Άσκηση Οικονομετρίας ΙΙ. . (Υποδείγματα με Διαχρονικά Κατανεμημένες Επιδράσεις 1 )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Άσκηση Οικονομετρίας ΙΙ. . (Υποδείγματα με Διαχρονικά Κατανεμημένες Επιδράσεις 1 )"

Transcript

1 Άσκηση Οικονομετρίας ΙΙ.. (Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις ) Περιεχόμενα. Γενικά. Οικονομετρικά Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις. Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης στην Ελλάδα σε μία Μεταβολή της ιεθνούς Τιμής του Πετρελαίου Brend. Η Προσέγγιση των ιαχρονικών Επιδράσεων (Αντιδράσεων). Η Μαθηματική Προσέγγιση των Σχέσεων με ιαχρονικές Αλληλεξαρτήσεις. Η Άμεση (Βραχυχρόνια) Επίδραση (Impac Effec, Shor Run Effec): Οι Ενδιάμεσες Επιδράσεις (Inerim Effecs). Η Αθροιστική Επίδρασης μιας μεταβολής της μεταβλητής στην μεταβλητή Effecs, Long-run effecs) Οι Σταθμισμένοι Συντελεστές Επίδρασης (Sandardized Coefficiens). Η Μέση Χρονική Επίδραση (Mean Lag). Αλγεβρική Προσέγγιση του (Χρονο)ιάγραμματος G.3(Συνέχεια). Η ιάμεση Χρονική Επίδραση (Medean Lag). Το Υπόδειγμα της Μερικής Προσαρμογής. Παρουσίαση. Μέθοδος Εκτίμησης των παραμέτρων. Το Υπόδειγμα των Αναπροσαρμοσμένων Προβλέψεων. Παρουσίαση του Υποδείγματος. Μέθοδος Εκτίμησης των παραμέτρων. Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις. Παρουσίαση του Υποδείγματος. Μέθοδος Εκτίμησης των παραμέτρων. (Cumulaive Συνήθως τα υποδείγματα αυτά ονομάζονται και Υποδείγματα με Κατανεμημένες Χρονικές Υστερήσεις (Disribued Lags Models). Σε πολλά οικονομετρικά εγχειρίδια η λέξη επίδραση αντικαθίσταται με την λέξη υστέρηση.

2 Άσκηση Οικονομετρίας ΙΙ. (Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις 3 ) Στο Χρονοιάγραμμα που ακολουθεί παρουσιάζονται οι διαχρονικές εξελίξεις της μέσης τιμής της αμόλυβδης βενζίνης στην Ελλάδα και οι αντίστοιχες διεθνείς τιμές του πετρελαίου Brend ($/ Βαρέλι). Πρόκειται για ημερήσια στοιχεία από την αρχή του έτους 9. Χρησιμοποιώντας κάποιο από τα γνωστά σας οικονομετρικά υποδείγματα να σχολιάσετε τρόπους που θα μπορούσατε να διερευνήσετε και γενικότερα να σχηματοποιήσετε τη διαχρονική συνεξέλιξη αυτών των δύο μεγεθών. Χρονοδιάγραμμα ιαχρονική συνεξέλιξη των τιμών του πετρελαίου Brend ($/ Βαρέλι) και της μέσης τιμής της αμόλυβδης στην Ελλάδα. 3 Συνήθως τα υποδείγματα αυτά ονομάζονται και Υποδείγματα με Κατανεμημένες Χρονικές Υστερήσεις (Disribued Lags Models).

3 Ενδεικτική Απάντηση. Για την διερεύνηση της διαχρονικής συνεξέλιξης αυτών των δύο οικονομικών μεγεθών θα μπορούσαμε να χρησιμοποιήσουμε μια πληθώρα από οικονομετρικά υποδείγματα, συμπεριλαμβανομένων και της απλής γραμμικής και μη γραμμικής Περιγραφικής Στατιστικής. Θα περιοριστούμε όμως στα υποδείγματα με διαχρονικά κατανεμημένες επιδράσεις. H τιμή της Αμόλυβδης Βενζίνης επηρεάζεται αλλά και επηρεάζει την ιεθνώς ιαμορφούμενη τιμή των πετρελαίων Brend ($/ Βαρέλι). Γράφημα Ροής. Πιθανές Σχέσεις ιαχρονικής Αλληλεξάρτησης μεταξύ της μέσης τιμής της Αμόλυβδης Βενζίνης και της ιεθνούς Τιμής του Πετρελαίου Brend. Αυτή η διαχρονική σχέση αλληλεξάρτησης φαίνεται κάπως εξωπραγματική. Μπορούμε εύκολα να δεχθούμε ότι η τιμή του πετρελαίου Brend επηρεάζει την μέση τιμή της Αμόλυβδης Βενζίνης στην Ελλάδα. ε μπορούμε όμως σε καμία περίπτωση να δεχθούμε ότι η μέση τιμή της αμόλυβδης βενζίνης στην Ελλάδα επηρεάζει έστω και σε κάποιο ποσοστό την τιμή του πετρελαίου διεθνώς. Με βάση τον παραπάνω συλλογισμό μπορούμε να απλοποιήσουμε σε μεγάλο βαθμό το Γράφημα Ροής, ως εξής: 3

4 Γράφημα Ροής. Πιθανές Σχέσεις ιαχρονικής Αλληλεξάρτησης μεταξύ της μέσης τιμής της Αμόλυβδης Βενζίνης και της ιεθνούς Τιμής του Πετρελαίου Brend. Από το παραπάνω Γράφημα Ροής, προκύπτει ότι η μέση τιμή της Αμόλυβδης βενζίνης στην Ελλάδα επηρεάζεται από την ιεθνώς Καθορισμένη τιμή των Τιμών του Πετρελαίου Brend τόσο στο παρόν όσο και στο παρελθόν (περίοδος -, και περίοδος -). Ένα τέτοιο χωρίς απαραίτητη στατιστική επαλήθευση συμπέρασμα μας οδηγεί στη χρησιμοποίηση υποδειγμάτων με ιαχρονικά Κατανεμημένες Επιδράσεις για τη διερεύνηση της διαχρονικής συνεξέλιξης μεταξύ αυτών των δύο μεγεθών. 4

5 Οικονομετρικά Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις. Ένας τρόπος που θα μπορούσε να μας βοηθήσει να εντοπίσουμε πιθανές διαχρονικές σχέσεις εξάρτησης μεταξύ δύο ή περισσότερων μεγεθών, είναι να υπολογίσουμε τον τρόπο που η μια μεταβλητή αντιδρά σε μια μεταβολή μιας άλλης μεταβλητής που υποθέτουμε ότι την επηρεάζει αιτιωδώς. Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης στην Ελλάδα σε μία Μεταβολή της ιεθνούς Τιμής του Πετρελαίου Brend. Από τη μέχρι τώρα ανάλυση θα μπορούσαμε να θεωρήσουμε ότι υφίσταται μια διαχρονική επίδραση στις τιμές του πετρελαίου Brend στη μέση τιμή της αμόλυβδης στην Ελλάδα. Αυτή η διαχρονική επίδραση μπορεί να προσεγγισθεί μ ένα υπόδειγμα με διαχρονικά κατανεμημένες επιδράσεις, όπως αυτά που αναπτύξαμε στο ανάλογο μάθημα της Οικονομετρίας ΙΙ. Μας ενδιαφέρει δηλαδή να υπολογίσουμε το πώς αντιδρά η μέση τιμή της αμόλυβδης στην Ελλάδα σε μια μεταβολή (αυ ξηση ή μείωση) των τιμών του πετρελαίου Brend. Ένας τρόπος να διερευνήσουμε τα διαχρονικά χαρακτηριστικά της σχέσης που συνδέει αυτά τα δύο μεγέθη είναι να δούμε πως μια μεταβολή στην τιμή του Brend θα μπορούσε να επηρεάσει την μέση τιμή της αμόλυβδης βενζίνης στην Ελλάδα Αντίδραση της Μέσης Τιμής της Αμόλυβδης στην Ελλάδα Προσωρινή Μεταβολή της ιεθνούς Τιμής του Πετρελαίου Brend Januar Februar March April Ma (Σχε)ιάγραμμα G.3 : Γραφική παρουσίαση μιας μη μόνιμης Αύξησης της τιμής του Πετρελαίου Brend στη μέση τιμή της Αμόλυβδης Βενζίνης στην Ελλάδα. 5

6 Μια μη μόνιμη (πρόσκερη) αύξηση στην τιμή του Brend μπορεί να αυξήσει την τιμή της Αμόλυβδης στην Ελλάδα. Το αντίστροφο θα αναμένουμε να συμβεί για μια μείωση της τιμής του Brend. Στο (Σχε)ιάγραμμα G.3 παρουσιάζουμε γραφικά την επίδραση μιας προσωρινής ς αύξησης του Brend στη μέση τιμή της Αμόλυβδης Βενζίνης. Από το παραπάνω (Σχε)ιάγραμμα προκύπτει ότι μια πρόσκαιρη αύξηση της τιμής του πετρελαίου Brend θα επιδράσει θετικά στη μέση τιμή της αμόλυβδης. Η αύξηση αυτή έχει την μορφή που δίδεται στο επιμέρους γράφημα, και θα έχει μια διάρκεια την οποία και αναλύουμε στις παραγράφους που ακολουθούν. Με βάση τα ευρήματα και την τιμή της αμόλυβδης θα μπορούσαμε να πούμε ότι η σχέση που συνδέει την τιμή του Brend και το ιαθέσιμο Ιδιωτικό Εισόδημα είναι μια σχέση με διαχρονικά χαρακτηριστικά. Στην ανάλυση των διαχρονικά κατανεμημένων επιδράσεων μεταξύ δύο ή περισσότερων οικονομικών μεγεθών, εκτος της διάστασης του χρόνου, μπορούμε να συμπεριλάβουμε και επιπλέον πληροφόρηση και για άλλα χαρακτηριστικά της ανάλυσης όπως το ρόλο που έχει το ύψος της τιμής του Brend. Είναι λογικό κάποιος να περιμένει ότι η επίδραση μιας μεταβολής (αύξησης) της τιμής του Brend, θα έχει διαφορετικές επιπτώσεις στη μέση τιμή της αμόλυβδης στην Ελλάδα και θα εξαρτάται από το ύψος που έχει τη συγκεκριμένη χρονική περίοδο η τιμή του Brend. Άλλη αντίδραση θα έχει με τιμή 5$ και άλλη με 75$. Μια τρισδιάστατη 4 πανοραμική παρουσίαση της επίδρασης μιας μη μόνιμης μεταβολής του ιαθέσιμου Ιδιωτικού Εισοδήματος στην Ιδιωτική κατανάλωση σε διαφορετικά επίπεδα ιαθέσιμου Εισοδήματος δίδεται στο (Σχε)ιάγραμμα G.4 4 Η τρισδιάστατη αυτή παρουσίαση αντιστοιχεί στην αντίδραση της Ιδιωτικής Κατανάλωσης σε μια μη μόνιμή μεταβολή του εισοδήματος σε διαφορετικά επίπεδα εισοδήματος. 6

7 Αντίδραση της της Μέσης Τιμής της Αμόλυβδης στην Ελλάδα Χρόνος ιαφορετικά Επίπεδα Τιμής του Πετρελαίου (Σχε)ιάγραμμα G.5 ιαχρονική παρουσίαση των επιδράσεων 5 μιας μη μόνιμης μεταβολής του ιαθεσίμου Εισοδήματος στην Ιδιωτική Κατανάλωση για διαφορετικά επίπεδα εισοδήματος. Το Σχεδιάγραμμα G.5 είναι μια επιπλέον επιβεβαίωση της χρησιμότητας διαχρονικών σχέσεων αλληλεξάρτησης μεταξύ των οικονομικών μεγεθών. Η πληροφόρηση για την εξέλιξη μιας πρόσκαιρης μεταβολής της τιμής του Brend στη μέση τιμή της αμόλυβδης σε διαφορετικά επίπεδα της τιμής του Brend είναι μια χρησιμότατη πληροφόρηση στους ασκούντες οικονομική πολιτική, και όχι μόνον. 7

8 Η Προσέγγιση των ιαχρονικών Επιδράσεων (Αντιδράσεων). Στό (Χρονο)ιάγραμμα G.4 παρουσιάζεται γραφικά η επίδραση μιας αύξησης του ιαθέσιμου Ιδιωτικού Εισοδήματος ( )στην Ιδιωτική Κατανάλωση ( C )της Ελληνικής Οικονομίας. Αντίδραση της της Μέσης Τιμής της Αμόλυβδης στην Ελλάδα Χρόνος ιαφορετικά Επίπεδα Τιμής του Πετρελαίου (Χρονο)ιάγραμμα G.4 ιαχρονική Αντίδραση της Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης στην Ελλάδα σε μία Μεταβολή της ιεθνούς Τιμής του Πετρελαίου Brend. ( PAVER ) ( Poil ) ( AVER ) ( oil ) β = = = ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα την τρέχουσα περίοδο(πρώτη Ημέρα)) ( PAVER ) ( Poil ) ( AVER ) d( Poil ), +, + ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα τόν δεύτερη Ημέρα)) ( PAVER ) ( Poil ) ( AVER ) d( Poil ), +, + ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα τή Τρίτη Ημέρα) 3 ( PAVER ) ( Poil ) ( AVER ) d( Poil ), + 3, + 3 ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα τήν Τέταρτη Ημέρα) 7 ( PAVER ) ( Poil ) ( AVER ) d( Poil ), + 7, + 7 ( εκφράζει την επίδραση μιας μεταβολής του ιαθέσιμου Ιδιωτικού Εισοδήματος στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα την έβδομη Ημέρα) 8

9 7, 6, 5, 4, 3, Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης στην Ελλάδα σε μία Μεταβολή της ιεθνούς Τιμής του Πετρελαίου Brend. 6,3,,,,,3, (Χρονο)ιάγραμμα G.4 ιαχρονική Αντίδραση της Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης στην Ελλάδα σε μία Μεταβολή της ιεθνούς Τιμής του Πετρελαίου Brend. ( PAVER ) ( Poil) ( AVER ) d( Poil), +, + ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα την τρέχουσα περίοδο(πρώτη Ημέρα)) ( PAVER ) ( Poil ) ( AVER ) d( Poil ), +, + ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα τόν δεύτερη Ημέρα)) ( PAVER ) ( Poil ) ( AVER ) d( Poil ), +, + ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα τή Τρίτη Ημέρα) 4 ( PAVER ) ( Poil ) ( AVER ) d( Poil ), + 4, + 4 ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα τήν Τέταρτη Ημέρα) 7 ( PAVER ) ( Poil ) ( AVER ) d( Poil ), + 7, + 7 ( εκφράζει την επίδραση μιας μεταβολής του ιαθέσιμου Ιδιωτικού Εισοδήματος στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα την έβδομη Ημέρα) 9

10 Μαθηματική Προσέγγιση των Σχέσεων με ιαχρονικές Αλληλεξαρτήσεις. Μέχρι τώρα μελετήσαμε την στατική σχέση μεταξύ δυο μεγεθών με βάση το απλό υπόδειγμα: ( ;, ) = f β β + ε (G.) Με βάση όμως το (Χρονο)ιαγράμματα G.4 και G.6 το παραπάνω υπόδειγμα πρέπει να επεκταθεί και να συμπεριλάβει τις διαχρονικές επιδράσεις της μεταβλητής παραπάνω υπόδειγμα σε ένα υπόδειγμα της μορφής : στην μεταβλητή (, ;, ) = f β β β β + ε (G.) 3 k k. Θα πρέπει το Το υπόδειγμα G. είναι ένα υπόδειγμα με διαχρονικά κατανεμημένες επιδράσεις, δεδομένου ότι λαμβάνει υπ όψη του τις επιδράσεις της ερμηνευτικής μεταβλητής στην ερμηνευόμενη μεταβλητή χρονικές περιόδους. οι οποίες σημειώθηκαν ή έλαβαν μέρος σε διαφορετικές μελλοντικές Στο υπόδειγμα (G.) η επίδραση της μεταβλητής χρονικής περιόδου. επί της μεταβλητής εξαντλείται εντός μιας Στο υπόδειγμα (G.) η επίδραση της μεταβλητής στην μεταβλητή κατανέμεται στον χρόνο, δεδομένου ότι εκτός την άμεση επίδραση d d +, d d +3 διαφήμιση) στις πωλήσεις d διαχέεται ή καλύτερα d d, d έχουμε επιπλέον τις + κ.λ.π. που εκφράζουν τις επιδράσεις μιας μεταβολής της μεταβλητής (δαπάνες για του συγκεκριμένου προϊόντος, τις επόμενες χρονικές περιόδους. Έχοντας στην διάθεση μας τις εκτιμήσεις των παραμέτρων β, β, β,..., β κ μπορούμε να αντλήσουμε πληροφόρηση και να συστηματοποιήσουμε την μελέτη των διαχρονικών επιδράσεων της μεταβλητής (απάνες για ιαφήμιση) στην μεταβλητή (Πωλήσεις ενός Προϊόντος) χρησιμοποιώντας τα εξής: Η Άμεση (Βραχυχρόνια) Επίδραση (Impac Effec, Shor Run Effec): d = β d Εκφράζει την άμεση αντίδραση της μεταβλητής στην περίοδο. (G.3) σε μια μεταβολή της ερμηνευτικής μεταβλητής 6 6 Θά μπορούσαμε επίσης να πούμε ότι η σχέση (G.3) εκφράζει την άμεση επίδραση μιας μεταβολής της ερμηνευτικής μεταβλητής επί της ερμηνευόμενης μεταβλητής 6 στην περίοδο.

11 Οι Ενδιάμεσες Επιδράσεις (Inerim Effecs). Οι εκτιμήσεις των παραμέτρων β, β,..., β κ θα μπορούσαν να θεωρηθούν ως οι ενδιάμεσες επιδράσεις στην πρόσκαιρη μεταβολή της μεταβλητής την περίοδο, στις χρονικές περιόδους: d = = d + + β περίοδο στην μεταβλητή d = = d + + β την περίοδο στην μεταβλητή d = = d + κ + κ β κ την περίοδο στην μεταβλητή : Εκφράζει την επίδραση μιας μεταβολής της μεταβλητής που εκδηλώνεται την την περίοδο +. : Εκφράζει την επίδραση μιας μεταβολής της μεταβλητής που εκδηλώνεται την περίοδο +. : Εκφράζει την επίδραση μιας μεταβολής της μεταβλητής που εκδηλώνεται την περίοδο + κ. Η Αθροιστική Επίδρασης μιας μεταβολής της μεταβλητής (Cumulaive Effecs, Long-run effecs) στην μεταβλητή Το «άθροισμα» όλων των συντελεστών β, β, β,..., β κ εκφράζει το συνολικό (τελικό) αποτέλεσμα στην επίδραση μιας μεταβολής της μεταβλητής στην μεταβλητή. Η αθροιστική επίδραση υπολογίζεται ως εξής: κ d d+ d+ d+ κ... β β... βκ β d d d d = = (G.4) = Οι Σταθμισμένοι Συντελεστές Επίδρασης (Sandardized Coefficiens). Οι συντελεστές αυτοί ορίζονται ως εξής: β = κ β = β για,,..., κ = (G.5) Οι συντελεστές αυτοί εκφράζουν το ποσοστό της επίδρασης μιας μεταβολής της μεταβλητής μεταβλητής που έχει υλοποιηθεί στην,,,..., κ = περίοδο. επι της

12 Μπορούμε επιπλέον να ορίσουμε σε σχέση με τον χρόνο τα εξής επιπλέον μεγέθη: Η Μέση Χρονική Επίδραση (Mean Lag) 7. = Μέση Χρονική Επίδραση = κ κ = β β (G.6) Η μέση επίδραση εκφράζει τον χρόνο που απαιτείται για να ολοκληρωθεί κατά % η επίδραση της μεταβολής της μεταβλητής επί της μεταβλητής. Εάν για παράδειγμα η μέση επίδραση είναι,5 και όταν οι δύο μεταβλητές και είναι διαθέσιμες σε μηνιαία βάση αυτό σημαίνει ότι για να εξαντληθεί ή να μηδενισθεί η επίδραση μιας μεταβολής στην μεταβλητή κατά μέσο χρόνο απαιτούνται.5 μήνες. Η μέση επίδραση θέλει προσοχή στην ερμηνεία της διότι εκφράζει στο μέσο χρόνο που χρειάζεται να ολοκληρωθεί στο % της επίδρασης της μεταβλητής κάνουμε συγκρίσεις. στην. Είναι χρήσιμο εργαλείο ιδίως όταν (Χρονο)ιάγραμμα G.7. ιαχρονιά κατανεμημένες επιδράσεις με την ίδια χρονική διάρκεια αλλά με διαφορετική Μέση Επίδραση. Στο (Χρονο)ιάγραμμα G.7 συγκρίνουμε δυο διαχρονικά κατανεμημένες επιδράσεις οι οποίες εξαντλούνται εντός χρονικών περιόδων. Ενώ και οι δυο επιδράσεις έχουν μια χρονική διάρκεια περιόδων η επίδραση (Α) εξαντλείται σε μεγάλο μέρος στις ή 3 χρονικές περόδους σε αντίθεση με την επίδραση (Β) που χρειάζεται περισσότερο χρόνο μέχρις ότου εξαντλειθεί. Η ιάμεση Χρονική Επίδραση (Medean Lag). Η επίδραση αυτή υπολογίζεται ως εξής: ιάμεση Επίδραση = Lag όταν Lag β = β =,5 (G.7) 7 Σε πολλά οικονομετρικά εγχειρίδια η λέξη επίδραση αντικαθίσταται με την λέξη υστέρηση.

13 Η ιάμεση Επίδραση εκφράζει τον χρόνο μέσα στον οποίο το 5% της επίδρασης έχει ολοκληρωθεί. Είναι και αυτό ένα επιπλέον εργαλείο ή μέτρο μελέτης της διαχρονικής αντίδρασης της εξαρτημένης μεταβλητής σε μια μεταβολή της ανεξάρτητης μεταβλητής. 3

14 Αλγεβρική Προσέγγιση του (Χρονο)ιάγραμματος G.3(Συνέχεια). Προσεγγίζουμε τό (Χρονο)ιάγραμμα G.3 ή την γενική σχέση (5.3) που συνδέει τις δυο μεταβλητές με το ανάπτυγμα μιας σειράς Talor, ως εξής : θ θ θ θ = ( ) ( ) ( ) ( 3 3) θ θ θ θ 3 θ θ θ θ θ θ θ = ε θ θ θ θ 3 θ θ θ θ θ θ = a ε (5.4) θ θ θ Το υπόδειγμα που προκύπτει είναι : a β β β ε (5.5) = k k + Το υπόδειγμα (5.5) είναι ένα υπόδειγμα με ιαχρονικά Κατανεμημένες Επιδράσεις 8 ( Disribued Lags Model). Αν έχουμε στην διάθεση μας στοιχεία για την μεταβλητή και την μεταβλητή, μπορούμε να εκτιμήσουμε τις παραμέτρους a, β, β,..., β και κατ επέκταση να συγκεκριμενοποιήσουμε αριθμητικά τις διαχρονικές εκφράσεις και της μεταβλητής (5.4). στην μεταβλητή μέσω των σχέσεων Το υπόδειγμα (5.5) μπορεί να γραφεί ως εξής : = + k β + = a ε (5.6) Το υπόδειγμα (5.6) έχει συγκεκριμένο αριθμό χρονικών υστερήσεων (s),δηλαδή η επίδραση της έχει ένα συγκεκριμένο αριθμό επιδράσεων (s).το υπόδειγμα (5.6) συνήθως ονομάζεται Υπόδειγμα ιαχρονικών Κατανεμημένων Επιδράσεων με περιορισμένο Αριθμό Χρονικών Επιδράσεων. Επιπλέον υπάρχει η δυνατότητα να γράψουμε (5.6) ως εξής : 8 4

15 (5.7) = a+ β + ε = Το (5.7) είναι το Υπόδειγμα των ιαχρονικών Κατανεμημένων Επιδράσεων με Απεριόριστο (Άπειρο) Αριθμό Χρονικών Επιδράσεων ν. 5

16 Το Υπόδειγμα της Μερικής Προσαρμογής (των Αποθεμάτων) 9. Για τη διερεύνηση της διαχρονικής συνεξέλιξης της μέσης τιμής της αμόλυβδης και της τιμής του πετρελαίου Brend, θα μπορούσαμε να χρησιμοποιήσουμε το Υπόδειγμα της Μερικής Προσαρμογής. Θα μπορούσαμε να θεωρήσουμε ότι η επιθυμητή τιμή της αμόλυβδης στην Ελλάδα, έστω P είναι AVER, συνάρτηση της τιμής του Brend. Θα μπορούσαμε δηλαδή να εκτιμήσουμε ένα υπόδειγμα της μορφής: με P = β + β P + ε (6.) AVER, oil, ( ) AVER, P P = λ P P (6.) AVER, AVER, AVER, όπου: P P AVER, = Επιθυμητή Τιμή της Αμόλυβδης στην Ελλάδα AVER, = Πραγματική Τιμή της Αμόλυβδης στην Ελλάδα P oil, = Τιμή του Πετρελαίου Brend ($/ Βαρέλι) ε = ιαταρακτικός Όρος και β και β είναι παράμετροι υπό εκτίμηση. Για την απλοποίηση των υπολογισμών θα μπορούσαμε να θέσουμε ότι P AVER,, = P AVER, και = Poil, Με τον παραπάνω συμβολισμό το υπόδειγμα για την ερμηνεία των τιμών της αμόλυβδης στην Ελλάδα γράφεται ως εξής: = + β β + ε = λ ( ) (6.3) (6.4) για =,,..T Στην παραπάνω σχέση η μεταβλητή δεν είναι μετρήσιμη, δεδομένου ότι εκφράζει το επιθυμητό αλλά μη μετρήσιμο μέγεθος της μεταβλητής ένα σχήμα της μορφής: ( λ) = λ + Ή μετά από σειρά απο αλγεβρικές προσαρμογές : όπου = λ ( ) : οι πραγματικές τιμές της μεταβλητής. Μπορεί όμως η μεταβλητή (6.6) (6.5) να προσεγγισθεί με : το επιθυμητό μέγεθος της μεταβλητής (desired sock) 9 Socks Adusmen Model. 6

17 λ: είναι ο Συντελεστής Μερικής Προσαρμογής των επιθυμητών τιμών (desired) τιμές (acive). Η τιμή του Συντελεστή Μερικής Προσαρμογής βρίσκεται πάντοτε μεταξύ και, ως εξής: ( λ ) (6.7) Εάν η τιμή του λ= = = (πλήρης προσαρμογή) Εάν το λ είναι κοντά στο μηδέν τότε, έστω λ=. τότε: =.( ) =. ( ) (6.8) δηλαδή η απόκλιση της επιθυμητής τιμής από την πραγματική τιμή της (.) της απόκλισης της μεταβλητής από την προηγουμένη της τιμή. στις πραγματικές είναι πολύ μικρό μέρος Η Εκτίμηση των παραμέτρων του υποδείγματος. Για την εκτίμηση των παραμέτρων β, β και λ του υποδείγματος λύνουμε το σύστημα εξισώσεων : = + β β + ε = λ ( ) (6.9) (6.) Θέλοντας να σχηματίσουμε το δεξιό μέρος της σχέσης (6.), αφαιρούμε από την εξίσωση (6.9) την μεταβλητή : = β + β + ε Πολλαπλασιάζουμε την παραπάνω σχέση επι λ, και δημιουργούμε το δεξιό μέρος της σχέσης (6.) : ( ) = βλ + βλ λ ε λ + Αντικαθιστούμε την παραπάνω σχέση στην εξίσωση ( 6.) λαμβάνοντας: με ( ) = β λ + βλ λ λε = λ + ( λ + ) λε ( λ) λε λ + ( ) w = β λ + β λ + = β + + λ βλ = λ + β λ + β (6.) w = λε (6.) Οι σχέσεις (6.) και (6.) είναι οι δύο σχέσεις που θα πρέπει να αξιοποιηθούν για τον υπολογισμό των παραμέτρων β, β και λ. Ιδιαίτερα η σχέση (6.) η οποία έχει πλέον ένα νέο διαταρακτικό όρο, την w = λε. Οι στατιστικές ιδιότητες του νέου διαταρακτικού όρου: E w = E = E = λ = (Μέση Τιμή) ( ) ( λε ) λ ( ε ) 7

18 V w = V λε = λ V ε = λ σ ε (ιακύμανση) ( ) ( ) ( ) Οι υποθέσεις για τον διαταρακτικό όρο w της παραπάνω στοχαστικής εξίσωσης είναι αυτές του Κλασσικού Γραμμικού Υποδείγματος. Οι δύο παραπάνω υποθέσεις είναι χρησιμότατες για την = λ + β λ + λ + w β με την εκτίμηση των παραμέτρων του υποδείγματος ( ) εφαρμογή της μεθόδου των απλών ελάχιστων τετραγώνων. Αυτό είναι δυνατό δεδομένου ότι η αναμενόμενη τιμή του διαταρακτικού όρου w έχει μέση τιμή μηδέν και σταθερή διακύμανση. Με βάση την παραπάνω υπόθεση προκύπτει ότι μπορούμε να εφαρμόσουμε την μέθοδο των Απλών Ελάχιστων Τετραγώνων για την εκτίμηση των παραμέτρων του υποδείγματος, έστω και αν στις ερμηνευτικές μεταβλητές υπάρχει η εξαρτημένη μεταβλητή με χρονική υστέρηση. Οι εκτιμήσεις των παραμέτρων είναι συνεπείς, δεδομένου ότι εφαρμόζουμε το Μερικώς Ανεξάρτητο Στοχαστικό Γραμμικό Υπόδειγμα. Η εκτίμηση των παραμέτρων β, β, λ, ( βλ βλ + ( λ) ) min ˆ ˆ T β, β, λ =. σ θα γίνει ελαχιστοποιώντας το Άθροισμα: 8

19 Το Υπόδειγμα των Αναπροσαρμοσμένων Προβλέψεων. Σύμφωνα με το υπόδειγμα αυτό σε μια σχέση μεταξύ δύο ή περισσότερων μεγεθών ερμηνευμένη μεταβλητή είναι συνάρτηση των αναμενόμενων ή προβλεπόμενων (epeced forecased) τιμών των ερμηνευτικών μεταβλητών. Ένα τέτοιο σχήμα θα μπορούσε να χρησιμοποιηθεί για τη διερεύνηση της συνεξέλιξης της τιμής της αμόλυβδης στην Ελλάδα και των διεθνών τιμών του πετρελαίου Brend. Θα μπορούσαμε να θεωρήσουμε ότι η μέση τιμή της αμόλυβδης P AVER, είναι συνάρτηση των αναμενόμενων τιμών του πετρελαίου Bren oil. μ ένα σχήμα της μορφής: P = β + β P + ε AVER, oil, Επιπλέον αν υποθέσουμε ότι σύνδεση της αναμενόμενης τιμής του Brend ( P oil, ) με την πραγματική τιμή, γίνεται μέσω ενός μηχανισμού Αναπροσαρμοσμένων Προβλέψεων της μορφής: ( λ )( ) P P = P P oil, oil, oil, oil, Όπου λ είναι ο συντελεστής προσαρμογής των πραγματικών τιμών P oil, και των προβλεπόμενων (αναμενόμενων) τιμών P oil,. Για την απλοποίηση των υπολογισμών μπορούμε να γράφουμε με = P, = P και AVER, oil, P = oil, οπότε: Το Υπόδειγμα των Αναπροσαρμοσμένων Προβλέψεων γράφεται ως εξής: = β ο + β + ε ή = β + ε = ( λ)( ) λ Ο συντελεστής λ ονομάζεται συντελεστής προβλέψεων (epecaions coefficien). Όπου : ερμηνευόμενη μεταβλητή : Προβλεπόμενο μέγεθος της μεταβλητής : Η ερμηνευτική μεταβλητή ( )( ) Εάν λ= = = = Εάν λ= ( )( = ) Parial Adusmen model. 9

20 = δεν έχουμε καμία προσαρμογή Ο μηχανισμός προσαρμογής των προβλέψεων σε σχέση με την μεταβλητή ( λ )( ) (, ; λ ) = + = f γράφεται ως εξής: ηλαδή οι αναπροσαρμοσμένες προβλέψεις εξαρτώνται τόσο από την τρέχουσα τιμή της μεταβλητής αλλά και από προβλέψεις της προηγούμενης περιόδου. Ο συντελεστής λ είναι αυτός που καθορίζει και την ένταση της προσαρμογής. Η σχέση (6.5) γράφεται και ως εξής: = λ + ( λ) Η εκτίμηση των παραμέτρων του υποδείγματος των δύο εξισώσεων γίνεται ως εξής : ( λ )( ) = = ( λ) ( λ) ( L) ( λ ) ( L) ( L ) ( λ) L ( λ) L L λl ( λ) L = + = + = = ( λl) ( λ) ( λ ) ( λl) = αντικαθιστούμε την παραπάνω σχέση λαμβάνοντας: ( λ) = β ( ) + ε λl ( λl) = ( λ) β + ( λl) ε = + λ β + w λ ( ) w = ε λε Η εκτίμηση της παραπάνω σχέσης δεν μπορεί να γίνει με την απλή μέθοδο των Ελάχιστων Τετραγώνων. Και αυτό διότι ο νέος διαταρακτικός όρος w = ε λε είναι ένα σχήμα κινητού μέσου, σαν αυτά που αναπτύξαμε στην περίπτωση του προβλήματος της αυτοσυσχέτισης του διαταρακτικού όρου. Ο νέος διαταρακτικός όρος μέσω αυτού του σχήματος ενσωματώνει πληροφόρηση. Με πολύ απλά λόγια αν χρησιμοποιήσουμε την απλή μέθοδο των ελάχιστων τετραγώνων και αγνοήσουμε αυτή την πληροφόρηση που μας παρέχει ο διαταρακτικός όρος τότε οι εκτιμήσεις μας δεν θα είναι καν Σε αυτή την ανάλυση χρησιμοποιήθηκε ο τελεστής των χρονικών επιδράσεων. Πρόκειται για ένα εργαλείο απλοποίησης των αλγεβρικών πράξεων. Ο τελεστής ή και μετασχηματιστής των επιδράσεων (Lag Operaor) καθορίζεται ως εξής: Μια μεταβλητή με κάποια χρονική υστέρηση έστω γράφεται ως εξής: = L και = L, L L ( L ) 3 = =, = 3 L

21 συνεπείς 3. Αν εκτιμήσουμε με την μέθοδο των απλών ελάχιστων τετραγώνων το υπόδειγμα ( ) = λ + λ β + w χωρίς να λάβουμε υπ όψη μας την ύπαρξη αυτοσυσχέτισης στις τιμές του διαταρακτικού όρου w = ε λε τότε μπορεί να οδηγηθούμε σε λαθεμένα συμπεράσματα4. Χρειάζεται να γίνουν οι ανάλογοι μετασχηματισμοί ούτως ώστε στο παραπάνω υπόδειγμα ο διαταρακτικός του όρος να ακολουθεί τις υποθέσεις του Κλασσικού Γραμμικού Υποδείγματος. Η εκτίμηση των παραμέτρων του υποδείγματος με διαταρακτικό όρο που ακολουθεί ένα σχήμα κινητού μέσου ΜΑ() γίνεται ως εξής: λ = [ ] + w β( λ) w = ε λε Η (3) μπορεί να απλοποιηθεί ακόμη περισσότερο εάν τη χωρίσουμε σε δύο μέρη : = β ( λ) λ + β ( λ) λ + ε = Γράφοντας -=i μπορούμε να γράψουμε την (4) ως : όπου : = β z + n z + ε = (5) (4) n E = ( ) = β( λ) λ = (6) z = λ = λ ( ) = λ (8) (7) Η εκτίμηση της (5) μπορεί να γίνει με τη μέθοδο των Γραμμικών Ελαχίστων τετραγώνων όπως αυτή παρουσιάζεται στο Παράρτημα 5. 3 Υπάρχουν τρεις περιπτώσεις όπου η μέθοδος των απλών ελάχιστων τετραγώνων δεν μας δίδει καν συνεπείς εκτιμήσεις. Οι περιπτώσεις αυτές είναι οι εξείς: Υποδείγματα που στο δεξιό τους μέρος έχουν την ερμηνευμένη μεταβλητή με χρονική υστέρηση και αυτοσυσχετιζόμενο διαταρακτικό όρο, Υποδείγματα με λάθη μέτρησης στις μεταβλητές καί τα ιαρθρωτικά Συστήματα Εξισώσεων. 4 Μία παρουσίαση αυτών των λαθεμένων συμπερασμάτων απο την εφαρμογή της μεθόδου των απλών ελάχιστων τετραγώνων παρουσιάζεται στο αμέσως επόμενο μέρος με την βοήθεια μιας σειράς πειραματισμών.

22 Αυτό που χρειάζεται είναι να εφαρμόσουμε μία επαναληπτική τεχνική ελαχίστων τετραγώνων για διάφορες τιμές του λ στο διάστημα τιμών που καθορίζεται από την (8). Επιλέγουμε εκείνη την εκτίμηση του λ που μας δίνει το ελαχιστότερο(μικρότερο) άθροισμα του τετραγωνικού σφάλματος. ^ ^,, )) ( ) ( ( min ^ ^ ^ λ λ β λ β ο o o T n z n z o =

23 Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις. Ένα τέτοιο σχήμα θα μπορούσε να χρησιμοποιηθεί για τη διερεύνηση της συνεξέλιξης της τιμής της αμόλυβδης στην Ελλάδα και των διεθνών τιμών του πετρελαίου Brend. Θα μπορούσαμε να θεωρήσουμε ότι η μέση τιμή της αμόλυβδης P AVER, είναι συνάρτηση των αναμενόμενων τιμών του πετρελαίου Brend P oil. μ ένα σχήμα της μορφής: ιαχρονικές Επιδράσεις της μεταβλητής β = f = a + a + a + + a ( ) o... r στις τιμές της μεταβλητής r Σχεδιάγραμμα. Πολυωνυμική Μορφή των ιαχρονικών Επιδράσεων της μεταβλητής. στην μεταβλητή 3

24 (Χρονο)ιάγραμμα G.4 ιαχρονική Αντίδραση της Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης στην Ελλάδα σε μία Μεταβολή της ιεθνούς Τιμής του Πετρελαίου Brend. ( PAVER ) ( Poil) ( AVER ) d( Poil), +, + ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα την τρέχουσα περίοδο(πρώτη Ημέρα)) ( PAVER ) ( Poil ) ( AVER ) d( Poil ), +, + ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα τόν δεύτερη Ημέρα)) ( PAVER ) ( Poil ) ( AVER ) d( Poil ), +, + ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα τή Τρίτη Ημέρα) 4 ( PAVER ) ( Poil ) ( AVER ) d( Poil ), + 4, + 4 ( εκφράζει την επίδραση μιας μεταβολής της ιεθνούς Τιμής του Πετρελαίου Brend στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα τήν Τέταρτη Ημέρα) 7 ( PAVER ) ( Poil ) ( AVER ) d( Poil ), + 7, + 7 ( εκφράζει την επίδραση μιας μεταβολής του ιαθέσιμου Ιδιωτικού Εισοδήματος στην Μέση Τιμή της Αμόλυβδης στην Ελλάδα την έβδομη Ημέρα) = a+ β + β + + β + ε... m m 4

25 ή = a+ β + β + + β + ε (4)... m m m = + β ε = ο + (5) a όπου,3,..., m a, a, a,... a,γ, o r r β = f ( ) = ao + a+ a ar (6) = (7) β, β, β,, βm είναι παράμετροι υπό εκτίμηση. Η Μέθοδος Εκτίμησης των Παραμέτρων του Υποδείγματος. Για δεδομένο αριθμό χρονικών υστερήσεων m και τον βαθμό του πολυώνυμου (r) ν το υπόδειγμα με την υπόθεση ότι : m = γ + β + ε = ο β = f = a + a + a + + a ( ) o... r r μπορεί να εκτιμηθεί με την μέθοδο των απλών ελάχιστων τετραγώνων. Έστω ότι ο βαθμός του πολυωνύμου είναι r = 3 και ο αριθμός των χρονικών επιδράσεων είναι m=(5), τότε μπορούμε να προσεγγίσουμε τους συντελεστές των χρονικών υστερήσεων ως εξής: ( ) β = f = a + a + a + a (8) 3 Έτσι για =,..., s=5 οι συντελεστές των χρονικών υστερήσεων θα μπορούσαν να προκύψουν ως εξής: = β = ƒ() = α = β = ƒ() = α + α + α + α3 (9) = β = ƒ() = α + α + α + 3 α3 =5 : : : : : : : : : : : : : : : : : : β5 = ƒ(5) = α + 5α +5 α α3 Αντικαθιστούμε τους συντελεστές β στο = = γ + s 5 β ε = ο + μπορούμε να λάβουμε: = α + β + β β5-5 + ε = γ + α + (α + α + α + α3) - +(α + α + α + 3 α3) - + : + (α + sα +s α + s 3 α3) -5 5

26 + ε () Μετά από μερική επεξεργασία μπορούμε να εκτιμήσουμε τους συντελεστές ως εξής : = γ + α( ) + α( ) () + α( ) + α3( )+ε ημιουργώντας τις μεταβλητές (,3) w i = ανάλογα με τον βαθμό του πολυωνύμου i w = ( ) w = ( ) () w = ( ) w3 = ( ) τότε το βασικό υπόδειγμα των διαχρονικά κατανεμημένων υστερήσεων γράφεται 5 ως εξής: = α + αw + αw + αw + α3w3+ε (3) Το παραπάνω υπόδειγμα μπορεί πλέον να εκτιμηθεί με την μέθοδο των απλών ελαχίστων τετραγώνων. aa ˆ, ˆ, aˆ aˆ Η μέθοδος των απλών ελάχιστων τετραγώνων μπορεί να εφαρμοσθεί ως εξής: Αν και είναι κάποιες ελάχιστων τετραγώνων εκτιμήσεις των παραμέτρων a, a, a και a3 τότε αυτές μπορούν να εκτιμηθούν ελαχιστοποιώντας το άθροισμα : ˆ, ˆ, ˆˆ T = ( ˆ ˆ ˆ ˆ ) min a a w aw a w aa aa Έχοντας εκτιμήσει τις παραμέτρους a i με i =,,..., m, έστω a i για i,,..., m =, μπορούμε να εκτιμήσουμε τις παραμέτρους β ως εξής: β = ƒ() = 3 ao + a + a + a3 για =,,,3,.,5 Αναλυτικότερα η παραπάνω σχέση μπορεί για =,,,3 να γράφεί ως εξής: 5 Εναλλακτικά το παραπάνω υπόδειγμα θα μπορούσε να γραφεί και ώς εξής: = a + = r i a w i i + ε όπου s= 5 i = τ τ = τ w i για ι =,,..., r και s= 5 i = τ τ = τ w i για i=,,,3 είναι η μετασχηματισμένη μεταβλητή βασισμένη στην ανεξάρτητη μεταβλητή σε σχέση πάντοτε και με την παράμετρο r. Επιπλέον αντικαθιστώντας τις σταθμίσεις s= 5 i = τ τ = τ w i τό αρχικό υπόδειγμα μπορεί να γραφεί ώς: ) m r i = ( γ τ τ i ι τ + = = ε 6

27 = ˆ β = f = aˆ + aˆ () + aˆ () + a () = aˆ Για ( ) 3 3 = ˆ β = f = aˆ + aˆ () + aˆ () + a () = aˆ + aˆ + aˆ + aˆ Για ( ) = ˆ β = f = aˆ + aˆ () + aˆ () + a () = aˆ + aˆ + 4aˆ + 8aˆ Για ( ) = 3 ˆ β = f 3 = aˆ + aˆ (3) + aˆ (3) + a (3) = aˆ + 3aˆ + 9aˆ + 7aˆ Για ( ) Αν για παράδειγμα έχουμε ένα πολυώνυμο δευτέρου βαθμού (r=) και οι εκτιμήσεις των παραμέτρων aa a, και a είναι: aˆ 43.6 aˆ 4.38 = aˆ 6.7 aˆ 3.57 Τότε οι υπό εκτίμηση επιδράσεις μιας μεταβολής της μεταβλητής εξής: = ˆ β = f = aˆ + aˆ () + aˆ () = ˆ β = aˆ = 4.38 Για ( ) Για ( ) Για στην μεταβλητή = ˆ β = f = aˆ ˆ ˆ ˆ ˆ ˆ ˆ + a() + a() = β = a + a+ a = = 7.54 = ˆ β = f ( ) = aˆ + aˆ () + aˆ () = ˆ β = aˆ + aˆ + 4aˆ = (6.7) + 4( 3.57) = 3.54 θα υπολογισθεί ως Για ( ) = 3 ˆ β = f 3 = aˆ + aˆ (3) + aˆ (3) = aˆ + 3aˆ + 9aˆ 3 = (6.7) + 9( 3.57) = 7.6 7

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος.

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. :\Documens and Seings\kpig\Deskop\basikh askhsh aaaa.doc ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΞΕΙΔΙΚΕΥΣΗ-ΕΚΤΙΜΗΣΗ-ΑΝΑΛΥΣΗ- ΠΡΟΒΛΕΨΗ- ΣΕΝΑΡΙΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟ

Διαβάστε περισσότερα

Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις.

Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις. C:\Documens nd Seings\kpig\Deskop\-------- ------G---- ----S 6.doc Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις. Στα υποδείγματα με πολυωνυμικά κατανεμημένες διαχρονικές επιδράσεις υποθέτουμε

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή 2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Η Συγκριτική Στατική Ανάλυση ασχολείται με την σύγκριση διαφόρων καταστάσεων ισορροπίας οι οποίες συνδέονται με διαφορετικά σύνολα τιμών των παραμέτρων

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών Καθ. Γιώργος Αλογοσκούφης Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Η Κεϋνσιανή Προσέγγιση Η πιο διαδεδομένη

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Α.4 Η καμπύλη ζήτησης με ελαστικότητα ζήτησης ίση με το μηδέν σε όλα τα σημεία της είναι ευθεία παράλληλη προς τον άξονα των ποσοτήτων.

Α.4 Η καμπύλη ζήτησης με ελαστικότητα ζήτησης ίση με το μηδέν σε όλα τα σημεία της είναι ευθεία παράλληλη προς τον άξονα των ποσοτήτων. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών.

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών. ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σημειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Όταν η ζήτηση ενός αγαθού είναι ελαστική, η συνολική δαπάνη των καταναλωτών για το αγαθό αυτό μειώνεται καθώς αυξάνεται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών. ΔΠΜΣ Στην Οικονομική Επιστήμη. Διπλωματική Εργασία

Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών. ΔΠΜΣ Στην Οικονομική Επιστήμη. Διπλωματική Εργασία Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών ΔΠΜΣ Στην Οικονομική Επιστήμη Διπλωματική Εργασία Θέμα : «Ζήτηση Προθεσμιακών Καταθέσεων» Όνομα : Ελένη Ζίττη Αριθμός Μητρώου : Μ 08/04 Επιβλέπων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Παραβιάσεις των κλασσικών υποθέσεων. ο εκτιμητής LS είναι: Οι βασικές ιδιότητες του εκτιμητή είναι:

Παραβιάσεις των κλασσικών υποθέσεων. ο εκτιμητής LS είναι: Οι βασικές ιδιότητες του εκτιμητή είναι: Παραιάσεις των κλασσικών υποθέσεων Στο γραμμικό υπόδειγμα y = x+ u, =,,, ο εκτιμητής LS είναι: ˆ x y = = x = Οι ασικές ιδιότητες του εκτιμητή είναι: ˆ ( ) Var =, αμεροληψία, ˆ σ = x = Επιπλέον αν δεν έχουμε

Διαβάστε περισσότερα

Y Y ... y nx1. nx1

Y Y ... y nx1. nx1 6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,

Διαβάστε περισσότερα

Μάθηµα 5ο. Το υπόδειγµα της Συνολικής Ζήτησης

Μάθηµα 5ο. Το υπόδειγµα της Συνολικής Ζήτησης Μάθηµα 5ο Το υπόδειγµα της Συνολικής Ζήτησης Η συνολική Ζήτηση και τα συστατικά της Είδαµε ότι ένας τρόπος µέτρησης του ΑΕΠ είναι αυτός της συνολικής δαπάνης της οικονοµίας µε την παρακάτω ταυτότητα GDP

Διαβάστε περισσότερα

Γραμμικά Μοντέλα Χρονοσειρών και Αυτοσυσχέτισης ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σταυρούλα Γαζή

Γραμμικά Μοντέλα Χρονοσειρών και Αυτοσυσχέτισης ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σταυρούλα Γαζή ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ.Π.Μ.Σ. : «ΜΑΘΗΜΑΤΙΚΑ των ΥΠΟΛΟΓΙΣΤΩΝ και των ΑΠΟΦΑΣΕΩΝ» Κατεύθυνση : ΣΤΑΤΙΣΤΙΚΗ και ΕΠΙΧΕΙΡΙΣΙΑΚΗ ΕΡΕΥΝΑ Γραμμικά Μοντέλα Χρονοσειρών και

Διαβάστε περισσότερα

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1.1 Γιατί οι επιχειρήσεις έχουν ανάγκη την πρόβλεψη σελ.1 1.2 Μέθοδοι πρόβλεψης....σελ.2 ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 2.1 Υπόδειγμα του Κινητού μέσου όρου.σελ.5 2.2 Υπόδειγμα

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $) Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή

Διαβάστε περισσότερα

Αγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής

Αγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Αγορές Χρήματος και Κεφαλαίου Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΕΒΔΟΜΟ ΘΕΩΡΙΑΣ-ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΟΡΦΕΣ ΟΙΚΟΝΟΜΕΤΡΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2008-2009

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ

ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ ΔΙΑΣΠΟΡΑ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΕΣ ΑΝΙΣΟΤΗΤΕΣ Τα μέτρα διασποράς χρησιμεύουν για τη μέτρηση των περιφερειακών ανισοτήτων. Τα περιφερειακά χαρακτηριστικά που χρησιμοποιούνται

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες

Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τις µεθόδους επίλυσης υποδειγµάτων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis)

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) Δρ Ιωάννης Δημόπουλος Καθηγητής Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας Τι είναι η χρονολογική σειρά Χρονολογική σειρά ή Χρονοσειρά

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Άσκηση 1: Μια τράπεζα ενδιαφέρεται να μελετήσει την αποταμιευτική συμπεριφορά των πελατών της. Θεωρείται ως δεδομένο ότι η ετήσια αποταμίευση των πελατών της

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Ενα Νέο Κλασσικό Υπόδειγμα Χωρίς Κεφάλαιο. Μακροοικονομικές Διακυμάνσεις και Νομισματικοί Παράγοντες

Ενα Νέο Κλασσικό Υπόδειγμα Χωρίς Κεφάλαιο. Μακροοικονομικές Διακυμάνσεις και Νομισματικοί Παράγοντες Ενα Νέο Κλασσικό Υπόδειγμα Χωρίς Κεφάλαιο Μακροοικονομικές Διακυμάνσεις και Νομισματικοί Παράγοντες Καθ. Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, Αθήνα, 2016 Ενα Νέο Κλασσικό Υπόδειγμα Χωρίς Κεφάλαιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΕΦΑΛΑΙΟ 8 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΤΙΣ ΕΠΕΞΗΓΗΜΑΤΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ 8. ΕΙΣΑΓΩΓΗ Μέχρι τώρα τα προβλήματα που δημιουργούνται από την παραβίαση των υποθέσεων που πρέπει να ισχύουν ώστε οι OLS εκτιμητές να είναι BLUE

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Στατιστική ΙΙΙ(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η)

Στατιστική ΙΙΙ(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η) Στατιστική ΙΙΙ-(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική

Διαβάστε περισσότερα

Κεφάλαιο ΙΙΙ. Σχηματοποίηση ενός Στατικού Σχήματος Αλληλεπιδράσεων.

Κεφάλαιο ΙΙΙ. Σχηματοποίηση ενός Στατικού Σχήματος Αλληλεπιδράσεων. Κεφάλαιο ΙΙΙ. Σχηματοποίηση ενός Στατικού Σχήματος Αλληλεπιδράσεων. C:\WINDOWS\Επιφάνεια εργασίας\kkkk\κεφ_-5.doc 5. Σχηματοποίηση του Σχήματος των Αλληλεπιδράσεων. Όπως αναφέρθηκε στα προηγούμενα μέρη,

Διαβάστε περισσότερα

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ

E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ E4. ΕΛΑΣΤΙΚΟΤΗΤΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ.Παραδείγματα αναλυτικά.παραδείγματα αριθμητικά 3.Ελαστικότητα ζήτησης 4.Ελαστικότητα προσφοράς 5. Έσοδο 6.Κέρδος μονοπωλίου. Παραδείγματα αναλυτικά Παράδειγμα. Σε μια οικονομία

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΟΜΑΔΑ ΠΡΩΤΗ. β. Στον παραγωγικό συντελεστή κεφάλαιο περιλαμβάνεται και το λίπασμα που θα χρησιμοποιηθεί σε μια καλλιέργεια σιταριού.

ΟΜΑΔΑ ΠΡΩΤΗ. β. Στον παραγωγικό συντελεστή κεφάλαιο περιλαμβάνεται και το λίπασμα που θα χρησιμοποιηθεί σε μια καλλιέργεια σιταριού. ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 11 ΜΑΪΟΥ 2014 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών Καθ. ΓΙΩΡΓΟΣ ΑΛΟΓΟΣΚΟΥΦΗΣ Οικονομικό Πανεπιστήμιο Αθηνών 1 Η Διαχρονική Προσέγγιση Η διαχρονική προσέγγιση έχει ως σημείο εκκίνησης τις τεχνολογικές και αγοραίες

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit Τεχνικές Προβλέψεων 2 η Ενότητα http://www.fsu.gr -

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΜΕΡΟΣ Α Θεωρία Ζήτησης Ενός Αγαθού - Ανάλυση Συμπεριφοράς Καταναλωτή

ΠΕΡΙΕΧΟΜΕΝΑ. ΜΕΡΟΣ Α Θεωρία Ζήτησης Ενός Αγαθού - Ανάλυση Συμπεριφοράς Καταναλωτή ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α Θεωρία Ζήτησης Ενός Αγαθού - Ανάλυση Συμπεριφοράς Καταναλωτή ΕΙΣΑΓΩΓΗ Έννοια και Στόχοι της Μικροοικονομικής Θεωρίας 1. Γενικά...27 2. Το Πρόβλημα της Επιλογής...29 ΚΕΦΑΛΑΙΟ 1 Θεωρία

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ SOS & ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΩΝ 5 ΟΥ ΕΞΑΜΗΝΟΥ www.dap papei.gr 2 ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Τι θα γράψω: Στις εξετάσεις τα θέματα περιλαμβάνουν ερωτήσεις και ασκήσεις (κυρίως ασκήσεις) όπου

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not deined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ

ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Κεφάλαιο 3 ΕΠΕΚΤΑΣΕΙΣ ΤΟΥ ΝΕΟΚΛΑΣΙΚΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Εισαγωγή Ένα από τα βασικά συμπεράσματα του απλού νεοκλασικού υποδείγματος οικονομικής μεγέθυνσης, που παρουσιάστηκε στο Κεφάλαιο, είναι ότι δεν μπορεί

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ρ. Κουνετάς Η Κωνσταντίνος Ακαδηµαϊκό Έτος 01-013 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΤΑΥΤΟΧΡΟΝΩΝ (ΑΛΛΗΛΟΕΞΑΡΤΗΜΕΝΩΝ) ΕΞΙΣΩΣΕΩΝ

ΚΕΦΑΛΑΙΟ 9 ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΤΑΥΤΟΧΡΟΝΩΝ (ΑΛΛΗΛΟΕΞΑΡΤΗΜΕΝΩΝ) ΕΞΙΣΩΣΕΩΝ ΚΕΦΑΛΑΙΟ 9 ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΤΑΥΤΟΧΡΟΝΩΝ (ΑΛΛΗΛΟΕΞΑΡΤΗΜΕΝΩΝ) ΕΞΙΣΩΣΕΩΝ Μέχρι τώρα η μελέτη μας επικεντρώθηκε σε οικονομικά υποδείγματα μιας εξισώσεως, όπου έχουμε πάντα μια εξαρτημένη

Διαβάστε περισσότερα