A LUZ. ÓPTICA XEOMÉTRICA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A LUZ. ÓPTICA XEOMÉTRICA"

Transcript

1 A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que o obxecto. b) Se o espello é convexo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe dúas veces menor que o obxecto. c) Facer os diagramas de raios dos apartados a e b. a) Aumento lateral: β = y = S = 2 y S Relacionamos s e s : s = 2s A imaxe é real, por tanto, s < 0 e s < 0. Se é cóncavo, r<0 Introducimos todos os signos na ecuación dos espellos. Deste xeito, o resultado obtido terá signo contrario. s + s = f 2s + s = s = 0,60 m 0,40 Así, segundo as normas DIN, s = - 0,60 m. b) Idéntica estratexia de resolución que o apartado anterior. s = 0,5s A imaxe é virtual, por tanto s < 0 e s > 0. s + s = f 0,5s + s = s = 0,40m 0,40 Segundo as normas DIN, s = - 0,40 m c)

2 2. Sobre unha lámina de vidro de caras plano-paralelas, de espesor 0 cm e situada no aire, incide un raio de luz cun ángulo de incidencia de 30. Sabendo que o índice de refracción do vidro é,50, e o do aire a unidade: a) Facer un esquema da marcha dos raios b) Calcula a lonxitude recorrida polo raio no interior da lámina c) Calcula o ángulo que forma coa normal o raio que emerxe da lámina. a) b) Aplicación da lei de Snell para calcular o ángulo de refracción φ : sen 30 sen φ = n sen φ sen φ =,50 = ( 2 )/(2 3 ) φ = 9,5º cos φ = 0,0 x = 0,m x c) Por simetría, obtemos que o ángulo de saída da lámina é o mesmo que o da entrada. Matematicamente: sin φ = n sin φ () n sin φ 2 = sin φ 2 (2) φ = φ 2 por alternos internos: n sen φ = sen φ 2 (2) Comparando as ecuacións () y (2): sen φ = sen φ 2 φ = φ 2 = Un proxector de cine ten unha lente converxente de 20,0 dioptrías. a) A que distancia da lente debe situarse a película se queremos que a imaxe sexa 00 veces maior que o obxecto? b) A que distancia da lente debe situarse a pantalla? c) Debuxa o diagrama de raios a) Potencia ou converxencia da lente: P = = 20,0 dioptrías f Aumento lateral: β = y = s = 00 y s Ecuación das lentes: = s s f Relación entre s e s en valor absoluto: s = 00s A imaxe é real, por tanto: s < 0 e s > 0 Introdúcense todos os signos na ecuación das lentes e, como consecuencia, o signo do resultado será contrario: = 20 s = 5,05 00s s 0 2 m Así, segundo as normas DIN: s = 5, m

3 b) Da relación entre s e s en valor absoluto: s = 00s obtense s = 5,05 m, que é positivo, sempre segundo as normas DIN c) Diagrama de raios 4. Un raio luminoso incide na superficie dun bloque de vidro cun ángulo de incidencia de 50. Calcular as direccións dos raios: a) Reflectido b) Refractado c) Representar os raios reflectido e refractado Dato: O índice de refracción do vidro é,50 a) Segundo a lei de Snell, o raio reflectido forma coa normal un ángulo de 50, igual ó de incidencia i b) O raio refractado formará coa normal un ángulo r. Aplicando a Lei de Snell: n aire sen ı =n vidro sen r sen 50 =,5 sen r sen r = 0,5 e r = 30,7 c) Representación gráfica 5. Un espello esférico cóncavo ten un radio de curvatura de,5 m. Determinar: a) A posición da imaxe dun obxecto situado diante do espello a unha distancia de m b) A altura da imaxe, dun obxecto real de 0 cm de altura c) Realizar o diagrama de raios a) A distancia focal é igual á metade do radio de curvatura do espello f = r/2 ; como o espello é cóncavo, o seu radio de curvatura é negativo: f = r =,5 = 0,75 m 2 2 A posición do obxecto é: s=- m Introducimos todos os datos, co seu signo, na ecuación dos espellos. s + s = f s + = 0,75 s = 3 m

4 b) O tamaño da imaxe obtémolo a partir da ecuación do aumento lateral: β = y y = s s y = 3 y = - 0,3 m. 0, Como y é negativa, a imaxe é invertida e, neste caso, de maior tamaño que o obxecto. A imaxe é real xa que s é negativa e está a 3 metros diante do espello. c) Imaxe real, invertida e de maior tamaño. 6. Un obxecto de 6 cm de altura está situada a unha distancia de 30 cm dun espello esférico convexo de 40 cm de radio. Determinar: a) A posición da imaxe b) O tamaño da imaxe c) Realizar o diagrama de raios a) A distancia focal é igual á metade do radio de curvatura do espello; como o espello é convexo, o seu radio de curvatura é positivo: f = r = 0,4 = 0,2 m 2 2 A posición do obxecto é: s=-0,3 m Introducimos todos os datos, co seu signo, na ecuación dos espellos. s + s = f s + 0,3 = 0,2 s = 0,2 m s = 0 2 m è o punto de formación da imaxe virtual (xa que s é positiva) Aplicando a ecuación do aumento lateral obtemos o valor do tamaño da imaxe: β = y y = s s ; y 0,06 = 0,2 0,3 y = 0,024 m A imaxe é dereita, xa que y é positivo, e de menor tamaño b) Imaxe virtual, dereita e de menor tamaño.

5 7. Un obxecto de 4 cm de altura, está situado 20 cm diante dunha lente delgada converxente de distancia focal 2 cm. Determinar: a) A posición da imaxe b) O tamaño da imaxe c) Resolver o problema considerando que a lente é diverxente a) A posición da imaxe calculámola a partir da ecuación fundamental das lentes delgadas, tendo en conta que f =+0,2 m e a posición do obxecto, s=-0,2 m. s s = f s 0,2 = 0,2 s = +0,3 m, logo a imaxe é real xa que s é positiva. b) O tamaño da imaxe obtense aplicando a ecuación do aumento lateral da lente: β = y y = s s y = 0,3 y = - 0,06 m 0,04 0,2 O signo negativo indícanos que a imaxe é invertida. c) Para a lente diverxente aplicamos idéntica estratexia á aplicada no apartado a) pero considerando agora que f =-0,2 m. = s s f s 0,2 = 0,2 s = 7,5 0 2 m Logo a imaxe é virtual xa que s é negativa. Aumento lateral: β = y y = s s y = 0,075 y = 0,04 0,2,5 0-2 m O signo positivo indícanos que a imaxe é dereita. 8. a) En qué posicións se poderá colocar unha lente converxente de + 5 cm de distancia focal imaxe, para obter a imaxe dun obxecto de 5 cm de altura sobre unha pantalla situada a 80 cm del? b) Os aumentos laterais e os tamaños das imaxes c) Realizar o diagrama de raios considerando unha das posicións do apartado a) a) A suma dos valores absolutos de s e s será 80 cm; tendo en conta que s é positivo e s negativo, teremos que s = 0,80 + s b) Aplicando a ecuación das lentes = = s s f 0,8+s s 0,5 s 2 + 0,8s + 0,2 = 0 s = m ou s = m As dúas posicións son a 20 cm e 60 cm do obxecto c) Lente próxima Se s = 0,2m s = 0,6m; xa que a suma en valores absolutos de s e s é 0,8. Aumento β = s s β = 0,6 0,2 = 3 lateral:

6 Tamaño da imaxe: β = y y y = β y = 3 0,05 = 0,5 m O signo negativo indícanos que a imaxe é invertida. Lente afastada: Se s = 0,6 m s = 0,2 m Aumento lateral: β = y y = s s β = s s = 0,2 0,6 = 0,33 Tamaño da imaxe: β = y y y = β y = 0,33 0,05 = 0,07 m O signo negativo indícanos que a imaxe é invertida. d) Diagrama no caso s = 0,2 m e s = 0,6 m

7 CUESTIONS. Os ollos dunha persoa están a,70m do chan. A que altura sobre o chan debe estar a parte inferior dun espello plano para que esta persoa vexa a imaxe dos seus pés? a) 0,85m ; b) m ; c),70m. SOL. a O ollo sempre ve na dirección do raio que lle chega, polo tanto debe recibir un raio procedente dos pés para que poida velos. A imaxe nun espello plano é virtual, dereita, co mesmo tamaño e simétrica respecto do espello. Triángulos semellantes: AOA e ZZ A.,70 ZZ = 2ZA ZA ZZ = 0,85m 2. A altura mínima dun espello plano para que unha persoa poda verse de corpo enteiro é: a) igual á altura da persoa ; b) a metade de dita altura ; c) a terceira parte de dita altura. O ollo sempre ve na dirección do raio que lle chega. Para verse de corpo enteiro, é necesario que reciba raios dos pés e da parte superior da cabeza. A imaxe nun espello plano é virtual, dereita, do mesmo tamaño e simétrica respecto do espello. Os triángulos OZZ e OA B son semellantes: OZ OB = ZZ A B OZ 20Z = ZZ A B ZZ = 2 A B 3. A profundidade real dunha piscina con respecto á observada é: a) menor ; (b) maior ; (c) igual. Dato: os índices de refracción da auga e o aire son 4/3 e, respectivamente. Expresión da invariante de Abbe, aplicada a un dioptrio plano: n = n 2 s s OF = s OF = s s = s n s = 4 n 2 3 s s > s debido á refracción da luz. Logo a profundidade real é maior que a observada. 4. Un ollo miope ten o punto remoto a 25 cm. Calcula a potencia e indica o tipo de lente que se debe empregar para que os raios que veñen do infinito converxan na retina do ollo. a) +0,8 dioptrías, lente converxente ; b) -0,8 dioptrías, lente diverxente ; c) -,25 dioptrías, lente diverxente. Nota: Para un ollo sano, o punto próximo está a 25cm e o punto remoto, no infinito.

8 A lente sitúa a un obxeto que se atopa moi lonxano (s ) a 25 cm diante da mesma(s =,25m), e deste xeito é visto polo ollo. P = f = s s P = = 0,8 dioptrías lente diverxente,25 5. Calcula a potencia e indica o tipo de lente que necesita para ler unha persoa cuxo punto próximo se atopa a m. a) +3 dioptrías, lente converxente ; b) -3 dioptrías, lente diverxente ; c) +0,33 dioptrías, lente converxente. Nota: Para un ollo san, o punto próximo está a 25cm e o punto remoto, no infinito. SOL. a Debe empregarse unha lente converxente de distancia focal superior a 25cm para que a imaxe se forme, como mínimo a un metro. Distancia (típica de letura) obxeto: s = 0,25m Distancia imaxe: s = m P = f = s s P = = +3 dioptrías lente converxente 0,25 6. A distancia focal do sistema formado por unha lente converxente de 2 dioptrías e outra diverxente de 4,5 dioptrías é: a) 0,4m; b) 0,65m; c) 2,5m SOL. a A potencia do sistema será: P=P +P 2 = 2 + (- 4 5) = dioptrías Polo que a distancia focal sería: P= /f f = /(-2 5) = m 7. A teoría ondulatoria de Huygens sobre a natureza da luz vén confirmada polos fenómenos: a) Reflexión e formación de sombras. b) Refracción e interferencias. c) Efecto fotoeléctrico e efecto Compton. Huygens explicou a reflexión e a refracción da luz a partir da consideración de que cada punto da fronte de ondas é un novo foco luminoso, e polo tanto, a partir deles se constrúe unha nova fronte de ondas que se propaga polo espacio. A enerxía estaría distribuída uniformemente por toda a fronte de ondas. 8. Cando un raio de luz pasa do aire a auga, non cambia a: a) Velocidade de propagación. b) Frecuencia. c) Lonxitude de onda. Cando un raio de luz cambia de medio, está a modifica-la súa velocidade de propagación xa que se altera a súa lonxitude de onda. A frecuencia non cambia porque o foco emisor é o mesmo, e a frecuencia depende dese foco emisor. No paso do aire á auga prodúcese un cambio nas características do medio de propagación, polo tanto, do espacio e nas características espaciais da onda, pero non nas temporais. As características exclusivamente temporais dunha onda son frecuencia e período.

9 9. Para afeitarse, unha persoa precisa ve-la súa imaxe dereita e do maior tamaño posible. Que clase de espello debe usar? a) Plano; b) Cóncavo; c) Convexo Deberá empregar un espello que permita a obtención de imaxes aumentadas, de aí que o espello deba ser cóncavo, colocándose entre o foco e o punto O. Dita construcción corresponde a unha distancia entre obxecto e espello inferior á distancia focal 0. Cando a luz pasa dun medio a outro de distinto índice de refracción, o ángulo de refracción é: a) Sempre maior que o de incidencia. b) Sempre menor que o de incidencia. c) Depende dos índices de refracción. SOL. c Aplicando a 2ª lei de Snell: n senı =n 2 senr n n 2 = senr seni A relación entre os ángulos dependerá da relación dos índices de refracción.. Nas lentes diverxentes a imaxe sempre é: a) Dereita, menor e virtual; b) Dereita, maior e real; c) Dereita, menor e real. SOL. a Dacordo coa representación gráfica: 2. Nas lentes converxentes a imaxe é: a) Dereita, menor e virtual; b) Dereita maior e real. c) Depende da posición do obxecto. SOL. c Dependerá da posición relativa do obxecto respecto do foco e do centro da lente. Depende da posición do obxecto, xa que se está máis separado da lente que 2 veces a distancia focal, terá unha imaxe real, invertida e menor. Cunha separación igual a 2f, a imaxe será real, invertida e do mesmo tamaño. Se está situado entre f e 2f, a imaxe será real, invertida e maior. Para distancias menores, a imaxe é virtual, dereita e maior.

10 3. Dispomos dun espello convexo de radio de curvatura m. Como é a imaxe dun obxecto real?. a) Real, invertida e de menor tamaño. b) Virtual, invertida e de maior tamaño. c) Virtual, dereita e de menor tamaño. SOL. c De acordo coa marcha dos raios: 4. Ó colocar un obxecto a 5 cm de distancia dunha lente converxente de 30 cm de distancia focal. A imaxe formada é: a) Real, invertida e aumentada. b) Virtual, dereita e aumentada. c) Real, dereita e reducida. Facendo a marcha dos raios correspondente resultará que a imaxe será virtual, dereita e aumentada. 5. Nos autobuses urbanos colócase un espello sobre a porta para que o condutor poida observar o interior do autobús na súa totalidade. Como é o espello?. a) Cóncavo; b) Convexo; c) Plano. A solución é escollida de tal xeito que en calquera caso, a imaxe dun obxecto se vexa na área espellada, para o que é necesario reducir o tamaño da imaxe respecto do obxecto, cousa que se consegue cos espellos convexos. 6. As gafas de corrección da miopía usan lentes que son: a) Converxentes; b) Diverxentes; c) Doutro tipo. As lentes de corrección da miopía úsanse para que unha imaxe que se forma adiantada se forme máis atrás no ollo, evitando forzar o mesmo e a mala visión en caso de non poder forzalo abondo. Para isto necesitan facer diverxer os raios de luz que inciden nela 7. Queremos facer pasar un raio de luz a través dun vidro, de xeito que non se desvíe. Terá que ser: a) Unha lente plana paralela, en calquera posición. b) Non se pode facer. c) Calquera lente, atravesándoa polo eixe óptico.

11 SOL. c Toda lente, ó ser atravesada por un raio conducido a traverso do seu eixe óptico, non o desvía, pois implica que as superficies que ten que atravesar son perpendiculares ó raio incidente. 8. Unha lámpada está acendida nunha lámpada que ten unha pantalla reflectora en forma de pirámide de cono truncada. A razón é: a) Iluminar por igual en toda a superficie. b) Concentrar a maior potencia luminosa posible sobre a superficie iluminada. c) Evitar cegamentos. A pantalla reflicte parte da luz que, doutro xeito, sería inservible para o uso que se lle quere dar, concentrándoa sobre a superficie iluminada e aumentando a intensidade luminosa nela. O apartado c) tamén é certo para determinadas posicións do observador, se ben parte do malestar visual deste tipo ten outras causas, como o reflexo no papel, por exemplo. 9. Dous raios de luz inicialmente paralelos, crúzanse despois de atravesar unha lente. Eso pode darse en caso de que teñamos: a) Unha lente de vidro bicóncava en aire. b) Un oco bicóncavo cheo de aire no interior dunha masa de vidro. c) Necesariamente con outra disposición diferente das anteriores. Cando os índices de refracción da lente e o medio "externo" de transmisión intercambian os seus valores, o efecto que produce tamén se invirte. Estamos afeitos a ter lentes de vidro actuando no aire, e en tal caso actuarán como lentes diverxentes. Pero, se o índice de refracción interior é menor que o exterior, entón o efecto é o contrario: son lentes converxentes. 20. O ángulo formado polo raio incidente e o reflectido nun espello é α. Se o espello rota no sentido horario un ángulo β nun eixe perpendicular ó formado polos dous raios anteriores, o novo ángulo que formarán entre eles é: a) α+β ; b) α+2β ; c) α β Cando o espello rota, varía o ángulo de incidencia no mesmo valor que o ángulo de xiro. Como na reflexión se cumpre que o ángulo de incidencia e o de reflexión son iguais, a separación entre ambos varía ese mesmo valor dúas veces. A ter en conta que se o ángulo é en sentido contrario, poden "cambiarse de lado" os raios incidente e reflectido, así como se o ángulo de incidencia chegara a 90, entón xa non incidiría e polo tanto non se reflectiría.

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10

Διαβάστε περισσότερα

ÓPTICA- A LUZ Problemas PAAU

ÓPTICA- A LUZ Problemas PAAU ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos

Διαβάστε περισσότερα

Exercicios de Física 04. Óptica

Exercicios de Física 04. Óptica Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3

1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3 1.- Evolución das ideas acerca da natureza da luz! 2 2.- Óptica xeométrica! 2 2.1.- Principio de Fermat. Camiño óptico! 3 2.2.- Reflexión e refracción. Leis de Snell! 3 2.3.- Laminas plano-paralelas! 4

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O? EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de

Διαβάστε περισσότερα

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior. ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...

Διαβάστε περισσότερα

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735

Διαβάστε περισσότερα

Procedementos operatorios de unións non soldadas

Procedementos operatorios de unións non soldadas Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

PAU XUÑO 2013 FÍSICA

PAU XUÑO 2013 FÍSICA PAU XUÑO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

Tema 3. Espazos métricos. Topoloxía Xeral,

Tema 3. Espazos métricos. Topoloxía Xeral, Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

ln x, d) y = (3x 5 5x 2 + 7) 8 x

ln x, d) y = (3x 5 5x 2 + 7) 8 x EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2002

PAAU (LOXSE) Xuño 2002 PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

Exercicios de Física 02a. Campo Eléctrico

Exercicios de Física 02a. Campo Eléctrico Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

24/10/06 MOVEMENTO HARMÓNICO SIMPLE

24/10/06 MOVEMENTO HARMÓNICO SIMPLE NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2006

PAAU (LOXSE) Xuño 2006 PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

PAU Xuño 2011 FÍSICA OPCIÓN A

PAU Xuño 2011 FÍSICA OPCIÓN A PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =

Διαβάστε περισσότερα

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2006

PAAU (LOXSE) Setembro 2006 PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

Física e Química 4º ESO

Física e Química 4º ESO Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo. XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular. EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA PAAU (LOXSE) XUÑO 2001 Código: 22 ÍSICA Elixir e desenrolar unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS 5 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora:

Διαβάστε περισσότερα

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionario Trigonometría ACTIVIDADES INICIALES.I. En una recta r hay tres puntos: A, B y C, que distan, sucesivamente, y cm. Por esos puntos se trazan rectas paralelas que cortan otra, s, en M, N y P.

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

Problemas xeométricos

Problemas xeométricos Problemas xeométricos Contidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores e segmentos 2. Corpos xeométricos Prismas Pirámides Troncos de pirámides

Διαβάστε περισσότερα

Resorte: estudio estático e dinámico.

Resorte: estudio estático e dinámico. ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

Reflexión e refracción. Coeficientes de Fresnel

Reflexión e refracción. Coeficientes de Fresnel Tema 5 Reflexión e refracción Coeficientes de Fresnel 51 Introdución Cando a luz incide sobre a superficie de separación de dous medios transparentes de índice de refracción diferente, unha parte entra

Διαβάστε περισσότερα

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital

Διαβάστε περισσότερα

DINAMICA DE TRASLACION

DINAMICA DE TRASLACION DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Movementos e forzas. Unidade didáctica 5. Módulo 3. Educación a distancia semipresencial

Ámbito científico tecnolóxico. Movementos e forzas. Unidade didáctica 5. Módulo 3. Educación a distancia semipresencial Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 5 Movementos e forzas Índice 1. Introdución... 3 1.1 Descrición da

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Volume dos corpos xeométricos

Volume dos corpos xeométricos 11 Volume dos corpos xeométricos Obxectivos Nesta quincena aprenderás a: Comprender o concepto de medida do volume e coñecer e manexar as unidades de medida do S.M.D. Obter e aplicar expresións para o

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Expresións alxébricas... páx. 64 De expresións a ecuacións Valor numérico Expresión en coeficientes

Polinomios. Obxectivos. Antes de empezar. 1.Expresións alxébricas... páx. 64 De expresións a ecuacións Valor numérico Expresión en coeficientes 4 Polinomios Obxectivos Nesta quincena aprenderás: A traballar con expresións literais para a obtención de valores concretos en fórmulas e ecuacións en diferentes contextos. A regra de Ruffini. O teorema

Διαβάστε περισσότερα

Tema 3.5 Fundamentos da difracción

Tema 3.5 Fundamentos da difracción Tema 3.5 Fundamentos da difracción 3.5.1. Introducción Ademáis da interferencia, existe outro conxunto de fenómenos que non son explicables mediante a óptica xeométrica. Cando a luz atravesa pequenas aberturas

Διαβάστε περισσότερα

Semellanza e trigonometría

Semellanza e trigonometría 7 Semellanza e trigonometría Obxectivos Nesta quincena aprenderás a: Recoñecer triángulos semellantes. Calcular distancias inaccesibles, aplicando a semellanza de triángulos. Nocións básicas de trigonometría.

Διαβάστε περισσότερα

ELECTROMAGNETISMO Problemas PAAU

ELECTROMAGNETISMO Problemas PAAU ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en

Διαβάστε περισσότερα