Κλειστή Γεωμετρία (closed geometry). Οι δύο παραπάνω μη Ευκλείδειες γεωμετρίες χαρακτηρίζονται από την καμπυλότητά τους. Η Υπερβολική Γεωμετρία έχει αρνητική καμπυλότητα και εκτείνεται έως το άπειρο. Σε αντίθεση η Σφαιρική Γεωμετρία έχει θετική καμπυλότητα και είναι πεπερασμένη (έχει δηλαδή καθορισμένο μέγεθος) αλλά δεν παρουσιάζει άκρα. Την εποχή του Νεύτωνα ήταν γνωστή μόνο η Ευκλείδειος Γεωμετρία. Ο Einstein όμως είχε στη διάθεσή του τρεις γεωμετρίες. Ποια από τις τρεις είναι η σωστή επιλογή για τον κόσμο μας; Και πως αυτή η επιλογή σχετίζεται με την βαρύτητα; Σύμφωνα με την Γενική Θεωρία της Σχετικότητας του Einstein η τοπική κατανομή της μάζας (ή της ενέργειας) προσδιορίζει τη 75

4 γεωμετρία του χωρόχρονου. Όλα τα σώματα εξ αιτίας της μάζας τους προκαλούν γύρω τους μια τοπική καμπύλωση στον χωρόχρονο. Είναι αυτή η καμπύλωση του χωρόχρονου η οποία αναδεικνύεται ως επιταχυνόμενη κίνηση, την οποία ο Νεύτωνας προσδιόρισε πως δημιουργείται λόγω των βαρυτικών δυνάμεων. Την καμπύλωση του χωρόχρονου μπορούμε να την φανταστούμε με τον ακόλουθο τρόπο. Θεωρείστε ότι έχουμε ένα τραμπολίνο. Εάν τοποθετήσουμε ένα βαρύ αντικείμενο πάνω του, όπως μια μπάλα του bowling, θα δημιουργηθεί ένα βαθούλωμα. Αυτό είναι ανάλογο με την τοπική καμπύλωση του χωρόχρονου που προκαλεί η ύπαρξη μιας μεγάλης μάζας, όπως πχ. η Γη (σχήμα 7.4). Η παρουσία της μάζας αλλάζει τοπικά την γεωμετρία του χωρόχρονου. Όσο μεγαλύτερη είναι η μάζα τόσο εντονότερη είναι η καμπύλωση του χωρόχρονου. Σχήμα

5 Σχήμα 7.4 Εάν ένα αντικείμενο μικρότερης μάζας, όπως για παράδειγμα ένα μπαλάκι του γκόλφ, πλησιάσει την περιοχή του βαθουλώματος θα επιταχυνθεί προς την μεγαλύτερη μπάλα του bowling, με έναν τρόπο που καθορίζεται από το βαθούλωμα. Εάν το μπαλάκι του γκόλφ πλησιάσει το βαθούλωμα με κατάλληλο συνδυασμό διεύθυνσης και ταχύτητας αυτό θα έχει ως αποτέλεσμα να τεθεί σε τροχιά γύρω από την μπάλα του bowling. Αυτό για παράδειγμα είναι ανάλογο με την περιστροφή της Γης γύρω από τον Ήλιο (σχήμα 7.5). Συνοψίζοντας με λίγα λόγια: Ο χωρόχρονος υπαγορεύει στη μάζα πως θα κινηθεί και η μάζα υπαγορεύει στον χωρόχρονο πως θα καμπυλωθεί. Σχήμα

6 Η Γενική Θ Θεωρία της Σχχετικότητας ττου Einstein π προβλέπει πω ως ακόμη και οι ακτίνες το ου φωτό ός καμπυλώνο ονται όταν πεερνούν κοντά ά από σώματα α με μεγάλη μάζα. Για να καταλάβουμ με το φα αινόμενο στο ο σχήμα a ένας ασττροναύτης μέσα σε ένα διαστημόπλλοιο το οποίίο επιταχύνεται με 9.8 m/sec σ σημαδεύει ένα α στόχο με ένα laser. Καθ θώς το φως τταξιδεύει προ ος πιταχύνεται σ συνεχώς προςς τα πάνω. Εξξ αιτίας αυτο ού η διαδρομ μή τον σττόχο το διασττημόπλοιο επ που δ διαγράφει το φως σύμφω ωνα με τον ασ στροναύτη είίναι καμπύλη η. Εάν ο ίδιοςς αστροναύτη ης κάνει το πείραμα στην επιφάννεια της Γης σύμφωνα μεε την Αρχή τη ης Αντιστοιχίίας θα βρει το τ ίδιο α αποτέλεσμα(σ σχήμα 7.6.b). Εδώ πρέπεει να σημειώ ώσουμε πως εεάν κάνουμε το παραπάνω ω πείραμα σττην επιφάνειια της Γη ης για μία απ πόσταση παρα ατηρητή στόχχου ίση με 3 m το φως θα α αποκλίνει κατά 5x0 6 m m, μέγεθ θος πολύ μικρό μ για να α παρατηρη ηθεί. Παρ όλα ό αυτά σήμερα σ υπά άρχουν πολλλά παραδ δείγματα πο ου προέρχοντται από παρ ρατηρήσεις με μ τηλεσκόπ πια στο διάσ στημα όπου η εκτρο οπή του φωτό ός είναι εμφα ανής. Γαιωδ δετικές καμπύ ύλες Όπως ανα αφέραμε πιο πάνω η μάζα α και η ενέργγεια προκαλο ούν τοπική κα αμπύλωση σττο χωρόχχρονο. Το ποσό και η πυκννότητα της μά άζας και της εενέργειας καθορίζουν το π πόσο απότομ μη και μεεγάλη θα είνα αι η καμπύλω ωση. Σύμφωννα λοιπόν με ττην Γενική Θεεωρία της Σχεετικότητας το ου Einsteein καθώς ένα έ σώμα κινείται κ μέσα α στην καμ μπυλωμένη περιοχή π του χωρόχρονο ου ακολο ουθεί μια ευ υθύγραμμη πορεία, π η οπ ποία εξ ορισμ μού αποτελεεί τον συντομ μότερο δρόμ μο μεταξξύ δύο σημεείων του χωρ ρόχρονου. Η πορεία αυττή ονομάζετα αι Γαιωδετική ή καμπύλη. Η συγκεεκριμένη πορ ρεία σε εμάς όμως εμφαννίζεται ως καμ μπύλη. Καμία α δύναμη δενν ασκείται σττο σώμα α. Αυτός ακριβώς είναι και κ ο τρόποςς με τον οπο οίο ο Einstein n κατάλαβε την φύση τη ης βαρυττικής δύναμη ης. Σ Σχήμα

7 Ο Einstein εξήγησε τις τροχιές των πλανητών γύρω από τον ήλιο με τον ίδιο τρόπο. Ο Ήλιος λόγω της μεγάλης του μάζας καμπυλώνει τον χωρόχρονο γύρω του. Όλοι οι πλανήτες κινούνται σε ευθείες τροχιές (Γαιωδετικές) στον χωρόχρονο. Εμείς παρατηρούμε στις τρεις διαστάσεις αυτές τις τροχιές ως ελλειπτικές. Ο λόγος έγκειται στο ότι ο χωρόχρονος γύρω μας είναι καμπυλωμένος και όχι επίπεδος. Το μέγεθος της καμπυλότητας του χωρόχρονου ελαττώνεται καθώς η απόσταση από τον Ήλιο αυξάνει. Αυτό εξηγεί για παράδειγμα το γιατί η Γη ακολουθεί μια τροχιά πολύ πιο καμπυλωμένη από αυτήν του Δία. Συνοψίζοντας η διαφορά στην προσέγγιση σχετικά με την βαρύτητα μεταξύ του Νεύτωνα και του Einstein είναι η ακόλουθη. Ο Νεύτωνας θεωρεί πως η βαρύτητα είναι μία δύναμη η οποία δρά μεταξύ δύο σωμάτων και η οποία εξαρτάται από τις μάζες των σωμάτων και την μεταξύ τους απόσταση. Ο Einstein θεωρεί πως κάθε σώμα ακολουθεί μια διαδρομή μέσα στον χωρόχρονο. Τέτοιες τροχιές, για σώματα τα οποία εκτελούν ελεύθερη πτώση, δεν εξαρτώνται από την μάζα τους. 7.3 Λυμένα Προβλήματα 7.3. Βαρυτική Ερυθρά Μετατόπιση: Ο Γιώργος και ο Πέτρος είναι δίδυμοι επιστήμονες. Για να ελέγξουν το φαινόμενο της βρυτικής ερυθράς μετατόπισης ο Γιώργος εγκαθίσταται σε ένα εργαστήριο στο επίπεδο της θάλασσας ενώ ο Πέτρος στο αστεροσκοπείο Mauna Kea της Χαβάης σε υψόμετρο 400 m. Μετά από την πάροδο ενός έτους σύμφωνα με το ρολόι του Γιώργου ο Πέτρος συναντά τον αδελφό του. Ποιος από τους δύο έχει γεράσει περισσότερο και κατά πόσο; Σύμφωνα με την Γενική Θεωρία της Σχετικότητας τα ρολόγια τα οποία βρίσκονται μέσα σε ισχυρά πεδία δυνάμεων βαρύτητας προχωρούν βραδύτερα από ότι τα ρολόγια τα οποία βρίσκονται σε ασθενή πεδία δυνάμεων. Στην πραγματικότητα, η γενική σχετικότητα δείχνει ότι η σημαντική μεταβλητή είναι το δυναμικό της βαρύτητας, και όχι η δύναμη της βαρύτητας. Εάν Δ t και Δ t είναι τα χρονικά διαστήματα που μετρούν τα δύο ρολόγια που είναι τοποθετημένα σε περιοχές διαφορετικού δυναμικού βαρύτητας, η προσεγγιστική σχέση είναι Δt Δt Δt u u = c () όπου u το δυναμικό της βαρύτητας, ή η δυναμική ενέργεια της βαρύτητας ανά μονάδα μάζας ( u = U / m). Το Δ t το οποίο εμφανίζεται στην παραπάνω σχέση μπορεί να αντικατασταθεί είτε με το Δ t είτε με το Δ t είτε με την μέση τιμή τους. 79

8 Κοντά στη Γη η μεταβολή του δυναμικού βαρύτητας μεταξύ σημείων που χωρίζονται από μια κατακόρυφη απόσταση h είναι Δ u = gh. Έτσι από τη σχέση () έχουμε: Δt Δt Δt = gh c = 8 ( 3 0 ) = Το ρολόι του Γιώργου κατάγραψε Πέτρου θα κατέγραψε: Δ t 3 ( Δt 4.6 ) = Δt + 0 Δ t = y. Σύμφωνα με την παραπάνω σχέση το ρολόι του Έτσι ο Πέτρος στη διάρκεια του ενός έτους γέρασε περισσότερο κατά 3 5 Δ t =.45 0 sec Μαύρες οπές και ακτίνα Schwarzschild: Το κέντρο του Γαλαξία μας βρίσκεται στον αστερισμό του Τοξότη και στους αστρονομικούς χάρτες σημειώνεται ως Sagittarius A. Τι ακριβώς βρίσκεται σε αυτή τη θέση δεν γνωρίζουμε με ακρίβεια γιατί το ορατό φως από εκείνη την περιοχή δεν φτάνει σε μας εξ αιτίας της πυκνής σκόνης που καλύπτει το επίπεδο του γαλαξία μας. Μελέτες όμως σε άλλες περιοχές του ηλεκτρομαγνητικού φάσματος δείχνουν πως στην περιοχή αυτή είναι πιθανόν να υπάρχει μια μαύρη οπή με μάζα ίση με 3x0 6 ηλιακές μάζες. Υπολογίστε την ακτίνα Schwarzschild της μαύρης οπής και συγκρίνετε την με την ακτίνα του Ήλιου μας. Η ακτίνα Schwarzschild μιας μαύρης οπής, ονομάζεται και βαρυτική ακτίνα, ορίζει μια σφαίρα γύρω από την οπή μέσα από την οποία κανένα σήμα που παράγεται δεν μπορεί να διαφύγει. Η σφαίρα αυτή είναι γνωστή και ως ορίζοντας γεγονότων. Η ακτίνα Schwarzschild ορίζεται ως: GM R = () c G = m kg sec η παγκόσμια σταθερά της βαρύτητας και M η μάζα της 3 - όπου ( ) μαύρης οπής. Με δεδομένο την μάζα του Ηλίου ίση με R = 6 30 ( ) ( 3 0 ) (.99 0 ) 8 ( 3 0 ) 30 M =.99 0 kg έχουμε πως: S m = Η ακτίνα του Ήλιου μας είναι R S = km. Παρατηρούμε πως η ακτίνα της μαύρης οπής στο κέντρο του γαλαξία μας είναι περίπου μόνο 0 φορές μεγαλύτερη από αυτή του ήλιου μας παρότι η μαύρη οπή ζυγίζει 3 εκατομμύρια φορές περισσότερο από αυτόν. 6 km 80

9 7.4 Προβλήματα 7.4. Ένα ρολόι που βρίσκεται σε ένα μπαλόνι 0km πάνω από την επιφάνεια της Γης προχωρεί γρηγορότερα από ένα ρολόι που βρίσκεται κάτω από αυτό και πάνω στη Γη. Πόσο χρόνο κερδίζει το ρολόι του μπαλονιού σε ένα έτος; 7.4. Από την εξίσωση () του προβλήματος 7.3., δείξτε πως η κλασματική διαφορά στις κλίμακες χρόνου σε μεγάλη απόσταση από ένα αστέρι και πάνω στην επιφάνεια του αστεριού ισούται με GM /( Rc ), όπου M η μάζα του αστεριού και R η ακτίνα του Με βάση το προηγούμενο πρόβλημα υπολογίστε πόσο χρόνο κερδίζει σε ένα έτος ένα ρολόι το οποίο βρίσκεται μέσα στο διαστημόπλοιο Voyager (το οποίο βρίσκεται πλέον στις παρυφές του ηλιακού μας συστήματος) από ένα ρολόι πάνω στην επιφάνεια του Ήλιου Ένας αστροναύτης κινείται αργά μακριά από την Γη προς τον πολύ μεγαλύτερης μάζας πλανήτη του Δία. Πριν από την αναχώρησή του ο πομπός του και ένας δέκτης στη Γη συγχρονίζονται τέλεια στην ίδια συχνότητα. Εξ αιτίας της επίδρασης της βαρύτητας πάνω στις κλίμακες του χρόνου, πρέπει από καιρό σε καιρό να μεταβάλει τη συχνότητα του πομπού του για να φτάσει η ακτινοβολία του στη Γη με την κατάλληλη συχνότητα για τον δέκτη. Σε ποιο τμήμα του ταξιδιού του από την επιφάνεια της Γης έως την επιφάνεια του Δία πρέπει να εκπέμπει με ελαφρά αυξημένη συχνότητα; Σε ποιο τμήμα με ελαφρά ελαττωμένη συχνότητα; Σε ποιο τμήμα με την αρχική συχνότητα; 8

Γενική Θεωρία της Σχετικότητας

Γενική Θεωρία της Σχετικότητας Γενική Θεωρία της Σχετικότητας Αδρανειακή Βαρυτική Μάζα Σύμφωνα με τον Νεύτωνα η μάζα ενός σώματος ορίζεται με δύο τρόπους: Μέσω του δευτέρου νόμου F=ma. (Αδρανειακή Μάζα). Ζυγίζοντας το σώμα και εφαρμόζοντας

Διαβάστε περισσότερα

Η καμπύλωση του χώρου-θεωρία της σχετικότητας

Η καμπύλωση του χώρου-θεωρία της σχετικότητας Η καμπύλωση του χώρου-θεωρία της σχετικότητας Σύμφωνα με τη Γενική Θεωρία της Σχετικότητας που διατύπωσε ο Αϊνστάιν, το βαρυτικό πεδίο κάθε μάζας δημιουργεί μια καμπύλωση στον χώρο (μάλιστα στον χωροχρόνο),

Διαβάστε περισσότερα

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M, ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ 1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1.1 Newton s law A. Newton s law: Περιγράφει τη κίνηση υλικού σημείου μάζας m σε χωρο-χρονικά μεταβαλλόμενο πεδίο δυνάμεων F. Σε Αδρανειακό Σύστημα

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009 Q 40 th International Physics Olympiad, erida, exico, -9 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. Η ΕΞΕΛΙΞΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΗΣ-ΣΕΛΗΝΗΣ Οι επιστήμονες μπορούν να προσδιορίσουν την απόσταση Γης-Σελήνης, με μεγάλη

Διαβάστε περισσότερα

Διαδραστική Έκθεση Επιστήμης και Τεχνολογίας

Διαδραστική Έκθεση Επιστήμης και Τεχνολογίας Διαδραστική Έκθεση Επιστήμης και Τεχνολογίας «Η επιστήμη και η γνώση προχωρούν ρ μπροστά μόνο αν αμφισβητήσουμε τους μεγάλους» Χρονικά της Φυσικής 1905 (Annalen der Physik) Γενική Θεωρία της Σχετικότητας

Διαβάστε περισσότερα

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 005 Θεωρητικό Μέρος Θέμα 1 ο Α Λυκείου Α. Ο Αλέξης και η Χρύσα σκαρφάλωσαν σε ένα λόφο που είχε κλίση 0 ο. Επιβιβάστηκαν σε ένα έλκηθρο, και άρχισαν

Διαβάστε περισσότερα

Κεφάλαιο 2: Ο Νεύτωνας παίζει μπάλα

Κεφάλαιο 2: Ο Νεύτωνας παίζει μπάλα Κεφάλαιο : Ο Νεύτωνας παίζει μπάλα Το ποδόσφαιρο κατέχει αδιαμφισβήτητα τη θέση του βασιλιά όλων των αθλημάτων. Είναι το μέσο εκείνο που ενώνει εκατομμύρια ανθρώπους σε όλον τον κόσμο επηρεάζοντας ακόμα

Διαβάστε περισσότερα

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 2 Μη αδρανειακά συστήµατα x Έστω ότι το S αποκτά επιτάχυνση α 0 S z 0 Α x z S y, y Ο παρατηρητής S µετρά µια επιτάχυνση: A = A +

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΜΕΡΟΣ Α (μονάδες 30) Το μέρος Α αποτελείται από έξι (6) θέματα. Να απαντήσετε και στα έξι (6). Κάθε θέμα βαθμολογείται με πέντε (5) μονάδες.

ΜΕΡΟΣ Α (μονάδες 30) Το μέρος Α αποτελείται από έξι (6) θέματα. Να απαντήσετε και στα έξι (6). Κάθε θέμα βαθμολογείται με πέντε (5) μονάδες. ΠΕΡΙΦΕΡΕΙΑΚΟ ΛΥΚΕΙΟ ΑΠ. ΛΟΥΚΑ ΚΟΛΟΣΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 211-212 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 212 Μάθημα: ΦΥΣΙΚΗ Ημερομηνία: 3/5/212 Τάξη: Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο:

Διαβάστε περισσότερα

Ο ΓΑΛΙΛΑΙΟΣ ΕΙΝΑΙ ΛΑΘΟΣ!

Ο ΓΑΛΙΛΑΙΟΣ ΕΙΝΑΙ ΛΑΘΟΣ! Ο ΓΑΛΙΛΑΙΟΣ ΕΙΝΑΙ ΛΑΘΟΣ! ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ ΓΑΛΙΛΑΙΟΥ Ας υποθέσουµε σχ. 1, ότι έχουµε ένα ουράνιο σώµα µάζας Μ (γη, σελήνη, αστεροειδής, κ.λ.π.). K 1 M2 R K 1 K M 2 2 M 1 M 1 t = (Ι) (ΙΙ) Ελεύθερη πτώση των

Διαβάστε περισσότερα

v r T, 2 T, a r = a r (t) = 4π2 r

v r T, 2 T, a r = a r (t) = 4π2 r Πρώτη και Δεύτερη Διαστημική Ταχύτητα Άλκης Τερσένοβ 1. Πρώτη Διαστημική Ταχύτητα και Γεωστατική Τροχιά Πρώτη Διαστημική Ταχύτητα ονομάζεται η ελάχιστη ταχύτητα που θα πρέπει να αναπτύξει ένα σώμα που

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ - ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δυναμική ενέργεια δυο φορτίων Δυναμική ενέργεια τριών ή περισσοτέρων

Διαβάστε περισσότερα

- 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

- 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Test Αξιολόγησης: ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΕΦΑΛΑΙΟ 1 ο Καμπυλόγραμμες Κινήσεις (Οριζόντια Βολή,Ο.Κ.Κ.) - 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Εισηγητής : Γ. Φ. Σ ι

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz 1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία

Διαβάστε περισσότερα

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση 1. Mόλις τεθεί σε κίνηση µε σταθερή ταχύτητα, ο µάζας 1000 kg ανελκυστήρας Α ανεβαίνει µε ρυθµό έναν όροφο (3 m) το δευτερόλεπτο.

Διαβάστε περισσότερα

Λίγα για το Πριν, το Τώρα και το Μετά.

Λίγα για το Πριν, το Τώρα και το Μετά. 1 Λίγα για το Πριν, το Τώρα και το Μετά. Ψάχνοντας από το εσωτερικό κάποιων εφημερίδων μέχρι σε πιο εξειδικευμένα περιοδικά και βιβλία σίγουρα θα έχουμε διαβάσει ή θα έχουμε τέλος πάντων πληροφορηθεί,

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2014. Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:...

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2014. Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:... 1 ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2014 Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:... Ημερομηνία: 3/06/2014 Διάρκεια: 2 ώρες Ονοματεπώνυμο:...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο Φυσική Β Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις κινήσεις των σωμάτων. Το επόμενο βήμα είναι να αναζητήσουμε

Διαβάστε περισσότερα

R s ~ M Για αστρικές μάζες ΜΟ είναι μερικές φορές μικρότερη των αστέρων νετρονίων

R s ~ M Για αστρικές μάζες ΜΟ είναι μερικές φορές μικρότερη των αστέρων νετρονίων Μελανές οπές Πόση θα πρέπει να είναι η R μάζας Μ ώστε υ διαφ =c; 2GM Μάζα (M ) Rs (km) R s = c 2 Αστέρας 10 30 Αστέρας 3 9 Αστέρας 2 6 Ήλιος 1 3 Γη 0.00003 9mm R s ~ M Για αστρικές μάζες ΜΟ είναι μερικές

Διαβάστε περισσότερα

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Ένας σημαντικός χρόνος περιορισμένης

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 1. Τρια αντικείµενα Α, Β και C µε µάζα m, 2m και 8m αντίστοιχα βρίσκονται στο ίδιο επίπεδο και στις θέσεις που φαίνονται στο σχήµα. Σε ποια θέση (x,y) πρέπει να τοποθετεί ένα τέταρτο

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Το διαστημόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ

ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Α ΤΕΤΡΑΜΗΝΟΥ ΣΧΟΛ. ΕΤΟΣ 2012-13 ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ ΥΠΕΥΘΥΝΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΦΥΤΤΑΣ ΓΕΩΡΓΙΟΣ Page1 ΤΟ ΘΕΩΡΗΤΙΚΟ ΠΛΑΙΣΙΟ

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ η εξεταστική περίοδος 03-4 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 6-0-03 Διάρκεια: 3 ώρες Ύλη: Κυκλική κίνηση - Βολή - Ορμή - Κρούση Καθηγητής:

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ 3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2014-2015

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2014-2015 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 23-11-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.- ΚΑΤΣΙΛΗΣ Α.- ΠΑΠΑΚΩΣΤΑΣ Τ.- ΤΖΑΓΚΑΡΑΚΗΣ Γ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Το παράδοξο του Albert Eistein

Το παράδοξο του Albert Eistein Το παράδοξο του Albert Eistein O Einstein Σαν παιδί ήταν αρκετά ήσυχο και μοναχικό. Σαν μαθητής ήταν καλός, ειδικά στα μαθηματικά, χωρίς όμως να ξεχωρίζει ιδιαίτερα. Η κακή του μνήμη και ο αργός τρόπος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 -

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 - ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ H Γη είναι ένας πλανήτης από τους οκτώ συνολικά του ηλιακού μας συστήματος, το οποίο αποτελεί ένα από τα εκατοντάδες δισεκατομμύρια αστρικά συστήματα του Γαλαξία μας, ο οποίος με την

Διαβάστε περισσότερα

ΜΕΡΟΣ Α Αποτελείται από 6 ερωτήσεις. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες. Να απαντήσετε όλες τις ερωτήσεις.

ΜΕΡΟΣ Α Αποτελείται από 6 ερωτήσεις. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες. Να απαντήσετε όλες τις ερωτήσεις. ΛΥΚΕΙΟ ΑΓ. ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΤΑΞΗ: Α ΗΜΕΡ.: 02/06/2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ονοματεπώνυμο: ΔΙΑΡΚΕΙΑ: 2 ώρες Τάξη: ΟΔΗΓΙΕΣ : α) Το εξεταστικό

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Ισχύον ότι έχομε αφέρει στις κινήσεις σωμάτων με τη διαφορά ότι στη θέση της επιτάχνσης α τοποθετούμε την επιτάχνση βαρύτητας..γενικα Οι βολές είναι κινήσεις μεταβαλλόμενες (επιταχνόμενες

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Ασκήσεις στη Κυκλική Κίνηση

Ασκήσεις στη Κυκλική Κίνηση 1 Ασκήσεις στη Κυκλική Κίνηση 1.Δυο τροχοί ακτινών R 1=40cm και R 2=10cm συνδέονται με ιμάντα και περιστρέφονται ο πρώτος με συχνότητα f 1=4Hz, ο δε δεύτερος με συχνότητα f 2. Να βρεθεί ο αριθμός των στροφών

Διαβάστε περισσότερα

Θέµατα προς ανάλυση: Κινηµατική ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ

Θέµατα προς ανάλυση: Κινηµατική ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Αρχές Βιοκινητικής» Μάθηµα του βασικού κύκλου σπουδών (Γ εξάµηνο)

Διαβάστε περισσότερα

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΙΚΗ Γ ΓΥΜΝΑΙΟΥ Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ 1. α) Ζεύγος δυνάμεων Δράσης Αντίδρασης είναι η δύναμη που ασκεί ο μαθητής στο έδαφος

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 27 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Πρόβλημα 1 V A V B I. 1 ος τρόπος: Για να υπολογιστεί η απόσταση που τα χωρίζει θα πρέπει να υπολογιστούν πρώτα από

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Τα δύο

Διαβάστε περισσότερα

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής

ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος. Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής ΑΣΤΡΙΚΑ ΣΜΗΝΗ Τα ρολόγια του σύμπαντος Δρ Μάνος Δανέζης Επίκουρος Καθηγητής Αστροφυσικής Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Αστρικό σμήνος είναι 1 ομάδα από άστρα που Καταλαμβάνουν σχετικά μικρό χώρο στο

Διαβάστε περισσότερα

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Αφιερωµένη στη µνήµη της Φυσικού Σύλβιας Γιασουµή Κυριακή, 19 Μαρτίου, 2006 Ώρα: 10:30-13:30 Οδηγίες: 1) Το δοκίµιο αποτελείται από έξι

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 ΠΡΟΣΟΧΗ: Αυτό το έγγραφο ΔΕΝ θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε και τις σημειώσετε σ αυτό το έντυπο,

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΒΒ ΛΥΥΚΚΕΕΙΙΟΥΥ 1133 33 001111 ΘΕΜΑ 1 ο 1. β. γ 3. α 4. β 5. α ΘΕΜΑ ο 1. α. Σωστό Η δυναμική ενέργεια του συστήματος των δύο φορτίων δίνεται από

Διαβάστε περισσότερα

Η «ΦΥΣΗ» ΤΟΥ ΚΕΝΟΥ ΚΑΙ ΤΗΣ ΒΑΡΥΤΗΤΑΣ

Η «ΦΥΣΗ» ΤΟΥ ΚΕΝΟΥ ΚΑΙ ΤΗΣ ΒΑΡΥΤΗΤΑΣ 1 Η «ΦΥΣΗ» ΤΟΥ ΚΕΝΟΥ ΚΑΙ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΠΡΟΛΟΓΟΣ Θα αποδεχτούµε ότι το παν αποτελείται από το κενό και τα άτοµα, όπως υποστήριξε ο ηµόκριτος; Αν δεχτούµε σαν αξίωµα αυτή την υπόθεση, τι είναι το κενό και

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης

ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης 1 Σκοπός ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1 ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 19 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ Κυριακή, 3 Απριλίου, 5 Ώρα: 1: - 13: Προτεινόµενες Λύσεις ΘΕΜΑ 1 (1 µονάδες) (α) Το διάστηµα που διανύει ο κάθε αθλητής είναι: X A = υ Α

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ : η μετατόπιση ενός σώματος (m) () Δx x x x : η τελική θέση του σώματος (m) x : η αρχική θέση

Διαβάστε περισσότερα

Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων

Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ 28 Νοεµβρίου 2009 Εισαγωγή στην αστρονοµία Κεφάλαιο 11: Ο Θάνατος των αστέρων Λουκάς Βλάχος Τµήµα Φυσικής, ΑΠΘ

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 29 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ Κυριακή, 29 Μαρτίου 2015 Ώρα: 10:00-13:00 Οδηγίες 1) Το δοκίµιο αποτελείται από οκτώ (8) σελίδες και δέκα (10) θέµατα. 2) Να απαντήσετε

Διαβάστε περισσότερα

Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η

Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η Μ Α Θ Η Μ Α : Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η Ε Π Ω Ν Τ Μ Ο : < < < < < <

Διαβάστε περισσότερα

Πληροφορίες για τον Ήλιο:

Πληροφορίες για τον Ήλιο: Πληροφορίες για τον Ήλιο: 1) Ηλιακή σταθερά: F ʘ =1.37 kw m -2 =1.37 10 6 erg sec -1 cm -2 2) Απόσταση Γης Ήλιου: 1AU (~150 10 6 km) 3) L ʘ = 3.839 10 26 W = 3.839 10 33 erg sec -1 4) Διαστάσεις: Η διάμετρος

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής Η/Μ ΚΥΜΑΤΑ 1. Τα ηλεκτροµαγνητικά κύµατα: Ερωτήσεις Πολλαπλής επιλογής α. είναι διαµήκη. β. υπακούουν στην αρχή της επαλληλίας. γ. διαδίδονται σε όλα τα µέσα µε την ίδια ταχύτητα. δ. Δημιουργούνται από

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (14)

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (14) ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (14) Θέμα 1 ο Α. Σε ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων LC σε κάποια χρονική στιγμή που το ρεύμα στο κύκλωμα είναι ίσο με το μισό της μέγιστης τιμής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε: ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Διατήρηση της στροφορμής) Η Γη στρέφεται σε ελλειπτική τροχιά γύρω από τον Ήλιο. Το κοντινότερο σημείο στον Ήλιο ονομάζεται Περιήλιο (π) και το πιο απομακρυσμένο Αφήλιο (α).

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

Κεφάλαιο 4 ο : Ταλαντώσεις

Κεφάλαιο 4 ο : Ταλαντώσεις Κεφάλαιο 4 ο : Ταλαντώσεις Φυσική Γ Γυμνασίου Περιοδικές Κινήσεις Όλες οι κινήσεις επαναλαμβάνονται σε ίσα χρονικά διαστήματα. Περιοδικές κινήσεις: Οι κινήσεις που επαναλαμβάνονται σε ίσα χρονικά διαστήματα.

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών η εξεταστική περίοδος από 9/0/ έως 6// γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σποδών Τάξη: Β Λκείο Τμήμα: Βαθμός: Ημερομηνία: 09//0 Ύλη: Ονοματεπώνμο: Καθηγητής: Οριζόντια βολή Ομαλή κκλική κίνηση

Διαβάστε περισσότερα

φυσική κεφ.2 ΚΙΝΗΣΕΙΣ

φυσική κεφ.2 ΚΙΝΗΣΕΙΣ φυσική κεφ. ΚΙΝΗΣΕΙΣ Επισημάνσεις από τη θεωρία του βιβλίου Διανυσματική μέση ταχύτητα: v = = ό ό ά Είναι διάνυσμα, δε χρησιμοποιείται στην καθημερινή γλώσσα. Μέση ταχύτητα: v = = ή ή ό ά Δεν είναι διάνυσμα,

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Άσκηση 10 Παίζω Μαθαίνω Αποφασίζω

Άσκηση 10 Παίζω Μαθαίνω Αποφασίζω Άσκηση 10 Παίζω Μαθαίνω Αποφασίζω Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο έλεγχος ύπαρξης συντηρητικών και μη συντηρητικών δυνάμεων σε μια δεδομένη διαδρομή σώματος. Το θεωρητικό μέρος έχει να

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ

Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 130 Κεφάλαιο 1: ΕΙΣΑΓΩΓΗ Α. Απαντήσεις στις ερωτήσεις πολλαπλής επιλογής 1. α, β 2. γ 3. ε 4. β, δ 5. γ 6. α, β, γ, ε Β. Απαντήσεις στις ερωτήσεις συµπλήρωσης κενού 1. η αρχαιότερη

Διαβάστε περισσότερα